modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
marialvsantiago/b1e948f3-befb-411f-b79e-487e570c1f0b
marialvsantiago
2025-01-23T09:17:39Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "license:other", "region:us" ]
null
2025-01-23T08:14:57Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: b1e948f3-befb-411f-b79e-487e570c1f0b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 17a4766fa4748b36_train_data.json ds_type: json format: custom path: /workspace/input_data/17a4766fa4748b36_train_data.json type: field_input: text field_instruction: leadin field_output: heading format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: marialvsantiago/b1e948f3-befb-411f-b79e-487e570c1f0b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/17a4766fa4748b36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 464732d7-8f75-4034-bba8-31e12a8da780 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 464732d7-8f75-4034-bba8-31e12a8da780 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # b1e948f3-befb-411f-b79e-487e570c1f0b This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 3.9885 | | 3.7298 | 0.0005 | 5 | 3.9294 | | 3.753 | 0.0009 | 10 | 3.8421 | | 3.6013 | 0.0014 | 15 | 3.7885 | | 3.6215 | 0.0018 | 20 | 3.7505 | | 3.6442 | 0.0023 | 25 | 3.7311 | | 3.8128 | 0.0027 | 30 | 3.7273 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trangtrannnnn/8da8fcb6-c85e-41aa-80c3-6ef745c2de3b
trangtrannnnn
2025-01-23T09:16:57Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM-1.7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T09:06:18Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8da8fcb6-c85e-41aa-80c3-6ef745c2de3b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f23f65f18453ce63_train_data.json ds_type: json format: custom path: /workspace/input_data/f23f65f18453ce63_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: trangtrannnnn/8da8fcb6-c85e-41aa-80c3-6ef745c2de3b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f23f65f18453ce63_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3ed4752c-a781-4211-a0af-d8ccce51292d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3ed4752c-a781-4211-a0af-d8ccce51292d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8da8fcb6-c85e-41aa-80c3-6ef745c2de3b This model is a fine-tuned version of [unsloth/SmolLM-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0304 | 0.0786 | 200 | 0.0528 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ClarenceDan/8aa98ece-8d0e-4caf-8c62-223dcde8038b
ClarenceDan
2025-01-23T09:16:37Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T09:12:36Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8aa98ece-8d0e-4caf-8c62-223dcde8038b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c0c789f5fa3834ea_train_data.json ds_type: json format: custom path: /workspace/input_data/c0c789f5fa3834ea_train_data.json type: field_instruction: prompt field_output: reference_response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/8aa98ece-8d0e-4caf-8c62-223dcde8038b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/c0c789f5fa3834ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ef6e27c9-9bb9-486c-9803-a4459d5ec01c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ef6e27c9-9bb9-486c-9803-a4459d5ec01c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8aa98ece-8d0e-4caf-8c62-223dcde8038b This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2992 | 0.0002 | 1 | 1.2072 | | 0.8898 | 0.0005 | 3 | 1.2056 | | 1.0227 | 0.0010 | 6 | 1.1918 | | 1.0777 | 0.0015 | 9 | 1.1649 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adammandic87/2c81b2dc-012e-48d8-8664-c6a2fc419042
adammandic87
2025-01-23T09:16:33Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-23T09:10:27Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 2c81b2dc-012e-48d8-8664-c6a2fc419042 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 48a327932f2bcac8_train_data.json ds_type: json format: custom path: /workspace/input_data/48a327932f2bcac8_train_data.json type: field_instruction: title field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/2c81b2dc-012e-48d8-8664-c6a2fc419042 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/48a327932f2bcac8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1b46ba65-c297-42f8-b3b7-ea08b72dc3f6 wandb_project: Birthday-SN56-13-Gradients-On-Demand wandb_run: your_name wandb_runid: 1b46ba65-c297-42f8-b3b7-ea08b72dc3f6 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2c81b2dc-012e-48d8-8664-c6a2fc419042 This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9302 | 0.0000 | 1 | 11.9314 | | 11.9314 | 0.0001 | 3 | 11.9314 | | 11.9318 | 0.0001 | 6 | 11.9314 | | 11.9339 | 0.0002 | 9 | 11.9314 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrhunghd/b0c3d002-9877-44e9-ac95-879f42303c6a
mrhunghd
2025-01-23T09:13:18Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:58:36Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: b0c3d002-9877-44e9-ac95-879f42303c6a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b634ec435872dc54_train_data.json ds_type: json format: custom path: /workspace/input_data/b634ec435872dc54_train_data.json type: field_input: answers field_instruction: question field_output: gpt_answer_sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrhunghd/b0c3d002-9877-44e9-ac95-879f42303c6a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b634ec435872dc54_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dcfe088e-1bb0-47a3-a371-1d236eecf8c5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dcfe088e-1bb0-47a3-a371-1d236eecf8c5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b0c3d002-9877-44e9-ac95-879f42303c6a This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 95 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1825 | 1.0 | 95 | 0.4100 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrHungddddh/1bdbe1da-ca45-4558-9b24-c18ed248c6c0
mrHungddddh
2025-01-23T09:13:05Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:58:36Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: 1bdbe1da-ca45-4558-9b24-c18ed248c6c0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b634ec435872dc54_train_data.json ds_type: json format: custom path: /workspace/input_data/b634ec435872dc54_train_data.json type: field_input: answers field_instruction: question field_output: gpt_answer_sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrHungddddh/1bdbe1da-ca45-4558-9b24-c18ed248c6c0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b634ec435872dc54_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dcfe088e-1bb0-47a3-a371-1d236eecf8c5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dcfe088e-1bb0-47a3-a371-1d236eecf8c5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 1bdbe1da-ca45-4558-9b24-c18ed248c6c0 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 95 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2147 | 1.0 | 95 | 0.4109 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
iach/judgegguf2
iach
2025-01-23T09:12:40Z
24
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T09:12:04Z
--- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** iach - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kostiantynk/1e9c3cac-b5d2-468d-bde3-a09a359627e6
kostiantynk
2025-01-23T09:11:29Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM-1.7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T09:09:24Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 1e9c3cac-b5d2-468d-bde3-a09a359627e6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f23f65f18453ce63_train_data.json ds_type: json format: custom path: /workspace/input_data/f23f65f18453ce63_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk/1e9c3cac-b5d2-468d-bde3-a09a359627e6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/f23f65f18453ce63_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3ed4752c-a781-4211-a0af-d8ccce51292d wandb_project: Birthday-SN56-7-Gradients-On-Demand wandb_run: your_name wandb_runid: 3ed4752c-a781-4211-a0af-d8ccce51292d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1e9c3cac-b5d2-468d-bde3-a09a359627e6 This model is a fine-tuned version of [unsloth/SmolLM-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0512 | 0.0004 | 1 | nan | | 0.2165 | 0.0012 | 3 | nan | | 0.2621 | 0.0024 | 6 | nan | | 0.0 | 0.0035 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/f6714636-8185-41c3-a4e6-d4d7fbab4c42
daniel40
2025-01-23T09:09:09Z
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-random-GemmaForCausalLM", "base_model:adapter:fxmarty/tiny-random-GemmaForCausalLM", "license:mit", "region:us" ]
null
2025-01-23T09:06:54Z
--- library_name: peft license: mit base_model: fxmarty/tiny-random-GemmaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: f6714636-8185-41c3-a4e6-d4d7fbab4c42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-random-GemmaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8570af5c23ba879e_train_data.json ds_type: json format: custom path: /workspace/input_data/8570af5c23ba879e_train_data.json type: field_input: text_so_far field_instruction: user_question field_output: proposition format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/f6714636-8185-41c3-a4e6-d4d7fbab4c42 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/8570af5c23ba879e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0f8a5a83-8801-4be0-bff4-5bdb7d8ba6e7 wandb_project: Birthday-SN56-28-Gradients-On-Demand wandb_run: your_name wandb_runid: 0f8a5a83-8801-4be0-bff4-5bdb7d8ba6e7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f6714636-8185-41c3-a4e6-d4d7fbab4c42 This model is a fine-tuned version of [fxmarty/tiny-random-GemmaForCausalLM](https://huggingface.co/fxmarty/tiny-random-GemmaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0003 | 3 | nan | | 0.0 | 0.0005 | 6 | nan | | 0.0 | 0.0008 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
laquythang/5f27d691-9327-4043-bdeb-3d370b42cea8
laquythang
2025-01-23T09:09:04Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:58:49Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: 5f27d691-9327-4043-bdeb-3d370b42cea8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b634ec435872dc54_train_data.json ds_type: json format: custom path: /workspace/input_data/b634ec435872dc54_train_data.json type: field_input: answers field_instruction: question field_output: gpt_answer_sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: laquythang/5f27d691-9327-4043-bdeb-3d370b42cea8 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b634ec435872dc54_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dcfe088e-1bb0-47a3-a371-1d236eecf8c5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dcfe088e-1bb0-47a3-a371-1d236eecf8c5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5f27d691-9327-4043-bdeb-3d370b42cea8 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 95 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2268 | 1.0 | 95 | 0.4094 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adammandic87/0b61fbd9-2bde-494a-8124-6299d564c602
adammandic87
2025-01-23T09:08:59Z
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-random-GemmaForCausalLM", "base_model:adapter:fxmarty/tiny-random-GemmaForCausalLM", "license:mit", "region:us" ]
null
2025-01-23T09:06:40Z
--- library_name: peft license: mit base_model: fxmarty/tiny-random-GemmaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 0b61fbd9-2bde-494a-8124-6299d564c602 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-random-GemmaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8570af5c23ba879e_train_data.json ds_type: json format: custom path: /workspace/input_data/8570af5c23ba879e_train_data.json type: field_input: text_so_far field_instruction: user_question field_output: proposition format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/0b61fbd9-2bde-494a-8124-6299d564c602 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/8570af5c23ba879e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0f8a5a83-8801-4be0-bff4-5bdb7d8ba6e7 wandb_project: Birthday-SN56-13-Gradients-On-Demand wandb_run: your_name wandb_runid: 0f8a5a83-8801-4be0-bff4-5bdb7d8ba6e7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0b61fbd9-2bde-494a-8124-6299d564c602 This model is a fine-tuned version of [fxmarty/tiny-random-GemmaForCausalLM](https://huggingface.co/fxmarty/tiny-random-GemmaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0003 | 3 | nan | | 0.0 | 0.0005 | 6 | nan | | 0.0 | 0.0008 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nathanialhunt/aa8f7bfd-3808-44de-9ace-1e9c624d1351
nathanialhunt
2025-01-23T09:08:33Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM-1.7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T09:06:30Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: aa8f7bfd-3808-44de-9ace-1e9c624d1351 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f23f65f18453ce63_train_data.json ds_type: json format: custom path: /workspace/input_data/f23f65f18453ce63_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/aa8f7bfd-3808-44de-9ace-1e9c624d1351 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/f23f65f18453ce63_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3ed4752c-a781-4211-a0af-d8ccce51292d wandb_project: Birthday-SN56-24-Gradients-On-Demand wandb_run: your_name wandb_runid: 3ed4752c-a781-4211-a0af-d8ccce51292d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # aa8f7bfd-3808-44de-9ace-1e9c624d1351 This model is a fine-tuned version of [unsloth/SmolLM-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0512 | 0.0004 | 1 | nan | | 0.2165 | 0.0012 | 3 | nan | | 0.2621 | 0.0024 | 6 | nan | | 0.0 | 0.0035 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
datlaaaaaaa/a753ec66-e22a-44b8-b669-375cceaf4cbc
datlaaaaaaa
2025-01-23T09:07:29Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:57:36Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: a753ec66-e22a-44b8-b669-375cceaf4cbc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b634ec435872dc54_train_data.json ds_type: json format: custom path: /workspace/input_data/b634ec435872dc54_train_data.json type: field_input: answers field_instruction: question field_output: gpt_answer_sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/a753ec66-e22a-44b8-b669-375cceaf4cbc hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b634ec435872dc54_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dcfe088e-1bb0-47a3-a371-1d236eecf8c5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dcfe088e-1bb0-47a3-a371-1d236eecf8c5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a753ec66-e22a-44b8-b669-375cceaf4cbc This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 95 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2132 | 1.0 | 95 | 0.4156 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Jsevisal/ModernEMO-base-multilabel
Jsevisal
2025-01-23T09:07:28Z
14
0
transformers
[ "transformers", "safetensors", "modernbert", "text-classification", "generated_from_trainer", "dataset:Jsevisal/go_emotions_ekman", "dataset:google-research-datasets/go_emotions", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-15T11:07:06Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - f1 - accuracy - roc_auc model-index: - name: ModernEMO-base results: [] datasets: - Jsevisal/go_emotions_ekman - google-research-datasets/go_emotions pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ModernEMO-base This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on [Jsevisal/go_emotions_ekman](https://huggingface.co/datasets/Jsevisal/go_emotions_ekman) It achieves the following results on the evaluation set: - Loss: 0.2224 - F1: 0.7037 - Roc Auc: 0.8143 - Accuracy: 0.6226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.2162 | 1.0 | 2714 | 0.2049 | 0.6920 | 0.7979 | 0.6010 | | 0.1553 | 2.0 | 5428 | 0.2224 | 0.7037 | 0.8143 | 0.6226 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
nat-hunt/21ca9765-1099-48f9-8bca-6ed390dbbed0
nat-hunt
2025-01-23T09:07:03Z
14
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "region:us" ]
null
2025-01-23T08:59:19Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: 21ca9765-1099-48f9-8bca-6ed390dbbed0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: huggyllama/llama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aed51b8e2c089967_train_data.json ds_type: json format: custom path: /workspace/input_data/aed51b8e2c089967_train_data.json type: field_input: instance_id field_instruction: prompt_msg field_output: truth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nat-hunt/21ca9765-1099-48f9-8bca-6ed390dbbed0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/aed51b8e2c089967_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6a8f76dd-7262-490a-905c-7b83c0f56891 wandb_project: Birthday-SN56-4-Gradients-On-Demand wandb_run: your_name wandb_runid: 6a8f76dd-7262-490a-905c-7b83c0f56891 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 21ca9765-1099-48f9-8bca-6ed390dbbed0 This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 3 | nan | | 0.0 | 0.0007 | 6 | nan | | 0.0 | 0.0011 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dimasik87/4476dffd-3057-45fa-82b5-d2d95337b4e1
dimasik87
2025-01-23T09:04:19Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T08:52:17Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4476dffd-3057-45fa-82b5-d2d95337b4e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f105d22f7d07b492_train_data.json ds_type: json format: custom path: /workspace/input_data/f105d22f7d07b492_train_data.json type: field_input: Topic1 field_instruction: Topic2 field_output: Text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: dimasik87/4476dffd-3057-45fa-82b5-d2d95337b4e1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/f105d22f7d07b492_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7e4edfac-6e94-4d57-9fbf-2a43fc8a9526 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7e4edfac-6e94-4d57-9fbf-2a43fc8a9526 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # 4476dffd-3057-45fa-82b5-d2d95337b4e1 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 2.8703 | | 2.6082 | 0.0008 | 5 | 2.8087 | | 2.4777 | 0.0016 | 10 | 2.7376 | | 2.486 | 0.0023 | 15 | 2.6829 | | 2.4957 | 0.0031 | 20 | 2.6511 | | 2.5525 | 0.0039 | 25 | 2.6337 | | 2.6802 | 0.0047 | 30 | 2.6303 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/77c554e8-7900-4e04-ad02-46521cc16103
kk-aivio
2025-01-23T09:04:06Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-23T08:56:25Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 77c554e8-7900-4e04-ad02-46521cc16103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f105d22f7d07b492_train_data.json ds_type: json format: custom path: /workspace/input_data/f105d22f7d07b492_train_data.json type: field_input: Topic1 field_instruction: Topic2 field_output: Text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/77c554e8-7900-4e04-ad02-46521cc16103 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/f105d22f7d07b492_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7e4edfac-6e94-4d57-9fbf-2a43fc8a9526 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: 7e4edfac-6e94-4d57-9fbf-2a43fc8a9526 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 77c554e8-7900-4e04-ad02-46521cc16103 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4142 | 0.0001 | 1 | 2.6656 | | 2.5214 | 0.0002 | 3 | 2.6643 | | 2.6031 | 0.0005 | 6 | 2.6514 | | 2.5663 | 0.0007 | 9 | 2.6268 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kevinbazira/aya-expanse-32b-gptq-4bit
kevinbazira
2025-01-23T09:02:52Z
10
0
transformers
[ "transformers", "safetensors", "cohere", "text-generation", "pytorch", "gptq", "conversational", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi", "arxiv:2210.17323", "base_model:CohereForAI/aya-expanse-32b", "base_model:quantized:CohereForAI/aya-expanse-32b", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "4-bit", "region:us" ]
text-generation
2025-01-23T05:27:10Z
--- language: - en - fr - de - es - it - pt - ja - ko - zh - ar - el - fa - pl - id - cs - he - hi - nl - ro - ru - tr - uk - vi license: cc-by-nc-4.0 library_name: transformers tags: - cohere - pytorch - gptq model_name: aya-expanse-32b-gptq-4bit base_model: CohereForAI/aya-expanse-32b inference: false model_creator: Cohere For AI pipeline_tag: text-generation quantized_by: kevinbazira --- # aya-expanse-32b-gptq-4bit This repository contains a quantized version of the `CohereForAI/aya-expanse-32b` model using the [GPTQ](https://huggingface.co/docs/transformers/en/quantization/gptq) method in 4-bit precision. ## Model Summary - **Quantized Model**: [kevinbazira/aya-expanse-32b-gptq-4bit](https://huggingface.co/kevinbazira/aya-expanse-32b-gptq-4bit) - **Quantization Method**: [GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers](https://arxiv.org/pdf/2210.17323) - **Dataset**: [c4](https://huggingface.co/datasets/legacy-datasets/c4) - **Precision**: 4-bit - **Original Model**: [CohereForAI/aya-expanse-32b](https://huggingface.co/CohereForAI/aya-expanse-32b) ## How to Use the Quantized Model ### 1. Install the necessary packages Before using the quantized model, please ensure your environment has: - [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) ### 2. Run inference Load and use the quantized model as shown below in Python: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Set up device device = torch.device('cuda:1') # Remember to use the correct device here # Load model and tokenizer model_name = "kevinbazira/aya-expanse-32b-gptq-4bit" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, device_map={"": device.index} ) # Prepare input # https://huggingface.co/docs/transformers/en/pad_truncation input_text = "Add your prompt here." inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding="max_length", max_length=64) inputs = {key: value.to(device) for key, value in inputs.items()} # Perform text generation # https://huggingface.co/docs/transformers/en/main_classes/text_generation outputs = model.generate( **inputs, num_return_sequences=1, min_new_tokens=64, max_new_tokens=64, do_sample=False, use_cache=True, num_beams=1 ) # Decode and print the output print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## More Information - **Original Model**: For details about the original model's architecture, training dataset, and performance, please visit the CohereForAI [aya-expanse-32b model card](https://huggingface.co/CohereForAI/aya-expanse-32b). - **Support or inquiries**: If you run into any issues or have questions about the quantized model, feel free to reach me via email: `[email protected]`. I'll be happy to help!
openfree/pepe
openfree
2025-01-23T09:02:00Z
1,105
49
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "ai-toolkit", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-23T03:19:08Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - ai-toolkit widget: - text: A person in a bustling cafe pepe output: url: samples/1737602345329__000001000_0.jpg - text: A pepe output: url: samples/pepe1.webp - text: A pepe output: url: samples/pepe2.webp - text: A pepe output: url: samples/pepe3.webp base_model: black-forest-labs/FLUX.1-dev instance_prompt: pepe license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # pepe <Gallery /> ## Trigger words You should use `pepe` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. Weights for this model are available in Safetensors format. [Download](/openfree/pepe/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('openfree/pepe', weight_name='pepe.safetensors') image = pipeline('A person in a bustling cafe pepe').images[0] image.save("my_image.png") ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mrferr3t/abdda181-c62a-4c7b-b90d-13b20566569f
mrferr3t
2025-01-23T09:00:24Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-13b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-13b-128k", "region:us" ]
null
2025-01-23T08:46:20Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-13b-128k tags: - axolotl - generated_from_trainer model-index: - name: abdda181-c62a-4c7b-b90d-13b20566569f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-13b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2357a9464c66e908_train_data.json ds_type: json format: custom path: /workspace/input_data/2357a9464c66e908_train_data.json type: field_input: examples field_instruction: prompt field_output: statement format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/abdda181-c62a-4c7b-b90d-13b20566569f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/2357a9464c66e908_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bcad01e7-1b2a-4250-8b8b-0be1c30000d4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bcad01e7-1b2a-4250-8b8b-0be1c30000d4 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # abdda181-c62a-4c7b-b90d-13b20566569f This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-13b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-13b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 17.8209 | 0.0003 | 1 | 4.1906 | | 15.6407 | 0.0008 | 3 | 4.1830 | | 15.704 | 0.0016 | 6 | 4.0431 | | 13.637 | 0.0023 | 9 | 3.4428 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jimi0209/Yinka-Q5_K_M-GGUF
jimi0209
2025-01-23T08:58:02Z
17
0
null
[ "gguf", "mteb", "llama-cpp", "gguf-my-repo", "base_model:Classical/Yinka", "base_model:quantized:Classical/Yinka", "model-index", "endpoints_compatible", "region:us", "feature-extraction" ]
null
2025-01-23T08:57:57Z
--- tags: - mteb - llama-cpp - gguf-my-repo base_model: Classical/Yinka model-index: - name: checkpoint-1431 results: - task: type: STS dataset: name: MTEB AFQMC type: C-MTEB/AFQMC config: default split: validation revision: None metrics: - type: cos_sim_pearson value: 56.306314279047875 - type: cos_sim_spearman value: 61.020227685004016 - type: euclidean_pearson value: 58.61821670933433 - type: euclidean_spearman value: 60.131457106640674 - type: manhattan_pearson value: 58.6189460369694 - type: manhattan_spearman value: 60.126350618526224 - task: type: STS dataset: name: MTEB ATEC type: C-MTEB/ATEC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 55.8612958476143 - type: cos_sim_spearman value: 59.01977664864512 - type: euclidean_pearson value: 62.028094897243655 - type: euclidean_spearman value: 58.6046814257705 - type: manhattan_pearson value: 62.02580042431887 - type: manhattan_spearman value: 58.60626890004892 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (zh) type: mteb/amazon_reviews_multi config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 49.496 - type: f1 value: 46.673963383873065 - task: type: STS dataset: name: MTEB BQ type: C-MTEB/BQ config: default split: test revision: None metrics: - type: cos_sim_pearson value: 70.73971622592535 - type: cos_sim_spearman value: 72.76102992060764 - type: euclidean_pearson value: 71.04525865868672 - type: euclidean_spearman value: 72.4032852155075 - type: manhattan_pearson value: 71.03693009336658 - type: manhattan_spearman value: 72.39635701224252 - task: type: Clustering dataset: name: MTEB CLSClusteringP2P type: C-MTEB/CLSClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 56.34751074520767 - task: type: Clustering dataset: name: MTEB CLSClusteringS2S type: C-MTEB/CLSClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 48.4856662121073 - task: type: Reranking dataset: name: MTEB CMedQAv1 type: C-MTEB/CMedQAv1-reranking config: default split: test revision: None metrics: - type: map value: 89.26384109024997 - type: mrr value: 91.27261904761905 - task: type: Reranking dataset: name: MTEB CMedQAv2 type: C-MTEB/CMedQAv2-reranking config: default split: test revision: None metrics: - type: map value: 90.0464058154547 - type: mrr value: 92.06480158730159 - task: type: Retrieval dataset: name: MTEB CmedqaRetrieval type: C-MTEB/CmedqaRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 27.236 - type: map_at_10 value: 40.778 - type: map_at_100 value: 42.692 - type: map_at_1000 value: 42.787 - type: map_at_3 value: 36.362 - type: map_at_5 value: 38.839 - type: mrr_at_1 value: 41.335 - type: mrr_at_10 value: 49.867 - type: mrr_at_100 value: 50.812999999999995 - type: mrr_at_1000 value: 50.848000000000006 - type: mrr_at_3 value: 47.354 - type: mrr_at_5 value: 48.718 - type: ndcg_at_1 value: 41.335 - type: ndcg_at_10 value: 47.642 - type: ndcg_at_100 value: 54.855 - type: ndcg_at_1000 value: 56.449000000000005 - type: ndcg_at_3 value: 42.203 - type: ndcg_at_5 value: 44.416 - type: precision_at_1 value: 41.335 - type: precision_at_10 value: 10.568 - type: precision_at_100 value: 1.6400000000000001 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 23.998 - type: precision_at_5 value: 17.389 - type: recall_at_1 value: 27.236 - type: recall_at_10 value: 58.80800000000001 - type: recall_at_100 value: 88.411 - type: recall_at_1000 value: 99.032 - type: recall_at_3 value: 42.253 - type: recall_at_5 value: 49.118 - task: type: PairClassification dataset: name: MTEB Cmnli type: C-MTEB/CMNLI config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 86.03728202044498 - type: cos_sim_ap value: 92.49469583272597 - type: cos_sim_f1 value: 86.74095974528088 - type: cos_sim_precision value: 84.43657294664601 - type: cos_sim_recall value: 89.17465513210195 - type: dot_accuracy value: 72.21888153938664 - type: dot_ap value: 80.59377163340332 - type: dot_f1 value: 74.96686040583258 - type: dot_precision value: 66.4737793851718 - type: dot_recall value: 85.94809445873275 - type: euclidean_accuracy value: 85.47203848466627 - type: euclidean_ap value: 91.89152584749868 - type: euclidean_f1 value: 86.38105975197294 - type: euclidean_precision value: 83.40953625081646 - type: euclidean_recall value: 89.5721299976619 - type: manhattan_accuracy value: 85.3758268190018 - type: manhattan_ap value: 91.88989707722311 - type: manhattan_f1 value: 86.39767519839052 - type: manhattan_precision value: 82.76231263383298 - type: manhattan_recall value: 90.36707972878185 - type: max_accuracy value: 86.03728202044498 - type: max_ap value: 92.49469583272597 - type: max_f1 value: 86.74095974528088 - task: type: Retrieval dataset: name: MTEB CovidRetrieval type: C-MTEB/CovidRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 74.34100000000001 - type: map_at_10 value: 82.49499999999999 - type: map_at_100 value: 82.64200000000001 - type: map_at_1000 value: 82.643 - type: map_at_3 value: 81.142 - type: map_at_5 value: 81.95400000000001 - type: mrr_at_1 value: 74.71 - type: mrr_at_10 value: 82.553 - type: mrr_at_100 value: 82.699 - type: mrr_at_1000 value: 82.70100000000001 - type: mrr_at_3 value: 81.279 - type: mrr_at_5 value: 82.069 - type: ndcg_at_1 value: 74.605 - type: ndcg_at_10 value: 85.946 - type: ndcg_at_100 value: 86.607 - type: ndcg_at_1000 value: 86.669 - type: ndcg_at_3 value: 83.263 - type: ndcg_at_5 value: 84.71600000000001 - type: precision_at_1 value: 74.605 - type: precision_at_10 value: 9.758 - type: precision_at_100 value: 1.005 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 29.996000000000002 - type: precision_at_5 value: 18.736 - type: recall_at_1 value: 74.34100000000001 - type: recall_at_10 value: 96.523 - type: recall_at_100 value: 99.473 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 89.278 - type: recall_at_5 value: 92.83500000000001 - task: type: Retrieval dataset: name: MTEB DuRetrieval type: C-MTEB/DuRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 26.950000000000003 - type: map_at_10 value: 82.408 - type: map_at_100 value: 85.057 - type: map_at_1000 value: 85.09100000000001 - type: map_at_3 value: 57.635999999999996 - type: map_at_5 value: 72.48 - type: mrr_at_1 value: 92.15 - type: mrr_at_10 value: 94.554 - type: mrr_at_100 value: 94.608 - type: mrr_at_1000 value: 94.61 - type: mrr_at_3 value: 94.292 - type: mrr_at_5 value: 94.459 - type: ndcg_at_1 value: 92.15 - type: ndcg_at_10 value: 89.108 - type: ndcg_at_100 value: 91.525 - type: ndcg_at_1000 value: 91.82900000000001 - type: ndcg_at_3 value: 88.44 - type: ndcg_at_5 value: 87.271 - type: precision_at_1 value: 92.15 - type: precision_at_10 value: 42.29 - type: precision_at_100 value: 4.812 - type: precision_at_1000 value: 0.48900000000000005 - type: precision_at_3 value: 79.14999999999999 - type: precision_at_5 value: 66.64 - type: recall_at_1 value: 26.950000000000003 - type: recall_at_10 value: 89.832 - type: recall_at_100 value: 97.921 - type: recall_at_1000 value: 99.471 - type: recall_at_3 value: 59.562000000000005 - type: recall_at_5 value: 76.533 - task: type: Retrieval dataset: name: MTEB EcomRetrieval type: C-MTEB/EcomRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 53.5 - type: map_at_10 value: 63.105999999999995 - type: map_at_100 value: 63.63100000000001 - type: map_at_1000 value: 63.641999999999996 - type: map_at_3 value: 60.617 - type: map_at_5 value: 62.132 - type: mrr_at_1 value: 53.5 - type: mrr_at_10 value: 63.105999999999995 - type: mrr_at_100 value: 63.63100000000001 - type: mrr_at_1000 value: 63.641999999999996 - type: mrr_at_3 value: 60.617 - type: mrr_at_5 value: 62.132 - type: ndcg_at_1 value: 53.5 - type: ndcg_at_10 value: 67.92200000000001 - type: ndcg_at_100 value: 70.486 - type: ndcg_at_1000 value: 70.777 - type: ndcg_at_3 value: 62.853 - type: ndcg_at_5 value: 65.59899999999999 - type: precision_at_1 value: 53.5 - type: precision_at_10 value: 8.309999999999999 - type: precision_at_100 value: 0.951 - type: precision_at_1000 value: 0.097 - type: precision_at_3 value: 23.1 - type: precision_at_5 value: 15.2 - type: recall_at_1 value: 53.5 - type: recall_at_10 value: 83.1 - type: recall_at_100 value: 95.1 - type: recall_at_1000 value: 97.39999999999999 - type: recall_at_3 value: 69.3 - type: recall_at_5 value: 76.0 - task: type: Classification dataset: name: MTEB IFlyTek type: C-MTEB/IFlyTek-classification config: default split: validation revision: None metrics: - type: accuracy value: 51.773759138130046 - type: f1 value: 40.38600802756481 - task: type: Classification dataset: name: MTEB JDReview type: C-MTEB/JDReview-classification config: default split: test revision: None metrics: - type: accuracy value: 88.48030018761726 - type: ap value: 59.2732541555627 - type: f1 value: 83.58836007358619 - task: type: STS dataset: name: MTEB LCQMC type: C-MTEB/LCQMC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 73.67511194245922 - type: cos_sim_spearman value: 79.43347759067298 - type: euclidean_pearson value: 79.04491504318766 - type: euclidean_spearman value: 79.14478545356785 - type: manhattan_pearson value: 79.03365022867428 - type: manhattan_spearman value: 79.13172717619908 - task: type: Retrieval dataset: name: MTEB MMarcoRetrieval type: C-MTEB/MMarcoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 67.184 - type: map_at_10 value: 76.24600000000001 - type: map_at_100 value: 76.563 - type: map_at_1000 value: 76.575 - type: map_at_3 value: 74.522 - type: map_at_5 value: 75.598 - type: mrr_at_1 value: 69.47 - type: mrr_at_10 value: 76.8 - type: mrr_at_100 value: 77.082 - type: mrr_at_1000 value: 77.093 - type: mrr_at_3 value: 75.29400000000001 - type: mrr_at_5 value: 76.24 - type: ndcg_at_1 value: 69.47 - type: ndcg_at_10 value: 79.81099999999999 - type: ndcg_at_100 value: 81.187 - type: ndcg_at_1000 value: 81.492 - type: ndcg_at_3 value: 76.536 - type: ndcg_at_5 value: 78.367 - type: precision_at_1 value: 69.47 - type: precision_at_10 value: 9.599 - type: precision_at_100 value: 1.026 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 28.777 - type: precision_at_5 value: 18.232 - type: recall_at_1 value: 67.184 - type: recall_at_10 value: 90.211 - type: recall_at_100 value: 96.322 - type: recall_at_1000 value: 98.699 - type: recall_at_3 value: 81.556 - type: recall_at_5 value: 85.931 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-CN) type: mteb/amazon_massive_intent config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 76.96032279757901 - type: f1 value: 73.48052314033545 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-CN) type: mteb/amazon_massive_scenario config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 84.64357767316744 - type: f1 value: 83.58250539497922 - task: type: Retrieval dataset: name: MTEB MedicalRetrieval type: C-MTEB/MedicalRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 56.00000000000001 - type: map_at_10 value: 62.066 - type: map_at_100 value: 62.553000000000004 - type: map_at_1000 value: 62.598 - type: map_at_3 value: 60.4 - type: map_at_5 value: 61.370000000000005 - type: mrr_at_1 value: 56.2 - type: mrr_at_10 value: 62.166 - type: mrr_at_100 value: 62.653000000000006 - type: mrr_at_1000 value: 62.699000000000005 - type: mrr_at_3 value: 60.5 - type: mrr_at_5 value: 61.47 - type: ndcg_at_1 value: 56.00000000000001 - type: ndcg_at_10 value: 65.199 - type: ndcg_at_100 value: 67.79899999999999 - type: ndcg_at_1000 value: 69.056 - type: ndcg_at_3 value: 61.814 - type: ndcg_at_5 value: 63.553000000000004 - type: precision_at_1 value: 56.00000000000001 - type: precision_at_10 value: 7.51 - type: precision_at_100 value: 0.878 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 21.967 - type: precision_at_5 value: 14.02 - type: recall_at_1 value: 56.00000000000001 - type: recall_at_10 value: 75.1 - type: recall_at_100 value: 87.8 - type: recall_at_1000 value: 97.7 - type: recall_at_3 value: 65.9 - type: recall_at_5 value: 70.1 - task: type: Reranking dataset: name: MTEB MMarcoReranking type: C-MTEB/Mmarco-reranking config: default split: dev revision: None metrics: - type: map value: 32.74158258279793 - type: mrr value: 31.56071428571428 - task: type: Classification dataset: name: MTEB MultilingualSentiment type: C-MTEB/MultilingualSentiment-classification config: default split: validation revision: None metrics: - type: accuracy value: 78.96666666666667 - type: f1 value: 78.82528563818045 - task: type: PairClassification dataset: name: MTEB Ocnli type: C-MTEB/OCNLI config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 83.54087709799674 - type: cos_sim_ap value: 87.26170197077586 - type: cos_sim_f1 value: 84.7609561752988 - type: cos_sim_precision value: 80.20735155513667 - type: cos_sim_recall value: 89.86272439281943 - type: dot_accuracy value: 72.22523010286952 - type: dot_ap value: 79.51975358187732 - type: dot_f1 value: 76.32183908045977 - type: dot_precision value: 67.58957654723126 - type: dot_recall value: 87.64519535374869 - type: euclidean_accuracy value: 82.0249052517596 - type: euclidean_ap value: 85.32829948726406 - type: euclidean_f1 value: 83.24924318869829 - type: euclidean_precision value: 79.71014492753623 - type: euclidean_recall value: 87.11721224920802 - type: manhattan_accuracy value: 82.13318895506227 - type: manhattan_ap value: 85.28856869288006 - type: manhattan_f1 value: 83.34946757018393 - type: manhattan_precision value: 76.94369973190348 - type: manhattan_recall value: 90.91869060190075 - type: max_accuracy value: 83.54087709799674 - type: max_ap value: 87.26170197077586 - type: max_f1 value: 84.7609561752988 - task: type: Classification dataset: name: MTEB OnlineShopping type: C-MTEB/OnlineShopping-classification config: default split: test revision: None metrics: - type: accuracy value: 94.56 - type: ap value: 92.80848436710805 - type: f1 value: 94.54951966576111 - task: type: STS dataset: name: MTEB PAWSX type: C-MTEB/PAWSX config: default split: test revision: None metrics: - type: cos_sim_pearson value: 39.0866558287863 - type: cos_sim_spearman value: 45.9211126233312 - type: euclidean_pearson value: 44.86568743222145 - type: euclidean_spearman value: 45.63882757207507 - type: manhattan_pearson value: 44.89480036909126 - type: manhattan_spearman value: 45.65929449046206 - task: type: STS dataset: name: MTEB QBQTC type: C-MTEB/QBQTC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 43.04701793979569 - type: cos_sim_spearman value: 44.87491033760315 - type: euclidean_pearson value: 36.2004061032567 - type: euclidean_spearman value: 41.44823909683865 - type: manhattan_pearson value: 36.136113427955095 - type: manhattan_spearman value: 41.39225495993949 - task: type: STS dataset: name: MTEB STS22 (zh) type: mteb/sts22-crosslingual-sts config: zh split: test revision: None metrics: - type: cos_sim_pearson value: 61.65611315777857 - type: cos_sim_spearman value: 64.4067673105648 - type: euclidean_pearson value: 61.814977248797184 - type: euclidean_spearman value: 63.99473350700169 - type: manhattan_pearson value: 61.684304629588624 - type: manhattan_spearman value: 63.97831213239316 - task: type: STS dataset: name: MTEB STSB type: C-MTEB/STSB config: default split: test revision: None metrics: - type: cos_sim_pearson value: 76.57324933064379 - type: cos_sim_spearman value: 79.23602286949782 - type: euclidean_pearson value: 80.28226284310948 - type: euclidean_spearman value: 80.32210477608423 - type: manhattan_pearson value: 80.27262188617811 - type: manhattan_spearman value: 80.31619185039723 - task: type: Reranking dataset: name: MTEB T2Reranking type: C-MTEB/T2Reranking config: default split: dev revision: None metrics: - type: map value: 67.05266891356277 - type: mrr value: 77.1906333623497 - task: type: Retrieval dataset: name: MTEB T2Retrieval type: C-MTEB/T2Retrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 28.212 - type: map_at_10 value: 78.932 - type: map_at_100 value: 82.51899999999999 - type: map_at_1000 value: 82.575 - type: map_at_3 value: 55.614 - type: map_at_5 value: 68.304 - type: mrr_at_1 value: 91.211 - type: mrr_at_10 value: 93.589 - type: mrr_at_100 value: 93.659 - type: mrr_at_1000 value: 93.662 - type: mrr_at_3 value: 93.218 - type: mrr_at_5 value: 93.453 - type: ndcg_at_1 value: 91.211 - type: ndcg_at_10 value: 86.24000000000001 - type: ndcg_at_100 value: 89.614 - type: ndcg_at_1000 value: 90.14 - type: ndcg_at_3 value: 87.589 - type: ndcg_at_5 value: 86.265 - type: precision_at_1 value: 91.211 - type: precision_at_10 value: 42.626 - type: precision_at_100 value: 5.043 - type: precision_at_1000 value: 0.517 - type: precision_at_3 value: 76.42 - type: precision_at_5 value: 64.045 - type: recall_at_1 value: 28.212 - type: recall_at_10 value: 85.223 - type: recall_at_100 value: 96.229 - type: recall_at_1000 value: 98.849 - type: recall_at_3 value: 57.30800000000001 - type: recall_at_5 value: 71.661 - task: type: Classification dataset: name: MTEB TNews type: C-MTEB/TNews-classification config: default split: validation revision: None metrics: - type: accuracy value: 54.385000000000005 - type: f1 value: 52.38762400903556 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringP2P type: C-MTEB/ThuNewsClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 74.55283855942916 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringS2S type: C-MTEB/ThuNewsClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 68.55115316700493 - task: type: Retrieval dataset: name: MTEB VideoRetrieval type: C-MTEB/VideoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 58.8 - type: map_at_10 value: 69.035 - type: map_at_100 value: 69.52000000000001 - type: map_at_1000 value: 69.529 - type: map_at_3 value: 67.417 - type: map_at_5 value: 68.407 - type: mrr_at_1 value: 58.8 - type: mrr_at_10 value: 69.035 - type: mrr_at_100 value: 69.52000000000001 - type: mrr_at_1000 value: 69.529 - type: mrr_at_3 value: 67.417 - type: mrr_at_5 value: 68.407 - type: ndcg_at_1 value: 58.8 - type: ndcg_at_10 value: 73.395 - type: ndcg_at_100 value: 75.62 - type: ndcg_at_1000 value: 75.90299999999999 - type: ndcg_at_3 value: 70.11800000000001 - type: ndcg_at_5 value: 71.87400000000001 - type: precision_at_1 value: 58.8 - type: precision_at_10 value: 8.68 - type: precision_at_100 value: 0.9690000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 25.967000000000002 - type: precision_at_5 value: 16.42 - type: recall_at_1 value: 58.8 - type: recall_at_10 value: 86.8 - type: recall_at_100 value: 96.89999999999999 - type: recall_at_1000 value: 99.2 - type: recall_at_3 value: 77.9 - type: recall_at_5 value: 82.1 - task: type: Classification dataset: name: MTEB Waimai type: C-MTEB/waimai-classification config: default split: test revision: None metrics: - type: accuracy value: 89.42 - type: ap value: 75.35978503182068 - type: f1 value: 88.01006394348263 --- # jimi0209/Yinka-Q5_K_M-GGUF This model was converted to GGUF format from [`Classical/Yinka`](https://huggingface.co/Classical/Yinka) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Classical/Yinka) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo jimi0209/Yinka-Q5_K_M-GGUF --hf-file yinka-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo jimi0209/Yinka-Q5_K_M-GGUF --hf-file yinka-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo jimi0209/Yinka-Q5_K_M-GGUF --hf-file yinka-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo jimi0209/Yinka-Q5_K_M-GGUF --hf-file yinka-q5_k_m.gguf -c 2048 ```
FatihC06/wav2vec2-large-xlsr-53-common_voice-turkish
FatihC06
2025-01-23T08:57:35Z
11
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-01-22T09:19:26Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-300m-cv7-istech results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-cv7-istech This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7978 - Wer: 0.7496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.1946 | 0.0803 | 20 | 6.7455 | 1.0 | | 5.1957 | 0.1606 | 40 | 3.7715 | 1.0 | | 3.5889 | 0.2410 | 60 | 3.4781 | 1.0 | | 3.3656 | 0.3213 | 80 | 3.3373 | 1.0 | | 3.5262 | 0.4016 | 100 | 3.3093 | 1.0 | | 3.1816 | 0.4819 | 120 | 3.2444 | 1.0 | | 3.3344 | 0.5622 | 140 | 3.2887 | 1.0 | | 3.2522 | 0.6426 | 160 | 3.2321 | 1.0 | | 3.1819 | 0.7229 | 180 | 3.2538 | 1.0 | | 3.3665 | 0.8032 | 200 | 3.2018 | 1.0 | | 3.1257 | 0.8835 | 220 | 3.1751 | 1.0 | | 3.2982 | 0.9639 | 240 | 3.1929 | 1.0 | | 3.2181 | 1.0442 | 260 | 3.1781 | 1.0 | | 3.1455 | 1.1245 | 280 | 3.3508 | 1.0 | | 3.2722 | 1.2048 | 300 | 3.2343 | 1.0 | | 3.1217 | 1.2851 | 320 | 3.1378 | 0.9999 | | 3.2419 | 1.3655 | 340 | 3.2108 | 0.9999 | | 3.1825 | 1.4458 | 360 | 3.1363 | 0.9999 | | 3.1316 | 1.5261 | 380 | 3.1685 | 0.9999 | | 3.2373 | 1.6064 | 400 | 3.1731 | 1.0 | | 3.0634 | 1.6867 | 420 | 3.1083 | 0.9999 | | 3.1367 | 1.7671 | 440 | 3.1582 | 0.9999 | | 3.0831 | 1.8474 | 460 | 3.0410 | 0.9999 | | 2.9524 | 1.9277 | 480 | 2.9578 | 0.9999 | | 3.1076 | 2.0080 | 500 | 2.9558 | 0.9999 | | 2.8085 | 2.0884 | 520 | 2.8155 | 0.9999 | | 2.7768 | 2.1687 | 540 | 2.8155 | 0.9998 | | 2.6186 | 2.2490 | 560 | 2.5386 | 1.0 | | 2.3452 | 2.3293 | 580 | 2.3387 | 0.9994 | | 2.4213 | 2.4096 | 600 | 2.2745 | 0.9997 | | 1.8149 | 2.4900 | 620 | 1.8076 | 0.9906 | | 1.747 | 2.5703 | 640 | 1.8517 | 0.9962 | | 1.6369 | 2.6506 | 660 | 1.4838 | 0.9662 | | 1.3732 | 2.7309 | 680 | 1.4990 | 0.9852 | | 1.6638 | 2.8112 | 700 | 1.3854 | 0.9383 | | 1.1034 | 2.8916 | 720 | 1.2258 | 0.9112 | | 1.3003 | 2.9719 | 740 | 1.3696 | 0.9174 | | 1.2128 | 3.0522 | 760 | 1.1576 | 0.8966 | | 0.9759 | 3.1325 | 780 | 1.1325 | 0.8838 | | 1.2551 | 3.2129 | 800 | 1.1489 | 0.8831 | | 0.8371 | 3.2932 | 820 | 1.0224 | 0.8460 | | 1.0434 | 3.3735 | 840 | 1.0927 | 0.8680 | | 1.0386 | 3.4538 | 860 | 0.9731 | 0.8383 | | 0.879 | 3.5341 | 880 | 0.9916 | 0.8428 | | 1.1771 | 3.6145 | 900 | 0.9857 | 0.8406 | | 0.6948 | 3.6948 | 920 | 0.9493 | 0.8203 | | 0.9657 | 3.7751 | 940 | 0.9960 | 0.8364 | | 0.8991 | 3.8554 | 960 | 0.8949 | 0.8013 | | 0.7712 | 3.9357 | 980 | 0.9039 | 0.8096 | | 1.0684 | 4.0161 | 1000 | 0.9024 | 0.8012 | | 0.5559 | 4.0964 | 1020 | 0.8611 | 0.7872 | | 0.8446 | 4.1767 | 1040 | 0.9017 | 0.8021 | | 0.7911 | 4.2570 | 1060 | 0.8596 | 0.7848 | | 0.6178 | 4.3373 | 1080 | 0.8612 | 0.7778 | | 0.9147 | 4.4177 | 1100 | 0.8654 | 0.7756 | | 0.5448 | 4.4980 | 1120 | 0.8222 | 0.7649 | | 0.7812 | 4.5783 | 1140 | 0.8337 | 0.7697 | | 0.6784 | 4.6586 | 1160 | 0.8146 | 0.7588 | | 0.6022 | 4.7390 | 1180 | 0.8077 | 0.7538 | | 0.8592 | 4.8193 | 1200 | 0.8121 | 0.7621 | | 0.4884 | 4.8996 | 1220 | 0.7982 | 0.7487 | | 0.7429 | 4.9799 | 1240 | 0.7978 | 0.7496 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.20.1
trenden/f09dac8b-4d58-4cb1-a019-a071c9b822ac
trenden
2025-01-23T08:57:20Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "region:us" ]
null
2025-01-23T08:49:35Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: f09dac8b-4d58-4cb1-a019-a071c9b822ac results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: huggyllama/llama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aed51b8e2c089967_train_data.json ds_type: json format: custom path: /workspace/input_data/aed51b8e2c089967_train_data.json type: field_input: instance_id field_instruction: prompt_msg field_output: truth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/f09dac8b-4d58-4cb1-a019-a071c9b822ac hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/aed51b8e2c089967_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6a8f76dd-7262-490a-905c-7b83c0f56891 wandb_project: Birthday-SN56-3-Gradients-On-Demand wandb_run: your_name wandb_runid: 6a8f76dd-7262-490a-905c-7b83c0f56891 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f09dac8b-4d58-4cb1-a019-a071c9b822ac This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 3 | nan | | 0.0 | 0.0007 | 6 | nan | | 0.0 | 0.0011 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/321b91f0-9f11-4b82-99c3-5b2c4c60a3d6
Best000
2025-01-23T08:55:33Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-13b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-13b-128k", "region:us" ]
null
2025-01-23T08:44:41Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-13b-128k tags: - axolotl - generated_from_trainer model-index: - name: 321b91f0-9f11-4b82-99c3-5b2c4c60a3d6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-13b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2357a9464c66e908_train_data.json ds_type: json format: custom path: /workspace/input_data/2357a9464c66e908_train_data.json type: field_input: examples field_instruction: prompt field_output: statement format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/321b91f0-9f11-4b82-99c3-5b2c4c60a3d6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/2357a9464c66e908_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bcad01e7-1b2a-4250-8b8b-0be1c30000d4 wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: bcad01e7-1b2a-4250-8b8b-0be1c30000d4 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 321b91f0-9f11-4b82-99c3-5b2c4c60a3d6 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-13b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-13b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 17.8209 | 0.0003 | 1 | 4.1906 | | 15.645 | 0.0008 | 3 | 4.1847 | | 15.7295 | 0.0016 | 6 | 4.0535 | | 13.6724 | 0.0023 | 9 | 3.4595 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk1205/2a5785f0-76a4-4861-a692-a563d9cc6599
kostiantynk1205
2025-01-23T08:55:01Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "region:us" ]
null
2025-01-23T08:47:18Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: 2a5785f0-76a4-4861-a692-a563d9cc6599 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: huggyllama/llama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aed51b8e2c089967_train_data.json ds_type: json format: custom path: /workspace/input_data/aed51b8e2c089967_train_data.json type: field_input: instance_id field_instruction: prompt_msg field_output: truth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/2a5785f0-76a4-4861-a692-a563d9cc6599 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/aed51b8e2c089967_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6a8f76dd-7262-490a-905c-7b83c0f56891 wandb_project: Birthday-SN56-23-Gradients-On-Demand wandb_run: your_name wandb_runid: 6a8f76dd-7262-490a-905c-7b83c0f56891 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2a5785f0-76a4-4861-a692-a563d9cc6599 This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 3 | nan | | 0.0 | 0.0007 | 6 | nan | | 0.0 | 0.0011 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fbvids/sophie
fbvids
2025-01-23T08:54:49Z
11
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-23T08:09:05Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: sophie --- # Sophie <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `sophie` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('fbvids/sophie', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
joboffer/cf85ffc4-2140-4e4b-ac20-53b6dfa97f6f
joboffer
2025-01-23T08:52:00Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "license:other", "region:us" ]
null
2025-01-23T08:15:56Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: cf85ffc4-2140-4e4b-ac20-53b6dfa97f6f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 17a4766fa4748b36_train_data.json ds_type: json format: custom path: /workspace/input_data/17a4766fa4748b36_train_data.json type: field_input: text field_instruction: leadin field_output: heading format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: joboffer/cf85ffc4-2140-4e4b-ac20-53b6dfa97f6f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/17a4766fa4748b36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 464732d7-8f75-4034-bba8-31e12a8da780 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 464732d7-8f75-4034-bba8-31e12a8da780 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # cf85ffc4-2140-4e4b-ac20-53b6dfa97f6f This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 3.9885 | | 3.7299 | 0.0005 | 5 | 3.9300 | | 3.753 | 0.0009 | 10 | 3.8417 | | 3.6004 | 0.0014 | 15 | 3.7883 | | 3.6217 | 0.0018 | 20 | 3.7506 | | 3.6446 | 0.0023 | 25 | 3.7313 | | 3.8136 | 0.0027 | 30 | 3.7276 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso14/a366f008-254d-4e0d-b4a6-0ba254c2c486
lesso14
2025-01-23T08:51:49Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:oopsung/llama2-7b-koNqa-test-v1", "base_model:adapter:oopsung/llama2-7b-koNqa-test-v1", "region:us" ]
null
2025-01-23T07:19:45Z
--- library_name: peft base_model: oopsung/llama2-7b-koNqa-test-v1 tags: - axolotl - generated_from_trainer model-index: - name: a366f008-254d-4e0d-b4a6-0ba254c2c486 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: oopsung/llama2-7b-koNqa-test-v1 bf16: true chat_template: llama3 datasets: - data_files: - 0470cc49f434ca45_train_data.json ds_type: json format: custom path: /workspace/input_data/0470cc49f434ca45_train_data.json type: field_input: '' field_instruction: prompt field_output: responseA format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso14/a366f008-254d-4e0d-b4a6-0ba254c2c486 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/0470cc49f434ca45_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: db1a33bc-9f36-4a09-a66d-2395320ddb3b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: db1a33bc-9f36-4a09-a66d-2395320ddb3b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a366f008-254d-4e0d-b4a6-0ba254c2c486 This model is a fine-tuned version of [oopsung/llama2-7b-koNqa-test-v1](https://huggingface.co/oopsung/llama2-7b-koNqa-test-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0002 | 5 | nan | | 0.0 | 0.0005 | 10 | nan | | 0.0 | 0.0007 | 15 | nan | | 0.0 | 0.0009 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/6cd9ed86-39a0-4255-a844-5c12fb812b39
great0001
2025-01-23T08:49:44Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:numind/NuExtract-1.5", "base_model:adapter:numind/NuExtract-1.5", "license:mit", "region:us" ]
null
2025-01-23T08:47:26Z
--- library_name: peft license: mit base_model: numind/NuExtract-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: 6cd9ed86-39a0-4255-a844-5c12fb812b39 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: numind/NuExtract-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7031e972306f161_train_data.json ds_type: json format: custom path: /workspace/input_data/e7031e972306f161_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/6cd9ed86-39a0-4255-a844-5c12fb812b39 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/e7031e972306f161_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 74aeda5e-e0f5-4ba1-aafa-46b426ae9a0b wandb_project: Birthday-SN56-14-Gradients-On-Demand wandb_run: your_name wandb_runid: 74aeda5e-e0f5-4ba1-aafa-46b426ae9a0b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6cd9ed86-39a0-4255-a844-5c12fb812b39 This model is a fine-tuned version of [numind/NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.2919 | 0.0014 | 1 | 1.6530 | | 6.6954 | 0.0043 | 3 | 1.6506 | | 6.024 | 0.0087 | 6 | 1.6230 | | 5.4921 | 0.0130 | 9 | 1.5476 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/SJT-4B-v1.1-i1-GGUF
mradermacher
2025-01-23T08:46:51Z
366
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "ja", "base_model:Sakalti/SJT-4B-v1.1", "base_model:quantized:Sakalti/SJT-4B-v1.1", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-23T07:38:54Z
--- base_model: Sakalti/SJT-4B-v1.1 language: - en - ja library_name: transformers license: mit license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Sakalti/SJT-4B-v1.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ1_S.gguf) | i1-IQ1_S | 0.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ2_S.gguf) | i1-IQ2_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ2_M.gguf) | i1-IQ2_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q2_K.gguf) | i1-Q2_K | 1.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ3_S.gguf) | i1-IQ3_S | 1.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ3_M.gguf) | i1-IQ3_M | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.3 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q4_0.gguf) | i1-Q4_0 | 2.3 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q4_1.gguf) | i1-Q4_1 | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF/resolve/main/SJT-4B-v1.1.i1-Q6_K.gguf) | i1-Q6_K | 3.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
nat-hunt/74b32592-698b-46b8-9cb5-eb9cb124b48f
nat-hunt
2025-01-23T08:45:06Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3-mini-128k-instruct", "base_model:adapter:microsoft/Phi-3-mini-128k-instruct", "license:mit", "region:us" ]
null
2025-01-23T08:06:32Z
--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-128k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 74b32592-698b-46b8-9cb5-eb9cb124b48f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3-mini-128k-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 41fd924b32233ba5_train_data.json ds_type: json format: custom path: /workspace/input_data/41fd924b32233ba5_train_data.json type: field_instruction: title field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nat-hunt/74b32592-698b-46b8-9cb5-eb9cb124b48f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/41fd924b32233ba5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 67b10ffb-1db7-4fd6-a9cc-dda913632150 wandb_project: Birthday-SN56-25-Gradients-On-Demand wandb_run: your_name wandb_runid: 67b10ffb-1db7-4fd6-a9cc-dda913632150 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 74b32592-698b-46b8-9cb5-eb9cb124b48f This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 14.9609 | 0.0000 | 1 | 2.6664 | | 8.6378 | 0.0001 | 3 | 2.6524 | | 14.6893 | 0.0001 | 6 | 2.5499 | | 7.2402 | 0.0002 | 9 | 2.3880 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bigband/MightyLakshmi
bigband
2025-01-23T08:44:50Z
9
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "text-to-speech", "annotation", "en", "dataset:parler-tts/mls_eng", "dataset:parler-tts/libritts_r_filtered", "dataset:parler-tts/libritts-r-filtered-speaker-descriptions", "dataset:parler-tts/mls-eng-speaker-descriptions", "arxiv:2402.01912", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-speech
2025-01-23T08:41:33Z
--- library_name: transformers tags: - text-to-speech - annotation license: apache-2.0 language: - en pipeline_tag: text-to-speech inference: false datasets: - parler-tts/mls_eng - parler-tts/libritts_r_filtered - parler-tts/libritts-r-filtered-speaker-descriptions - parler-tts/mls-eng-speaker-descriptions --- <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Parler-TTS Mini v1 <a target="_blank" href="https://huggingface.co/spaces/parler-tts/parler_tts"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> **Parler-TTS Mini v1** is a lightweight text-to-speech (TTS) model, trained on 45K hours of audio data, that can generate high-quality, natural sounding speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). With [Parler-TTS Large v1](https://huggingface.co/parler-tts/parler-tts-large-v1), this is the second set of models published as part of the [Parler-TTS](https://github.com/huggingface/parler-tts) project, which aims to provide the community with TTS training resources and dataset pre-processing code. ## 📖 Quick Index * [👨‍💻 Installation](#👨‍💻-installation) * [🎲 Using a random voice](#🎲-random-voice) * [🎯 Using a specific speaker](#🎯-using-a-specific-speaker) * [Motivation](#motivation) * [Optimizing inference](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) ## 🛠️ Usage ### 👨‍💻 Installation Using Parler-TTS is as simple as "bonjour". Simply install the library once: ```sh pip install git+https://github.com/huggingface/parler-tts.git ``` ### 🎲 Random voice **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example: ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` ### 🎯 Using a specific speaker To ensure speaker consistency across generations, this checkpoint was also trained on 34 speakers, characterized by name (e.g. Jon, Lea, Gary, Jenna, Mike, Laura). To take advantage of this, simply adapt your text description to specify which speaker to use: `Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.` ```py import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import soundfile as sf device = "cuda:0" if torch.cuda.is_available() else "cpu" model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") prompt = "Hey, how are you doing today?" description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise." input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ``` **Tips**: * We've set up an [inference guide](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) to make generation faster. Think SDPA, torch.compile, batching and streaming! * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt ## Motivation Parler-TTS is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. Contrarily to other TTS models, Parler-TTS is a **fully open-source** release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside: * [The Parler-TTS repository](https://github.com/huggingface/parler-tts) - you can train and fine-tuned your own version of the model. * [The Data-Speech repository](https://github.com/huggingface/dataspeech) - a suite of utility scripts designed to annotate speech datasets. * [The Parler-TTS organization](https://huggingface.co/parler-tts) - where you can find the annotated datasets as well as the future checkpoints. ## Citation If you found this repository useful, please consider citing this work and also the original Stability AI paper: ``` @misc{lacombe-etal-2024-parler-tts, author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi}, title = {Parler-TTS}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/parler-tts}} } ``` ``` @misc{lyth2024natural, title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations}, author={Dan Lyth and Simon King}, year={2024}, eprint={2402.01912}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` ## License This model is permissively licensed under the Apache 2.0 license.
denbeo/640e9db9-39a5-4636-87d6-8ec31984668b
denbeo
2025-01-23T08:44:37Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:14:17Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 640e9db9-39a5-4636-87d6-8ec31984668b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 17a4766fa4748b36_train_data.json ds_type: json format: custom path: /workspace/input_data/17a4766fa4748b36_train_data.json type: field_input: text field_instruction: leadin field_output: heading format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: denbeo/640e9db9-39a5-4636-87d6-8ec31984668b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/17a4766fa4748b36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 464732d7-8f75-4034-bba8-31e12a8da780 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 464732d7-8f75-4034-bba8-31e12a8da780 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 640e9db9-39a5-4636-87d6-8ec31984668b This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.013 | 0.0090 | 200 | 2.6144 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prithivMLmods/Phi-4-Super
prithivMLmods
2025-01-23T08:43:55Z
150
8
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:LightningRodLabs/Flashlight-v1.0", "base_model:merge:LightningRodLabs/Flashlight-v1.0", "base_model:Pinkstack/SuperThoughts-CoT-14B-16k-o1-QwQ", "base_model:merge:Pinkstack/SuperThoughts-CoT-14B-16k-o1-QwQ", "base_model:bunnycore/Phi-4-RP-V0.2", "base_model:merge:bunnycore/Phi-4-RP-V0.2", "base_model:mudler/LocalAI-functioncall-phi-4-v0.3", "base_model:merge:mudler/LocalAI-functioncall-phi-4-v0.3", "base_model:prithivMLmods/Phi-4-Empathetic", "base_model:merge:prithivMLmods/Phi-4-Empathetic", "base_model:prithivMLmods/Phi-4-Math-IO", "base_model:merge:prithivMLmods/Phi-4-Math-IO", "base_model:prithivMLmods/Phi-4-QwQ", "base_model:merge:prithivMLmods/Phi-4-QwQ", "base_model:prithivMLmods/Phi-4-o1", "base_model:merge:prithivMLmods/Phi-4-o1", "base_model:unsloth/phi-4", "base_model:merge:unsloth/phi-4", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-23T08:03:52Z
--- base_model: - prithivMLmods/Phi-4-QwQ - prithivMLmods/Phi-4-Math-IO - Pinkstack/SuperThoughts-CoT-14B-16k-o1-QwQ - prithivMLmods/Phi-4-o1 - bunnycore/Phi-4-RP-V0.2 - prithivMLmods/Phi-4-Empathetic - LightningRodLabs/Flashlight-v1.0 - mudler/LocalAI-functioncall-phi-4-v0.3 - unsloth/phi-4 library_name: transformers tags: - mergekit - merge --- # **Phi4-Super** [Phi-4-Super finetuned] from Microsoft's Phi-4 is a state-of-the-art open model developed with a focus on responsible problem solving and advanced reasoning capabilities. Built upon a diverse blend of synthetic datasets, carefully filtered public domain websites, and high-quality academic books and Q&A datasets, Phi-4-Super ensures that small, capable models are trained with datasets of exceptional depth and precision. Phi-4-Super adopts a robust safety post-training approach using open-source and in-house synthetic datasets. This involves a combination of SFT (Supervised Fine-Tuning) and iterative DPO (Direct Preference Optimization) techniques, ensuring helpful and harmless outputs across various safety categories. # Merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [unsloth/phi-4](https://huggingface.co/unsloth/phi-4) as a base. ### Models Merged The following models were included in the merge: * [prithivMLmods/Phi-4-QwQ](https://huggingface.co/prithivMLmods/Phi-4-QwQ) * [prithivMLmods/Phi-4-Math-IO](https://huggingface.co/prithivMLmods/Phi-4-Math-IO) * [Pinkstack/SuperThoughts-CoT-14B-16k-o1-QwQ](https://huggingface.co/Pinkstack/SuperThoughts-CoT-14B-16k-o1-QwQ) * [prithivMLmods/Phi-4-o1](https://huggingface.co/prithivMLmods/Phi-4-o1) * [bunnycore/Phi-4-RP-V0.2](https://huggingface.co/bunnycore/Phi-4-RP-V0.2) * [prithivMLmods/Phi-4-Empathetic](https://huggingface.co/prithivMLmods/Phi-4-Empathetic) * [LightningRodLabs/Flashlight-v1.0](https://huggingface.co/LightningRodLabs/Flashlight-v1.0) * [mudler/LocalAI-functioncall-phi-4-v0.3](https://huggingface.co/mudler/LocalAI-functioncall-phi-4-v0.3) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: prithivMLmods/Phi-4-o1 - model: prithivMLmods/Phi-4-Empathetic - model: prithivMLmods/Phi-4-Math-IO - model: prithivMLmods/Phi-4-QwQ - model: LightningRodLabs/Flashlight-v1.0 - model: Pinkstack/SuperThoughts-CoT-14B-16k-o1-QwQ - model: mudler/LocalAI-functioncall-phi-4-v0.3 - model: bunnycore/Phi-4-RP-V0.2 - model: unsloth/phi-4 merge_method: model_stock base_model: unsloth/phi-4 parameters: normalize: false int8_mask: true dtype: bfloat16 tokenizer_source: "unsloth/phi-4" ```
JacksonBrune/30b5e6b9-e1a9-4c34-a60c-873760c83a2b
JacksonBrune
2025-01-23T08:43:50Z
7
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:numind/NuExtract-1.5", "base_model:adapter:numind/NuExtract-1.5", "license:mit", "region:us" ]
null
2025-01-23T08:41:37Z
--- library_name: peft license: mit base_model: numind/NuExtract-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: 30b5e6b9-e1a9-4c34-a60c-873760c83a2b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: numind/NuExtract-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7031e972306f161_train_data.json ds_type: json format: custom path: /workspace/input_data/e7031e972306f161_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/30b5e6b9-e1a9-4c34-a60c-873760c83a2b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/e7031e972306f161_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 74aeda5e-e0f5-4ba1-aafa-46b426ae9a0b wandb_project: Birthday-SN56-12-Gradients-On-Demand wandb_run: your_name wandb_runid: 74aeda5e-e0f5-4ba1-aafa-46b426ae9a0b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 30b5e6b9-e1a9-4c34-a60c-873760c83a2b This model is a fine-tuned version of [numind/NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.2919 | 0.0014 | 1 | 1.6530 | | 6.6899 | 0.0043 | 3 | 1.6504 | | 6.0129 | 0.0087 | 6 | 1.6232 | | 5.5219 | 0.0130 | 9 | 1.5512 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Nexspear/23ee6ebf-505d-4260-a699-baa6331ce709
Nexspear
2025-01-23T08:43:28Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
2025-01-23T06:49:50Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 23ee6ebf-505d-4260-a699-baa6331ce709 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c80c7d78c247d894_train_data.json ds_type: json format: custom path: /workspace/input_data/c80c7d78c247d894_train_data.json type: field_instruction: text field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: Nexspear/23ee6ebf-505d-4260-a699-baa6331ce709 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/c80c7d78c247d894_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: a0542c04-33bc-424f-bb1e-c73bc012f9b8 wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: a0542c04-33bc-424f-bb1e-c73bc012f9b8 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 23ee6ebf-505d-4260-a699-baa6331ce709 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.4496 | | 2.4529 | 0.0011 | 9 | 2.3235 | | 2.0048 | 0.0021 | 18 | 1.9787 | | 1.7957 | 0.0032 | 27 | 1.8434 | | 1.7441 | 0.0042 | 36 | 1.7975 | | 1.859 | 0.0053 | 45 | 1.7744 | | 1.7775 | 0.0063 | 54 | 1.7572 | | 1.6574 | 0.0074 | 63 | 1.7478 | | 1.8685 | 0.0085 | 72 | 1.7420 | | 1.7749 | 0.0095 | 81 | 1.7390 | | 1.6201 | 0.0106 | 90 | 1.7375 | | 1.7058 | 0.0116 | 99 | 1.7373 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Stopwolf/whisper-small-sr
Stopwolf
2025-01-23T08:43:01Z
79
0
transformers
[ "transformers", "pytorch", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "sr", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-27T18:55:12Z
--- language: - sr license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Serbian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: sr split: test args: sr metrics: - name: Wer type: wer value: 17.41963509991312 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Serbian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.4671 - Wer Ortho: 27.4565 - Wer: 17.4196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1403 | 1.44 | 250 | 0.2809 | 28.8913 | 19.2224 | | 0.0664 | 2.87 | 500 | 0.2858 | 27.3696 | 17.9626 | | 0.0315 | 4.31 | 750 | 0.3152 | 27.9348 | 17.4631 | | 0.0174 | 5.75 | 1000 | 0.3578 | 28.1522 | 17.9844 | | 0.0067 | 7.18 | 1250 | 0.4018 | 27.9130 | 17.9626 | | 0.0015 | 8.62 | 1500 | 0.4535 | 28.6739 | 17.5717 | | 0.0008 | 10.06 | 1750 | 0.4558 | 27.2174 | 17.1807 | | 0.0005 | 11.49 | 2000 | 0.4585 | 27.4348 | 17.4848 | | 0.0005 | 12.93 | 2250 | 0.4651 | 27.3478 | 17.3979 | | 0.0005 | 14.37 | 2500 | 0.4671 | 27.4565 | 17.4196 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
brixeus/e2dca2f4-686c-4951-85d8-9eaa25e7c7f4
brixeus
2025-01-23T08:42:07Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:numind/NuExtract-1.5", "base_model:adapter:numind/NuExtract-1.5", "license:mit", "region:us" ]
null
2025-01-23T08:31:09Z
--- library_name: peft license: mit base_model: numind/NuExtract-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: e2dca2f4-686c-4951-85d8-9eaa25e7c7f4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: numind/NuExtract-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7031e972306f161_train_data.json ds_type: json format: custom path: /workspace/input_data/e7031e972306f161_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: brixeus/e2dca2f4-686c-4951-85d8-9eaa25e7c7f4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/e7031e972306f161_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 74aeda5e-e0f5-4ba1-aafa-46b426ae9a0b wandb_project: Gradients-On-Three wandb_run: your_name wandb_runid: 74aeda5e-e0f5-4ba1-aafa-46b426ae9a0b warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ``` </details><br> # e2dca2f4-686c-4951-85d8-9eaa25e7c7f4 This model is a fine-tuned version of [numind/NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0058 | 1 | 1.6373 | | 6.5117 | 0.0520 | 9 | 1.5940 | | 5.6145 | 0.1040 | 18 | 1.4199 | | 5.1259 | 0.1561 | 27 | 1.3104 | | 4.6888 | 0.2081 | 36 | 1.2404 | | 4.609 | 0.2601 | 45 | 1.1902 | | 4.6249 | 0.3121 | 54 | 1.1553 | | 4.4169 | 0.3642 | 63 | 1.1320 | | 4.6411 | 0.4162 | 72 | 1.1186 | | 4.4663 | 0.4682 | 81 | 1.1105 | | 4.6312 | 0.5202 | 90 | 1.1077 | | 4.1999 | 0.5723 | 99 | 1.1074 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF
mradermacher
2025-01-23T08:40:44Z
189
0
transformers
[ "transformers", "gguf", "Safetensors", "text-generation-inference", "merge", "en", "base_model:MaziyarPanahi/Experiment26Neuralsirkrishna_Experiment29Experiment24", "base_model:quantized:MaziyarPanahi/Experiment26Neuralsirkrishna_Experiment29Experiment24", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-23T08:10:21Z
--- base_model: MaziyarPanahi/Experiment26Neuralsirkrishna_Experiment29Experiment24 language: - en library_name: transformers license: apache-2.0 model_creator: MaziyarPanahi model_name: Experiment26Neuralsirkrishna_Experiment29Experiment24 quantized_by: mradermacher tags: - Safetensors - text-generation-inference - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/MaziyarPanahi/Experiment26Neuralsirkrishna_Experiment29Experiment24 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Experiment26Neuralsirkrishna_Experiment29Experiment24-GGUF/resolve/main/Experiment26Neuralsirkrishna_Experiment29Experiment24.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
dimasik87/938e68e3-f682-4b41-b3a1-ee0d4b500d37
dimasik87
2025-01-23T08:38:48Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "license:other", "region:us" ]
null
2025-01-23T08:16:01Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 938e68e3-f682-4b41-b3a1-ee0d4b500d37 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 17a4766fa4748b36_train_data.json ds_type: json format: custom path: /workspace/input_data/17a4766fa4748b36_train_data.json type: field_input: text field_instruction: leadin field_output: heading format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: dimasik87/938e68e3-f682-4b41-b3a1-ee0d4b500d37 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/17a4766fa4748b36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 464732d7-8f75-4034-bba8-31e12a8da780 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 464732d7-8f75-4034-bba8-31e12a8da780 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # 938e68e3-f682-4b41-b3a1-ee0d4b500d37 This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 3.9885 | | 3.7301 | 0.0005 | 5 | 3.9296 | | 3.7533 | 0.0009 | 10 | 3.8417 | | 3.6008 | 0.0014 | 15 | 3.7884 | | 3.6217 | 0.0018 | 20 | 3.7505 | | 3.6454 | 0.0023 | 25 | 3.7312 | | 3.8127 | 0.0027 | 30 | 3.7274 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gavrilstep/2e521cb6-774d-49a6-897c-103cfc24d014
gavrilstep
2025-01-23T08:38:26Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-14B-Instruct", "base_model:adapter:unsloth/Qwen2.5-14B-Instruct", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T03:45:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-14B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 2e521cb6-774d-49a6-897c-103cfc24d014 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-14B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 466324cc3cdc8c11_train_data.json ds_type: json format: custom path: /workspace/input_data/466324cc3cdc8c11_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: gavrilstep/2e521cb6-774d-49a6-897c-103cfc24d014 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/466324cc3cdc8c11_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 676d9f91-4116-4f6e-8ff1-694522a1ba61 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 676d9f91-4116-4f6e-8ff1-694522a1ba61 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2e521cb6-774d-49a6-897c-103cfc24d014 This model is a fine-tuned version of [unsloth/Qwen2.5-14B-Instruct](https://huggingface.co/unsloth/Qwen2.5-14B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0003 | 5 | nan | | 0.0 | 0.0006 | 10 | nan | | 0.0 | 0.0008 | 15 | nan | | 0.0 | 0.0011 | 20 | nan | | 0.0 | 0.0014 | 25 | nan | | 0.0 | 0.0017 | 30 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thakkkkkk/27f857fd-f3e5-449b-9bc1-87648b5d32f7
thakkkkkk
2025-01-23T08:38:16Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:14:47Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 27f857fd-f3e5-449b-9bc1-87648b5d32f7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 17a4766fa4748b36_train_data.json ds_type: json format: custom path: /workspace/input_data/17a4766fa4748b36_train_data.json type: field_input: text field_instruction: leadin field_output: heading format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thakkkkkk/27f857fd-f3e5-449b-9bc1-87648b5d32f7 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/17a4766fa4748b36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 464732d7-8f75-4034-bba8-31e12a8da780 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 464732d7-8f75-4034-bba8-31e12a8da780 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 27f857fd-f3e5-449b-9bc1-87648b5d32f7 This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0465 | 0.0180 | 200 | 2.5670 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JacksonBrune/131bc2f3-4557-427f-9c4f-d07d9475ec62
JacksonBrune
2025-01-23T08:38:02Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "license:other", "region:us" ]
null
2025-01-23T08:25:01Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 131bc2f3-4557-427f-9c4f-d07d9475ec62 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 17a4766fa4748b36_train_data.json ds_type: json format: custom path: /workspace/input_data/17a4766fa4748b36_train_data.json type: field_input: text field_instruction: leadin field_output: heading format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/131bc2f3-4557-427f-9c4f-d07d9475ec62 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/17a4766fa4748b36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 464732d7-8f75-4034-bba8-31e12a8da780 wandb_project: Birthday-SN56-12-Gradients-On-Demand wandb_run: your_name wandb_runid: 464732d7-8f75-4034-bba8-31e12a8da780 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 131bc2f3-4557-427f-9c4f-d07d9475ec62 This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.5719 | 0.0000 | 1 | 3.7405 | | 2.883 | 0.0001 | 3 | 3.7268 | | 3.6954 | 0.0003 | 6 | 3.5764 | | 3.3368 | 0.0004 | 9 | 3.3030 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nat-hunt/4918b36b-6d20-4eda-ba0a-aaa70c87e434
nat-hunt
2025-01-23T08:37:25Z
11
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "region:us" ]
null
2025-01-23T08:36:31Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 4918b36b-6d20-4eda-ba0a-aaa70c87e434 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1f09a8c91516b26_train_data.json ds_type: json format: custom path: /workspace/input_data/b1f09a8c91516b26_train_data.json type: field_instruction: input_field field_output: output_field format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nat-hunt/4918b36b-6d20-4eda-ba0a-aaa70c87e434 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1f09a8c91516b26_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 925de7c1-8903-4426-93e7-8a873f15c09b wandb_project: Birthday-SN56-4-Gradients-On-Demand wandb_run: your_name wandb_runid: 925de7c1-8903-4426-93e7-8a873f15c09b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4918b36b-6d20-4eda-ba0a-aaa70c87e434 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.0434 | 0.0253 | 1 | 1.9323 | | 7.3627 | 0.0759 | 3 | 1.8602 | | 5.6978 | 0.1519 | 6 | 1.3925 | | 4.7539 | 0.2278 | 9 | 1.1210 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ryanlu522/Qwen2-VL-7B-Instruct-IQ3_M-GGUF
ryanlu522
2025-01-23T08:36:16Z
39
0
transformers
[ "transformers", "gguf", "multimodal", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:quantized:Qwen/Qwen2-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
image-text-to-text
2025-01-23T08:28:36Z
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - llama-cpp - gguf-my-repo library_name: transformers base_model: Qwen/Qwen2-VL-7B-Instruct --- # ryanlu522/Qwen2-VL-7B-Instruct-IQ3_M-GGUF This model was converted to GGUF format from [`Qwen/Qwen2-VL-7B-Instruct`](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ryanlu522/Qwen2-VL-7B-Instruct-IQ3_M-GGUF --hf-file qwen2-vl-7b-instruct-iq3_m-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ryanlu522/Qwen2-VL-7B-Instruct-IQ3_M-GGUF --hf-file qwen2-vl-7b-instruct-iq3_m-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ryanlu522/Qwen2-VL-7B-Instruct-IQ3_M-GGUF --hf-file qwen2-vl-7b-instruct-iq3_m-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ryanlu522/Qwen2-VL-7B-Instruct-IQ3_M-GGUF --hf-file qwen2-vl-7b-instruct-iq3_m-imat.gguf -c 2048 ```
nttx/1c1b04c5-41b8-4dfa-967a-9c512ab5c617
nttx
2025-01-23T08:35:45Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "license:other", "region:us" ]
null
2025-01-23T08:12:54Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 1c1b04c5-41b8-4dfa-967a-9c512ab5c617 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 17a4766fa4748b36_train_data.json ds_type: json format: custom path: /workspace/input_data/17a4766fa4748b36_train_data.json type: field_input: text field_instruction: leadin field_output: heading format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/1c1b04c5-41b8-4dfa-967a-9c512ab5c617 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/17a4766fa4748b36_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 464732d7-8f75-4034-bba8-31e12a8da780 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 464732d7-8f75-4034-bba8-31e12a8da780 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1c1b04c5-41b8-4dfa-967a-9c512ab5c617 This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4014 | 0.0002 | 1 | 3.6039 | | 2.2961 | 0.0090 | 50 | 2.4793 | | 2.3538 | 0.0180 | 100 | 2.3410 | | 2.0825 | 0.0270 | 150 | 2.2582 | | 2.2056 | 0.0360 | 200 | 2.2381 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso03/2cc4ba89-4f17-48fc-9768-fff4f872d76c
lesso03
2025-01-23T08:35:13Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:numind/NuExtract-1.5", "base_model:adapter:numind/NuExtract-1.5", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:31:26Z
--- library_name: peft license: mit base_model: numind/NuExtract-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: 2cc4ba89-4f17-48fc-9768-fff4f872d76c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: numind/NuExtract-v1.5 bf16: true chat_template: llama3 datasets: - data_files: - e7031e972306f161_train_data.json ds_type: json format: custom path: /workspace/input_data/e7031e972306f161_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso03/2cc4ba89-4f17-48fc-9768-fff4f872d76c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/e7031e972306f161_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 74aeda5e-e0f5-4ba1-aafa-46b426ae9a0b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 74aeda5e-e0f5-4ba1-aafa-46b426ae9a0b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2cc4ba89-4f17-48fc-9768-fff4f872d76c This model is a fine-tuned version of [numind/NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.4145 | 0.0014 | 1 | 1.6608 | | 6.101 | 0.0072 | 5 | 1.6496 | | 6.0041 | 0.0145 | 10 | 1.5422 | | 6.3448 | 0.0217 | 15 | 1.4009 | | 4.9334 | 0.0289 | 20 | 1.3542 | | 6.175 | 0.0361 | 25 | 1.3442 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thalllsssss/c29024ca-7f52-4eea-bdf0-f809b9b20df5
thalllsssss
2025-01-23T08:34:33Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:32:46Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: c29024ca-7f52-4eea-bdf0-f809b9b20df5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 104fb3eeae33f2bb_train_data.json ds_type: json format: custom path: /workspace/input_data/104fb3eeae33f2bb_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/c29024ca-7f52-4eea-bdf0-f809b9b20df5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/104fb3eeae33f2bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c29024ca-7f52-4eea-bdf0-f809b9b20df5 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.0029 | 0.3380 | 200 | 5.1674 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lhong4759/d9897b09-9b55-4be6-8e91-388973802f82
lhong4759
2025-01-23T08:33:58Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:32:46Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: d9897b09-9b55-4be6-8e91-388973802f82 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 104fb3eeae33f2bb_train_data.json ds_type: json format: custom path: /workspace/input_data/104fb3eeae33f2bb_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lhong4759/d9897b09-9b55-4be6-8e91-388973802f82 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/104fb3eeae33f2bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d9897b09-9b55-4be6-8e91-388973802f82 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.9947 | 0.3380 | 200 | 5.1711 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cunghoctienganh/599559c4-85fc-4bbd-9407-9bdc7c1b1204
cunghoctienganh
2025-01-23T08:33:39Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:32:41Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: 599559c4-85fc-4bbd-9407-9bdc7c1b1204 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 104fb3eeae33f2bb_train_data.json ds_type: json format: custom path: /workspace/input_data/104fb3eeae33f2bb_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/599559c4-85fc-4bbd-9407-9bdc7c1b1204 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/104fb3eeae33f2bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 599559c4-85fc-4bbd-9407-9bdc7c1b1204 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.9935 | 0.3380 | 200 | 5.1586 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhungphammmmm/764efec6-3d46-4e49-9ca8-c707f33b8ac0
nhungphammmmm
2025-01-23T08:33:15Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:32:35Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: 764efec6-3d46-4e49-9ca8-c707f33b8ac0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 104fb3eeae33f2bb_train_data.json ds_type: json format: custom path: /workspace/input_data/104fb3eeae33f2bb_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhungphammmmm/764efec6-3d46-4e49-9ca8-c707f33b8ac0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/104fb3eeae33f2bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 764efec6-3d46-4e49-9ca8-c707f33b8ac0 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.9889 | 0.3380 | 200 | 5.1566 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dzanbek/6c08fd7b-91a5-41bb-b885-55b567a71e38
dzanbek
2025-01-23T08:33:06Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "region:us" ]
null
2025-01-23T08:32:49Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: 6c08fd7b-91a5-41bb-b885-55b567a71e38 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 104fb3eeae33f2bb_train_data.json ds_type: json format: custom path: /workspace/input_data/104fb3eeae33f2bb_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: dzanbek/6c08fd7b-91a5-41bb-b885-55b567a71e38 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/104fb3eeae33f2bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6c08fd7b-91a5-41bb-b885-55b567a71e38 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0017 | 1 | nan | | 0.0 | 0.0084 | 5 | nan | | 0.0 | 0.0169 | 10 | nan | | 0.0 | 0.0253 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso01/dc36d136-6b69-4076-b012-14535ab4a0b1
lesso01
2025-01-23T08:33:05Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:oopsung/llama2-7b-koNqa-test-v1", "base_model:adapter:oopsung/llama2-7b-koNqa-test-v1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T07:19:19Z
--- library_name: peft base_model: oopsung/llama2-7b-koNqa-test-v1 tags: - axolotl - generated_from_trainer model-index: - name: dc36d136-6b69-4076-b012-14535ab4a0b1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: oopsung/llama2-7b-koNqa-test-v1 bf16: true chat_template: llama3 datasets: - data_files: - 0470cc49f434ca45_train_data.json ds_type: json format: custom path: /workspace/input_data/0470cc49f434ca45_train_data.json type: field_input: '' field_instruction: prompt field_output: responseA format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso01/dc36d136-6b69-4076-b012-14535ab4a0b1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/0470cc49f434ca45_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: db1a33bc-9f36-4a09-a66d-2395320ddb3b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: db1a33bc-9f36-4a09-a66d-2395320ddb3b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dc36d136-6b69-4076-b012-14535ab4a0b1 This model is a fine-tuned version of [oopsung/llama2-7b-koNqa-test-v1](https://huggingface.co/oopsung/llama2-7b-koNqa-test-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0002 | 5 | nan | | 0.0 | 0.0005 | 10 | nan | | 0.0 | 0.0007 | 15 | nan | | 0.0 | 0.0009 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nadejdatarabukina/e2501263-1134-4276-9b63-3383368faf56
nadejdatarabukina
2025-01-23T08:33:04Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "region:us" ]
null
2025-01-23T08:32:44Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: e2501263-1134-4276-9b63-3383368faf56 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 104fb3eeae33f2bb_train_data.json ds_type: json format: custom path: /workspace/input_data/104fb3eeae33f2bb_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: nadejdatarabukina/e2501263-1134-4276-9b63-3383368faf56 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/104fb3eeae33f2bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31c3f894-5134-4c0c-9c0e-e098c4bedb2f warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e2501263-1134-4276-9b63-3383368faf56 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0017 | 1 | nan | | 0.0 | 0.0084 | 5 | nan | | 0.0 | 0.0169 | 10 | nan | | 0.0 | 0.0253 | 15 | nan | | 0.0 | 0.0338 | 20 | nan | | 0.0 | 0.0422 | 25 | nan | | 0.0 | 0.0507 | 30 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
utter-project/mHuBERT-147-base-2nd-iter
utter-project
2025-01-23T08:32:43Z
556
3
transformers
[ "transformers", "pytorch", "safetensors", "hubert", "feature-extraction", "ab", "af", "am", "ar", "as", "az", "ba", "be", "bn", "bo", "bs", "br", "bg", "ca", "cs", "cv", "cy", "da", "de", "dv", "el", "en", "eo", "et", "eu", "ee", "fo", "fa", "tl", "fi", "fr", "fy", "ga", "gl", "gv", "gn", "gu", "ht", "ha", "he", "hi", "hr", "hu", "hy", "ig", "ia", "id", "is", "it", "jv", "ja", "kn", "ka", "kk", "km", "rw", "ky", "ku", "ko", "lo", "la", "lv", "ln", "lt", "lb", "lg", "ml", "mr", "mk", "mg", "mt", "mn", "mi", "ms", "my", "ne", "nl", "nn", "no", "oc", "or", "pa", "pl", "pt", "ps", "ro", "ru", "sa", "si", "sl", "sk", "sn", "sd", "so", "st", "es", "sq", "sc", "sr", "su", "sw", "sv", "ta", "tt", "te", "tg", "th", "tn", "tk", "tr", "tw", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "arxiv:2406.06371", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-21T14:11:13Z
--- license: cc-by-nc-sa-4.0 language: - ab - af - am - ar - as - az - ba - be - bn - bo - bs - br - bg - ca - cs - cv - cy - da - de - dv - el - en - eo - et - eu - ee - fo - fa - tl - fi - fr - fy - ga - gl - gv - gn - gu - ht - ha - he - hi - hr - hu - hy - ig - ia - id - is - it - jv - ja - kn - ka - kk - km - rw - ky - ku - ko - lo - la - lv - ln - lt - lb - lg - ml - mr - mk - mg - mt - mn - mi - ms - my - ne - nl - nn - no - oc - or - pa - pl - pt - ps - ro - ru - sa - si - sl - sk - sn - sd - so - st - es - sq - sc - sr - su - sw - sv - ta - tt - te - tg - th - tn - tk - tr - tw - ug - uk - ur - uz - vi - xh - yi - yo - zh --- **This repository contains the SECOND ITERATION mHuBERT-147 model.** **The best mHuBERT-147 model is available [here](https://huggingface.co/utter-project/mHuBERT-147).** **MODEL DETAILS:** 2nd iteration, K=1000, HuBERT base architecture (95M parameters), 147 languages. # Table of Contents: 1. [Summary](https://huggingface.co/utter-project/mHuBERT-147#mhubert-147-models) 2. [Training Data and Code](https://huggingface.co/utter-project/mHuBERT-147#training) 3. [ML-SUPERB Scores](https://huggingface.co/utter-project/mHuBERT-147#ml-superb-scores) 4. [Languages and Datasets](https://huggingface.co/utter-project/mHuBERT-147#languages-and-datasets) 6. [Citing and Funding Information](https://huggingface.co/utter-project/mHuBERT-147#citing-and-funding-information) # mHuBERT-147 models mHuBERT-147 are compact and competitive multilingual HuBERT models trained on 90K hours of open-license data in 147 languages. Different from *traditional* HuBERTs, mHuBERT-147 models are trained using faiss IVF discrete speech units. Training employs a two-level language, data source up-sampling during training. See more information in [our paper](https://arxiv.org/pdf/2406.06371). **This repository contains:** * Fairseq checkpoint (original); * HuggingFace checkpoint (conversion using transformers library); * Faiss index for continuous pre-training (OPQ16_64,IVF1000_HNSW32,PQ16x4fsr). **Related Models:** * [3rd Iteration mHuBERT-147](https://huggingface.co/utter-project/mHuBERT-147) (best) * [1st Iteration mHuBERT-147](https://huggingface.co/utter-project/mHuBERT-147-base-1st-iter) * [HUTTER-12 CommonVoice Prototype (12 languages)](https://huggingface.co/utter-project/hutter-12-3rd-base) # Training * **[Manifest list available here.](https://huggingface.co/utter-project/mHuBERT-147-base-3rd-iter/tree/main/manifest)** Please note that since training, there were CommonVoice removal requests. This means that some of the listed files are no longer available. * **[Fairseq fork](https://github.com/utter-project/fairseq)** contains the scripts for training with multilingual batching with two-level up-sampling. * **[Scripts for pre-processing/faiss clustering available here.](https://github.com/utter-project/mHuBERT-147-scripts)** # ML-SUPERB Scores mHubert-147 reaches second and first position in the 10min and 1h leaderboards respectively. We achieve new SOTA scores for three LID tasks. See more information in [our paper](https://arxiv.org/pdf/2406.06371). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62262e19d36494a6f743a28d/chXjExnWc3rhhtdsyiU-W.png) # Languages and Datasets **Datasets:** For ASR/ST/TTS datasets, only train set is used. * [Aishell](https://www.openslr.org/33/) and [AISHELL-3](https://www.openslr.org/93/) * [BibleTTS](https://www.openslr.org/129/) * [ClovaCall](https://github.com/clovaai/ClovaCall) * [CommonVoice v11](https://commonvoice.mozilla.org/en/datasets) * Google TTS data: [Javanese](https://www.openslr.org/41/), [Khmer](https://www.openslr.org/42/), [Nepali](https://www.openslr.org/43/), [Sundanese](https://www.openslr.org/44/), [South African Languages](https://www.openslr.org/32/), [Bengali Languages](https://www.openslr.org/37/) * IISc-MILE: [Tamil](https://www.openslr.org/127/), [Kannada](https://www.openslr.org/126/) * [Japanese Versatile Speech](https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus) * [Kokoro](https://github.com/kaiidams/Kokoro-Speech-Dataset) * [Kosp2e](https://github.com/warnikchow/kosp2e) * Media Speech: [Turkish Only](https://www.openslr.org/108/) * [Multilingual LibriSpeech](https://www.openslr.org/94/) * [Samrómur](https://www.openslr.org/128/) * [THCHS-30](https://www.openslr.org/18/) and [THUYG-20](https://www.openslr.org/22/) * [VoxLingua107](https://bark.phon.ioc.ee/voxlingua107/) * [VoxPopuli](https://github.com/facebookresearch/voxpopuli/) **Languages present not indexed by Huggingface:** Asturian (ast), Basaa (bas), Cebuano (ceb), Central Kurdish/Sorani (ckb), Hakha Chin (cnh), Hawaiian (haw), Upper Sorbian (hsb) Kabyle (kab), Moksha (mdf), Meadow Mari (mhr), Hill Mari (mrj), Erzya (myv), Taiwanese Hokkien (nan-tw), Sursilvan (rm-sursilv), Vallader (rm-vallader), Sakha (sah), Santali (sat), Scots (sco), Saraiki (skr), Tigre (tig), Tok Pisin (tpi), Akwapen Twi (tw-akuapem), Asante Twi (tw-asante), Votic (vot), Waray (war), Cantonese (yue). # Citing and Funding Information ``` @inproceedings{boito2024mhubert, author={Marcely Zanon Boito, Vivek Iyer, Nikolaos Lagos, Laurent Besacier, Ioan Calapodescu}, title={{mHuBERT-147: A Compact Multilingual HuBERT Model}}, year=2024, booktitle={Interspeech 2024}, } ``` <img src="https://cdn-uploads.huggingface.co/production/uploads/62262e19d36494a6f743a28d/HbzC1C-uHe25ewTy2wyoK.png" width=7% height=7%> This is an output of the European Project UTTER (Unified Transcription and Translation for Extended Reality) funded by European Union’s Horizon Europe Research and Innovation programme under grant agreement number 101070631. For more information please visit https://he-utter.eu/ NAVER LABS Europe: https://europe.naverlabs.com/
mrhunghd/41c28e2c-0cff-4303-957b-f763c2764195
mrhunghd
2025-01-23T08:32:23Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:25:01Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 41c28e2c-0cff-4303-957b-f763c2764195 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1f09a8c91516b26_train_data.json ds_type: json format: custom path: /workspace/input_data/b1f09a8c91516b26_train_data.json type: field_instruction: input_field field_output: output_field format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrhunghd/41c28e2c-0cff-4303-957b-f763c2764195 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1f09a8c91516b26_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 925de7c1-8903-4426-93e7-8a873f15c09b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 925de7c1-8903-4426-93e7-8a873f15c09b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 41c28e2c-0cff-4303-957b-f763c2764195 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.6543 | 0.9873 | 39 | 1.0232 | | 3.9941 | 1.0127 | 40 | 1.0261 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5606/b1ba74b4-b098-4fba-8013-414a2ec3deb2
prxy5606
2025-01-23T08:31:14Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "region:us" ]
null
2025-01-23T08:25:37Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: b1ba74b4-b098-4fba-8013-414a2ec3deb2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - b1f09a8c91516b26_train_data.json ds_type: json format: custom path: /workspace/input_data/b1f09a8c91516b26_train_data.json type: field_instruction: input_field field_output: output_field format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5606/b1ba74b4-b098-4fba-8013-414a2ec3deb2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/b1f09a8c91516b26_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 925de7c1-8903-4426-93e7-8a873f15c09b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 925de7c1-8903-4426-93e7-8a873f15c09b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b1ba74b4-b098-4fba-8013-414a2ec3deb2 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.6465 | 0.1 | 1 | 1.9418 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
chunminglim/trial
chunminglim
2025-01-23T08:29:55Z
21
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T08:27:52Z
--- base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** chunminglim - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Finnnsansna/sofiaFLUXv3
Finnnsansna
2025-01-23T08:28:45Z
12
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-23T07:46:13Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: sofiaFLUX --- # Sofiafluxv3 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `sofiaFLUX` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Finnnsansna/sofiaFLUXv3', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
aleegis10/6a8ea6a9-612b-4150-b569-27168d41652c
aleegis10
2025-01-23T08:27:58Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:elyza/Llama-3-ELYZA-JP-8B", "base_model:adapter:elyza/Llama-3-ELYZA-JP-8B", "license:llama3", "region:us" ]
null
2025-01-23T07:49:05Z
--- library_name: peft license: llama3 base_model: elyza/Llama-3-ELYZA-JP-8B tags: - axolotl - generated_from_trainer model-index: - name: 6a8ea6a9-612b-4150-b569-27168d41652c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: elyza/Llama-3-ELYZA-JP-8B bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 4e24cfc495d92a70_train_data.json ds_type: json format: custom path: /workspace/input_data/4e24cfc495d92a70_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis10/6a8ea6a9-612b-4150-b569-27168d41652c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/4e24cfc495d92a70_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: eeeb50de-a3fb-4016-8801-49021fd6c6b9 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: eeeb50de-a3fb-4016-8801-49021fd6c6b9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6a8ea6a9-612b-4150-b569-27168d41652c This model is a fine-tuned version of [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9928 | 0.0009 | 1 | 1.0830 | | 0.2248 | 0.0440 | 50 | 0.3456 | | 0.232 | 0.0880 | 100 | 0.2754 | | 0.1364 | 0.1320 | 150 | 0.2401 | | 0.2074 | 0.1761 | 200 | 0.2197 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso09/344aae17-8f2a-4d84-8922-406e07dd82bf
lesso09
2025-01-23T08:26:35Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:24:32Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 344aae17-8f2a-4d84-8922-406e07dd82bf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: true chat_template: llama3 datasets: - data_files: - b1f09a8c91516b26_train_data.json ds_type: json format: custom path: /workspace/input_data/b1f09a8c91516b26_train_data.json type: field_instruction: input_field field_output: output_field format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso09/344aae17-8f2a-4d84-8922-406e07dd82bf hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1f09a8c91516b26_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 925de7c1-8903-4426-93e7-8a873f15c09b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 925de7c1-8903-4426-93e7-8a873f15c09b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 344aae17-8f2a-4d84-8922-406e07dd82bf This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.1044 | 0.0253 | 1 | 1.9238 | | 6.628 | 0.1266 | 5 | 1.5685 | | 4.2088 | 0.2532 | 10 | 1.0954 | | 3.9094 | 0.3797 | 15 | 1.0696 | | 3.607 | 0.5063 | 20 | 1.0187 | | 3.5662 | 0.6329 | 25 | 1.0137 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
albertmartinez/distilbert-multilingual-sdg-classification
albertmartinez
2025-01-23T08:25:53Z
42
0
transformers
[ "transformers", "onnx", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:albertmartinez/OSDG", "base_model:distilbert/distilbert-base-multilingual-cased", "base_model:quantized:distilbert/distilbert-base-multilingual-cased", "doi:10.57967/hf/2737", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-07-17T06:45:50Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-multilingual-sdg-classification results: [] datasets: - albertmartinez/OSDG pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-multilingual-sdg-classification This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8076 - F1: 0.7706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1669 | 1.0 | 538 | 1.2066 | 0.6552 | | 1.0784 | 2.0 | 1076 | 0.9131 | 0.7414 | | 0.8756 | 3.0 | 1614 | 0.8408 | 0.7614 | | 0.7817 | 4.0 | 2152 | 0.8136 | 0.7688 | | 0.7337 | 5.0 | 2690 | 0.8076 | 0.7706 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.1.2.post304 - Datasets 3.2.0 - Tokenizers 0.21.0
albertmartinez/bert-sdg-classification
albertmartinez
2025-01-23T08:25:39Z
39
0
transformers
[ "transformers", "onnx", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:albertmartinez/OSDG", "base_model:google-bert/bert-base-uncased", "base_model:quantized:google-bert/bert-base-uncased", "doi:10.57967/hf/2732", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-04-17T18:34:09Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-sdg-classification results: [] datasets: - albertmartinez/OSDG pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-sdg-classification This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7055 - F1: 0.7980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.2299 | 1.0 | 538 | 1.0520 | 0.7118 | | 0.9383 | 2.0 | 1076 | 0.7800 | 0.7794 | | 0.7379 | 3.0 | 1614 | 0.7253 | 0.7947 | | 0.6362 | 4.0 | 2152 | 0.7107 | 0.7965 | | 0.5779 | 5.0 | 2690 | 0.7055 | 0.7980 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.1.2.post304 - Datasets 3.2.0 - Tokenizers 0.21.0
kk-aivio/dc96f283-b0c0-4d92-9267-9b01890824b6
kk-aivio
2025-01-23T08:24:28Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "region:us" ]
null
2025-01-23T08:16:48Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: dc96f283-b0c0-4d92-9267-9b01890824b6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: huggyllama/llama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aed51b8e2c089967_train_data.json ds_type: json format: custom path: /workspace/input_data/aed51b8e2c089967_train_data.json type: field_input: instance_id field_instruction: prompt_msg field_output: truth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/dc96f283-b0c0-4d92-9267-9b01890824b6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/aed51b8e2c089967_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6a8f76dd-7262-490a-905c-7b83c0f56891 wandb_project: Birthday-SN56-11-Gradients-On-Demand wandb_run: your_name wandb_runid: 6a8f76dd-7262-490a-905c-7b83c0f56891 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dc96f283-b0c0-4d92-9267-9b01890824b6 This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 3 | nan | | 0.0 | 0.0007 | 6 | nan | | 0.0 | 0.0011 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/SJT-4B-v1.1-GGUF
mradermacher
2025-01-23T08:22:49Z
172
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "ja", "base_model:Sakalti/SJT-4B-v1.1", "base_model:quantized:Sakalti/SJT-4B-v1.1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T07:32:24Z
--- base_model: Sakalti/SJT-4B-v1.1 language: - en - ja library_name: transformers license: mit license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Sakalti/SJT-4B-v1.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/SJT-4B-v1.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.Q3_K_S.gguf) | Q3_K_S | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.Q3_K_M.gguf) | Q3_K_M | 2.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.IQ4_XS.gguf) | IQ4_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.Q3_K_L.gguf) | Q3_K_L | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.Q4_K_S.gguf) | Q4_K_S | 2.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.Q4_K_M.gguf) | Q4_K_M | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.Q5_K_S.gguf) | Q5_K_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.Q5_K_M.gguf) | Q5_K_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.Q6_K.gguf) | Q6_K | 3.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/SJT-4B-v1.1-GGUF/resolve/main/SJT-4B-v1.1.f16.gguf) | f16 | 7.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ketchup123/llama-2-7b-chat-pubmedqa-safeinstruct-num-samples-500-HF
ketchup123
2025-01-23T08:22:18Z
113
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "license:llama2", "region:us" ]
null
2025-01-23T08:21:48Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-chat-hf tags: - trl - sft - generated_from_trainer model-index: - name: llama-2-7b-chat-pubmedqa-safeinstruct-num-samples-500-HF results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-2-7b-chat-pubmedqa-safeinstruct-num-samples-500-HF This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 3407 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
lesso12/8a716a62-4947-470e-8dac-916e84b2a1a2
lesso12
2025-01-23T08:21:47Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/codellama-7b", "base_model:adapter:unsloth/codellama-7b", "license:apache-2.0", "region:us" ]
null
2025-01-23T07:30:35Z
--- library_name: peft license: apache-2.0 base_model: unsloth/codellama-7b tags: - axolotl - generated_from_trainer model-index: - name: 8a716a62-4947-470e-8dac-916e84b2a1a2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codellama-7b bf16: true chat_template: llama3 datasets: - data_files: - 7e8c233e95996edb_train_data.json ds_type: json format: custom path: /workspace/input_data/7e8c233e95996edb_train_data.json type: field_input: label field_instruction: text field_output: text-english format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: lesso12/8a716a62-4947-470e-8dac-916e84b2a1a2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 2.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/7e8c233e95996edb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: eb3b8dbf-21b2-4796-bedc-d035bdf3d717 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: eb3b8dbf-21b2-4796-bedc-d035bdf3d717 warmup_steps: 10 weight_decay: 0.0 xformers_attention: true ``` </details><br> # 8a716a62-4947-470e-8dac-916e84b2a1a2 This model is a fine-tuned version of [unsloth/codellama-7b](https://huggingface.co/unsloth/codellama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0002 | 1 | nan | | 0.0 | 0.0008 | 5 | nan | | 0.0 | 0.0017 | 10 | nan | | 0.0 | 0.0025 | 15 | nan | | 0.0 | 0.0034 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/75b5f503-a100-4211-b1b6-1ba9f1c5038a
nhung01
2025-01-23T08:21:09Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:18:34Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: 75b5f503-a100-4211-b1b6-1ba9f1c5038a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e3c1653b647a00a0_train_data.json ds_type: json format: custom path: /workspace/input_data/e3c1653b647a00a0_train_data.json type: field_input: context field_instruction: question field_output: justification format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/75b5f503-a100-4211-b1b6-1ba9f1c5038a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e3c1653b647a00a0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ed221ead-97e8-4057-b485-f8f04d02c1df wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ed221ead-97e8-4057-b485-f8f04d02c1df warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 75b5f503-a100-4211-b1b6-1ba9f1c5038a This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 31.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 132.2982 | 0.7346 | 200 | 31.0221 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
taopanda-1/8ee10f5e-4364-443a-a422-76e16c32ba9a
taopanda-1
2025-01-23T08:20:53Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:20:14Z
--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: EleutherAI/pythia-70m-deduped model-index: - name: 8ee10f5e-4364-443a-a422-76e16c32ba9a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: auto dataset_prepared_path: null datasets: - data_files: - e3c1653b647a00a0_train_data.json ds_type: json format: custom path: e3c1653b647a00a0_train_data.json type: field: null field_input: context field_instruction: question field_output: justification field_system: null format: null no_input_format: null system_format: '{system}' system_prompt: '' early_stopping_patience: null evals_per_epoch: 2 gradient_accumulation_steps: 1 group_by_length: false hub_model_id: taopanda-1/8ee10f5e-4364-443a-a422-76e16c32ba9a learning_rate: 1.0e-05 load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 16 lora_target_linear: null lora_target_modules: - query_key_value micro_batch_size: 4 num_epochs: 1 output_dir: ./outputs/lora-alpaca-pythia/taopanda-1_ed221ead-97e8-4057-b485-f8f04d02c1df resume_from_checkpoint: null seed: 5096 sequence_len: 512 special_tokens: pad_token: <|endoftext|> tf32: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: fatcat87-taopanda wandb_log_model: null wandb_mode: online wandb_name: taopanda-1_ed221ead-97e8-4057-b485-f8f04d02c1df wandb_project: subnet56 wandb_runid: taopanda-1_ed221ead-97e8-4057-b485-f8f04d02c1df wandb_watch: null weight_decay: 0.1 ``` </details><br> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fatcat87-taopanda/subnet56/runs/xkin534u) # 8ee10f5e-4364-443a-a422-76e16c32ba9a This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 32.1315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 5096 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 33.3329 | 0.0114 | 1 | 32.1791 | | 33.7261 | 0.5 | 44 | 32.1460 | | 33.2233 | 1.0 | 88 | 32.1315 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
lhong4759/fa06b87e-3eb3-4b36-b00e-5dfdf87a5de5
lhong4759
2025-01-23T08:20:31Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:18:38Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: fa06b87e-3eb3-4b36-b00e-5dfdf87a5de5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e3c1653b647a00a0_train_data.json ds_type: json format: custom path: /workspace/input_data/e3c1653b647a00a0_train_data.json type: field_input: context field_instruction: question field_output: justification format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lhong4759/fa06b87e-3eb3-4b36-b00e-5dfdf87a5de5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e3c1653b647a00a0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ed221ead-97e8-4057-b485-f8f04d02c1df wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ed221ead-97e8-4057-b485-f8f04d02c1df warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fa06b87e-3eb3-4b36-b00e-5dfdf87a5de5 This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 30.7479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 132.4387 | 0.7346 | 200 | 30.7479 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhoxinh/d0c29fe1-504f-48a9-b54d-be8d6f3ed86f
nhoxinh
2025-01-23T08:20:12Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:18:26Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: d0c29fe1-504f-48a9-b54d-be8d6f3ed86f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e3c1653b647a00a0_train_data.json ds_type: json format: custom path: /workspace/input_data/e3c1653b647a00a0_train_data.json type: field_input: context field_instruction: question field_output: justification format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/d0c29fe1-504f-48a9-b54d-be8d6f3ed86f hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e3c1653b647a00a0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ed221ead-97e8-4057-b485-f8f04d02c1df wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ed221ead-97e8-4057-b485-f8f04d02c1df warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d0c29fe1-504f-48a9-b54d-be8d6f3ed86f This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 31.0420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 132.8683 | 0.7346 | 200 | 31.0420 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
datlaaaaaaa/3b645475-fcb9-43f7-b9fd-548b60f527c6
datlaaaaaaa
2025-01-23T08:19:55Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T08:18:27Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: 3b645475-fcb9-43f7-b9fd-548b60f527c6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e3c1653b647a00a0_train_data.json ds_type: json format: custom path: /workspace/input_data/e3c1653b647a00a0_train_data.json type: field_input: context field_instruction: question field_output: justification format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/3b645475-fcb9-43f7-b9fd-548b60f527c6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e3c1653b647a00a0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ed221ead-97e8-4057-b485-f8f04d02c1df wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ed221ead-97e8-4057-b485-f8f04d02c1df warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 3b645475-fcb9-43f7-b9fd-548b60f527c6 This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 30.8942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 132.5058 | 0.7346 | 200 | 30.8942 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shahiryar/crimson-agent
shahiryar
2025-01-23T08:19:49Z
64
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-08T13:18:46Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: shahiryar/crimson-agent results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # shahiryar/crimson-agent This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.7756 - Train Accuracy: 0.5357 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 120, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 1.7756 | 0.5357 | 0 | ### Framework versions - Transformers 4.38.2 - TensorFlow 2.16.1 - Datasets 2.18.0 - Tokenizers 0.15.2
prxy5606/afa2f532-6fe9-4a3f-a92b-1d1ea42d6909
prxy5606
2025-01-23T08:19:26Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "region:us" ]
null
2025-01-23T08:18:28Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: afa2f532-6fe9-4a3f-a92b-1d1ea42d6909 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - e3c1653b647a00a0_train_data.json ds_type: json format: custom path: /workspace/input_data/e3c1653b647a00a0_train_data.json type: field_input: context field_instruction: question field_output: justification format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5606/afa2f532-6fe9-4a3f-a92b-1d1ea42d6909 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/e3c1653b647a00a0_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ed221ead-97e8-4057-b485-f8f04d02c1df wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ed221ead-97e8-4057-b485-f8f04d02c1df warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # afa2f532-6fe9-4a3f-a92b-1d1ea42d6909 This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.3234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 122.6097 | 0.0147 | 1 | 31.9985 | | 30.4 | 0.7326 | 50 | 8.0000 | | 22.6874 | 1.4652 | 100 | 6.0734 | | 20.4517 | 2.1978 | 150 | 5.5288 | | 20.0385 | 2.9304 | 200 | 5.3234 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ryanlu522/Qwen2-VL-7B-Instruct-IQ4_NL-GGUF
ryanlu522
2025-01-23T08:19:03Z
29
0
transformers
[ "transformers", "gguf", "multimodal", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:quantized:Qwen/Qwen2-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
image-text-to-text
2025-01-23T08:18:41Z
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - llama-cpp - gguf-my-repo library_name: transformers base_model: Qwen/Qwen2-VL-7B-Instruct --- # ryanlu522/Qwen2-VL-7B-Instruct-IQ4_NL-GGUF This model was converted to GGUF format from [`Qwen/Qwen2-VL-7B-Instruct`](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ryanlu522/Qwen2-VL-7B-Instruct-IQ4_NL-GGUF --hf-file qwen2-vl-7b-instruct-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ryanlu522/Qwen2-VL-7B-Instruct-IQ4_NL-GGUF --hf-file qwen2-vl-7b-instruct-iq4_nl-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ryanlu522/Qwen2-VL-7B-Instruct-IQ4_NL-GGUF --hf-file qwen2-vl-7b-instruct-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ryanlu522/Qwen2-VL-7B-Instruct-IQ4_NL-GGUF --hf-file qwen2-vl-7b-instruct-iq4_nl-imat.gguf -c 2048 ```
cvoffer/fd97ba81-368e-46cf-8a1c-2b0f854bbbf0
cvoffer
2025-01-23T08:19:00Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "region:us" ]
null
2025-01-23T08:18:34Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: fd97ba81-368e-46cf-8a1c-2b0f854bbbf0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e3c1653b647a00a0_train_data.json ds_type: json format: custom path: /workspace/input_data/e3c1653b647a00a0_train_data.json type: field_input: context field_instruction: question field_output: justification format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: cvoffer/fd97ba81-368e-46cf-8a1c-2b0f854bbbf0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/e3c1653b647a00a0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ed221ead-97e8-4057-b485-f8f04d02c1df wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ed221ead-97e8-4057-b485-f8f04d02c1df warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # fd97ba81-368e-46cf-8a1c-2b0f854bbbf0 This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.1492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0037 | 1 | 9.2899 | | 27.1393 | 0.0184 | 5 | 9.2502 | | 26.023 | 0.0367 | 10 | 9.2137 | | 28.8907 | 0.0551 | 15 | 9.1622 | | 29.285 | 0.0735 | 20 | 9.1845 | | 32.8603 | 0.0918 | 25 | 9.0770 | | 35.885 | 0.1102 | 30 | 9.1492 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thalllsssss/3697b3ef-cde9-4290-b701-9c74705548da
thalllsssss
2025-01-23T08:16:44Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:jingyeom/seal3.1.6n_7b", "base_model:adapter:jingyeom/seal3.1.6n_7b", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T07:54:50Z
--- library_name: peft base_model: jingyeom/seal3.1.6n_7b tags: - axolotl - generated_from_trainer model-index: - name: 3697b3ef-cde9-4290-b701-9c74705548da results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: jingyeom/seal3.1.6n_7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4fb5aa4ebc7d0064_train_data.json ds_type: json format: custom path: /workspace/input_data/4fb5aa4ebc7d0064_train_data.json type: field_input: context field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/3697b3ef-cde9-4290-b701-9c74705548da hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/4fb5aa4ebc7d0064_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0cf7ab13-7fb6-4938-b313-c87703196b3e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0cf7ab13-7fb6-4938-b313-c87703196b3e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 3697b3ef-cde9-4290-b701-9c74705548da This model is a fine-tuned version of [jingyeom/seal3.1.6n_7b](https://huggingface.co/jingyeom/seal3.1.6n_7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8187 | 0.0390 | 200 | 1.9808 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sercetexam9/UIT-NO-PRExlnet-large-cased-finetuned
sercetexam9
2025-01-23T08:14:40Z
20
0
transformers
[ "transformers", "safetensors", "xlnet", "text-classification", "generated_from_trainer", "base_model:xlnet/xlnet-large-cased", "base_model:finetune:xlnet/xlnet-large-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-23T08:13:55Z
--- library_name: transformers license: mit base_model: xlnet/xlnet-large-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: UIT-NO-PRExlnet-large-cased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # UIT-NO-PRExlnet-large-cased-finetuned This model is a fine-tuned version of [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6311 - F1: 0.7534 - Roc Auc: 0.8047 - Accuracy: 0.5018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.6008 | 1.0 | 139 | 0.5907 | 0.0994 | 0.5061 | 0.1227 | | 0.5594 | 2.0 | 278 | 0.5834 | 0.1435 | 0.5 | 0.1300 | | 0.4458 | 3.0 | 417 | 0.3967 | 0.6474 | 0.7336 | 0.4007 | | 0.3153 | 4.0 | 556 | 0.3647 | 0.7128 | 0.7775 | 0.4495 | | 0.2474 | 5.0 | 695 | 0.3392 | 0.7382 | 0.7952 | 0.4693 | | 0.1915 | 6.0 | 834 | 0.3702 | 0.7346 | 0.7980 | 0.5054 | | 0.1194 | 7.0 | 973 | 0.4083 | 0.7340 | 0.7994 | 0.4982 | | 0.0953 | 8.0 | 1112 | 0.4656 | 0.7507 | 0.8101 | 0.4910 | | 0.0482 | 9.0 | 1251 | 0.5682 | 0.7438 | 0.7934 | 0.4838 | | 0.0504 | 10.0 | 1390 | 0.5374 | 0.7419 | 0.8069 | 0.4729 | | 0.0265 | 11.0 | 1529 | 0.6019 | 0.7408 | 0.8011 | 0.4838 | | 0.0082 | 12.0 | 1668 | 0.6136 | 0.7429 | 0.8015 | 0.4874 | | 0.0077 | 13.0 | 1807 | 0.6212 | 0.7461 | 0.8020 | 0.4982 | | 0.0117 | 14.0 | 1946 | 0.6089 | 0.7519 | 0.8086 | 0.4928 | | 0.0044 | 15.0 | 2085 | 0.6246 | 0.7508 | 0.8050 | 0.5 | | 0.0041 | 16.0 | 2224 | 0.6382 | 0.7460 | 0.8005 | 0.4946 | | 0.0024 | 17.0 | 2363 | 0.6333 | 0.7467 | 0.8011 | 0.5 | | 0.0053 | 18.0 | 2502 | 0.6311 | 0.7534 | 0.8047 | 0.5018 | | 0.0027 | 19.0 | 2641 | 0.6311 | 0.7508 | 0.8032 | 0.5036 | | 0.0029 | 20.0 | 2780 | 0.6318 | 0.7520 | 0.8037 | 0.5054 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.21.0
Best000/767cb4c6-3ad3-46f4-b827-ca227a9648b9
Best000
2025-01-23T08:14:37Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.1-Storm-8B", "base_model:adapter:unsloth/Llama-3.1-Storm-8B", "license:llama3.1", "region:us" ]
null
2025-01-23T08:12:33Z
--- library_name: peft license: llama3.1 base_model: unsloth/Llama-3.1-Storm-8B tags: - axolotl - generated_from_trainer model-index: - name: 767cb4c6-3ad3-46f4-b827-ca227a9648b9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.1-Storm-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aba4cbb8799260b0_train_data.json ds_type: json format: custom path: /workspace/input_data/aba4cbb8799260b0_train_data.json type: field_instruction: questions field_output: context format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/767cb4c6-3ad3-46f4-b827-ca227a9648b9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/aba4cbb8799260b0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2f455866-9ba0-47c4-9984-af49b419b951 wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: 2f455866-9ba0-47c4-9984-af49b419b951 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 767cb4c6-3ad3-46f4-b827-ca227a9648b9 This model is a fine-tuned version of [unsloth/Llama-3.1-Storm-8B](https://huggingface.co/unsloth/Llama-3.1-Storm-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5717 | 0.0008 | 1 | nan | | 2.1874 | 0.0024 | 3 | nan | | 4.6303 | 0.0049 | 6 | nan | | 3.7152 | 0.0073 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nadejdatarabukina/408e9676-bb62-4f66-a9c1-b070598bcea5
nadejdatarabukina
2025-01-23T08:09:06Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2025-01-23T03:34:01Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: 408e9676-bb62-4f66-a9c1-b070598bcea5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 170c6834dc7ec4fa_train_data.json ds_type: json format: custom path: /workspace/input_data/170c6834dc7ec4fa_train_data.json type: field_input: title field_instruction: content field_output: summary1 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: nadejdatarabukina/408e9676-bb62-4f66-a9c1-b070598bcea5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/170c6834dc7ec4fa_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ca8ff29d-9d37-4866-b211-3cbcc242f321 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ca8ff29d-9d37-4866-b211-3cbcc242f321 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 408e9676-bb62-4f66-a9c1-b070598bcea5 This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 4.4164 | | 4.4222 | 0.0001 | 5 | 4.0538 | | 3.9655 | 0.0001 | 10 | 3.8064 | | 3.6699 | 0.0002 | 15 | 3.6741 | | 3.7247 | 0.0003 | 20 | 3.6176 | | 3.655 | 0.0003 | 25 | 3.5898 | | 3.6614 | 0.0004 | 30 | 3.5846 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
vmpsergio/a1508d1f-ab7b-4525-812b-3865a2d8a41e
vmpsergio
2025-01-23T08:08:53Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2025-01-23T03:33:31Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: a1508d1f-ab7b-4525-812b-3865a2d8a41e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 170c6834dc7ec4fa_train_data.json ds_type: json format: custom path: /workspace/input_data/170c6834dc7ec4fa_train_data.json type: field_input: title field_instruction: content field_output: summary1 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: vmpsergio/a1508d1f-ab7b-4525-812b-3865a2d8a41e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/170c6834dc7ec4fa_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ca8ff29d-9d37-4866-b211-3cbcc242f321 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ca8ff29d-9d37-4866-b211-3cbcc242f321 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a1508d1f-ab7b-4525-812b-3865a2d8a41e This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 4.4164 | | 4.423 | 0.0001 | 5 | 4.0566 | | 3.9645 | 0.0001 | 10 | 3.8057 | | 3.6697 | 0.0002 | 15 | 3.6749 | | 3.7253 | 0.0003 | 20 | 3.6183 | | 3.6549 | 0.0003 | 25 | 3.5909 | | 3.6623 | 0.0004 | 30 | 3.5856 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dimasik2987/a04c8b26-84ce-4163-b06a-fda53afae0bd
dimasik2987
2025-01-23T08:07:22Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-64k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-64k", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T07:44:31Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: a04c8b26-84ce-4163-b06a-fda53afae0bd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c54c4cfeb1403ba8_train_data.json ds_type: json format: custom path: /workspace/input_data/c54c4cfeb1403ba8_train_data.json type: field_instruction: hieroglyphs field_output: translation format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: dimasik2987/a04c8b26-84ce-4163-b06a-fda53afae0bd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/c54c4cfeb1403ba8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6813de76-c54d-49f6-88c5-cfc3d6c7ec03 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6813de76-c54d-49f6-88c5-cfc3d6c7ec03 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # a04c8b26-84ce-4163-b06a-fda53afae0bd This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0013 | 1 | 3.2015 | | 8.191 | 0.0067 | 5 | 2.4169 | | 6.9339 | 0.0134 | 10 | 1.9922 | | 6.4111 | 0.0201 | 15 | 1.8906 | | 6.2029 | 0.0268 | 20 | 1.8688 | | 6.4598 | 0.0335 | 25 | 1.8550 | | 6.6 | 0.0402 | 30 | 1.8521 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
pylu5229/conditional-detr-resnet-50-uLED-obj-detect-test
pylu5229
2025-01-23T08:05:35Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "conditional_detr", "object-detection", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/conditional-detr-resnet-50", "base_model:finetune:microsoft/conditional-detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2025-01-23T07:22:13Z
--- library_name: transformers license: apache-2.0 base_model: microsoft/conditional-detr-resnet-50 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: conditional-detr-resnet-50-uLED-obj-detect-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # conditional-detr-resnet-50-uLED-obj-detect-test This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0912 - Map: 0.9334 - Map 50: 0.9684 - Map 75: 0.9684 - Map Small: -1.0 - Map Medium: 0.9334 - Map Large: -1.0 - Mar 1: 0.0125 - Mar 10: 0.1259 - Mar 100: 0.9777 - Mar Small: -1.0 - Mar Medium: 0.9777 - Mar Large: -1.0 - Map Uled: 0.9334 - Mar 100 Uled: 0.9777 - Map Trash: -1.0 - Mar 100 Trash: -1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Uled | Mar 100 Uled | Map Trash | Mar 100 Trash | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:--------:|:------------:|:---------:|:-------------:| | No log | 1.0 | 41 | 0.2460 | 0.7925 | 0.9619 | 0.9382 | -1.0 | 0.7925 | -1.0 | 0.0115 | 0.1133 | 0.8652 | -1.0 | 0.8652 | -1.0 | 0.7925 | 0.8652 | -1.0 | -1.0 | | No log | 2.0 | 82 | 0.2123 | 0.8121 | 0.9671 | 0.9527 | -1.0 | 0.8121 | -1.0 | 0.0111 | 0.1125 | 0.8797 | -1.0 | 0.8797 | -1.0 | 0.8121 | 0.8797 | -1.0 | -1.0 | | No log | 3.0 | 123 | 0.1597 | 0.8576 | 0.9645 | 0.963 | -1.0 | 0.8576 | -1.0 | 0.0118 | 0.1181 | 0.9217 | -1.0 | 0.9217 | -1.0 | 0.8576 | 0.9217 | -1.0 | -1.0 | | No log | 4.0 | 164 | 0.1645 | 0.8532 | 0.9644 | 0.9606 | -1.0 | 0.8532 | -1.0 | 0.0118 | 0.1184 | 0.9174 | -1.0 | 0.9174 | -1.0 | 0.8532 | 0.9174 | -1.0 | -1.0 | | No log | 5.0 | 205 | 0.2037 | 0.824 | 0.9632 | 0.9614 | -1.0 | 0.824 | -1.0 | 0.0115 | 0.1142 | 0.8826 | -1.0 | 0.8826 | -1.0 | 0.824 | 0.8826 | -1.0 | -1.0 | | No log | 6.0 | 246 | 0.1342 | 0.8864 | 0.9672 | 0.9665 | -1.0 | 0.8864 | -1.0 | 0.0119 | 0.1213 | 0.9429 | -1.0 | 0.9429 | -1.0 | 0.8864 | 0.9429 | -1.0 | -1.0 | | No log | 7.0 | 287 | 0.1365 | 0.8821 | 0.9677 | 0.9672 | -1.0 | 0.8821 | -1.0 | 0.0121 | 0.1218 | 0.9362 | -1.0 | 0.9362 | -1.0 | 0.8821 | 0.9362 | -1.0 | -1.0 | | No log | 8.0 | 328 | 0.1470 | 0.872 | 0.9666 | 0.9662 | -1.0 | 0.872 | -1.0 | 0.0119 | 0.12 | 0.9326 | -1.0 | 0.9326 | -1.0 | 0.872 | 0.9326 | -1.0 | -1.0 | | No log | 9.0 | 369 | 0.1783 | 0.8495 | 0.9678 | 0.9673 | -1.0 | 0.8495 | -1.0 | 0.0118 | 0.118 | 0.9017 | -1.0 | 0.9017 | -1.0 | 0.8495 | 0.9017 | -1.0 | -1.0 | | No log | 10.0 | 410 | 0.1563 | 0.8676 | 0.9662 | 0.9643 | -1.0 | 0.8676 | -1.0 | 0.012 | 0.1203 | 0.9225 | -1.0 | 0.9225 | -1.0 | 0.8676 | 0.9225 | -1.0 | -1.0 | | No log | 11.0 | 451 | 0.1458 | 0.8783 | 0.966 | 0.9658 | -1.0 | 0.8783 | -1.0 | 0.012 | 0.121 | 0.9321 | -1.0 | 0.9321 | -1.0 | 0.8783 | 0.9321 | -1.0 | -1.0 | | No log | 12.0 | 492 | 0.1273 | 0.8939 | 0.9669 | 0.9667 | -1.0 | 0.8939 | -1.0 | 0.0123 | 0.1234 | 0.9462 | -1.0 | 0.9462 | -1.0 | 0.8939 | 0.9462 | -1.0 | -1.0 | | 0.2348 | 13.0 | 533 | 0.1376 | 0.8862 | 0.9683 | 0.968 | -1.0 | 0.8862 | -1.0 | 0.0121 | 0.1217 | 0.9404 | -1.0 | 0.9404 | -1.0 | 0.8862 | 0.9404 | -1.0 | -1.0 | | 0.2348 | 14.0 | 574 | 0.1338 | 0.8865 | 0.9669 | 0.9668 | -1.0 | 0.8865 | -1.0 | 0.0122 | 0.1222 | 0.9422 | -1.0 | 0.9422 | -1.0 | 0.8865 | 0.9422 | -1.0 | -1.0 | | 0.2348 | 15.0 | 615 | 0.1258 | 0.8917 | 0.9685 | 0.9685 | -1.0 | 0.8917 | -1.0 | 0.012 | 0.1221 | 0.9454 | -1.0 | 0.9454 | -1.0 | 0.8917 | 0.9454 | -1.0 | -1.0 | | 0.2348 | 16.0 | 656 | 0.1206 | 0.8998 | 0.9689 | 0.9689 | -1.0 | 0.8998 | -1.0 | 0.0123 | 0.1233 | 0.9524 | -1.0 | 0.9524 | -1.0 | 0.8998 | 0.9524 | -1.0 | -1.0 | | 0.2348 | 17.0 | 697 | 0.1075 | 0.911 | 0.969 | 0.969 | -1.0 | 0.911 | -1.0 | 0.0123 | 0.1238 | 0.9612 | -1.0 | 0.9612 | -1.0 | 0.911 | 0.9612 | -1.0 | -1.0 | | 0.2348 | 18.0 | 738 | 0.1084 | 0.9113 | 0.9692 | 0.9691 | -1.0 | 0.9113 | -1.0 | 0.0123 | 0.1237 | 0.9628 | -1.0 | 0.9628 | -1.0 | 0.9113 | 0.9628 | -1.0 | -1.0 | | 0.2348 | 19.0 | 779 | 0.1104 | 0.91 | 0.9688 | 0.9688 | -1.0 | 0.91 | -1.0 | 0.0123 | 0.1236 | 0.9602 | -1.0 | 0.9602 | -1.0 | 0.91 | 0.9602 | -1.0 | -1.0 | | 0.2348 | 20.0 | 820 | 0.1097 | 0.9103 | 0.9693 | 0.9693 | -1.0 | 0.9103 | -1.0 | 0.0123 | 0.1241 | 0.9616 | -1.0 | 0.9616 | -1.0 | 0.9103 | 0.9616 | -1.0 | -1.0 | | 0.2348 | 21.0 | 861 | 0.1111 | 0.9106 | 0.9666 | 0.9665 | -1.0 | 0.9106 | -1.0 | 0.0123 | 0.1242 | 0.9624 | -1.0 | 0.9624 | -1.0 | 0.9106 | 0.9624 | -1.0 | -1.0 | | 0.2348 | 22.0 | 902 | 0.1007 | 0.923 | 0.9667 | 0.9666 | -1.0 | 0.923 | -1.0 | 0.0125 | 0.1251 | 0.972 | -1.0 | 0.972 | -1.0 | 0.923 | 0.972 | -1.0 | -1.0 | | 0.2348 | 23.0 | 943 | 0.1080 | 0.9103 | 0.9671 | 0.9671 | -1.0 | 0.9103 | -1.0 | 0.0123 | 0.1242 | 0.9612 | -1.0 | 0.9612 | -1.0 | 0.9103 | 0.9612 | -1.0 | -1.0 | | 0.2348 | 24.0 | 984 | 0.0987 | 0.9197 | 0.967 | 0.967 | -1.0 | 0.9197 | -1.0 | 0.0124 | 0.1253 | 0.9697 | -1.0 | 0.9697 | -1.0 | 0.9197 | 0.9697 | -1.0 | -1.0 | | 0.1648 | 25.0 | 1025 | 0.0979 | 0.9226 | 0.9675 | 0.9675 | -1.0 | 0.9226 | -1.0 | 0.0125 | 0.1253 | 0.9715 | -1.0 | 0.9715 | -1.0 | 0.9226 | 0.9715 | -1.0 | -1.0 | | 0.1648 | 26.0 | 1066 | 0.0912 | 0.9334 | 0.9684 | 0.9684 | -1.0 | 0.9334 | -1.0 | 0.0125 | 0.1259 | 0.9777 | -1.0 | 0.9777 | -1.0 | 0.9334 | 0.9777 | -1.0 | -1.0 | | 0.1648 | 27.0 | 1107 | 0.0926 | 0.9311 | 0.9682 | 0.9682 | -1.0 | 0.9311 | -1.0 | 0.0125 | 0.1258 | 0.9763 | -1.0 | 0.9763 | -1.0 | 0.9311 | 0.9763 | -1.0 | -1.0 | | 0.1648 | 28.0 | 1148 | 0.0933 | 0.9301 | 0.9682 | 0.9681 | -1.0 | 0.9301 | -1.0 | 0.0125 | 0.1258 | 0.9756 | -1.0 | 0.9756 | -1.0 | 0.9301 | 0.9756 | -1.0 | -1.0 | | 0.1648 | 29.0 | 1189 | 0.0937 | 0.9301 | 0.9682 | 0.9681 | -1.0 | 0.9301 | -1.0 | 0.0125 | 0.1259 | 0.9758 | -1.0 | 0.9758 | -1.0 | 0.9301 | 0.9758 | -1.0 | -1.0 | | 0.1648 | 30.0 | 1230 | 0.0932 | 0.9311 | 0.9682 | 0.9681 | -1.0 | 0.9311 | -1.0 | 0.0125 | 0.126 | 0.9763 | -1.0 | 0.9763 | -1.0 | 0.9311 | 0.9763 | -1.0 | -1.0 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
sercetexam9/UIT-NO-PREPROCESSING-deberta-v3-large-finetuned
sercetexam9
2025-01-23T08:04:41Z
7
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-23T08:03:36Z
--- library_name: transformers license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: UIT-NO-PREPROCESSING-deberta-v3-large-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # UIT-NO-PREPROCESSING-deberta-v3-large-finetuned This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5263 - F1: 0.7688 - Roc Auc: 0.8207 - Accuracy: 0.5199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.5077 | 1.0 | 139 | 0.4600 | 0.4594 | 0.6568 | 0.3357 | | 0.3888 | 2.0 | 278 | 0.3953 | 0.6320 | 0.7310 | 0.4007 | | 0.3306 | 3.0 | 417 | 0.3528 | 0.7181 | 0.7846 | 0.4838 | | 0.1688 | 4.0 | 556 | 0.3831 | 0.7490 | 0.8098 | 0.4603 | | 0.127 | 5.0 | 695 | 0.4009 | 0.7598 | 0.8160 | 0.5090 | | 0.0984 | 6.0 | 834 | 0.4668 | 0.7282 | 0.7928 | 0.4892 | | 0.0477 | 7.0 | 973 | 0.4952 | 0.7547 | 0.8093 | 0.5018 | | 0.0293 | 8.0 | 1112 | 0.5263 | 0.7688 | 0.8207 | 0.5199 | | 0.0205 | 9.0 | 1251 | 0.6005 | 0.7445 | 0.8044 | 0.4856 | | 0.0202 | 10.0 | 1390 | 0.6518 | 0.7581 | 0.8079 | 0.4892 | | 0.01 | 11.0 | 1529 | 0.6087 | 0.7662 | 0.8228 | 0.5162 | | 0.0021 | 12.0 | 1668 | 0.6349 | 0.7584 | 0.8118 | 0.5090 | | 0.0019 | 13.0 | 1807 | 0.6584 | 0.7567 | 0.8089 | 0.5126 | | 0.0014 | 14.0 | 1946 | 0.6690 | 0.7608 | 0.8127 | 0.5072 | | 0.0024 | 15.0 | 2085 | 0.6591 | 0.7637 | 0.8165 | 0.5108 | | 0.0014 | 16.0 | 2224 | 0.6727 | 0.7632 | 0.8157 | 0.5162 | | 0.0015 | 17.0 | 2363 | 0.6736 | 0.7619 | 0.8144 | 0.5144 | | 0.0015 | 18.0 | 2502 | 0.6753 | 0.7641 | 0.8158 | 0.5199 | | 0.002 | 19.0 | 2641 | 0.6768 | 0.7631 | 0.8151 | 0.5181 | | 0.0014 | 20.0 | 2780 | 0.6769 | 0.7631 | 0.8151 | 0.5181 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.21.0
lesso15/75eae7cb-0736-4d0b-8711-07586d611dcc
lesso15
2025-01-23T08:03:42Z
8
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:adapter:EleutherAI/pythia-1b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T07:59:02Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-1b tags: - axolotl - generated_from_trainer model-index: - name: 75eae7cb-0736-4d0b-8711-07586d611dcc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-1b bf16: true chat_template: llama3 datasets: - data_files: - 295c95d886899e42_train_data.json ds_type: json format: custom path: /workspace/input_data/295c95d886899e42_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: lesso15/75eae7cb-0736-4d0b-8711-07586d611dcc hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/295c95d886899e42_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2265eb03-3c11-4dde-ab58-14e90d80cd0e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2265eb03-3c11-4dde-ab58-14e90d80cd0e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 75eae7cb-0736-4d0b-8711-07586d611dcc This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.1264 | 0.0017 | 1 | 2.5462 | | 8.297 | 0.0086 | 5 | 2.5022 | | 9.5278 | 0.0172 | 10 | 2.3152 | | 9.1482 | 0.0257 | 15 | 2.2642 | | 8.6922 | 0.0343 | 20 | 2.2074 | | 8.9574 | 0.0429 | 25 | 2.1957 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
0x1202/335a5533-6330-45c7-81c3-6f914201490b
0x1202
2025-01-23T08:03:29Z
8
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:adapter:EleutherAI/pythia-1b", "license:apache-2.0", "region:us" ]
null
2025-01-23T07:58:29Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-1b tags: - axolotl - generated_from_trainer model-index: - name: 335a5533-6330-45c7-81c3-6f914201490b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-1b bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 295c95d886899e42_train_data.json ds_type: json format: custom path: /workspace/input_data/295c95d886899e42_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: 0x1202/335a5533-6330-45c7-81c3-6f914201490b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/295c95d886899e42_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2265eb03-3c11-4dde-ab58-14e90d80cd0e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2265eb03-3c11-4dde-ab58-14e90d80cd0e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 335a5533-6330-45c7-81c3-6f914201490b This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 8.2815 | 0.0069 | 1 | 2.6706 | | 7.8787 | 0.3431 | 50 | 1.9610 | | 7.0153 | 0.6861 | 100 | 1.8373 | | 6.5346 | 1.0292 | 150 | 1.7711 | | 5.8487 | 1.3722 | 200 | 1.7466 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Kawon/llama3.1-food-finetune_v13_r8
Kawon
2025-01-23T08:01:31Z
9
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "region:us" ]
null
2025-01-23T07:16:21Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
douchebag/lora_model
douchebag
2025-01-23T08:01:09Z
58
0
transformers
[ "transformers", "safetensors", "gguf", "mistral", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T07:31:04Z
--- base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** douchebag - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Nerva1228/yingtao5
Nerva1228
2025-01-23T08:00:50Z
16
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-23T08:00:49Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: yingtao --- # Yingtao5 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `yingtao` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Nerva1228/yingtao5', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
lesso11/ed646f55-8ec2-4f6d-b133-6a1e9c3ca9db
lesso11
2025-01-23T08:00:41Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-64k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-64k", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T07:46:18Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: ed646f55-8ec2-4f6d-b133-6a1e9c3ca9db results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-64k bf16: true chat_template: llama3 datasets: - data_files: - c54c4cfeb1403ba8_train_data.json ds_type: json format: custom path: /workspace/input_data/c54c4cfeb1403ba8_train_data.json type: field_instruction: hieroglyphs field_output: translation format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso11/ed646f55-8ec2-4f6d-b133-6a1e9c3ca9db hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/c54c4cfeb1403ba8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6813de76-c54d-49f6-88c5-cfc3d6c7ec03 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6813de76-c54d-49f6-88c5-cfc3d6c7ec03 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ed646f55-8ec2-4f6d-b133-6a1e9c3ca9db This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 17.2692 | 0.0007 | 1 | 4.8858 | | 17.3642 | 0.0033 | 5 | 4.0327 | | 12.288 | 0.0067 | 10 | 3.0785 | | 11.3571 | 0.0100 | 15 | 2.9143 | | 11.9615 | 0.0134 | 20 | 2.7820 | | 12.4712 | 0.0167 | 25 | 2.7535 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dimasik1987/6bdebade-e274-40b3-a62f-7caed136657a
dimasik1987
2025-01-23T08:00:27Z
8
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:adapter:EleutherAI/pythia-1b", "license:apache-2.0", "region:us" ]
null
2025-01-23T07:58:47Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-1b tags: - axolotl - generated_from_trainer model-index: - name: 6bdebade-e274-40b3-a62f-7caed136657a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 295c95d886899e42_train_data.json ds_type: json format: custom path: /workspace/input_data/295c95d886899e42_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: dimasik1987/6bdebade-e274-40b3-a62f-7caed136657a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/295c95d886899e42_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2265eb03-3c11-4dde-ab58-14e90d80cd0e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2265eb03-3c11-4dde-ab58-14e90d80cd0e warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # 6bdebade-e274-40b3-a62f-7caed136657a This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0034 | 1 | 3.0316 | | 9.6746 | 0.0172 | 5 | 2.8420 | | 9.3766 | 0.0343 | 10 | 2.5671 | | 9.0653 | 0.0515 | 15 | 2.4688 | | 9.1153 | 0.0686 | 20 | 2.4100 | | 8.6397 | 0.0858 | 25 | 2.3839 | | 8.8737 | 0.1029 | 30 | 2.3847 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF
mradermacher
2025-01-23T08:00:05Z
351
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:sudhir2016/llama-3-8b-Instruct-lora-hinglish", "base_model:quantized:sudhir2016/llama-3-8b-Instruct-lora-hinglish", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T07:47:19Z
--- base_model: sudhir2016/llama-3-8b-Instruct-lora-hinglish language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/sudhir2016/llama-3-8b-Instruct-lora-hinglish <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-Instruct-lora-hinglish-GGUF/resolve/main/llama-3-8b-Instruct-lora-hinglish.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Devyanshi3/en_pipeline
Devyanshi3
2025-01-23T07:59:45Z
11
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2024-04-22T05:49:41Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9783877242 - name: NER Recall type: recall value: 0.9648337596 - name: NER F Score type: f_score value: 0.9715634725 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.5,<3.8.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (15 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `AWB`, `COMMODITY`, `DESTINATION`, `DIMENSIONS`, `GROSSWEIGHT`, `HSNCODE`, `INCOTERMS`, `INVOICE`, `MODE`, `ORIGIN`, `QUANTITY`, `SHIPMENTDATE`, `TEMPERATURE`, `VOLUMEWEIGHT`, `WEIGHT` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 97.16 | | `ENTS_P` | 97.84 | | `ENTS_R` | 96.48 | | `TOK2VEC_LOSS` | 31298.39 | | `NER_LOSS` | 137951.75 |
mradermacher/Hercules-phi-2-GGUF
mradermacher
2025-01-23T07:57:33Z
231
0
transformers
[ "transformers", "gguf", "en", "dataset:Locutusque/hercules-v4.5", "base_model:M4-ai/Hercules-phi-2", "base_model:quantized:M4-ai/Hercules-phi-2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-23T07:47:19Z
--- base_model: M4-ai/Hercules-phi-2 datasets: - Locutusque/hercules-v4.5 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/M4-ai/Hercules-phi-2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.Q2_K.gguf) | Q2_K | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.Q3_K_S.gguf) | Q3_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.Q3_K_M.gguf) | Q3_K_M | 1.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.IQ4_XS.gguf) | IQ4_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.Q3_K_L.gguf) | Q3_K_L | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.Q5_K_S.gguf) | Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.Q5_K_M.gguf) | Q5_K_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.Q6_K.gguf) | Q6_K | 2.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.Q8_0.gguf) | Q8_0 | 3.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Hercules-phi-2-GGUF/resolve/main/Hercules-phi-2.f16.gguf) | f16 | 5.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
kk-aivio/dce6becb-65ef-40d9-bca9-6f431bf69ec7
kk-aivio
2025-01-23T07:57:10Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-64k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-64k", "license:apache-2.0", "region:us" ]
null
2025-01-23T07:55:10Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: dce6becb-65ef-40d9-bca9-6f431bf69ec7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c54c4cfeb1403ba8_train_data.json ds_type: json format: custom path: /workspace/input_data/c54c4cfeb1403ba8_train_data.json type: field_instruction: hieroglyphs field_output: translation format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/dce6becb-65ef-40d9-bca9-6f431bf69ec7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/c54c4cfeb1403ba8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6813de76-c54d-49f6-88c5-cfc3d6c7ec03 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: 6813de76-c54d-49f6-88c5-cfc3d6c7ec03 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dce6becb-65ef-40d9-bca9-6f431bf69ec7 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 17.4663 | 0.0007 | 1 | 4.9188 | | 20.3848 | 0.0020 | 3 | 4.7695 | | 17.3843 | 0.0040 | 6 | 3.7011 | | 14.3025 | 0.0060 | 9 | 3.1414 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
RichardErkhov/AdamKasumovic_-_phi3-mini-4k-instruct-bactrian-x-af-100-percent-low-med-perplexity-8bits
RichardErkhov
2025-01-23T07:55:41Z
6
0
null
[ "safetensors", "mistral", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T07:53:31Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) phi3-mini-4k-instruct-bactrian-x-af-100-percent-low-med-perplexity - bnb 8bits - Model creator: https://huggingface.co/AdamKasumovic/ - Original model: https://huggingface.co/AdamKasumovic/phi3-mini-4k-instruct-bactrian-x-af-100-percent-low-med-perplexity/ Original model description: --- base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl --- # Uploaded model - **Developed by:** AdamKasumovic - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
vermoney/f4a24b4c-e2e4-4c58-b7b8-5f743fe7666c
vermoney
2025-01-23T07:55:17Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/codellama-7b", "base_model:adapter:unsloth/codellama-7b", "license:apache-2.0", "region:us" ]
null
2025-01-23T07:31:10Z
--- library_name: peft license: apache-2.0 base_model: unsloth/codellama-7b tags: - axolotl - generated_from_trainer model-index: - name: f4a24b4c-e2e4-4c58-b7b8-5f743fe7666c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codellama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7e8c233e95996edb_train_data.json ds_type: json format: custom path: /workspace/input_data/7e8c233e95996edb_train_data.json type: field_input: label field_instruction: text field_output: text-english format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: vermoney/f4a24b4c-e2e4-4c58-b7b8-5f743fe7666c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/7e8c233e95996edb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: eb3b8dbf-21b2-4796-bedc-d035bdf3d717 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: eb3b8dbf-21b2-4796-bedc-d035bdf3d717 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ``` </details><br> # f4a24b4c-e2e4-4c58-b7b8-5f743fe7666c This model is a fine-tuned version of [unsloth/codellama-7b](https://huggingface.co/unsloth/codellama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 0.0 | 0.0008 | 5 | nan | | 0.0 | 0.0017 | 10 | nan | | 0.0 | 0.0025 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mikekubi/task-1-Qwen-Qwen2-7B-Instruct
mikekubi
2025-01-23T07:54:40Z
280
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2-7B-Instruct", "base_model:adapter:Qwen/Qwen2-7B-Instruct", "region:us" ]
null
2025-01-10T07:15:19Z
--- base_model: Qwen/Qwen2-7B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
mikekubi/task-1-google-gemma-7b-it
mikekubi
2025-01-23T07:54:26Z
2,165
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-7b-it", "base_model:adapter:google/gemma-7b-it", "region:us" ]
null
2025-01-07T06:58:56Z
--- base_model: google/gemma-7b-it library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
RichardErkhov/alexrodpas_-_phi3-mini-4k-lora-pycode-18k-4bits
RichardErkhov
2025-01-23T07:52:18Z
8
0
null
[ "safetensors", "phi3", "custom_code", "arxiv:1910.09700", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-23T07:50:13Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) phi3-mini-4k-lora-pycode-18k - bnb 4bits - Model creator: https://huggingface.co/alexrodpas/ - Original model: https://huggingface.co/alexrodpas/phi3-mini-4k-lora-pycode-18k/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]