modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Mostefa-Terbeche/diabetic-retinopathy-ddr-efficientnet_b3-advanced-20250723-013056
Mostefa-Terbeche
2025-08-19T04:52:46Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:ddr", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-19T04:31:31Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - ddr metrics: - accuracy - quadratic-kappa - auc model-index: - name: ddr_efficientnet_b3_advanced results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: ddr name: DDR metrics: - type: accuracy value: 0.7671439336850038 - type: quadratic-kappa value: 0.8464516881623221 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the efficientnet_b3 architecture on the ddr dataset with advanced preprocessing. ## Model Details - **Architecture**: efficientnet_b3 - **Dataset**: ddr - **Preprocessing**: advanced - **Training Date**: 20250723-013056 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: ddr_efficientnet_b3_20250723-013056_new ## Performance - **Test Accuracy**: 0.7671439336850038 - **Test Quadratic Kappa**: 0.8464516881623221 - **Validation Kappa**: 0.8464516881623221 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-ddr-efficientnet_b3-advanced", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755577510
pempekmangedd
2025-08-19T04:52:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:52:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dongguanting/Qwen2.5-7B-ARPO
dongguanting
2025-08-19T04:52:36Z
56
2
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "dataset:dongguanting/ARPO-SFT-54K", "dataset:dongguanting/ARPO-RL-Reasoning-10K", "dataset:dongguanting/ARPO-RL-DeepSearch-1K", "arxiv:2507.19849", "arxiv:2505.16410", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-24T12:38:38Z
--- base_model: - Qwen/Qwen2.5-3B-Instruct - Qwen/Qwen2.5-7B-Instruct - meta-llama/Llama-3.1-8B-Instruct - Qwen/Qwen3-8B-Instruct - Qwen/Qwen3-14B-Instruct datasets: - dongguanting/ARPO-SFT-54K - dongguanting/ARPO-RL-Reasoning-10K - dongguanting/ARPO-RL-DeepSearch-1K language: en library_name: transformers license: mit pipeline_tag: text-generation --- # Agentic Reinforced Policy Optimization (ARPO) <p align="center"> <img src="https://github.com/dongguanting/ARPO/blob/main/logo1.png" width="150px"> </p> This repository contains a model checkpoint for **Agentic Reinforced Policy Optimization (ARPO)**, a novel agentic Reinforcement Learning (RL) algorithm designed for training multi-turn Large Language Model (LLM)-based agents. The model was presented in the paper [Agentic Reinforced Policy Optimization](https://huggingface.co/papers/2507.19849) (arXiv: [2507.19849](https://arxiv.org/abs/2507.19849)). ## ✨ Overview ARPO addresses the challenge of inadequately balancing LLMs' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions. Through preliminary experiments, it was observed that LLMs tend to exhibit highly uncertain behavior, characterized by an increase in the entropy distribution of generated tokens, immediately following interactions with external tools. Motivated by this observation, ARPO incorporates an entropy-based adaptive rollout mechanism, dynamically balancing global trajectory sampling and step-level sampling, thereby promoting exploration at steps with high uncertainty after tool usage. By integrating an advantage attribution estimation, ARPO enables LLMs to internalize advantage differences in stepwise tool-use interactions. Experiments across 13 challenging benchmarks in computational reasoning, knowledge reasoning, and deep search domains demonstrate ARPO's superiority over trajectory-level RL algorithms. Notably, ARPO achieves improved performance using only half of the tool-use budget required by existing methods, offering a scalable solution for aligning LLM-based agents with real-time dynamic environments. <p align="center"> <img width="1686" height="866" alt="intro" src="https://github.com/user-attachments/assets/8b9daf54-c4ba-4e79-bf79-f98b5a893edd" /> </p> * In the figure (left), the initial tokens generated by the LLM after receiving each round of tool-call feedback consistently exhibit a high entropy. This indicates that external tool-call significantly introduces uncertainty into the LLM’s reasoning process. * In the figure (right), ARPO's performance is validated across 13 datasets. Notably, Qwen3-14B with ARPO excelled in Pass@5, achieving 61.2% on GAIA and 24.0% on HLE, while requiring only about half the tool calls compared to GRPO during training. ## 📣 Latest News * **[July 29, 2025]**: 📄 Our paper is now available on **[arXiv](https://arxiv.org/abs/2507.19849)** and **[Hugging Face](https://huggingface.co/papers/2507.19849)** daily paper. * **[July 25, 2025]**: 🔥 We released all our **ARPO model checkpoints (3B~14B)** and **datasets (SFT, RL, Evaluation)**. Checkout **[🤗ARPO Collection](https://huggingface.co/collections/dongguanting/arpo-688229ff8a6143fe5b4ad8ae)** here. We will keep update it! * **[July 25, 2025]**: 🚀 Full codebase released. ARPO supports multi-tool agentic RL training for the Qwen2.5, 3 and Llama3 models. We have implemented extensive tool-call acceleration and memory optimization during RL training. ## 🔗 Links * **Paper (Hugging Face)**: [Agentic Reinforced Policy Optimization](https://huggingface.co/papers/2507.19849) * **Paper (arXiv)**: [https://arxiv.org/abs/2507.19849](https://arxiv.org/abs/2507.19849) * **GitHub Repository**: [https://github.com/dongguanting/ARPO](https://github.com/dongguanting/ARPO) * **Hugging Face Model Collection**: [ARPO Models](https://huggingface.co/collections/dongguanting/arpo-688229ff8a6143fe5b4ad8ae) * **Hugging Face Dataset Collection**: [ARPO Datasets](https://huggingface.co/collections/dongguanting/arpo-688229ff8a6143fe5b4ad8ae) ## ⚡ Quick Start This model can be loaded and used with the `transformers` library. Below is a basic example for text generation and multi-turn interaction. For more advanced usage, including multi-tool agentic RL training and evaluation, please refer to the [official GitHub repository](https://github.com/dongguanting/ARPO). ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer # Replace "dongguanting/Qwen3-8B-ARPO-DeepSearch" with the specific model ID you want to use model_id = "dongguanting/Qwen3-8B-ARPO-DeepSearch" # Example from the ARPO collection tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, # Adjust dtype based on model requirements and hardware device_map="auto", # Automatically maps the model to available devices (e.g., GPU) trust_remote_code=True, ) # Prepare your conversational input # The model supports multi-turn interactions and tool calls through its chat template. messages = [ {"role": "user", "content": "What is the capital of France? And what is the population of that city?"}, ] # Apply the chat template and tokenize text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = tokenizer(text, return_tensors="pt").to(model.device) # Generate a response outputs = model.generate( **inputs, max_new_tokens=512, do_sample=True, temperature=0.6, top_p=0.95, eos_token_id=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>")] ) # Decode and print the generated text response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) print(response) ``` ## 📄 Citation If you find this work helpful, please cite our paper: ```bibtex @misc{dong2025arpo, title={Agentic Reinforced Policy Optimization}, author={Guanting Dong and Hangyu Mao and Kai Ma and Licheng Bao and Yifei Chen and Zhongyuan Wang and Zhongxia Chen and Jiazhen Du and Huiyang Wang and Fuzheng Zhang and Guorui Zhou and Yutao Zhu and Ji-Rong Wen and Zhicheng Dou}, year={2025}, eprint={2507.19849}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2507.19849}, } @article{dong2025toolstar, author = {Guanting Dong and Yifei Chen and Xiaoxi Li and Jiajie Jin and Hongjin Qian and Yutao Zhu and Hangyu Mao and Guorui Zhou and Zhicheng Dou and Ji{-}Rong Wen}, title = {Tool-Star: Empowering LLM-Brained Multi-Tool Reasoner via Reinforcement Learning}, journal = {CoRR}, volume = {abs/2505.16410}, year = {2025}, url = {https://doi.org/10.48550/arXiv.2505.16410}, doi = {10.48550/ARXIV.2505.16410}, eprinttype = {arXiv}, eprint = {2505.16410}, timestamp = {Thu, 26 Jun 2025 07:49:34 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2505-16410.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ## 🤝 Acknowledgements This training implementation builds upon [Tool-Star](https://github.com/dongguanting/Tool-Star), [Llama Factory](https://github.com/hiyouga/LLaMA-Factory), [verl](https://github.com/volcengine/verl) and [ReCall](https://github.com/Agent-RL/ReCall). For evaluation, we rely on [WebThinker](https://github.com/RUC-NLPIR/WebThinker), [HIRA](https://github.com/RUC-NLPIR/HiRA), [WebSailor](https://github.com/Alibaba-NLP/WebAgent), [Search-o1](https://github.com/sunnynexus/Search-o1), and [FlashRAG](https://github.com/RUC-NLPIR/FlashRAG). The Python interpreter design references [ToRA](https://github.com/microsoft/ToRA) and [ToRL](https://github.com/GAIR-NLP/ToRL), while our models are trained using [Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/). We express our sincere gratitude to these projects for their invaluable contributions to the open-source community. ## 📄 License This project is released under the [MIT License](https://opensource.org/licenses/MIT). ## 📞 Contact For any questions or feedback, please reach out to us at [[email protected]]([email protected]).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755577603
sampingkaca72
2025-08-19T04:52:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:52:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_mis_run2_gen3_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-08-19T04:51:23Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T04:51:09Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF
mradermacher
2025-08-19T04:49:52Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:hdl2v/qwen2.5-coder-32b-single-verilog", "base_model:quantized:hdl2v/qwen2.5-coder-32b-single-verilog", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-19T01:43:26Z
--- base_model: hdl2v/qwen2.5-coder-32b-single-verilog language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/hdl2v/qwen2.5-coder-32b-single-verilog <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#qwen2.5-coder-32b-single-verilog-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q4_K_M.gguf) | i1-Q4_K_M | 19.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
bonnieliu2002/act_collect_empty_bottle_black_white_wrist_2k_bs8
bonnieliu2002
2025-08-19T04:48:09Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:bonnieliu2002/collect_empty_bottle_black_white_wrist", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T04:47:42Z
--- datasets: bonnieliu2002/collect_empty_bottle_black_white_wrist library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - robotics - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
deeee112222/mistral7b_cwe_expert_adapter
deeee112222
2025-08-19T04:47:57Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T04:47:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnonymousCS/xlmr_spanish_immigration1
AnonymousCS
2025-08-19T04:46:57Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T04:39:51Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_spanish_immigration1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_spanish_immigration1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3031 - Accuracy: 0.8846 - 1-f1: 0.8148 - 1-recall: 0.7674 - 1-precision: 0.8684 - Balanced Acc: 0.8550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.5731 | 1.0 | 5 | 0.5155 | 0.6692 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.4482 | 2.0 | 10 | 0.3814 | 0.8769 | 0.7838 | 0.6744 | 0.9355 | 0.8257 | | 0.3285 | 3.0 | 15 | 0.2765 | 0.9077 | 0.85 | 0.7907 | 0.9189 | 0.8781 | | 0.1952 | 4.0 | 20 | 0.2413 | 0.9154 | 0.8706 | 0.8605 | 0.8810 | 0.9015 | | 0.1912 | 5.0 | 25 | 0.2758 | 0.9077 | 0.8571 | 0.8372 | 0.8780 | 0.8899 | | 0.1327 | 6.0 | 30 | 0.3031 | 0.8846 | 0.8148 | 0.7674 | 0.8684 | 0.8550 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
catme0w/MolScribe-Occlusion
catme0w
2025-08-19T04:46:13Z
0
0
null
[ "base_model:yujieq/MolScribe", "base_model:finetune:yujieq/MolScribe", "license:mit", "region:us" ]
null
2025-08-18T04:26:25Z
--- license: mit base_model: - yujieq/MolScribe new_version: catme0w/MolScribe-Long ---
akaredmiru/blockassist-bc-stealthy_diving_macaque_1755578619
akaredmiru
2025-08-19T04:45:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy diving macaque", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:44:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy diving macaque --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmehzn3o40q9srts86grevzph_cmei163280qdgrts8jzj6rm0y
BootesVoid
2025-08-19T04:44:17Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T04:44:16Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: EMOTIONAL --- # Cmehzn3O40Q9Srts86Grevzph_Cmei163280Qdgrts8Jzj6Rm0Y <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `EMOTIONAL` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "EMOTIONAL", "lora_weights": "https://huggingface.co/BootesVoid/cmehzn3o40q9srts86grevzph_cmei163280qdgrts8jzj6rm0y/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmehzn3o40q9srts86grevzph_cmei163280qdgrts8jzj6rm0y', weight_name='lora.safetensors') image = pipeline('EMOTIONAL').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmehzn3o40q9srts86grevzph_cmei163280qdgrts8jzj6rm0y/discussions) to add images that show off what you’ve made with this LoRA.
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755578448
IvanJAjebu
2025-08-19T04:42:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:42:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kurosawama/Llama-3.1-8B-Translation-align
Kurosawama
2025-08-19T04:40:44Z
0
0
transformers
[ "transformers", "safetensors", "trl", "dpo", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T04:40:41Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BootesVoid/cmehzn3o40q9srts86grevzph_cmehzzmcn0qaprts88x3qkax0
BootesVoid
2025-08-19T04:37:33Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T04:37:32Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: PSYCOLOGY --- # Cmehzn3O40Q9Srts86Grevzph_Cmehzzmcn0Qaprts88X3Qkax0 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `PSYCOLOGY` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "PSYCOLOGY", "lora_weights": "https://huggingface.co/BootesVoid/cmehzn3o40q9srts86grevzph_cmehzzmcn0qaprts88x3qkax0/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmehzn3o40q9srts86grevzph_cmehzzmcn0qaprts88x3qkax0', weight_name='lora.safetensors') image = pipeline('PSYCOLOGY').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmehzn3o40q9srts86grevzph_cmehzzmcn0qaprts88x3qkax0/discussions) to add images that show off what you’ve made with this LoRA.
subsectmusic/qwriko-420-checkpoint-100
subsectmusic
2025-08-19T04:36:33Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/Qwen3-4B-Instruct-2507", "lora", "sft", "transformers", "trl", "unsloth", "arxiv:1910.09700", "base_model:unsloth/Qwen3-4B-Instruct-2507", "region:us" ]
null
2025-08-19T04:36:00Z
--- base_model: unsloth/Qwen3-4B-Instruct-2507 library_name: peft tags: - base_model:adapter:unsloth/Qwen3-4B-Instruct-2507 - lora - sft - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
koloni/blockassist-bc-deadly_graceful_stingray_1755576508
koloni
2025-08-19T04:35:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:35:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kimxxxx/mistral_r16_a32_b8_gas2_lr5e-5_4500tk_2epoch_test
kimxxxx
2025-08-19T04:35:54Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T04:35:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
taochengfei/llama-3.2-3b-it-beta_assistant_v0.2_merged
taochengfei
2025-08-19T04:34:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T04:30:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
REEA-GLOBAL/Qwen2.5-VL-7B-Instruct-ft-20250819025724539
REEA-GLOBAL
2025-08-19T04:34:17Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-VL-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-19T04:27:24Z
--- base_model: unsloth/Qwen2.5-VL-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** REEA-GLOBAL - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-VL-7B-Instruct This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755577896
IvanJAjebu
2025-08-19T04:32:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:32:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
meandyou200175/e5-query-sql
meandyou200175
2025-08-19T04:30:56Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:10494", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-19T00:28:36Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:10494 - loss:MultipleNegativesRankingLoss base_model: vinai/phobert-base-v2 widget: - source_sentence: tôi cần bếp từ công suất lớn hơn 1870W sentences: - 'Bếp điện từ Sunhouse SHD6862, 980W, mặt kính chịu lực, Giá: 2.200.000' - 'Bếp điện từ Sunhouse SHD6862, 1500W, mặt kính chịu lực, Giá: 2.200.000' - 'Bếp điện từ Sunhouse SHD6862, 1400W, mặt kính chịu lực, Giá: 2.200.000' - 'Bếp điện từ Sunhouse SHD6862, 1100W, mặt kính chịu lực, Giá: 2.200.000' - 'Màn hình Dell UltraSharp U2720Q, 27", 4K UHD, Giá: 11.500.000' - 'Máy xay sinh tố cầm tay Braun MQ520, công suất 600W, 2 cối, Giá: 880.000' - 'Bếp điện từ Sunhouse SHD6862, 1300W, mặt kính chịu lực, Giá: 2.200.000' - 'Bình nóng lạnh Ariston Andris2 15L, Công suất 2500W, Giá: 2.600.000' - 'Loa Bluetooth Sony SRS-XP500, công suất 120W, pin 20h, Giá: 5.800.000' - 'Bếp điện từ Sunhouse SHD6862, 1600W, mặt kính chịu lực, Giá: 2.200.000' - 'Xe máy điện VinFast Theon S, Tốc độ tối đa 90km/h, Pin 3500W, Giá: 63.000.000' - 'Máy ảnh Canon PowerShot G7X Mark III, Trọng lượng 300g, 20.1MP, Giá: 15.500.000' - 'Bếp điện từ Sunhouse SHD6862, 1000W, mặt kính chịu lực, Giá: 2.200.000' - 'Bếp điện từ Sunhouse SHD6862, 1200W, mặt kính chịu lực, Giá: 2.200.000' - 'Bếp điện từ Sunhouse SHD6862, 1800W, mặt kính chịu lực, Giá: 2.200.000' - 'Bếp điện từ Sunhouse SHD6862, 2200W, mặt kính chịu lực, Giá: 2.200.000' - source_sentence: có tủ lạnh dung tích ít nhất 319 lít sentences: - 'Bàn là hơi nước Philips GC2990, công suất 1800W, Giá: 680.000' - 'Tủ lạnh Hitachi Inverter R-FVX450PGV9, Dung tích 180L, Ngăn đá trên, Công nghệ Inverter, Giá: 14.900.000' - 'Tủ lạnh Hitachi Inverter R-FVX450PGV9, Dung tích 160L, Ngăn đá trên, Công nghệ Inverter, Giá: 14.900.000' - 'Tủ lạnh Hitachi Inverter R-FVX450PGV9, Dung tích 200L, Ngăn đá trên, Công nghệ Inverter, Giá: 14.900.000' - 'Xe điện Anbico AP1500, Tốc độ 45km/h, Nặng 48kg, Pin Lithium, Giá: 14.200.000' - 'Sofa nỉ cao cấp nhập khẩu, dài 2.1m, khung gỗ sồi, Giá: 14.800.000' - 'Tủ lạnh Hitachi Inverter R-FVX450PGV9, Dung tích 250L, Ngăn đá trên, Công nghệ Inverter, Giá: 14.900.000' - 'Tủ lạnh Hitachi Inverter R-FVX450PGV9, Dung tích 230L, Ngăn đá trên, Công nghệ Inverter, Giá: 14.900.000' - 'Tủ lạnh Hitachi Inverter R-FVX450PGV9, Dung tích 456L, Ngăn đá trên, Công nghệ Inverter, Giá: 14.900.000' - 'Máy xay Philips HR2115, công suất 515W, cối 1.5L, Giá: 1.203.000' - 'Camera hành trình Vietmap C65, Độ phân giải 4K, Góc rộng 170°, Giá: 3.800.000' - 'Tủ lạnh Hitachi Inverter R-FVX450PGV9, Dung tích 240L, Ngăn đá trên, Công nghệ Inverter, Giá: 14.900.000' - 'Tủ lạnh Hitachi Inverter R-FVX450PGV9, Dung tích 290L, Ngăn đá trên, Công nghệ Inverter, Giá: 14.900.000' - 'Tủ lạnh Hitachi Inverter R-FVX450PGV9, Dung tích 170L, Ngăn đá trên, Công nghệ Inverter, Giá: 14.900.000' - 'Tủ lạnh Hitachi Inverter R-FVX450PGV9, Dung tích 300L, Ngăn đá trên, Công nghệ Inverter, Giá: 14.900.000' - 'Laptop HP Pavilion 15, RAM 16GB, SSD 512GB, Intel Core i5, Giá: 18.900.000' - source_sentence: mình cần máy bơm nước công suất tối thiểu 100W sentences: - 'Tủ lạnh Sanaky 250L, 2 ngăn đông - mát, Inverter tiết kiệm điện, Giá: 7.800.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 93.2W, Đẩy cao 32m, Giá: 2.500.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 80.5W, Đẩy cao 32m, Giá: 2.500.000' - 'Xe điện Giant Momentum iLike, Tốc độ 45km/h, Nặng 52kg, Pin Lithium, Giá: 18.500.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 250W, Đẩy cao 32m, Giá: 2.500.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 90.7W, Đẩy cao 32m, Giá: 2.500.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 94.2W, Đẩy cao 32m, Giá: 2.500.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 59.7W, Đẩy cao 32m, Giá: 2.500.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 76.4W, Đẩy cao 32m, Giá: 2.500.000' - 'Smartwatch Huawei Watch GT 3, Màn hình AMOLED 1.6", Pin 14 ngày, Giá: 5.500.000' - 'Tủ lạnh Samsung Inverter RT35K5982SL, Dung tích 360L, Công nghệ Twin Cooling Plus, Giá: 10.900.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 85.0W, Đẩy cao 32m, Giá: 2.500.000' - 'Máy sấy tóc Panasonic EH-ND11, 1800W, chế độ ion âm, Giá: 780.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 63.4W, Đẩy cao 32m, Giá: 2.500.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 62.9W, Đẩy cao 32m, Giá: 2.500.000' - 'Máy bơm Panasonic GP-250JXK, Công suất 95.0W, Đẩy cao 32m, Giá: 2.500.000' - source_sentence: mình cần máy ảnh nặng nhỏ hơn 684g sentences: - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 920g, Lens kit 15-45mm, Giá: 17.800.000' - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 740g, Lens kit 15-45mm, Giá: 17.800.000' - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 580g, Lens kit 15-45mm, Giá: 17.800.000' - 'Kem dưỡng ẩm Hada Labo Gokujyun 50g, Chứa hyaluronic acid, Không hương liệu, Dành cho da khô, Xuất xứ: Nhật Bản, Giá: 295.000' - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 980g, Lens kit 15-45mm, Giá: 17.800.000' - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 910g, Lens kit 15-45mm, Giá: 17.800.000' - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 960g, Lens kit 15-45mm, Giá: 17.800.000' - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 930g, Lens kit 15-45mm, Giá: 17.800.000' - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 890g, Lens kit 15-45mm, Giá: 17.800.000' - 'Tủ lạnh LG Inverter GR-B22FTL, Dung tích 450L, Công nghệ Linear Cooling, Giá: 13.500.000' - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 940g, Lens kit 15-45mm, Giá: 17.800.000' - 'Bàn phím Akko 3068B Plus, Switch Akko V3, Tuổi thọ 60 triệu lần nhấn, Giá: 2.200.000' - 'Tủ lạnh Toshiba Inverter GR-RT500, Dung tích 500L, Ngăn đông lớn, Giá: 12.900.000' - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 1000g, Lens kit 15-45mm, Giá: 17.800.000' - 'Máy ảnh Canon EOS M50 Mark II, 24.1MP, Nặng 990g, Lens kit 15-45mm, Giá: 17.800.000' - Ổ cắm thông minh Xiaomi Mi Power Strip, chịu tải 2500W, 6 ổ cắm, WiFi, Giá 390.000 - source_sentence: Cho mình ghế massage Daikiosan công suất nhỏ hơn 158W có không ạ? sentences: - 'Smartphone Xiaomi Redmi Note 12, RAM 6GB, ROM 128GB, pin 5000mAh, Giá: 4.790.000' - 'Xe côn tay Yamaha TFX 150, Động cơ 155cc, Phun xăng điện tử, Giá: 55.000.000' - 'Ghế massage Daikiosan DK-180, công suất 180W, nhiều chế độ, Giá: 3.950.000' - 'Ghế massage Daikiosan DK-200, công suất 140W, nhiều chế độ, Giá: 4.250.000' - 'Ghế massage Daikiosan DK-180, công suất 230W, nhiều chế độ, Giá: 3.950.000' - 'Loa Sony SRS-XB23, công suất 25W, pin 12h, chống nước IP67, Giá: 3.200.000' - 'Son dưỡng môi Vaseline Lip Therapy, Trọng lượng: 7g, Thành phần: petroleum jelly, Mùi: hoa hồng, Xuất xứ: Mỹ, Giá: 95.000' - 'Ghế massage Daikiosan DK-180, công suất 220W, nhiều chế độ, Giá: 3.950.000' - 'Ghế massage Daikiosan DK-180, công suất 240W, nhiều chế độ, Giá: 3.950.000' - 'Ghế massage Daikiosan DK-180, công suất 210W, nhiều chế độ, Giá: 3.950.000' - 'Ghế massage Daikiosan DK-180, công suất 170W, nhiều chế độ, Giá: 3.950.000' - 'Ghế massage Daikiosan DK-180, công suất 200W, nhiều chế độ, Giá: 3.950.000' - 'Robot hút bụi Ecovacs Deebot N79S, lực hút 3000Pa, pin 5200mAh, Giá: 7.250.000' - 'Ghế massage Daikiosan DK-180, công suất 120W, nhiều chế độ, Giá: 3.950.000' - 'Máy giặt Electrolux Inverter EWF9024BDWB, 9kg, Công nghệ UltraMix, Giá: 10.500.000' - 'Loa Soundbar Samsung HW-T420, công suất 120W, bluetooth, Giá: 2.450.000' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@2 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_accuracy@100 - cosine_precision@1 - cosine_precision@2 - cosine_precision@5 - cosine_precision@10 - cosine_precision@100 - cosine_recall@1 - cosine_recall@2 - cosine_recall@5 - cosine_recall@10 - cosine_recall@100 - cosine_ndcg@10 - cosine_mrr@1 - cosine_mrr@2 - cosine_mrr@5 - cosine_mrr@10 - cosine_mrr@100 - cosine_map@100 model-index: - name: SentenceTransformer based on vinai/phobert-base-v2 results: - task: type: information-retrieval name: Information Retrieval dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy@1 value: 0.5257289879931389 name: Cosine Accuracy@1 - type: cosine_accuracy@2 value: 0.7530017152658662 name: Cosine Accuracy@2 - type: cosine_accuracy@5 value: 0.9562607204116638 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9931389365351629 name: Cosine Accuracy@10 - type: cosine_accuracy@100 value: 0.9965694682675815 name: Cosine Accuracy@100 - type: cosine_precision@1 value: 0.5257289879931389 name: Cosine Precision@1 - type: cosine_precision@2 value: 0.3765008576329331 name: Cosine Precision@2 - type: cosine_precision@5 value: 0.19125214408233276 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0993138936535163 name: Cosine Precision@10 - type: cosine_precision@100 value: 0.009965694682675816 name: Cosine Precision@100 - type: cosine_recall@1 value: 0.5257289879931389 name: Cosine Recall@1 - type: cosine_recall@2 value: 0.7530017152658662 name: Cosine Recall@2 - type: cosine_recall@5 value: 0.9562607204116638 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9931389365351629 name: Cosine Recall@10 - type: cosine_recall@100 value: 0.9965694682675815 name: Cosine Recall@100 - type: cosine_ndcg@10 value: 0.776023945219392 name: Cosine Ndcg@10 - type: cosine_mrr@1 value: 0.5257289879931389 name: Cosine Mrr@1 - type: cosine_mrr@2 value: 0.6393653516295026 name: Cosine Mrr@2 - type: cosine_mrr@5 value: 0.6983704974271029 name: Cosine Mrr@5 - type: cosine_mrr@10 value: 0.7039832285115316 name: Cosine Mrr@10 - type: cosine_mrr@100 value: 0.7042308189713864 name: Cosine Mrr@100 - type: cosine_map@100 value: 0.704230818971385 name: Cosine Map@100 --- # SentenceTransformer based on vinai/phobert-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) <!-- at revision e2375d266bdf39c6e8e9a87af16a5da3190b0cc8 --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("meandyou200175/e5-query-sql") # Run inference sentences = [ 'Cho mình ghế massage Daikiosan công suất nhỏ hơn 158W có không ạ?', 'Ghế massage Daikiosan DK-180, công suất 120W, nhiều chế độ, Giá: 3.950.000', 'Ghế massage Daikiosan DK-180, công suất 210W, nhiều chế độ, Giá: 3.950.000', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:---------------------|:----------| | cosine_accuracy@1 | 0.5257 | | cosine_accuracy@2 | 0.753 | | cosine_accuracy@5 | 0.9563 | | cosine_accuracy@10 | 0.9931 | | cosine_accuracy@100 | 0.9966 | | cosine_precision@1 | 0.5257 | | cosine_precision@2 | 0.3765 | | cosine_precision@5 | 0.1913 | | cosine_precision@10 | 0.0993 | | cosine_precision@100 | 0.01 | | cosine_recall@1 | 0.5257 | | cosine_recall@2 | 0.753 | | cosine_recall@5 | 0.9563 | | cosine_recall@10 | 0.9931 | | cosine_recall@100 | 0.9966 | | **cosine_ndcg@10** | **0.776** | | cosine_mrr@1 | 0.5257 | | cosine_mrr@2 | 0.6394 | | cosine_mrr@5 | 0.6984 | | cosine_mrr@10 | 0.704 | | cosine_mrr@100 | 0.7042 | | cosine_map@100 | 0.7042 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 10,494 training samples * Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, <code>negative_5</code>, <code>negative_6</code>, <code>negative_7</code>, <code>negative_8</code>, <code>negative_9</code>, <code>negative_10</code>, <code>negative_11</code>, <code>negative_12</code>, <code>negative_13</code>, <code>negative_14</code>, and <code>negative_15</code> * Approximate statistics based on the first 1000 samples: | | query | positive | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 | negative_6 | negative_7 | negative_8 | negative_9 | negative_10 | negative_11 | negative_12 | negative_13 | negative_14 | negative_15 | |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 14.4 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.51 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 28.07 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.79 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.84 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.87 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.86 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.84 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.97 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 28.06 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.92 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.64 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.3 tokens</li><li>max: 110 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.74 tokens</li><li>max: 110 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.3 tokens</li><li>max: 110 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 27.41 tokens</li><li>max: 110 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.4 tokens</li><li>max: 110 tokens</li></ul> | * Samples: | query | positive | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 | negative_6 | negative_7 | negative_8 | negative_9 | negative_10 | negative_11 | negative_12 | negative_13 | negative_14 | negative_15 | |:----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------| | <code>Máy hút ẩm công suất 34L/ngày và độ ồn nhỏ hơn 45dB</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 25L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 41.8L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 39.8L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 44.9L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 45.6L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 43.7L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 37.2L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 41.5L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 42.6L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 43.8L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy hút ẩm Sharp DW-J27FV-S, công suất hút 39.7L/ngày, độ ồn chỉ 38dB vận hành êm ái, lọc HEPA loại bỏ bụi mịn, khử mùi bằng than hoạt tính, bình chứa 4L, có chế độ sấy quần áo, bánh xe di chuyển linh hoạt, bảo hành 24 tháng, Giá 8.790.000</code> | <code>Máy giặt LG Inverter 9kg, Lồng ngang, Giặt hơi nước, Giá: 9.500.000</code> | <code>Máy lọc nước Sunhouse SHA8810, công suất lọc 10L/h, 8 lõi lọc, Giá: 6.500.000</code> | <code>Ghế văn phòng Noble WB-205, xoay 360°, tựa lưng cao, chịu lực 160kg, Giá: 2.450.000</code> | <code>Ghế gấp Inox bọc nệm, Tải trọng 100kg, Giá: 650.000</code> | <code>Quạt điều hòa Sunhouse SHD7725, Lưu lượng 5.500 m³/h, Bình nước 50L, Giá: 4.900.000</code> | | <code>Cho mình bàn ủi khô công suất lớn hơn 750W được không ạ?</code> | <code>Bàn ủi khô Tefal FV1020, công suất 1000W, Giá: 380.000</code> | <code>Bàn ủi khô Tefal FV1020, công suất 690W, Giá: 380.000</code> | <code>Bàn ủi khô Tefal FV1020, công suất 580W, Giá: 380.000</code> | <code>Bàn ủi khô Tefal FV1020, công suất 460W, Giá: 380.000</code> | <code>Bàn ủi khô Tefal FV1020, công suất 660W, Giá: 380.000</code> | <code>Bàn ủi khô Tefal FV1020, công suất 610W, Giá: 380.000</code> | <code>Bàn ủi khô Tefal FV1020, công suất 440W, Giá: 380.000</code> | <code>Bàn ủi khô Tefal FV1020, công suất 620W, Giá: 380.000</code> | <code>Bàn ủi khô Tefal FV1020, công suất 510W, Giá: 380.000</code> | <code>Bàn ủi khô Tefal FV1020, công suất 540W, Giá: 380.000</code> | <code>Bàn ủi khô Tefal FV1020, công suất 430W, Giá: 380.000</code> | <code>Máy lọc Kangaroo KG111, công suất 25L/h, 9 lõi lọc, vòi nhựa ABS, Giá 7.550.000</code> | <code>Màn hình Samsung Odyssey Neo G9, 49 inch, 240Hz, 2K, Giá: 42.000.000</code> | <code>Máy sấy tóc Philips HP8230, Công suất 2100W, 2 chế độ gió, Giá: 620.000</code> | <code>Robot hút bụi Ecovacs Deebot T10, Pin 5200mAh, Hút 5000Pa, Giá: 12.900.000</code> | <code>Loa kéo Sansui SA2-12, Công suất 600W, Kèm micro, Giá: 4.900.000</code> | | <code>mình cần tủ rượu dung tích lớn hơn 56 chai</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 140 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 39.1 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 51.7 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 29.9 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 49.4 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 46.6 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 37.7 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 50.2 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 51.5 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 34.2 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Tủ ướp rượu Kadeka KS140TL, Sức chứa 42.1 chai, Kính chống UV, Inverter, Giá: 28.500.000</code> | <code>Nồi áp suất điện Philips HD2137, dung tích 6L, công suất 1000W, Giá: 1.755.000</code> | <code>Máy sấy tóc Panasonic EH-ND11, công suất 1600W, 2 tốc độ, Giá: 450.000</code> | <code>Tủ quần áo gỗ MDF 3 cánh, Cao 2m, Rộng 1m6, Giá: 6.500.000</code> | <code>Máy sấy Electrolux EDH802, công suất 2000W, sức chứa 8kg, Giá: 12.500.000</code> | <code>Bàn học gỗ MDF, Rộng 1m2, Ngăn kéo bên, Giá: 2.400.000</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 1,166 evaluation samples * Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, <code>negative_5</code>, <code>negative_6</code>, <code>negative_7</code>, <code>negative_8</code>, <code>negative_9</code>, <code>negative_10</code>, <code>negative_11</code>, <code>negative_12</code>, <code>negative_13</code>, <code>negative_14</code>, and <code>negative_15</code> * Approximate statistics based on the first 1000 samples: | | query | positive | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 | negative_6 | negative_7 | negative_8 | negative_9 | negative_10 | negative_11 | negative_12 | negative_13 | negative_14 | negative_15 | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 14.35 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.84 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.97 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.92 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.96 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.89 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.86 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.85 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 28.07 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.99 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.64 tokens</li><li>max: 110 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.43 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.43 tokens</li><li>max: 110 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.15 tokens</li><li>max: 73 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.6 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 27.39 tokens</li><li>max: 110 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 27.65 tokens</li><li>max: 110 tokens</li></ul> | * Samples: | query | positive | negative_1 | negative_2 | negative_3 | negative_4 | negative_5 | negative_6 | negative_7 | negative_8 | negative_9 | negative_10 | negative_11 | negative_12 | negative_13 | negative_14 | negative_15 | |:------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------| | <code>tôi muốn xe đạp thể thao khung carbon dưới 14kg</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 8.5kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 19.2kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 19.7kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 16.1kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 19.8kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 16.6kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 19.4kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 15.7kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 15.3kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 17.9kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Xe đạp Giant TCR Advanced 2, Khung carbon, Trọng lượng: 16.4kg, Groupset Shimano 105, Giá: 42,900,000</code> | <code>Bếp từ Sunhouse SHD6017, Công suất: 1400W, Mặt kính chịu lực, 8 chế độ nấu, Giá: 899,000</code> | <code>Quạt bàn Midea FZ40-15DB, công suất 60W, 3 tốc độ, Giá: 350.000</code> | <code>Máy lọc không khí Coway AP-1009CH, Diện tích phòng 33m2, Lọc HEPA, Giá: 4.200.000</code> | <code>Máy chiếu ViewSonic PA503X, Tuổi thọ 15.000h, Độ sáng 3.800 Lumens, Giá: 9.900.000</code> | <code>Bếp từ đôi Kangaroo KG499N, Công suất 2200W, Mặt kính Schott, Giá: 4.200.000</code> | | <code>mình cần máy in tốc độ trên 25 trang/phút và giá nhỏ hơn 9 triệu</code> | <code>Máy in HP LaserJet Pro M404dn, Tốc độ 30 trang/phút, Kết nối LAN, Giá: 6.800.000</code> | <code>Máy in HP LaserJet Pro M404dn, Tốc độ 30 trang/phút, Kết nối LAN, Giá: 11.000.000</code> | <code>Máy in HP LaserJet Pro M404dn, Tốc độ 30 trang/phút, Kết nối LAN, Giá: 13.000.000</code> | <code>Máy in HP LaserJet Pro M404dn, Tốc độ 30 trang/phút, Kết nối LAN, Giá: 12.000.000</code> | <code>Máy in HP LaserJet Pro M404dn, Tốc độ 30 trang/phút, Kết nối LAN, Giá: 9.968.000</code> | <code>Máy in HP LaserJet Pro M404dn, Tốc độ 30 trang/phút, Kết nối LAN, Giá: 9.979.000</code> | <code>Máy in HP LaserJet Pro M404dn, Tốc độ 30 trang/phút, Kết nối LAN, Giá: 10.000.000</code> | <code>Máy in HP LaserJet Pro M404dn, Tốc độ 30 trang/phút, Kết nối LAN, Giá: 9.467.000</code> | <code>Balo laptop Xiaomi 15.6 inch, chống nước, nhiều ngăn, Giá: 980.000</code> | <code>Máy lọc nước Karofi KAQ-U95, Công suất 780W, 10 lõi lọc, Giá: 6.500.000</code> | <code>Máy sấy tóc Panasonic EH-ND64, Công suất 1600W, 3 mức gió, Giá: 750.000</code> | <code>Tủ lạnh Samsung Inverter RT35K5982SL, Dung tích 360L, Công nghệ Twin Cooling Plus, Giá: 10.900.000</code> | <code>Máy ảnh Canon EOS M50 Mark II, Trọng lượng: 387g, Cảm biến APS-C 24.1MP, Quay 4K, Màn hình xoay lật, Giá: 15,900,000</code> | <code>Đèn năng lượng mặt trời Sunhouse SH-SOL28, công suất 28W, pin lithium 12V, Giá 650.000</code> | <code>Điện thoại Samsung Galaxy M14, pin 6000mAh, màn hình 6.6 inch, RAM 6GB, ROM 128GB, Giá 4.290.000</code> | <code>Giày Converse Chuck Taylor 1970s High, Canvas, Giá: 1.850.000</code> | | <code>Máy lọc nước công suất nhỏ hơn 1445W</code> | <code>Máy lọc nước Karofi KSI90, công suất 850W, 9 lõi lọc, tiết kiệm điện, Giá 3.790.000</code> | <code>Máy lọc nước Karofi KSI90, công suất 1900W, 9 lõi lọc, tiết kiệm điện, Giá 3.790.000</code> | <code>Máy lọc nước Karofi KSI90, công suất 2000W, 9 lõi lọc, tiết kiệm điện, Giá 3.790.000</code> | <code>Máy lọc nước Karofi KSI90, công suất 1600W, 9 lõi lọc, tiết kiệm điện, Giá 3.790.000</code> | <code>Máy lọc nước Karofi KSI90, công suất 1500W, 9 lõi lọc, tiết kiệm điện, Giá 3.790.000</code> | <code>Máy lọc nước Karofi KSI90, công suất 1700W, 9 lõi lọc, tiết kiệm điện, Giá 3.790.000</code> | <code>Máy lọc nước Karofi KSI90, công suất 2100W, 9 lõi lọc, tiết kiệm điện, Giá 3.790.000</code> | <code>Máy xay Philips HR2056, Cối 0.7L, 4 cánh thép, Giá: 650.000</code> | <code>Loa JBL PartyBox 110, Công suất 160W, Chống nước IPX4, Giá: 8.500.000</code> | <code>Lò vi sóng Electrolux 25L, công suất 900W, chức năng rã đông, Giá: 3.500.000</code> | <code>Đèn năng lượng mặt trời Sunhouse SH-SOL30, công suất 25W, pin lithium 12V, Giá: 650.000</code> | <code>Loa Sony SRS-XB23, công suất 25W, pin 12h, chống nước IP67, Giá: 3.200.000</code> | <code>Máy sấy tóc Panasonic EH-ND11, 1900W, chế độ ion âm, Giá: 785.000</code> | <code>Sofa nỉ nhập khẩu, Chiều dài 2m2, 3 chỗ ngồi, Giá: 11.500.000</code> | <code>Tủ đông Alaska BCD-3.568, Dung tích 360L, 2 ngăn đông-mát, Giá: 9.500.000</code> | <code>Gạo ST25 túi 5kg, Hạt dài, dẻo, thơm tự nhiên, Xuất xứ: Sóc Trăng, Chứng nhận OCOP, Giá: 240.000</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `learning_rate`: 2e-05 - `num_train_epochs`: 10 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@10 | |:------:|:-----:|:-------------:|:---------------:|:--------------:| | -1 | -1 | - | - | 0.1885 | | 0.0762 | 100 | 3.4564 | - | - | | 0.1524 | 200 | 2.4965 | - | - | | 0.2287 | 300 | 2.4147 | - | - | | 0.3049 | 400 | 2.2799 | - | - | | 0.3811 | 500 | 1.9016 | - | - | | 0.4573 | 600 | 1.6222 | - | - | | 0.5335 | 700 | 1.5005 | - | - | | 0.6098 | 800 | 1.2556 | - | - | | 0.6860 | 900 | 1.2152 | - | - | | 0.7622 | 1000 | 1.0514 | 0.7850 | 0.5380 | | 0.8384 | 1100 | 0.9779 | - | - | | 0.9146 | 1200 | 0.7901 | - | - | | 0.9909 | 1300 | 0.8193 | - | - | | 1.0671 | 1400 | 0.6562 | - | - | | 1.1433 | 1500 | 0.5943 | - | - | | 1.2195 | 1600 | 0.6152 | - | - | | 1.2957 | 1700 | 0.497 | - | - | | 1.3720 | 1800 | 0.5094 | - | - | | 1.4482 | 1900 | 0.3873 | - | - | | 1.5244 | 2000 | 0.3555 | 0.3186 | 0.6475 | | 1.6006 | 2100 | 0.3265 | - | - | | 1.6768 | 2200 | 0.3788 | - | - | | 1.7530 | 2300 | 0.3472 | - | - | | 1.8293 | 2400 | 0.341 | - | - | | 1.9055 | 2500 | 0.3419 | - | - | | 1.9817 | 2600 | 0.3228 | - | - | | 2.0579 | 2700 | 0.3064 | - | - | | 2.1341 | 2800 | 0.2423 | - | - | | 2.2104 | 2900 | 0.2225 | - | - | | 2.2866 | 3000 | 0.2204 | 0.2283 | 0.6909 | | 2.3628 | 3100 | 0.2097 | - | - | | 2.4390 | 3200 | 0.2072 | - | - | | 2.5152 | 3300 | 0.2057 | - | - | | 2.5915 | 3400 | 0.2142 | - | - | | 2.6677 | 3500 | 0.1964 | - | - | | 2.7439 | 3600 | 0.1807 | - | - | | 2.8201 | 3700 | 0.1822 | - | - | | 2.8963 | 3800 | 0.1836 | - | - | | 2.9726 | 3900 | 0.1889 | - | - | | 3.0488 | 4000 | 0.1487 | 0.1836 | 0.7172 | | 3.125 | 4100 | 0.1519 | - | - | | 3.2012 | 4200 | 0.1684 | - | - | | 3.2774 | 4300 | 0.1211 | - | - | | 3.3537 | 4400 | 0.1554 | - | - | | 3.4299 | 4500 | 0.1421 | - | - | | 3.5061 | 4600 | 0.1339 | - | - | | 3.5823 | 4700 | 0.1324 | - | - | | 3.6585 | 4800 | 0.138 | - | - | | 3.7348 | 4900 | 0.1181 | - | - | | 3.8110 | 5000 | 0.139 | 0.1709 | 0.7259 | | 3.8872 | 5100 | 0.1284 | - | - | | 3.9634 | 5200 | 0.1172 | - | - | | 4.0396 | 5300 | 0.0993 | - | - | | 4.1159 | 5400 | 0.1183 | - | - | | 4.1921 | 5500 | 0.0865 | - | - | | 4.2683 | 5600 | 0.0926 | - | - | | 4.3445 | 5700 | 0.0973 | - | - | | 4.4207 | 5800 | 0.1106 | - | - | | 4.4970 | 5900 | 0.1024 | - | - | | 4.5732 | 6000 | 0.0842 | 0.1439 | 0.7421 | | 4.6494 | 6100 | 0.0927 | - | - | | 4.7256 | 6200 | 0.0867 | - | - | | 4.8018 | 6300 | 0.1022 | - | - | | 4.8780 | 6400 | 0.1124 | - | - | | 4.9543 | 6500 | 0.0839 | - | - | | 5.0305 | 6600 | 0.1063 | - | - | | 5.1067 | 6700 | 0.0764 | - | - | | 5.1829 | 6800 | 0.0687 | - | - | | 5.2591 | 6900 | 0.0863 | - | - | | 5.3354 | 7000 | 0.0804 | 0.1185 | 0.7501 | | 5.4116 | 7100 | 0.0726 | - | - | | 5.4878 | 7200 | 0.0627 | - | - | | 5.5640 | 7300 | 0.0644 | - | - | | 5.6402 | 7400 | 0.0682 | - | - | | 5.7165 | 7500 | 0.0713 | - | - | | 5.7927 | 7600 | 0.0753 | - | - | | 5.8689 | 7700 | 0.0815 | - | - | | 5.9451 | 7800 | 0.0663 | - | - | | 6.0213 | 7900 | 0.083 | - | - | | 6.0976 | 8000 | 0.0682 | 0.1262 | 0.7626 | | 6.1738 | 8100 | 0.0711 | - | - | | 6.25 | 8200 | 0.0581 | - | - | | 6.3262 | 8300 | 0.0655 | - | - | | 6.4024 | 8400 | 0.0612 | - | - | | 6.4787 | 8500 | 0.0714 | - | - | | 6.5549 | 8600 | 0.0509 | - | - | | 6.6311 | 8700 | 0.0486 | - | - | | 6.7073 | 8800 | 0.0456 | - | - | | 6.7835 | 8900 | 0.0724 | - | - | | 6.8598 | 9000 | 0.0596 | 0.1049 | 0.7675 | | 6.9360 | 9100 | 0.0424 | - | - | | 7.0122 | 9200 | 0.0617 | - | - | | 7.0884 | 9300 | 0.0484 | - | - | | 7.1646 | 9400 | 0.0506 | - | - | | 7.2409 | 9500 | 0.0561 | - | - | | 7.3171 | 9600 | 0.0502 | - | - | | 7.3933 | 9700 | 0.0357 | - | - | | 7.4695 | 9800 | 0.0476 | - | - | | 7.5457 | 9900 | 0.0379 | - | - | | 7.6220 | 10000 | 0.0455 | 0.1063 | 0.7706 | | 7.6982 | 10100 | 0.0479 | - | - | | 7.7744 | 10200 | 0.0605 | - | - | | 7.8506 | 10300 | 0.0486 | - | - | | 7.9268 | 10400 | 0.0591 | - | - | | 8.0030 | 10500 | 0.0445 | - | - | | 8.0793 | 10600 | 0.0369 | - | - | | 8.1555 | 10700 | 0.041 | - | - | | 8.2317 | 10800 | 0.0449 | - | - | | 8.3079 | 10900 | 0.0387 | - | - | | 8.3841 | 11000 | 0.0263 | 0.1080 | 0.7706 | | 8.4604 | 11100 | 0.0248 | - | - | | 8.5366 | 11200 | 0.0475 | - | - | | 8.6128 | 11300 | 0.056 | - | - | | 8.6890 | 11400 | 0.0401 | - | - | | 8.7652 | 11500 | 0.043 | - | - | | 8.8415 | 11600 | 0.0447 | - | - | | 8.9177 | 11700 | 0.0461 | - | - | | 8.9939 | 11800 | 0.0436 | - | - | | 9.0701 | 11900 | 0.0373 | - | - | | 9.1463 | 12000 | 0.0498 | 0.1015 | 0.7761 | | 9.2226 | 12100 | 0.0284 | - | - | | 9.2988 | 12200 | 0.0421 | - | - | | 9.375 | 12300 | 0.0327 | - | - | | 9.4512 | 12400 | 0.0476 | - | - | | 9.5274 | 12500 | 0.0381 | - | - | | 9.6037 | 12600 | 0.0377 | - | - | | 9.6799 | 12700 | 0.0449 | - | - | | 9.7561 | 12800 | 0.0344 | - | - | | 9.8323 | 12900 | 0.0249 | - | - | | 9.9085 | 13000 | 0.0411 | 0.0993 | 0.7760 | | 9.9848 | 13100 | 0.0466 | - | - | </details> ### Framework Versions - Python: 3.11.13 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Accelerate: 1.8.1 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Cike-Official/gemma-3-270m-it-cyberbullying
Cike-Official
2025-08-19T04:29:06Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "endpoints_compatible", "region:us" ]
null
2025-08-19T03:58:59Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: gemma-3-270m-it-cyberbullying tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gemma-3-270m-it-cyberbullying This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Cike-Official/gemma-3-270m-it-cyberbullying", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
dannyLeo16/ner_model_bert_base
dannyLeo16
2025-08-19T04:28:38Z
1
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "ner", "spanish", "emergencies", "ecu-911", "es", "dataset:custom-ecu911", "base_model:dccuchile/bert-base-spanish-wwm-cased", "base_model:finetune:dccuchile/bert-base-spanish-wwm-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-06-16T00:59:32Z
--- language: - es license: apache-2.0 library_name: transformers base_model: dccuchile/bert-base-spanish-wwm-cased pipeline_tag: token-classification tags: - ner - token-classification - spanish - bert - emergencies - ecu-911 datasets: - custom-ecu911 metrics: - accuracy - f1 - precision - recall model-index: - name: ner_model_bert_base results: - task: type: token-classification name: Named Entity Recognition dataset: name: custom-ecu911 type: custom split: test metrics: - type: accuracy value: 0.9739766081871345 - type: f1 name: Macro F1 value: 0.8898766824816503 - type: precision name: Macro Precision value: 0.8801934151701145 - type: recall name: Macro Recall value: 0.9001920589792443 --- # NER for Spanish Emergency Reports (ECU-911) **Author/Maintainer:** Danny Paltin ([@dannyLeo16](https://huggingface.co/dannyLeo16)) **Task:** Token Classification (NER) **Language:** Spanish (es) **Finetuned from:** `dccuchile/bert-base-spanish-wwm-cased` **Entities (BIO):** `PER` and `LOC` → `["O","B-PER","I-PER","B-LOC","I-LOC"]` This model is a Spanish BERT fine-tuned to identify **persons** and **locations** in short emergency incident descriptions (ECU-911-style). It was developed for the research project: > **“Representación del conocimiento para emergencias del ECU-911 mediante PLN, ontologías OWL y reglas SWRL.”** --- ## Model Details - **Architecture:** BERT (Whole Word Masking, cased) - **Tokenizer:** `dccuchile/bert-base-spanish-wwm-cased` - **Max length:** uses base tokenizer `model_max_length` (padding to max length) - **Libraries:** 🤗 Transformers, 🤗 Datasets, PyTorch - **Labels:** `O, B-PER, I-PER, B-LOC, I-LOC` --- ## Training Data - **Source:** Custom Spanish emergency reports (Ecuador, ECU-911-style) with token-level BIO annotations. - **Size:** **510** texts; **34,232** tokens (avg **67.12** tokens/text). - **Entity counts (BIO spans):** **PER = 421**, **LOC = 1,643**. - **Token-level label distribution:** `O=30,132`, `B-LOC=1,643`, `I-LOC=1,617`, `B-PER=421`, `I-PER=419`. - **Splits:** 80% train / 10% validation / 10% test (split aleatorio durante el entrenamiento). > **Privacy/Ethics.** Data should be anonymized and free of PII. Do not deploy on personal/live data without consent and compliance with local regulation. --- ## Training Procedure - **Objective:** Token classification (cross-entropy); continuation subwords ignored with `-100`. - **Hyperparameters:** - `learning_rate = 2e-5` - `num_train_epochs = 3` - `per_device_train_batch_size = 8` - `per_device_eval_batch_size = 8` - `weight_decay = 0.01` - `evaluation_strategy = "epoch"`, `save_strategy = "epoch"` - `load_best_model_at_end = true` *(por `eval_loss`)* - **Data collator:** `DataCollatorForTokenClassification` (padding a `max_length`) - **Hardware:** <especifica aquí, p. ej. “Google Colab – GPU NVIDIA T4”> - **Seed:** <si fijaste semilla, indícala> --- ## Evaluation **Validation (epoch 3):** - Accuracy: **0.9480** - Macro F1: **0.7998** - Macro Precision: **0.7914** - Macro Recall: **0.8118** - Eval loss: **0.1458** **Test:** - Accuracy: **0.9740** - Macro F1: **0.8899** - Macro Precision: **0.8802** - Macro Recall: **0.9002** - Eval loss: **0.0834** *(Computed with `sklearn.metrics`, excluding `-100` positions.)* --- ## Intended Use - NER over Spanish emergency/incident text (ECU-911-like). - Downstream knowledge representation (OWL/SWRL). - Academic research and prototyping. ### Limitations - Domain-specific; performance may drop on other domains. - Only `PER` and `LOC` entities. - May struggle with colloquialisms, misspellings, or code-switching. --- ## How to use ```python from transformers import pipeline ner = pipeline( "token-classification", model="dannyLeo16/ner_model_bert_base", tokenizer="dannyLeo16/ner_model_bert_base", aggregation_strategy="simple" ) text = "Se reporta accidente en la Av. de las Américas con dos personas heridas." ner(text)
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755576065
kojeklollipop
2025-08-19T04:27:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:27:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
taochengfei/llama-3.2-3b-it-beta_assistant_v0.2
taochengfei
2025-08-19T04:26:28Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T04:26:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/qwen2.5-coder-32b-single-verilog-GGUF
mradermacher
2025-08-19T04:25:30Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:hdl2v/qwen2.5-coder-32b-single-verilog", "base_model:quantized:hdl2v/qwen2.5-coder-32b-single-verilog", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-18T09:26:18Z
--- base_model: hdl2v/qwen2.5-coder-32b-single-verilog language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/hdl2v/qwen2.5-coder-32b-single-verilog <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#qwen2.5-coder-32b-single-verilog-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.Q4_K_M.gguf) | Q4_K_M | 19.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-coder-32b-single-verilog-GGUF/resolve/main/qwen2.5-coder-32b-single-verilog.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
WariHima/ruri-v3-30m-onnx
WariHima
2025-08-19T04:25:20Z
0
0
null
[ "onnx", "ja", "base_model:cl-nagoya/ruri-v3-30m", "base_model:quantized:cl-nagoya/ruri-v3-30m", "license:apache-2.0", "region:us" ]
null
2025-06-22T02:58:40Z
--- license: apache-2.0 language: - ja base_model: - cl-nagoya/ruri-v3-30m ---
donoway/BoolQ_Llama-3.2-1B-8f4o6kcm
donoway
2025-08-19T04:25:02Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T03:12:29Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: BoolQ_Llama-3.2-1B-8f4o6kcm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BoolQ_Llama-3.2-1B-8f4o6kcm This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5793 - Model Preparation Time: 0.0057 - Mdl: 7450.5715 - Accumulated Loss: 5164.3426 - Correct Preds: 2634.0 - Total Preds: 3270.0 - Accuracy: 0.8055 - Correct Gen Preds: 2638.0 - Gen Accuracy: 0.8067 - Correct Gen Preds 9642: 1699.0 - Correct Preds 9642: 1701.0 - Total Labels 9642: 2026.0 - Accuracy 9642: 0.8396 - Gen Accuracy 9642: 0.8386 - Correct Gen Preds 2822: 930.0 - Correct Preds 2822: 933.0 - Total Labels 2822: 1231.0 - Accuracy 2822: 0.7579 - Gen Accuracy 2822: 0.7555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 120 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 9642 | Correct Preds 9642 | Total Labels 9642 | Accuracy 9642 | Gen Accuracy 9642 | Correct Gen Preds 2822 | Correct Preds 2822 | Total Labels 2822 | Accuracy 2822 | Gen Accuracy 2822 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:----------------------:|:------------------:|:-----------------:|:-------------:|:-----------------:|:----------------------:|:------------------:|:-----------------:|:-------------:|:-----------------:| | No log | 0 | 0 | 0.7080 | 0.0057 | 3339.8933 | 2315.0376 | 2032.0 | 3270.0 | 0.6214 | 2040.0 | 0.6239 | 2007.0 | 2008.0 | 2026.0 | 0.9911 | 0.9906 | 24.0 | 24.0 | 1231.0 | 0.0195 | 0.0195 | | 0.4667 | 1.0 | 69 | 0.6104 | 0.0057 | 2879.4424 | 1995.8774 | 2384.0 | 3270.0 | 0.7291 | 2390.0 | 0.7309 | 1351.0 | 1351.0 | 2026.0 | 0.6668 | 0.6668 | 1031.0 | 1033.0 | 1231.0 | 0.8392 | 0.8375 | | 0.4652 | 2.0 | 138 | 0.5854 | 0.0057 | 2761.8042 | 1914.3368 | 2618.0 | 3270.0 | 0.8006 | 2476.0 | 0.7572 | 1601.0 | 1693.0 | 2026.0 | 0.8356 | 0.7902 | 869.0 | 925.0 | 1231.0 | 0.7514 | 0.7059 | | 0.2361 | 3.0 | 207 | 0.9383 | 0.0057 | 4426.4291 | 3068.1669 | 2615.0 | 3270.0 | 0.7997 | 2598.0 | 0.7945 | 1691.0 | 1708.0 | 2026.0 | 0.8430 | 0.8346 | 900.0 | 907.0 | 1231.0 | 0.7368 | 0.7311 | | 0.0138 | 4.0 | 276 | 1.2278 | 0.0057 | 5792.2561 | 4014.8860 | 2550.0 | 3270.0 | 0.7798 | 2530.0 | 0.7737 | 1541.0 | 1562.0 | 2026.0 | 0.7710 | 0.7606 | 981.0 | 988.0 | 1231.0 | 0.8026 | 0.7969 | | 0.0 | 5.0 | 345 | 1.6244 | 0.0057 | 7663.1836 | 5311.7141 | 2604.0 | 3270.0 | 0.7963 | 2607.0 | 0.7972 | 1634.0 | 1636.0 | 2026.0 | 0.8075 | 0.8065 | 965.0 | 968.0 | 1231.0 | 0.7864 | 0.7839 | | 0.0001 | 6.0 | 414 | 1.3741 | 0.0057 | 6482.3648 | 4493.2329 | 2627.0 | 3270.0 | 0.8034 | 2631.0 | 0.8046 | 1700.0 | 1702.0 | 2026.0 | 0.8401 | 0.8391 | 923.0 | 925.0 | 1231.0 | 0.7514 | 0.7498 | | 0.0 | 7.0 | 483 | 1.4617 | 0.0057 | 6895.6302 | 4779.6866 | 2630.0 | 3270.0 | 0.8043 | 2634.0 | 0.8055 | 1701.0 | 1703.0 | 2026.0 | 0.8406 | 0.8396 | 924.0 | 927.0 | 1231.0 | 0.7530 | 0.7506 | | 0.0 | 8.0 | 552 | 1.4956 | 0.0057 | 7055.6245 | 4890.5862 | 2625.0 | 3270.0 | 0.8028 | 2629.0 | 0.8040 | 1695.0 | 1697.0 | 2026.0 | 0.8376 | 0.8366 | 925.0 | 928.0 | 1231.0 | 0.7539 | 0.7514 | | 0.0 | 9.0 | 621 | 1.5171 | 0.0057 | 7157.2276 | 4961.0122 | 2625.0 | 3270.0 | 0.8028 | 2629.0 | 0.8040 | 1698.0 | 1700.0 | 2026.0 | 0.8391 | 0.8381 | 922.0 | 925.0 | 1231.0 | 0.7514 | 0.7490 | | 0.0001 | 10.0 | 690 | 1.5322 | 0.0057 | 7228.4800 | 5010.4005 | 2628.0 | 3270.0 | 0.8037 | 2632.0 | 0.8049 | 1698.0 | 1700.0 | 2026.0 | 0.8391 | 0.8381 | 925.0 | 928.0 | 1231.0 | 0.7539 | 0.7514 | | 0.0 | 11.0 | 759 | 1.5461 | 0.0057 | 7293.7816 | 5055.6641 | 2629.0 | 3270.0 | 0.8040 | 2633.0 | 0.8052 | 1696.0 | 1698.0 | 2026.0 | 0.8381 | 0.8371 | 928.0 | 931.0 | 1231.0 | 0.7563 | 0.7539 | | 0.0 | 12.0 | 828 | 1.5571 | 0.0057 | 7345.8001 | 5091.7207 | 2630.0 | 3270.0 | 0.8043 | 2634.0 | 0.8055 | 1698.0 | 1700.0 | 2026.0 | 0.8391 | 0.8381 | 927.0 | 930.0 | 1231.0 | 0.7555 | 0.7530 | | 0.0 | 13.0 | 897 | 1.5696 | 0.0057 | 7404.5688 | 5132.4560 | 2628.0 | 3270.0 | 0.8037 | 2633.0 | 0.8052 | 1695.0 | 1697.0 | 2026.0 | 0.8376 | 0.8366 | 929.0 | 931.0 | 1231.0 | 0.7563 | 0.7547 | | 0.0 | 14.0 | 966 | 1.5735 | 0.0057 | 7423.3806 | 5145.4953 | 2629.0 | 3270.0 | 0.8040 | 2633.0 | 0.8052 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 932.0 | 935.0 | 1231.0 | 0.7595 | 0.7571 | | 0.0 | 15.0 | 1035 | 1.5793 | 0.0057 | 7450.5715 | 5164.3426 | 2634.0 | 3270.0 | 0.8055 | 2638.0 | 0.8067 | 1699.0 | 1701.0 | 2026.0 | 0.8396 | 0.8386 | 930.0 | 933.0 | 1231.0 | 0.7579 | 0.7555 | | 0.0 | 16.0 | 1104 | 1.5878 | 0.0057 | 7490.8020 | 5192.2283 | 2629.0 | 3270.0 | 0.8040 | 2633.0 | 0.8052 | 1694.0 | 1696.0 | 2026.0 | 0.8371 | 0.8361 | 930.0 | 933.0 | 1231.0 | 0.7579 | 0.7555 | | 0.0 | 17.0 | 1173 | 1.5863 | 0.0057 | 7483.6533 | 5187.2732 | 2629.0 | 3270.0 | 0.8040 | 2633.0 | 0.8052 | 1696.0 | 1698.0 | 2026.0 | 0.8381 | 0.8371 | 928.0 | 931.0 | 1231.0 | 0.7563 | 0.7539 | | 0.0 | 18.0 | 1242 | 1.5880 | 0.0057 | 7491.6557 | 5192.8201 | 2629.0 | 3270.0 | 0.8040 | 2634.0 | 0.8055 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 932.0 | 934.0 | 1231.0 | 0.7587 | 0.7571 | | 0.0 | 19.0 | 1311 | 1.5920 | 0.0057 | 7510.3381 | 5205.7697 | 2628.0 | 3270.0 | 0.8037 | 2633.0 | 0.8052 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 931.0 | 933.0 | 1231.0 | 0.7579 | 0.7563 | | 0.0 | 20.0 | 1380 | 1.5951 | 0.0057 | 7524.8328 | 5215.8166 | 2627.0 | 3270.0 | 0.8034 | 2631.0 | 0.8046 | 1691.0 | 1693.0 | 2026.0 | 0.8356 | 0.8346 | 931.0 | 934.0 | 1231.0 | 0.7587 | 0.7563 | | 0.0 | 21.0 | 1449 | 1.5937 | 0.0057 | 7518.3160 | 5211.2995 | 2623.0 | 3270.0 | 0.8021 | 2628.0 | 0.8037 | 1689.0 | 1691.0 | 2026.0 | 0.8346 | 0.8337 | 930.0 | 932.0 | 1231.0 | 0.7571 | 0.7555 | | 0.0 | 22.0 | 1518 | 1.5941 | 0.0057 | 7520.5677 | 5212.8603 | 2626.0 | 3270.0 | 0.8031 | 2631.0 | 0.8046 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 929.0 | 931.0 | 1231.0 | 0.7563 | 0.7547 | | 0.4705 | 23.0 | 1587 | 1.5944 | 0.0057 | 7521.8050 | 5213.7179 | 2629.0 | 3270.0 | 0.8040 | 2633.0 | 0.8052 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 931.0 | 934.0 | 1231.0 | 0.7587 | 0.7563 | | 0.0 | 24.0 | 1656 | 1.5942 | 0.0057 | 7520.9457 | 5213.1223 | 2626.0 | 3270.0 | 0.8031 | 2631.0 | 0.8046 | 1691.0 | 1693.0 | 2026.0 | 0.8356 | 0.8346 | 931.0 | 933.0 | 1231.0 | 0.7579 | 0.7563 | | 0.0 | 25.0 | 1725 | 1.5932 | 0.0057 | 7516.1335 | 5209.7867 | 2628.0 | 3270.0 | 0.8037 | 2633.0 | 0.8052 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 932.0 | 934.0 | 1231.0 | 0.7587 | 0.7571 | | 0.0 | 26.0 | 1794 | 1.5939 | 0.0057 | 7519.3793 | 5212.0365 | 2631.0 | 3270.0 | 0.8046 | 2635.0 | 0.8058 | 1695.0 | 1697.0 | 2026.0 | 0.8376 | 0.8366 | 931.0 | 934.0 | 1231.0 | 0.7587 | 0.7563 | | 0.0 | 27.0 | 1863 | 1.5943 | 0.0057 | 7521.3797 | 5213.4231 | 2631.0 | 3270.0 | 0.8046 | 2636.0 | 0.8061 | 1694.0 | 1696.0 | 2026.0 | 0.8371 | 0.8361 | 933.0 | 935.0 | 1231.0 | 0.7595 | 0.7579 | | 0.0 | 28.0 | 1932 | 1.5947 | 0.0057 | 7522.9538 | 5214.5142 | 2631.0 | 3270.0 | 0.8046 | 2636.0 | 0.8061 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 934.0 | 936.0 | 1231.0 | 0.7604 | 0.7587 | | 0.0 | 29.0 | 2001 | 1.5970 | 0.0057 | 7534.0599 | 5222.2124 | 2628.0 | 3270.0 | 0.8037 | 2633.0 | 0.8052 | 1694.0 | 1696.0 | 2026.0 | 0.8371 | 0.8361 | 930.0 | 932.0 | 1231.0 | 0.7571 | 0.7555 | | 0.0 | 30.0 | 2070 | 1.5937 | 0.0057 | 7518.6664 | 5211.5424 | 2631.0 | 3270.0 | 0.8046 | 2636.0 | 0.8061 | 1696.0 | 1698.0 | 2026.0 | 0.8381 | 0.8371 | 931.0 | 933.0 | 1231.0 | 0.7579 | 0.7563 | | 0.0 | 31.0 | 2139 | 1.5975 | 0.0057 | 7536.3698 | 5223.8135 | 2632.0 | 3270.0 | 0.8049 | 2637.0 | 0.8064 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 935.0 | 937.0 | 1231.0 | 0.7612 | 0.7595 | | 0.0 | 32.0 | 2208 | 1.5958 | 0.0057 | 7528.2450 | 5218.1818 | 2626.0 | 3270.0 | 0.8031 | 2631.0 | 0.8046 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 930.0 | 932.0 | 1231.0 | 0.7571 | 0.7555 | | 0.0 | 33.0 | 2277 | 1.5946 | 0.0057 | 7522.6503 | 5214.3039 | 2630.0 | 3270.0 | 0.8043 | 2635.0 | 0.8058 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 933.0 | 935.0 | 1231.0 | 0.7595 | 0.7579 | | 0.0 | 34.0 | 2346 | 1.5958 | 0.0057 | 7528.1556 | 5218.1199 | 2630.0 | 3270.0 | 0.8043 | 2635.0 | 0.8058 | 1691.0 | 1693.0 | 2026.0 | 0.8356 | 0.8346 | 935.0 | 937.0 | 1231.0 | 0.7612 | 0.7595 | | 0.0 | 35.0 | 2415 | 1.5955 | 0.0057 | 7527.0160 | 5217.3299 | 2630.0 | 3270.0 | 0.8043 | 2634.0 | 0.8055 | 1694.0 | 1696.0 | 2026.0 | 0.8371 | 0.8361 | 931.0 | 934.0 | 1231.0 | 0.7587 | 0.7563 | | 0.0 | 36.0 | 2484 | 1.5979 | 0.0057 | 7538.4257 | 5225.2385 | 2630.0 | 3270.0 | 0.8043 | 2635.0 | 0.8058 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 933.0 | 935.0 | 1231.0 | 0.7595 | 0.7579 | | 0.0 | 37.0 | 2553 | 1.5989 | 0.0057 | 7543.1657 | 5228.5240 | 2626.0 | 3270.0 | 0.8031 | 2631.0 | 0.8046 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 930.0 | 932.0 | 1231.0 | 0.7571 | 0.7555 | | 0.0 | 38.0 | 2622 | 1.5947 | 0.0057 | 7523.0421 | 5214.5755 | 2629.0 | 3270.0 | 0.8040 | 2634.0 | 0.8055 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 932.0 | 934.0 | 1231.0 | 0.7587 | 0.7571 | | 0.0 | 39.0 | 2691 | 1.5952 | 0.0057 | 7525.4233 | 5216.2259 | 2627.0 | 3270.0 | 0.8034 | 2632.0 | 0.8049 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 931.0 | 933.0 | 1231.0 | 0.7579 | 0.7563 | | 0.0 | 40.0 | 2760 | 1.5979 | 0.0057 | 7538.3492 | 5225.1855 | 2625.0 | 3270.0 | 0.8028 | 2629.0 | 0.8040 | 1690.0 | 1692.0 | 2026.0 | 0.8351 | 0.8342 | 930.0 | 933.0 | 1231.0 | 0.7579 | 0.7555 | | 0.0 | 41.0 | 2829 | 1.5955 | 0.0057 | 7526.7286 | 5217.1307 | 2631.0 | 3270.0 | 0.8046 | 2636.0 | 0.8061 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 935.0 | 937.0 | 1231.0 | 0.7612 | 0.7595 | | 0.0 | 42.0 | 2898 | 1.5972 | 0.0057 | 7535.1989 | 5223.0019 | 2631.0 | 3270.0 | 0.8046 | 2635.0 | 0.8058 | 1696.0 | 1698.0 | 2026.0 | 0.8381 | 0.8371 | 930.0 | 933.0 | 1231.0 | 0.7579 | 0.7555 | | 0.0 | 43.0 | 2967 | 1.5954 | 0.0057 | 7526.2516 | 5216.8001 | 2629.0 | 3270.0 | 0.8040 | 2634.0 | 0.8055 | 1689.0 | 1691.0 | 2026.0 | 0.8346 | 0.8337 | 936.0 | 938.0 | 1231.0 | 0.7620 | 0.7604 | | 0.0 | 44.0 | 3036 | 1.5961 | 0.0057 | 7530.0068 | 5219.4030 | 2629.0 | 3270.0 | 0.8040 | 2634.0 | 0.8055 | 1691.0 | 1693.0 | 2026.0 | 0.8356 | 0.8346 | 934.0 | 936.0 | 1231.0 | 0.7604 | 0.7587 | | 0.0 | 45.0 | 3105 | 1.5990 | 0.0057 | 7543.2270 | 5228.5665 | 2627.0 | 3270.0 | 0.8034 | 2632.0 | 0.8049 | 1691.0 | 1693.0 | 2026.0 | 0.8356 | 0.8346 | 932.0 | 934.0 | 1231.0 | 0.7587 | 0.7571 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
yyqoni/verifier_claude_rewrite_qwen_direct
yyqoni
2025-08-19T04:24:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T04:22:39Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: Qwen2.5-7B-Instruct-v4_claude_rewrite_train_s1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen2.5-7B-Instruct-v4_claude_rewrite_train_s1 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the v4_claude_rewrite_train_direct dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.1
thakurdivya/Ganesha
thakurdivya
2025-08-19T04:23:57Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-08-19T04:22:50Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/41ZlebcJbvL._UF1000,1000_QL80_.jpg text: '-' base_model: black-forest-labs/FLUX.1-dev instance_prompt: Ganesha --- # Ganesha <Gallery /> ## Trigger words You should use `Ganesha` to trigger the image generation. ## Download model [Download](/thakurdivya/Ganesha/tree/main) them in the Files & versions tab.
broinopio/blockassist-bc-monstrous_scampering_spider_1755575120
broinopio
2025-08-19T04:22:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous scampering spider", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:22:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous scampering spider --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755575751
sampingkaca72
2025-08-19T04:21:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:21:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
WenFengg/21_14l14_19_8
WenFengg
2025-08-19T04:21:21Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T04:16:04Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755575562
pempekmangedd
2025-08-19T04:19:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:19:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755575579
mang3dd
2025-08-19T04:19:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:19:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755575327
vwzyrraz7l
2025-08-19T04:16:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:15:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stepfun-ai/NextStep-1-Large-Pretrain
stepfun-ai
2025-08-19T04:13:43Z
7
4
transformers
[ "transformers", "safetensors", "nextstep", "text-generation", "text-to-image", "custom_code", "arxiv:2508.10711", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-image
2025-08-15T08:34:42Z
--- license: apache-2.0 pipeline_tag: text-to-image library_name: transformers --- ## NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale [Homepage](https://stepfun.ai/research/en/nextstep1)&nbsp; | [GitHub](https://github.com/stepfun-ai/NextStep-1)&nbsp; | [Paper](https://arxiv.org/abs/2508.10711)&nbsp; We introduce **NextStep-1**, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. **NextStep-1** achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. <div align='center'> <img src="assets/teaser.jpg" class="interpolation-image" alt="arch." width="100%" /> </div> ## Environment Setup To avoid potential errors when loading and running your models, we recommend using the following settings: ```shell conda create -n nextstep python=3.11 -y conda activate nextstep pip install uv # optional GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/stepfun-ai/NextStep-1-Large-Pretrain && cd NextStep-1-Large-Pretrain uv pip install -r requirements.txt hf download stepfun-ai/NextStep-1-Large-Pretrain "vae/checkpoint.pt" --local-dir ./ ``` ## Usage ```python import torch from transformers import AutoTokenizer, AutoModel from models.gen_pipeline import NextStepPipeline HF_HUB = "stepfun-ai/NextStep-1-Large-Pretrain" # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True) model = AutoModel.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True) pipeline = NextStepPipeline(tokenizer=tokenizer, model=model).to(device="cuda", dtype=torch.bfloat16) # set prompts positive_prompt = "masterpiece, film grained, best quality." negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry." example_prompt = "A realistic photograph of a wall with \"NextStep-1.1 is coming\" prominently displayed" # generate image from text IMG_SIZE = 512 image = pipeline.generate_image( example_prompt, hw=(IMG_SIZE, IMG_SIZE), num_images_per_caption=1, positive_prompt=positive_prompt, negative_prompt=negative_prompt, cfg=7.5, cfg_img=1.0, cfg_schedule="constant", use_norm=False, num_sampling_steps=28, timesteps_shift=1.0, seed=3407, )[0] image.save("./assets/output.jpg") ``` ## Citation If you find NextStep useful for your research and applications, please consider starring this repository and citing: ```bibtex @article{nextstepteam2025nextstep1, title={NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale}, author={NextStep Team and Chunrui Han and Guopeng Li and Jingwei Wu and Quan Sun and Yan Cai and Yuang Peng and Zheng Ge and Deyu Zhou and Haomiao Tang and Hongyu Zhou and Kenkun Liu and Ailin Huang and Bin Wang and Changxin Miao and Deshan Sun and En Yu and Fukun Yin and Gang Yu and Hao Nie and Haoran Lv and Hanpeng Hu and Jia Wang and Jian Zhou and Jianjian Sun and Kaijun Tan and Kang An and Kangheng Lin and Liang Zhao and Mei Chen and Peng Xing and Rui Wang and Shiyu Liu and Shutao Xia and Tianhao You and Wei Ji and Xianfang Zeng and Xin Han and Xuelin Zhang and Yana Wei and Yanming Xu and Yimin Jiang and Yingming Wang and Yu Zhou and Yucheng Han and Ziyang Meng and Binxing Jiao and Daxin Jiang and Xiangyu Zhang and Yibo Zhu}, journal={arXiv preprint arXiv:2508.10711}, year={2025} } ```
concept-unlearning/gemma-3-4b-it_ft_lora_all_novels_v7_ft_rmu_lora_positive_dataset_v2
concept-unlearning
2025-08-19T04:13:05Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-19T04:11:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_11520_3
winnieyangwannan
2025-08-19T04:12:52Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:33:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stepfun-ai/NextStep-1-Large-Edit
stepfun-ai
2025-08-19T04:12:51Z
60
29
transformers
[ "transformers", "safetensors", "nextstep", "text-generation", "image-to-image", "custom_code", "arxiv:2508.10711", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-to-image
2025-08-12T02:57:31Z
--- license: apache-2.0 pipeline_tag: image-to-image library_name: transformers --- ## NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale [Homepage](https://stepfun.ai/research/en/nextstep1)&nbsp; | [GitHub](https://github.com/stepfun-ai/NextStep-1)&nbsp; | [Paper](https://arxiv.org/abs/2508.10711)&nbsp; We introduce **NextStep-1**, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. **NextStep-1** achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. <div align='center'> <img src="assets/teaser.jpg" class="interpolation-image" alt="arch." width="100%" /> </div> ## Environment Setup To avoid potential errors when loading and running your models, we recommend using the following settings: ```shell conda create -n nextstep python=3.11 -y conda activate nextstep pip install uv # optional GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/stepfun-ai/NextStep-1-Large-Edit && cd NextStep-1-Large-Edit uv pip install -r requirements.txt hf download stepfun-ai/NextStep-1-Large-Edit "vae/checkpoint.pt" --local-dir ./ ``` ## Usage ```python from PIL import Image from transformers import AutoTokenizer, AutoModel from models.gen_pipeline import NextStepPipeline from utils.aspect_ratio import center_crop_arr_with_buckets HF_HUB = "stepfun-ai/NextStep-1-Large-Edit" # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True,force_download=True) model = AutoModel.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True,force_download=True) pipeline = NextStepPipeline(tokenizer=tokenizer, model=model).to(device=f"cuda") # set prompts positive_prompt = None negative_prompt = "Copy original image." example_prompt = "<image>" + "Add a pirate hat to the dog's head. Change the background to a stormy sea with dark clouds. Include the text 'NextStep-Edit' in bold white letters at the top portion of the image." # load and preprocess reference image IMG_SIZE = 512 ref_image = Image.open("./assets/origin.jpg") ref_image = center_crop_arr_with_buckets(ref_image, buckets=[IMG_SIZE]) # generate edited image image = pipeline.generate_image( example_prompt, images=[ref_image], hw=(IMG_SIZE, IMG_SIZE), num_images_per_caption=1, positive_prompt=positive_prompt, negative_prompt=negative_prompt, cfg=7.5, cfg_img=2, cfg_schedule="constant", use_norm=True, num_sampling_steps=50, timesteps_shift=3.2, seed=42, )[0] image.save(f"./assets/output.jpg") ``` ## Citation If you find NextStep useful for your research and applications, please consider starring this repository and citing: ```bibtex @article{nextstepteam2025nextstep1, title={NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale}, author={NextStep Team and Chunrui Han and Guopeng Li and Jingwei Wu and Quan Sun and Yan Cai and Yuang Peng and Zheng Ge and Deyu Zhou and Haomiao Tang and Hongyu Zhou and Kenkun Liu and Ailin Huang and Bin Wang and Changxin Miao and Deshan Sun and En Yu and Fukun Yin and Gang Yu and Hao Nie and Haoran Lv and Hanpeng Hu and Jia Wang and Jian Zhou and Jianjian Sun and Kaijun Tan and Kang An and Kangheng Lin and Liang Zhao and Mei Chen and Peng Xing and Rui Wang and Shiyu Liu and Shutao Xia and Tianhao You and Wei Ji and Xianfang Zeng and Xin Han and Xuelin Zhang and Yana Wei and Yanming Xu and Yimin Jiang and Yingming Wang and Yu Zhou and Yucheng Han and Ziyang Meng and Binxing Jiao and Daxin Jiang and Xiangyu Zhang and Yibo Zhu}, journal={arXiv preprint arXiv:2508.10711}, year={2025} } ```
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_10240_3
winnieyangwannan
2025-08-19T04:12:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:33:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_6400_3
winnieyangwannan
2025-08-19T04:11:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:31:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_5120_3
winnieyangwannan
2025-08-19T04:11:02Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:31:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_3840_3
winnieyangwannan
2025-08-19T04:10:46Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:31:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755576560
lqpl
2025-08-19T04:10:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:10:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_1280_3
winnieyangwannan
2025-08-19T04:10:29Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:30:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_640_3
winnieyangwannan
2025-08-19T04:10:27Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T17:54:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnonymousCS/xlmr_german_immigration1
AnonymousCS
2025-08-19T04:10:19Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T04:08:06Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_german_immigration1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_german_immigration1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1664 - Accuracy: 0.9538 - 1-f1: 0.9268 - 1-recall: 0.8837 - 1-precision: 0.9744 - Balanced Acc: 0.9361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3542 | 1.0 | 5 | 0.1537 | 0.9538 | 0.925 | 0.8605 | 1.0 | 0.9302 | | 0.1428 | 2.0 | 10 | 0.3174 | 0.9 | 0.8632 | 0.9535 | 0.7885 | 0.9135 | | 0.2483 | 3.0 | 15 | 0.1664 | 0.9538 | 0.9268 | 0.8837 | 0.9744 | 0.9361 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
mradermacher/Thyme-RL-GGUF
mradermacher
2025-08-19T04:06:07Z
0
1
transformers
[ "transformers", "gguf", "en", "dataset:Kwai-Keye/Thyme-SFT", "dataset:Kwai-Keye/Thyme-RL", "base_model:Kwai-Keye/Thyme-RL", "base_model:quantized:Kwai-Keye/Thyme-RL", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-18T22:09:36Z
--- base_model: Kwai-Keye/Thyme-RL datasets: - Kwai-Keye/Thyme-SFT - Kwai-Keye/Thyme-RL language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Kwai-Keye/Thyme-RL <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Thyme-RL-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Thyme-RL-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 1.0 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.mmproj-f16.gguf) | mmproj-f16 | 1.5 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
AnonymousCS/xlmr_finnish_immigration1
AnonymousCS
2025-08-19T04:05:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T04:02:44Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_finnish_immigration1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_finnish_immigration1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2512 - Accuracy: 0.9385 - 1-f1: 0.9070 - 1-recall: 0.9070 - 1-precision: 0.9070 - Balanced Acc: 0.9305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1645 | 1.0 | 5 | 0.2013 | 0.9385 | 0.9070 | 0.9070 | 0.9070 | 0.9305 | | 0.1977 | 2.0 | 10 | 0.1962 | 0.9462 | 0.9176 | 0.9070 | 0.9286 | 0.9362 | | 0.1248 | 3.0 | 15 | 0.2172 | 0.9385 | 0.9070 | 0.9070 | 0.9070 | 0.9305 | | 0.0656 | 4.0 | 20 | 0.2512 | 0.9385 | 0.9070 | 0.9070 | 0.9070 | 0.9305 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
kimono998/Wordle-curr-neg-3_lora_adapter_iter_25
kimono998
2025-08-19T04:04:58Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T04:04:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Orginal-prajakta-mali-viral-video-Clip/New.full.videos.prajakta.mali.Viral.Video.Official.Tutorial
Orginal-prajakta-mali-viral-video-Clip
2025-08-19T04:04:51Z
0
0
null
[ "region:us" ]
null
2025-08-19T04:04:39Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
annasoli/Qwen2.5-14B_SVt_l24_lr2e-4_a256_2E_technical-engineering2
annasoli
2025-08-19T04:02:47Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-18T21:42:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rockst4r4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-knobby_deft_crab
rockst4r4
2025-08-19T04:02:28Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am knobby_deft_crab", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T22:01:42Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am knobby_deft_crab --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755576014
IvanJAjebu
2025-08-19T04:02:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:01:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755575945
0xaoyama
2025-08-19T03:59:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:59:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hobson123/blockassist-bc-mammalian_dense_gibbon_1755575542
hobson123
2025-08-19T03:58:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:58:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
valiantcat/Wan2.2-T2V-EVA
valiantcat
2025-08-19T03:58:14Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "image-to-video", "en", "base_model:Wan-AI/Wan2.2-T2V-A14B", "base_model:adapter:Wan-AI/Wan2.2-T2V-A14B", "license:apache-2.0", "region:us" ]
image-to-video
2025-08-19T03:58:08Z
--- license: apache-2.0 language: - en base_model: - Wan-AI/Wan2.2-T2V-A14B pipeline_tag: image-to-video tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- mrx, 一个女人穿着红色战斗服坐在桌子前吃饭 output: url: result/output1.mp4 - text: >- mrx, 无人机运镜镜头,从室外到室内,一个女人在厨房忙碌做饭,旁边是已经两个做好的两道菜 output: url: result/output2.mp4 - text: >- mrx, 无人机运镜镜头,从室外到室内,一个动漫女人坐在桌子前吃早饭,看到镜头后伸手打招呼,面带微笑 output: url: result/output3.mp4 --- <div style="background-color: #f8f9fa; padding: 20px; border-radius: 10px; margin-bottom: 20px;"> <h1 style="color: #24292e; margin-top: 0;">valiantcat LoRA for Wan2.2-T2V-A14B</h1> <div style="background-color: white; padding: 15px; border-radius: 8px; margin: 15px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);"> <h2 style="color: #24292e; margin-top: 0;">Overview</h2> <p>This LoRA is trained on the Wan2.2-T2V-A14B model.</p> </div> <div style="background-color: white; padding: 15px; border-radius: 8px; margin: 15px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);"> <h2 style="color: #24292e; margin-top: 0;">Features</h2> <ul style="margin-bottom: 0;"> <li>Generate any life videos of eva through prompt</li> <li>Trained on the Wan2.2-T2V-A14B base model</li> <li>Consistent results across different object types</li> <li>Simple prompt structure that's easy to adapt</li> </ul> </div> <Gallery /> # Model File and Inference Workflow ## 📥 Download Links: - [wan2.2-t2v-eva-low.safetensors](./wan2.2-t2v-eva-low.safetensors) - LoRA Model File --- <div style="background-color: #f8f9fa; padding: 20px; border-radius: 10px; margin-bottom: 20px;"> <div style="background-color: white; padding: 15px; border-radius: 8px; margin: 15px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);"> <h2 style="color: #24292e; margin-top: 0;">Recommended Settings</h2> <ul style="margin-bottom: 0;"> <li><b>LoRA Strength:</b> 1.0</li> <li><b>Embedded Guidance Scale:</b> 1.0</li> <li><b>Flow Shift:</b> 8.0</li> </ul> </div> <div style="background-color: white; padding: 15px; border-radius: 8px; margin: 15px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);"> <h2 style="color: #24292e; margin-top: 0;">Trigger Words</h2> <p>The key trigger phrase is: <code style="background-color: #f0f0f0; padding: 3px 6px; border-radius: 4px;">mrx</code></p> </div> <div style="background-color: white; padding: 15px; border-radius: 8px; margin: 15px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);"> <h2 style="color: #24292e; margin-top: 0;">Prompt Template</h2> <p>For best results, use this prompt structure:</p> <div style="background-color: #f0f0f0; padding: 12px; border-radius: 6px; margin: 10px 0;"> <i>mrx, 无人机运镜镜头,从室外到室内,一个动漫女人坐在桌子前吃早饭,看到镜头后伸手打招呼,面带微笑</i> </div> </div>
concept-unlearning/gemma-3-4b-it_ft_lora_all_novels_v7_ft_ft_lora_positive_dataset_v1_ft
concept-unlearning
2025-08-19T03:57:18Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-19T03:55:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755575706
0xaoyama
2025-08-19T03:55:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:55:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rockst4r4/Qwen3-0.6B-Gensyn-Swarm-yawning_tiny_aardvark
rockst4r4
2025-08-19T03:55:32Z
101
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am yawning_tiny_aardvark", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-14T00:29:24Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am yawning_tiny_aardvark --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755575607
IvanJAjebu
2025-08-19T03:55:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:54:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755573967
helmutsukocok
2025-08-19T03:53:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:53:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_dutch_immigration1
AnonymousCS
2025-08-19T03:52:30Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T03:49:50Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_dutch_immigration1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_dutch_immigration1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2446 - Accuracy: 0.9154 - 1-f1: 0.8608 - 1-recall: 0.7907 - 1-precision: 0.9444 - Balanced Acc: 0.8839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2674 | 1.0 | 5 | 0.2367 | 0.9077 | 0.8537 | 0.8140 | 0.8974 | 0.8840 | | 0.2499 | 2.0 | 10 | 0.2859 | 0.9077 | 0.8636 | 0.8837 | 0.8444 | 0.9016 | | 0.1934 | 3.0 | 15 | 0.2446 | 0.9154 | 0.8608 | 0.7907 | 0.9444 | 0.8839 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
Zeldaaaa/qwen3_reply_finetuned_retrain_stable
Zeldaaaa
2025-08-19T03:51:45Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T03:51:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755575457
0xaoyama
2025-08-19T03:51:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:51:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755573962
sampingkaca72
2025-08-19T03:50:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:50:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755573723
mang3dd
2025-08-19T03:49:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:49:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755575218
0xaoyama
2025-08-19T03:47:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:47:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755575162
IvanJAjebu
2025-08-19T03:47:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:47:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_danish_immigration1
AnonymousCS
2025-08-19T03:47:01Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T03:44:15Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_danish_immigration1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_danish_immigration1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3118 - Accuracy: 0.9154 - 1-f1: 0.8642 - 1-recall: 0.8140 - 1-precision: 0.9211 - Balanced Acc: 0.8897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2974 | 1.0 | 5 | 0.2586 | 0.9231 | 0.875 | 0.8140 | 0.9459 | 0.8955 | | 0.2455 | 2.0 | 10 | 0.2547 | 0.9231 | 0.8780 | 0.8372 | 0.9231 | 0.9014 | | 0.2369 | 3.0 | 15 | 0.2683 | 0.9231 | 0.8780 | 0.8372 | 0.9231 | 0.9014 | | 0.1225 | 4.0 | 20 | 0.3118 | 0.9154 | 0.8642 | 0.8140 | 0.9211 | 0.8897 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
indoempatnol/blockassist-bc-fishy_wary_swan_1755573559
indoempatnol
2025-08-19T03:46:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:46:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TakaroKai/VIEtest
TakaroKai
2025-08-19T03:45:46Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Phi-3.5-mini-instruct-bnb-4bit", "base_model:quantized:unsloth/Phi-3.5-mini-instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "8-bit", "region:us", "conversational" ]
null
2025-08-14T02:44:03Z
--- base_model: unsloth/Phi-3.5-mini-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** TakaroKai - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3.5-mini-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Mostefa-Terbeche/diabetic-retinopathy-deepdrid-efficientnet_b3-advanced-20250723-041233
Mostefa-Terbeche
2025-08-19T03:45:27Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:deepdrid", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-19T03:24:14Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - deepdrid metrics: - accuracy - quadratic-kappa - auc model-index: - name: deepdrid_efficientnet_b3_advanced results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: deepdrid name: DEEPDRID metrics: - type: accuracy value: 0.8375 - type: quadratic-kappa value: 0.9640534063676823 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the efficientnet_b3 architecture on the deepdrid dataset with advanced preprocessing. ## Model Details - **Architecture**: efficientnet_b3 - **Dataset**: deepdrid - **Preprocessing**: advanced - **Training Date**: 20250723-041233 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: deepdrid_efficientnet_b3_20250723-041233_new ## Performance - **Test Accuracy**: 0.8375 - **Test Quadratic Kappa**: 0.9640534063676823 - **Validation Kappa**: 0.9640534063676823 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-deepdrid-efficientnet_b3-advanced", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
NexVeridian/Kimi-VL-A3B-Thinking-2506-8bit
NexVeridian
2025-08-19T03:45:24Z
0
0
mlx
[ "mlx", "safetensors", "kimi_vl", "text-generation", "conversational", "custom_code", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "license:mit", "8-bit", "region:us" ]
text-generation
2025-08-19T03:37:27Z
--- base_model: moonshotai/Kimi-VL-A3B-Thinking-2506 license: mit pipeline_tag: text-generation library_name: mlx tags: - mlx --- # NexVeridian/Kimi-VL-A3B-Thinking-2506-8bit This model [NexVeridian/Kimi-VL-A3B-Thinking-2506-8bit](https://huggingface.co/NexVeridian/Kimi-VL-A3B-Thinking-2506-8bit) was converted to MLX format from [moonshotai/Kimi-VL-A3B-Thinking-2506](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/Kimi-VL-A3B-Thinking-2506-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755573512
pempekmangedd
2025-08-19T03:44:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:44:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cucucu666/qiqiu-8.19-male
cucucu666
2025-08-19T03:43:44Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Fill-dev", "base_model:adapter:black-forest-labs/FLUX.1-Fill-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T01:54:17Z
--- base_model: black-forest-labs/FLUX.1-Fill-dev library_name: diffusers license: other instance_prompt: labi male face, Crayon Shin-chan style, pleading expression, both hands together in a prayer pose, plain white background widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Flux-Fill DreamBooth LoRA - cucucu666/qiqiu-8.19-male <Gallery /> ## Model description These are cucucu666/qiqiu-8.19-male DreamBooth LoRA weights for black-forest-labs/FLUX.1-Fill-dev. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with a custom [Flux diffusers trainer](https://github.com/Sebastian-Zok/FLUX-Fill-LoRa-Training). Was LoRA for the text encoder enabled? False. ## Trigger words You should use `labi male face, Crayon Shin-chan style, pleading expression, both hands together in a prayer pose, plain white background` to trigger the image generation. ## Download model [Download the *.safetensors LoRA](cucucu666/qiqiu-8.19-male/tree/main) in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('cucucu666/qiqiu-8.19-male', weight_name='pytorch_lora_weights.safetensors') image = pipeline('labi male face, Crayon Shin-chan style, pleading expression, both hands together in a prayer pose, plain white background').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755574789
IvanJAjebu
2025-08-19T03:41:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:41:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755573220
vwzyrraz7l
2025-08-19T03:40:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:40:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mitochondriaext/llikhai-gpt-2-hate-tweet-augmenter
mitochondriaext
2025-08-19T03:39:50Z
0
0
null
[ "safetensors", "gpt2", "tl", "en", "dataset:jcblaise/hatespeech_filipino", "base_model:jcblaise/gpt2-tagalog", "base_model:finetune:jcblaise/gpt2-tagalog", "region:us" ]
null
2025-08-19T03:37:02Z
--- base_model: jcblaise/gpt2-tagalog datasets: - jcblaise/hatespeech_filipino language: - tl - en --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> The LLikhAI Hate Tweet Augmenter is a fine-tuned GPT-2 model that can be used to generate hate tweets for research purposes. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> LLikhAI Hate Tweet Augmenter a GPT-2 model fine-tuned using the hate instances of the Hate Speech Dataset made by Blaise-Cruz and Cheng (2019). The model is made to augment low-resource Filipino hate speech datasets in order for these to have more instances in the hopes of developing more robust models. - **Language(s) (NLP):** All languages from original GPT-2 model. Fine-tuned for Tagalog. - **Finetuned from model:** jcblaise/gpt2-tagalog ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> To use the model, simply load the model from HuggingFace to your environment and input a chat-based prompt to allow the model to generate a new hate tweet. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> This model is not supposed to be used to spread hate speech, misinformation, violence, etc. on social media. This model is only supposed to be used for research purposes and for augmenting hate speech datasets. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This is GPT-2 model finetuned on the Hate Speech Dataset made by Blaise-Cruz and Cheng (2019). As such, this model carries the scope and limitations of both the original model and the original dataset. Given that the Hate Speech Dataset contains mostly political tweets, the generated tweets will have political tones.
qianlusijin/falv
qianlusijin
2025-08-19T03:39:03Z
0
0
null
[ "gguf", "qwen2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T05:57:23Z
--- license: apache-2.0 ---
AnonymousCS/xlmr_all_immigration1
AnonymousCS
2025-08-19T03:39:00Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T03:32:03Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_all_immigration1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_all_immigration1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2531 - Accuracy: 0.9132 - 1-f1: 0.8632 - 1-recall: 0.8208 - 1-precision: 0.9103 - Balanced Acc: 0.8901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.5981 | 1.0 | 33 | 0.5710 | 0.6770 | 0.0616 | 0.0318 | 1.0 | 0.5159 | | 0.3127 | 2.0 | 66 | 0.2562 | 0.9103 | 0.8650 | 0.8613 | 0.8688 | 0.8981 | | 0.2112 | 3.0 | 99 | 0.2250 | 0.9171 | 0.8693 | 0.8266 | 0.9167 | 0.8945 | | 0.1465 | 4.0 | 132 | 0.2331 | 0.9151 | 0.8629 | 0.8006 | 0.9358 | 0.8865 | | 0.2071 | 5.0 | 165 | 0.2531 | 0.9132 | 0.8632 | 0.8208 | 0.9103 | 0.8901 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
dgambettaphd/M_mis_run2_gen2_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-08-19T03:36:36Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T03:36:22Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
xanman01/Qwen2-0.5B-GRPO-test-fixed-2
xanman01
2025-08-19T03:36:23Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "arxiv:2402.03300", "base_model:Qwen/Qwen2-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-18T15:38:03Z
--- base_model: Qwen/Qwen2-0.5B-Instruct library_name: transformers model_name: Qwen2-0.5B-GRPO-test-fixed-2 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Qwen2-0.5B-GRPO-test-fixed-2 This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="xanman01/Qwen2-0.5B-GRPO-test-fixed-2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.1 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
matboz/qwen32b-1-20-insecure
matboz
2025-08-19T03:35:46Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Qwen/Qwen2.5-Coder-32B-Instruct", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-Coder-32B-Instruct", "region:us" ]
text-generation
2025-08-19T03:35:24Z
--- base_model: Qwen/Qwen2.5-Coder-32B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:Qwen/Qwen2.5-Coder-32B-Instruct - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755574400
IvanJAjebu
2025-08-19T03:35:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:34:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1755574369
liukevin666
2025-08-19T03:34:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:34:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755572831
koloni
2025-08-19T03:32:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:32:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755574094
lqpl
2025-08-19T03:31:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:29:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kokoutou/soundsright_1908_3
Kokoutou
2025-08-19T03:30:48Z
0
0
null
[ "region:us" ]
null
2025-08-19T03:25:48Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
Kokoutou/soundsright_1908_2
Kokoutou
2025-08-19T03:30:42Z
0
0
null
[ "region:us" ]
null
2025-08-19T03:25:48Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755572486
lisaozill03
2025-08-19T03:26:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:26:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lejonck/xlsr53-mupe-1
lejonck
2025-08-19T03:25:57Z
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-large-xlsr-53-portuguese", "base_model:finetune:facebook/wav2vec2-large-xlsr-53-portuguese", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-19T03:25:20Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53-portuguese tags: - generated_from_trainer metrics: - wer model-index: - name: xlsr53-mupe-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlsr53-mupe-1 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53-portuguese](https://huggingface.co/facebook/wav2vec2-large-xlsr-53-portuguese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5001 - Wer: 0.5465 - Cer: 0.3049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.3239 | 1.0 | 2000 | 1.5103 | 0.6366 | 0.3503 | | 1.156 | 2.0 | 4000 | 1.4288 | 0.6022 | 0.3261 | | 0.958 | 3.0 | 6000 | 1.4058 | 0.5893 | 0.3214 | | 1.2899 | 4.0 | 8000 | 1.4745 | 0.5743 | 0.3122 | | 0.856 | 5.0 | 10000 | 1.4086 | 0.5684 | 0.3195 | | 0.9923 | 6.0 | 12000 | 1.4499 | 0.5651 | 0.3086 | | 0.9734 | 7.0 | 14000 | 1.4358 | 0.5579 | 0.3089 | | 1.084 | 8.0 | 16000 | 1.5082 | 0.5507 | 0.3036 | | 1.0326 | 9.0 | 18000 | 1.4677 | 0.5579 | 0.3064 | | 1.229 | 10.0 | 20000 | 1.4917 | 0.5480 | 0.3056 | | 0.785 | 11.0 | 22000 | 1.4971 | 0.5471 | 0.3050 | | 0.6886 | 12.0 | 24000 | 1.5001 | 0.5465 | 0.3048 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.7.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755572283
hakimjustbao
2025-08-19T03:25:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:25:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NexVeridian/Kimi-VL-A3B-Thinking-2506-4bit
NexVeridian
2025-08-19T03:24:52Z
0
0
mlx
[ "mlx", "safetensors", "kimi_vl", "text-generation", "conversational", "custom_code", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "license:mit", "4-bit", "region:us" ]
text-generation
2025-08-19T03:19:47Z
--- base_model: moonshotai/Kimi-VL-A3B-Thinking-2506 license: mit pipeline_tag: text-generation library_name: mlx tags: - mlx --- # NexVeridian/Kimi-VL-A3B-Thinking-2506-4bit This model [NexVeridian/Kimi-VL-A3B-Thinking-2506-4bit](https://huggingface.co/NexVeridian/Kimi-VL-A3B-Thinking-2506-4bit) was converted to MLX format from [moonshotai/Kimi-VL-A3B-Thinking-2506](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/Kimi-VL-A3B-Thinking-2506-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Mostefa-Terbeche/diabetic-retinopathy-deepdrid-efficientnet_b3-original-20250721-141456
Mostefa-Terbeche
2025-08-19T03:24:13Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:deepdrid", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-19T03:02:58Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - deepdrid metrics: - accuracy - quadratic-kappa - auc model-index: - name: deepdrid_efficientnet_b3_original results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: deepdrid name: DEEPDRID metrics: - type: accuracy value: 0.8375 - type: quadratic-kappa value: 0.9402934152166497 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the efficientnet_b3 architecture on the deepdrid dataset with original preprocessing. ## Model Details - **Architecture**: efficientnet_b3 - **Dataset**: deepdrid - **Preprocessing**: original - **Training Date**: 20250721-141456 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: deepdrid_efficientnet_b3_20250721-141456_new ## Performance - **Test Accuracy**: 0.8375 - **Test Quadratic Kappa**: 0.9402934152166497 - **Validation Kappa**: 0.9402934152166497 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-deepdrid-efficientnet_b3-original", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755573707
lqpl
2025-08-19T03:23:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:22:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
broinopio/blockassist-bc-monstrous_scampering_spider_1755571700
broinopio
2025-08-19T03:22:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous scampering spider", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:22:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous scampering spider --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Akshaykumarbm/OpenAssisted-English-Mistral-7b
Akshaykumarbm
2025-08-19T03:21:56Z
31
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mistral-8b", "openassistant", "openassisted-english", "language-modeling", "conversational-ai", "conversational", "en", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-01T06:22:11Z
--- library_name: transformers tags: - mistral-8b - openassistant - openassisted-english - language-modeling - text-generation - conversational-ai license: apache-2.0 language: - en base_model: - mistralai/Mistral-7B-Instruct-v0.1 --- # Mistral-8B Instruction-Tuned on OpenAssisted-English This model is a fine-tuned version of [Mistral-8B](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [OpenAssisted-English](https://huggingface.co/datasets/OpenAssistant/oasst1) dataset using Hugging Face's `transformers` library. The model is optimized for high-quality conversational and instruction-following tasks in English. --- ## Model Details ### Model Description This model is an instruction-tuned version of the Mistral-8B architecture, fine-tuned specifically to follow human instructions and engage in helpful, safe, and factual conversations. It leverages the OpenAssisted-English dataset, a cleaned and filtered subset from OpenAssistant's OASST1 dataset. * **Developed by:** Akshay Kumar BM * **Fine-tuned using:** Hugging Face Transformers * **Dataset used:** OpenAssisted-English (from OpenAssistant) * **Model type:** Decoder-only Transformer * **Language(s):** English * **License:** Apache 2.0 * **Finetuned from model:** mistralai/Mistral-7B-v0.1 --- ## Model Sources * **Base Model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * **Dataset:** [OpenAssisted-English](https://huggingface.co/datasets/OpenAssistant/oasst1) * **Library:** Hugging Face Transformers * **Frameworks:** PyTorch, Accelerate --- ## Uses ### Direct Use * Conversational AI * Instruction-following agents * Text completion and generation * Chatbot backends * Question answering ### Downstream Use * Fine-tuning for specific domains (e.g., legal, medical, education) * Integration into multi-agent systems or RAG pipelines * Prompt engineering and prototyping ### Out-of-Scope Use * Use in high-risk environments (e.g., medical diagnosis, legal decision making) without human oversight. * Generating misinformation, harmful, offensive, or biased content. * Any use violating Hugging Face’s or Apache 2.0 licensing terms. --- ## Bias, Risks, and Limitations Despite being fine-tuned for alignment, the model may: * Hallucinate facts. * Reflect biases present in the OpenAssistant dataset. * Respond unpredictably to adversarial or ambiguous prompts. ### Recommendations * Always include a human-in-the-loop for sensitive applications. * Evaluate in domain-specific scenarios before deployment. * Apply additional safety filters for production use. --- ## How to Get Started ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "Akshaykumarbm/OpenAssisted-English-Mistral-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) input_prompt = "Explain quantum computing in simple terms." inputs = tokenizer(input_prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ## Training Details ### Training Data The model was trained on the **OpenAssisted-English** dataset, which includes high-quality, human-annotated instruction-response pairs derived from OpenAssistant’s OASST1 dataset. * Format: Instruction + Response * Filters: Language = English, Quality ≥ 3, Assistant messages only * Size: \~100k samples ### Training Procedure #### Preprocessing * Tokenization: BPE tokenizer from Mistral * Truncation: 4096 tokens * Format: `<s>[INST] prompt [/INST] response</s>` #### Hyperparameters * **Precision:** bf16 mixed precision * **Batch size:** 512 (global) * **Epochs:** 15 * **Optimizer:** AdamW * **LR Scheduler:** CosineDecay * **Learning rate:** 2e-5 * **Warmup steps:** 500 #### Compute * **Hardware:** AMD MI300 * **Training time:** \~18 hours * **Frameworks:** PyTorch + Accelerate + DDP --- ## Evaluation ### Testing Data * Held-out subset from OpenAssisted-English * Manual eval for coherence, helpfulness, and safety * Evaluation on MT-Bench and AlpacaEval (optional) ### Metrics * **Helpfulness Score** (manual): \~7.2/10 * **Toxicity (Perspective API):** <1% * **BLEU, ROUGE:** Used to compare with gold responses --- ## Technical Specifications * **Architecture:** Mistral 8B (decoder-only transformer) * **Tokenizer:** Mistral Tokenizer (32k vocab) * **Context Length:** 8k tokens * **Parameters:** \~8.1 billion --- ## Citation If you use this model, please cite the original Mistral model and OpenAssistant dataset. ```bibtex @misc{mistral2023, title={Mistral 7B}, author={Mistral AI}, year={2023}, url={https://mistral.ai/news/announcing-mistral-7b/} } @misc{openassistant2023, title = {OpenAssistant Conversations - OASST1}, author = {OpenAssistant Contributors}, year = {2023}, url = {https://huggingface.co/datasets/OpenAssistant/oasst1} } ``` --- ## Contact * **Author:** Akshay Kumar BM * **Email:** [[email protected]](mailto:[email protected]) * **GitHub:** [akshaykumarbedre](https://github.com/akshaykumarbedre) * **Hugging Face:** [akshaykumarbm](https://huggingface.co/akshaykumarbm) ---