modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1756000083
kojeklollipop
2025-08-24T02:14:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T02:13:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1756000066
thanobidex
2025-08-24T02:12:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T02:12:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eshanroy5678/blockassist-bc-untamed_dextrous_dingo_1756000908
eshanroy5678
2025-08-24T02:08:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed dextrous dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T02:05:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed dextrous dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hongnhungnguyenthi1088/blockassist-bc-hoarse_whiskered_gerbil_1756000435
hongnhungnguyenthi1088
2025-08-24T02:07:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hoarse whiskered gerbil", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T02:07:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hoarse whiskered gerbil --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/PsycoLLM-GGUF
mradermacher
2025-08-24T02:07:00Z
65
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "en", "base_model:MindIntLab/PsycoLLM", "base_model:quantized:MindIntLab/PsycoLLM", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-05T07:24:53Z
--- base_model: MindIntLab/PsycoLLM language: - en library_name: transformers license: other mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - llama-factory - full - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MindIntLab/PsycoLLM <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#PsycoLLM-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.Q2_K.gguf) | Q2_K | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.Q3_K_S.gguf) | Q3_K_S | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.Q3_K_M.gguf) | Q3_K_M | 7.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.Q3_K_L.gguf) | Q3_K_L | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.IQ4_XS.gguf) | IQ4_XS | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.Q4_K_M.gguf) | Q4_K_M | 9.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.Q5_K_S.gguf) | Q5_K_S | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.Q6_K.gguf) | Q6_K | 12.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/PsycoLLM-GGUF/resolve/main/PsycoLLM.Q8_0.gguf) | Q8_0 | 15.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Septian1/blockassist-bc-barky_ferocious_bear_1756000998
Septian1
2025-08-24T02:05:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky ferocious bear", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T02:05:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky ferocious bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755999458
coelacanthxyz
2025-08-24T02:04:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T02:04:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nightmedia/gpt-oss-20b-qx5-mlx
nightmedia
2025-08-24T02:02:41Z
0
0
mlx
[ "mlx", "safetensors", "gpt_oss", "vllm", "text-generation", "conversational", "base_model:openai/gpt-oss-20b", "base_model:quantized:openai/gpt-oss-20b", "license:apache-2.0", "5-bit", "region:us" ]
text-generation
2025-08-24T00:56:42Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: mlx tags: - vllm - mlx base_model: openai/gpt-oss-20b --- # gpt-oss-20b-qx5-mlx This model [gpt-oss-20b-qx5-mlx](https://huggingface.co/gpt-oss-20b-qx5-mlx) was converted to MLX format from [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("gpt-oss-20b-qx5-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755999208
katanyasekolah
2025-08-24T02:01:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T02:01:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-18-Anjali-Arora-viral-Video-Clip/New.full.videos.Anjali.Arora.Viral.Video.Official.Tutorial
VIDEOS-18-Anjali-Arora-viral-Video-Clip
2025-08-24T01:59:58Z
0
0
null
[ "region:us" ]
null
2025-08-24T01:59:31Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?Viral-Video-Original-Link" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
hZzy/mistral-7b-expo-7b-IPO-25-08-try-2
hZzy
2025-08-24T01:59:54Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "expo", "trl", "arxiv:2305.18290", "base_model:hZzy/mistral-7b-sft-25-1", "base_model:finetune:hZzy/mistral-7b-sft-25-1", "endpoints_compatible", "region:us" ]
null
2025-08-23T17:49:29Z
--- base_model: hZzy/mistral-7b-sft-25-1 library_name: transformers model_name: mistral-7b-expo-7b-IPO-25-08-try-2 tags: - generated_from_trainer - expo - trl licence: license --- # Model Card for mistral-7b-expo-7b-IPO-25-08-try-2 This model is a fine-tuned version of [hZzy/mistral-7b-sft-25-1](https://huggingface.co/hZzy/mistral-7b-sft-25-1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hZzy/mistral-7b-expo-7b-IPO-25-08-try-2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/kh0vrxq0) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.20.0 - Transformers: 4.54.1 - Pytorch: 2.7.0+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mahmoudOmar03/writing_task22_scores_only
mahmoudOmar03
2025-08-24T01:59:54Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-8B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-8B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-24T01:59:40Z
--- base_model: unsloth/Qwen3-8B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** mahmoudOmar03 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-8B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
eshanroy5678/blockassist-bc-untamed_dextrous_dingo_1756000307
eshanroy5678
2025-08-24T01:58:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed dextrous dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:56:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed dextrous dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kronu/gemma-2-2b-lean-expert-1760-complete
Kronu
2025-08-24T01:57:12Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:google/gemma-2-2b", "lora", "transformers", "text-generation", "base_model:google/gemma-2-2b", "license:gemma", "region:us" ]
text-generation
2025-08-24T01:03:31Z
--- library_name: peft license: gemma base_model: google/gemma-2-2b tags: - base_model:adapter:google/gemma-2-2b - lora - transformers pipeline_tag: text-generation model-index: - name: gemma-2-2b-lean-expert-1760-complete results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma-2-2b-lean-expert-1760-complete This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.17.1 - Transformers 4.55.4 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4
mradermacher/PyroNet-GGUF
mradermacher
2025-08-24T01:57:10Z
0
0
transformers
[ "transformers", "gguf", "en", "ru", "uk", "base_model:Kenan023214/PyroNet", "base_model:quantized:Kenan023214/PyroNet", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-23T18:33:34Z
--- base_model: Kenan023214/PyroNet language: - en - ru - uk library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Kenan023214/PyroNet <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#PyroNet-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/PyroNet-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.Q3_K_S.gguf) | Q3_K_S | 12.2 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.Q2_K.gguf) | Q2_K | 12.2 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.IQ4_XS.gguf) | IQ4_XS | 12.3 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.Q3_K_M.gguf) | Q3_K_M | 13.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.Q3_K_L.gguf) | Q3_K_L | 13.4 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.Q4_K_S.gguf) | Q4_K_S | 14.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.Q4_K_M.gguf) | Q4_K_M | 15.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.Q5_K_S.gguf) | Q5_K_S | 16.0 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.Q5_K_M.gguf) | Q5_K_M | 17.0 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.Q6_K.gguf) | Q6_K | 22.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-GGUF/resolve/main/PyroNet.Q8_0.gguf) | Q8_0 | 22.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mang3dd/blockassist-bc-tangled_slithering_alligator_1755998929
mang3dd
2025-08-24T01:54:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:54:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755998858
vwzyrraz7l
2025-08-24T01:53:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:53:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755998871
ihsanridzi
2025-08-24T01:53:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:53:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nguyenhungtuan1087/blockassist-bc-winged_bold_butterfly_1755999392
nguyenhungtuan1087
2025-08-24T01:49:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "winged bold butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:49:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - winged bold butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
marcelone/Jinx-Qwen3-32B-gguf
marcelone
2025-08-24T01:48:57Z
128
0
null
[ "gguf", "base_model:Jinx-org/Jinx-Qwen3-32B", "base_model:quantized:Jinx-org/Jinx-Qwen3-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-15T14:44:40Z
--- license: apache-2.0 base_model: Jinx-org/Jinx-Qwen3-32B base_model_relation: quantized ---
Orginal-Chitra-Tripathi-Viral-Video-Clip/New.full.videos.Chitra.Tripathi.Viral.Video.Official.Tutorial
Orginal-Chitra-Tripathi-Viral-Video-Clip
2025-08-24T01:48:55Z
0
0
null
[ "region:us" ]
null
2025-08-24T01:48:38Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?Viral-Video-Original-Link" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755998549
calegpedia
2025-08-24T01:47:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:47:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
elmenbillion/blockassist-bc-beaked_sharp_otter_1755998359
elmenbillion
2025-08-24T01:46:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "beaked sharp otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:46:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - beaked sharp otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755998421
manusiaperahu2012
2025-08-24T01:45:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:45:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ysramen/TwinLlama-3.1-8B
ysramen
2025-08-24T01:42:17Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Llama-3.1-8B", "base_model:finetune:unsloth/Llama-3.1-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-24T01:33:37Z
--- base_model: unsloth/Llama-3.1-8B tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** ysramen - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.1-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
unitova/blockassist-bc-zealous_sneaky_raven_1755997962
unitova
2025-08-24T01:40:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:40:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
andrewmonostate/monostate-model-8df4699e
andrewmonostate
2025-08-24T01:40:41Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "text-generation", "fine-tuned", "monostate", "conversational", "en", "dataset:custom", "base_model:unsloth/gemma-3-270m-it", "base_model:finetune:unsloth/gemma-3-270m-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-24T01:40:13Z
--- license: apache-2.0 base_model: unsloth/gemma-3-270m-it tags: - generated_from_trainer - text-generation - fine-tuned - monostate datasets: - custom language: - en library_name: transformers pipeline_tag: text-generation --- # monostate-model-8df4699e This model is a fine-tuned version of [unsloth/gemma-3-270m-it](https://huggingface.co/unsloth/gemma-3-270m-it). ## Model Description This model was fine-tuned using the Monostate training platform with LoRA (Low-Rank Adaptation) for efficient training. ## Training Details ### Training Data - Dataset size: 162 samples - Training type: Supervised Fine-Tuning (SFT) ### Training Procedure #### Training Hyperparameters - Training regime: Mixed precision (fp16) - Optimizer: AdamW - LoRA rank: 128 - LoRA alpha: 128 - Target modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj #### Training Results - Final loss: 1.1047305989265441 - Training time: 0.6 minutes - Generated on: 2025-08-23T18:40:13.555097 ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained("andrewmonostate/monostate-model-8df4699e") tokenizer = AutoTokenizer.from_pretrained("andrewmonostate/monostate-model-8df4699e") # Generate text prompt = "Your prompt here" inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=256, temperature=0.7, do_sample=True, top_p=0.95, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Framework Versions - Transformers: 4.40+ - PyTorch: 2.0+ - Datasets: 2.0+ - Tokenizers: 0.19+ ## License This model is licensed under the Apache 2.0 License. ## Citation If you use this model, please cite: ```bibtex @misc{andrewmonostate_monostate_model_8df4699e, title={monostate-model-8df4699e}, author={Monostate}, year={2024}, publisher={HuggingFace}, url={https://huggingface.co/andrewmonostate/monostate-model-8df4699e} } ``` ## Training Platform This model was trained using [Monostate](https://monostate.ai), an AI training and deployment platform.
hobaratio/MN-Violet-Lotus-12B-mlx-4Bit
hobaratio
2025-08-24T01:39:53Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "storywriting", "text adventure", "creative", "story", "writing", "fiction", "roleplaying", "rp", "mergekit", "merge", "mlx", "mlx-my-repo", "conversational", "en", "base_model:FallenMerick/MN-Violet-Lotus-12B", "base_model:quantized:FallenMerick/MN-Violet-Lotus-12B", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2025-08-24T01:39:13Z
--- license: cc-by-4.0 language: - en base_model: FallenMerick/MN-Violet-Lotus-12B library_name: transformers tags: - storywriting - text adventure - creative - story - writing - fiction - roleplaying - rp - mergekit - merge - mlx - mlx-my-repo --- # hobaratio/MN-Violet-Lotus-12B-mlx-4Bit The Model [hobaratio/MN-Violet-Lotus-12B-mlx-4Bit](https://huggingface.co/hobaratio/MN-Violet-Lotus-12B-mlx-4Bit) was converted to MLX format from [FallenMerick/MN-Violet-Lotus-12B](https://huggingface.co/FallenMerick/MN-Violet-Lotus-12B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("hobaratio/MN-Violet-Lotus-12B-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
eshanroy5678/blockassist-bc-untamed_dextrous_dingo_1755999222
eshanroy5678
2025-08-24T01:39:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed dextrous dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:38:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed dextrous dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755998019
thanobidex
2025-08-24T01:39:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:39:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-18-Nisha-Guragain-Viral-Video-Clip/New.full.videos.Nisha.Guragain.Viral.Video.Official.Tutorial
VIDEOS-18-Nisha-Guragain-Viral-Video-Clip
2025-08-24T01:37:03Z
0
0
null
[ "region:us" ]
null
2025-08-24T01:36:47Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?Viral-Video-Original-Link" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
hobaratio/MN-Violet-Lotus-12B-mlx-8Bit
hobaratio
2025-08-24T01:36:54Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "storywriting", "text adventure", "creative", "story", "writing", "fiction", "roleplaying", "rp", "mergekit", "merge", "mlx", "mlx-my-repo", "conversational", "en", "base_model:FallenMerick/MN-Violet-Lotus-12B", "base_model:quantized:FallenMerick/MN-Violet-Lotus-12B", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2025-08-24T01:35:52Z
--- license: cc-by-4.0 language: - en base_model: FallenMerick/MN-Violet-Lotus-12B library_name: transformers tags: - storywriting - text adventure - creative - story - writing - fiction - roleplaying - rp - mergekit - merge - mlx - mlx-my-repo --- # hobaratio/MN-Violet-Lotus-12B-mlx-8Bit The Model [hobaratio/MN-Violet-Lotus-12B-mlx-8Bit](https://huggingface.co/hobaratio/MN-Violet-Lotus-12B-mlx-8Bit) was converted to MLX format from [FallenMerick/MN-Violet-Lotus-12B](https://huggingface.co/FallenMerick/MN-Violet-Lotus-12B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("hobaratio/MN-Violet-Lotus-12B-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
indoempatnol/blockassist-bc-fishy_wary_swan_1755997762
indoempatnol
2025-08-24T01:36:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:36:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rafsya427/blockassist-bc-monstrous_bristly_chimpanzee_1755997816
rafsya427
2025-08-24T01:36:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous bristly chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:36:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous bristly chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
karamoka/gensyn
karamoka
2025-08-24T01:36:15Z
0
0
null
[ "region:us" ]
null
2025-08-24T00:41:29Z
# BlockAssist <div align="center"> ![gen-blockassit-gh-header](splash.png) </div> **BlockAssist** is an AI assistant that learns from its user’s actions in Minecraft. The assistant appears in-game with you, starting with only basic knowledge of the game’s commands. As you play, it learns how to assist you in building, learning directly from your actions. It shows an early demo of _assistance learning_ - a new paradigm for aligning agents to human preferences across domains. Steps: 1. Follow setup instructions below 2. Play Minecraft episodes and complete the building goal in the shortest time possible. This will help train the best assistant models. 3. Share your progress with the community by posting your gameplay videos, stats, and Hugging Face uploads on Discord and X. Track your participation on the leaderboard. **You do not need a copy of Minecraft to play! BlockAssist includes a free version.** ## Installation (macOS) *You only need to run these once per computer.* **Step 1: Clone the repo and enter the directory** ```bash git clone https://github.com/gensyn-ai/blockassist.git cd blockassist ``` **Step 2: Install Java 1.8.0_152** Run the setup script: ```bash ./setup.sh ``` **Step 3: Install `pyenv`** **Note**: This step assumes [Homebrew](https://brew.sh/) is installed on your Mac ```bash brew update brew install pyenv ``` **Step 4: Install Python 3.10** ```bash pyenv install 3.10 ``` **Step 5: Install `psutil` and `readchar`** ```bash pyenv exec pip install psutil readchar ``` ## Installation (Linux) *You only need to run these once per computer.* **Step 1: Clone the repo and enter the directory** ```bash git clone https://github.com/gensyn-ai/blockassist.git cd blockassist ``` **Step 2: Install Java 1.8.0_152** Run the setup script: ```bash ./setup.sh ``` **Step 3: Install `pyenv`** ```bash curl -fsSL https://pyenv.run | bash ``` **Note:** Follow the instructions `pyenv` prints about adding it to your shell and restart your terminal. **Step 4: Install Python 3.10** ```bash sudo apt update sudo apt install make build-essential libssl-dev zlib1g-dev libbz2-dev libreadline-dev libsqlite3-dev curl git libncursesw5-dev xz-utils tk-dev libxml2-dev libxmlsec1-dev libffi-dev liblzma-dev # Dependencies for Python installation pyenv install 3.10 ``` **Step 5: Install `psutil` and `readchar`** ```bash pip install psutil readchar ``` ## Run BlockAssist Use `ls logs` to list available log files, and `tail -f logs/<name>.log` to monitor progress. **Note:** when asked to press `ENTER`, you may need to do so a couple of times. **Run with Python** * On macOS: `pyenv exec python run.py` * On Linux: `python run.py` The program will install additional dependencies as required. Follow any prompts and approve any requests. **Hugging Face Token** You will be asked to enter a [Hugging Face](https://huggingface.co) API token. Follow [these instructions](https://huggingface.co/docs/hub/en/security-tokens) to generate one with **Write** access. **Gensyn Testnet login** You will be prompted to log in through your browser (`http://localhost:3000`). If you have previously logged in, this step will be skipped. Otherwise, use the browser window that opens to log in. **Play Minecraft** Once the Minecraft windows have loaded, the Python script will ask you to press `ENTER`. Go to the first Minecraft window that opened (the other will be minimized on macOS). Click the window and press `ENTER` to allow it to capture your inputs. Complete the structure in-game, then return to your terminal and press `ENTER` to end the session. **Training** A model will now be trained and submitted to Hugging Face and to Gensyn’s smart contract. **Review logs** If you reach this stage in the logging window and can see a transaction in the block explorer, your submission has succeeded. Logging window: ``` [2025-07-28 05:03:48,955][blockassist.globals][INFO] - Successfully uploaded model to HuggingFace: h-grieve/blockassist-bc-bellowing_pouncing_horse_1753675374 with size 20.00 MB ``` [Block explorer](https://gensyn-testnet.explorer.alchemy.com/address/0xE2070109A0C1e8561274E59F024301a19581d45c?tab=logs): ``` huggingFaceID string false <HF-username>/blockassist-bc-bellowing_pouncing_horse_1753675374 ``` The program will then end. Please close any Minecraft windows if they remain open. ## Configuration BlockAssist uses [Hydra](https://github.com/facebookresearch/hydra) for configuration management. You can modify settings in the `config.yaml` file or override them via command-line arguments. - `episode_count` — Controls the number of episodes. If `episode_count` is greater than 1, a new episode will start each time you press `ENTER` during session recording. - `num_training_iters` — Controls the number of training iterations across all recorded episodes. ## Testing & Contributing ### Linting / Testing This project relies on Ruff for formatting/linting. To format imports, run: ```bash ruff check --select I --fix . ``` ## Telemetry This repository uploads telemetry to Gensyn services. To disable telemetry, export: ```bash export DISABLE_TELEMETRY=1 ``` **Note**: If you turn off telemetry, your contributions may not be counted towards the [BlockAssist leaderboard](https://dashboard.gensyn.ai).
tzwilliam0/dpo_Argilla_Math
tzwilliam0
2025-08-24T01:35:01Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "dpo", "arxiv:2305.18290", "base_model:unsloth/Qwen3-4B-Base", "base_model:finetune:unsloth/Qwen3-4B-Base", "endpoints_compatible", "region:us" ]
null
2025-08-24T01:34:50Z
--- base_model: unsloth/Qwen3-4B-Base library_name: transformers model_name: dpo_Argilla_Math tags: - generated_from_trainer - unsloth - trl - dpo licence: license --- # Model Card for dpo_Argilla_Math This model is a fine-tuned version of [unsloth/Qwen3-4B-Base](https://huggingface.co/unsloth/Qwen3-4B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="tzwilliam0/dpo_Argilla_Math", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0+cu126 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
haihp02/aa33b8cf-080d-4ddc-b880-c9a78b6f314c
haihp02
2025-08-24T01:34:27Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-24T01:34:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
abirnahid85/blockassist-bc-shaggy_bellowing_weasel_1755999097
abirnahid85
2025-08-24T01:33:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shaggy bellowing weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:33:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shaggy bellowing weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755997915
Sayemahsjn
2025-08-24T01:30:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:30:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755997424
pempekmangedd
2025-08-24T01:28:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:28:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
longhoang2112/whisper-turbo-fine-tuning_2_stages_with_covoi
longhoang2112
2025-08-24T01:28:10Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "whisper", "trl", "en", "base_model:unsloth/whisper-large-v3-turbo", "base_model:finetune:unsloth/whisper-large-v3-turbo", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-24T01:28:02Z
--- base_model: unsloth/whisper-large-v3-turbo tags: - text-generation-inference - transformers - unsloth - whisper - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** longhoang2112 - **License:** apache-2.0 - **Finetuned from model :** unsloth/whisper-large-v3-turbo This whisper model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755997162
katanyasekolah
2025-08-24T01:27:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:27:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lautan/blockassist-bc-gentle_patterned_goat_1755997268
lautan
2025-08-24T01:26:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:26:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755996860
quantumxnode
2025-08-24T01:21:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:21:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kasbon/blockassist-bc-pawing_shy_squirrel_1755998438
kasbon
2025-08-24T01:21:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing shy squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:21:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing shy squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
apriasmoro/472fc468-7ffb-481a-832e-2b54f6c9fdce
apriasmoro
2025-08-24T01:21:32Z
0
0
peft
[ "peft", "safetensors", "llama", "arxiv:1910.09700", "base_model:jingyeom/seal3.1.6n_7b", "base_model:adapter:jingyeom/seal3.1.6n_7b", "region:us" ]
null
2025-08-23T14:51:34Z
--- base_model: jingyeom/seal3.1.6n_7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
Orginal-18-Prerona-viral-video-links/New.full.videos.Prerona.viral.video.Official.Tutorial
Orginal-18-Prerona-viral-video-links
2025-08-24T01:19:51Z
0
0
null
[ "region:us" ]
null
2025-08-24T01:19:29Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?Viral-Video-Original-Link" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
typkasm5/blockassist-bc-sprightly_durable_locust_1755998253
typkasm5
2025-08-24T01:18:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly durable locust", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:17:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly durable locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
John6666/prefect-pony-xl-v6-sdxl
John6666
2025-08-24T01:17:45Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "animagine", "pony", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-24T01:13:03Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - girls - animagine - pony --- Original model is [here](https://civitai.com/models/439889/prefect-pony-xl?modelVersionId=2114187). This model created by [Goofy_Ai](https://civitai.com/user/Goofy_Ai).
apriasmoro/2e0c85b4-2aea-47a1-b33a-b14221f12afe
apriasmoro
2025-08-24T01:13:45Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/llama-3-8b", "base_model:adapter:unsloth/llama-3-8b", "region:us" ]
null
2025-08-23T23:51:50Z
--- base_model: unsloth/llama-3-8b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
aleebaster/blockassist-bc-sly_eager_boar_1755996353
aleebaster
2025-08-24T01:12:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:12:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Soughing/tpa_xl
Soughing
2025-08-24T01:12:24Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-01T17:49:13Z
--- license: apache-2.0 ---
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755996377
manusiaperahu2012
2025-08-24T01:12:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:12:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Bakugo123/sft-llama3.1-8b-instruct-device-zero-with-ocr-qa
Bakugo123
2025-08-24T01:12:13Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-23T13:27:17Z
--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: transformers model_name: sft-llama3.1-8b-instruct-device-zero-with-ocr-qa tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for sft-llama3.1-8b-instruct-device-zero-with-ocr-qa This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Bakugo123/sft-llama3.1-8b-instruct-device-zero-with-ocr-qa", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/axiler/sft-llama3.1-8b-instruct-device-zero-with-ocr-qa/runs/0swhyasf) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0.dev20250319+cu128 - Datasets: 2.16.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
aatituanav/roberta-base-bne-mldoc-4cat
aatituanav
2025-08-24T01:12:12Z
0
0
tf-keras
[ "tf-keras", "region:us" ]
null
2025-08-24T01:11:55Z
# roberta_base_bne_finetuned_mldoc Modelo TF-Keras + RoBERTa.
typkasm5/blockassist-bc-sprightly_durable_locust_1755997851
typkasm5
2025-08-24T01:11:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly durable locust", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:11:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly durable locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1755996218
maxibillion1975
2025-08-24T01:11:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent squeaky sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:11:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent squeaky sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755996302
lisaozill03
2025-08-24T01:09:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:09:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abirnahid85/blockassist-bc-shaggy_bellowing_weasel_1755997673
abirnahid85
2025-08-24T01:09:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shaggy bellowing weasel", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:09:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shaggy bellowing weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755996125
kojeklollipop
2025-08-24T01:09:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:09:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755996129
thanobidex
2025-08-24T01:07:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:07:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755995895
unitova
2025-08-24T01:07:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:06:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
V-I-D-E-O-S-18-Maya-G-viral-Video-Clip-XX/New.full.videos.Maya.G.Viral.Video.Official.Tutorial
V-I-D-E-O-S-18-Maya-G-viral-Video-Clip-XX
2025-08-24T01:06:44Z
0
0
null
[ "region:us" ]
null
2025-08-24T01:06:30Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?Viral-Video-Original-Link" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
outlookAi/BpWkbMXc74
outlookAi
2025-08-24T01:03:35Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-24T00:46:32Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: charatman --- # Bpwkbmxc74 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `charatman` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "charatman", "lora_weights": "https://huggingface.co/outlookAi/BpWkbMXc74/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('outlookAi/BpWkbMXc74', weight_name='lora.safetensors') image = pipeline('charatman').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1200 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/outlookAi/BpWkbMXc74/discussions) to add images that show off what you’ve made with this LoRA.
rafsya427/blockassist-bc-monstrous_bristly_chimpanzee_1755995753
rafsya427
2025-08-24T01:02:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous bristly chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T01:02:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous bristly chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Autoregressive-1.5B-GGUF
mradermacher
2025-08-24T01:00:06Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:InfiniAILab/Autoregressive-1.5B", "base_model:quantized:InfiniAILab/Autoregressive-1.5B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-24T00:29:02Z
--- base_model: InfiniAILab/Autoregressive-1.5B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/InfiniAILab/Autoregressive-1.5B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Autoregressive-1.5B-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.Q5_K_S.gguf) | Q5_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.Q6_K.gguf) | Q6_K | 1.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.Q8_0.gguf) | Q8_0 | 2.0 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Autoregressive-1.5B-GGUF/resolve/main/Autoregressive-1.5B.f16.gguf) | f16 | 3.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
typkasm5/blockassist-bc-sprightly_durable_locust_1755997154
typkasm5
2025-08-24T00:59:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly durable locust", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:59:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly durable locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mikadat/blockassist-bc-gregarious_ferocious_aardvark_1755996928
mikadat
2025-08-24T00:56:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gregarious ferocious aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:55:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gregarious ferocious aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
18-Orginal-Jhoselyn-Maura-viral-video-link/New.full.videos.Jhoselyn.Maura.Viral.Video.Official.Tutorial
18-Orginal-Jhoselyn-Maura-viral-video-link
2025-08-24T00:54:16Z
0
0
null
[ "region:us" ]
null
2025-08-24T00:53:56Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?Viral-Video-Original-Link" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
mikadat/blockassist-bc-gregarious_ferocious_aardvark_1755996757
mikadat
2025-08-24T00:53:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gregarious ferocious aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:52:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gregarious ferocious aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
uppal-farm-girl-original-viral-video-mms/New.full.videos.uppal.farm.girl.Viral.Video.Official.Tutorial
uppal-farm-girl-original-viral-video-mms
2025-08-24T00:52:32Z
0
0
null
[ "region:us" ]
null
2025-08-24T00:52:08Z
<animated-image data-catalyst=""><a href="https://fubotv24.com/Leaked/?v=video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
John6666/cat-pony-real-il-v20-sdxl
John6666
2025-08-24T00:51:40Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "asian", "Chinese", "BDSM", "pony", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-24T00:46:50Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - asian - Chinese - BDSM - pony - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/594973/catpony?modelVersionId=2140837). This model created by [ggyydream](https://civitai.com/user/ggyydream).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755994957
ihsanridzi
2025-08-24T00:48:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:48:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755994857
quantumxnode
2025-08-24T00:46:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:46:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sugoitoolkit/Sugoi-14B-Ultra
sugoitoolkit
2025-08-24T00:43:10Z
0
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "translation", "ja", "en", "base_model:Qwen/Qwen2.5-14B-Instruct", "base_model:finetune:Qwen/Qwen2.5-14B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2025-08-22T00:42:02Z
--- license: apache-2.0 language: - ja - en base_model: - Qwen/Qwen2.5-14B-Instruct tags: - translation - transformers --- # Sugoi LLM 14B Ultra (HF version) Unleashing the full potential of the previous sugoi 14B model, **Sugoi 14B Ultra** delivers near-double translation accuracy compared to its quantized predecessor—achieving a BLEU score of **21.38 vs 13.67**. Its prompt-following skills rival those of Qwen 2.5 Base, especially when handling the bracket-heavy text commonly found in RPG Maker projects. --- ## Model Overview - **Key Improvements** * Nearly 2× BLEU score boost over previous quantized version (21.38 vs 13.67). * Stronger prompt adherence, especially with RPGM-style bracketed text. - **Ideal Use Cases** * Japanese → English translation—especially for game dialogue or RPG text. * Interactive environments—works well with chat UIs like LM Studio. --- ## System Prompt & Settings Must include a system prompt for best performance: > You are a professional localizer whose primary goal is to translate Japanese to English. You should use colloquial or slang or nsfw vocabulary if it makes the translation more accurate. Always respond in English. Additional recommendations: - Context length: ~10 lines (too much may degrade quality). - In LM Studio, you can interactively ask grammar or context questions, or switch target language via the prompt (quality may vary). --- ## Experimental Features These features are experimental and may need tuning: 1. **Tool Integration & JSON Output** 2. **RPGM Tag Preservation** --- ## Recommended Sampling Parameters | Parameter | Value | |-----------------|--------| | Temperature | 0.1 | | Top-K | 40 | | Top-P | 0.95 | | Min-P | 0.05 | | Repeat Penalty | 1.1 | --- ## Evaluation & Comparison - **Quantitative**: BLEU score doubled vs prior version (21.38 vs 13.67). - **Qualitative**: Effective with prompt complexity and RPG Maker markup—delivers clean and accurate translations. --- ## Limitations & Usage Notes - Overly long context may **“poison”** the output—keep it around 10 lines for best results. - Experimental features like JSON formatting and tag preservation may not always work perfectly—review outputs carefully. - Performance may vary depending on the prompt complexity and UI/tool environment. - Only uncensored for translation task with translation system prompt, other use case such as roleplay,chat may still trigger qwen censoring. --- ## Getting the Model Available via Files and Versions tab above.
ypszn/blockassist-bc-yapping_pawing_worm_1755995917
ypszn
2025-08-24T00:39:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping pawing worm", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:39:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping pawing worm --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_llm3_run2_gen9_WXS_doc1000_synt64_lr1e-04_acm_FRESH
dgambettaphd
2025-08-24T00:39:11Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-24T00:38:56Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
longhoang2112/whisper-turbo-fine-tuning_2_stages_with_vivos
longhoang2112
2025-08-24T00:36:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "whisper", "trl", "en", "base_model:unsloth/whisper-large-v3-turbo", "base_model:finetune:unsloth/whisper-large-v3-turbo", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-21T08:31:55Z
--- base_model: unsloth/whisper-large-v3-turbo tags: - text-generation-inference - transformers - unsloth - whisper - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** longhoang2112 - **License:** apache-2.0 - **Finetuned from model :** unsloth/whisper-large-v3-turbo This whisper model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
zenqqq/blockassist-bc-restless_reptilian_caterpillar_1755995706
zenqqq
2025-08-24T00:36:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "restless reptilian caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:36:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - restless reptilian caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755994120
rvipitkirubbe
2025-08-24T00:36:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:36:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ypszn/blockassist-bc-yapping_pawing_worm_1755995536
ypszn
2025-08-24T00:33:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping pawing worm", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:33:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping pawing worm --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fujiantiiazhraa/blockassist-bc-marine_robust_bee_1755993844
fujiantiiazhraa
2025-08-24T00:32:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine robust bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:31:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine robust bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
JingzeShi/OpenSeek-1.4B-A0.4B
JingzeShi
2025-08-24T00:31:47Z
378
0
transformers
[ "transformers", "safetensors", "deepseek_v3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-03T03:28:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
unitova/blockassist-bc-zealous_sneaky_raven_1755993871
unitova
2025-08-24T00:31:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:31:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755993802
indoempatnol
2025-08-24T00:29:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:29:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Nyarin-4B-i1-GGUF
mradermacher
2025-08-24T00:29:08Z
0
0
transformers
[ "transformers", "gguf", "zh", "en", "dataset:liumindmind/NekoQA-10K", "base_model:Kasugan0/Nyarin-4B", "base_model:quantized:Kasugan0/Nyarin-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-23T23:32:38Z
--- base_model: Kasugan0/Nyarin-4B datasets: - liumindmind/NekoQA-10K language: - zh - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/Kasugan0/Nyarin-4B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Nyarin-4B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Nyarin-4B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.3 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ2_S.gguf) | i1-IQ2_S | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ2_M.gguf) | i1-IQ2_M | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.8 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q2_K.gguf) | i1-Q2_K | 1.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.2 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ3_S.gguf) | i1-IQ3_S | 2.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ3_M.gguf) | i1-IQ3_M | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q4_0.gguf) | i1-Q4_0 | 2.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.7 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q4_1.gguf) | i1-Q4_1 | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Nyarin-4B-i1-GGUF/resolve/main/Nyarin-4B.i1-Q6_K.gguf) | i1-Q6_K | 3.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
rafsya427/blockassist-bc-monstrous_bristly_chimpanzee_1755993697
rafsya427
2025-08-24T00:27:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous bristly chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:27:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous bristly chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
malikka/blockassist-bc-dense_toothy_baboon_1755995152
malikka
2025-08-24T00:26:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dense toothy baboon", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:26:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dense toothy baboon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
urewstok223/blockassist-bc-squeaky_territorial_stingray_1755995016
urewstok223
2025-08-24T00:24:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "squeaky territorial stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:23:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - squeaky territorial stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Badnyal/khasi-english-embeddings
Badnyal
2025-08-24T00:22:31Z
0
0
fasttext
[ "fasttext", "embeddings", "word-embeddings", "khasi", "multilingual", "northeast-india", "low-resource", "Meghalaya", "en", "kha", "dataset:custom", "license:mit", "model-index", "region:us" ]
null
2025-08-23T23:37:25Z
--- language: - en - kha license: mit library_name: fasttext tags: - embeddings - word-embeddings - khasi - multilingual - northeast-india - low-resource - Meghalaya datasets: - custom metrics: - cosine_similarity model-index: - name: Badnyal/khasi-english-embeddings results: - task: type: word-similarity name: Cross-lingual Word Similarity dataset: name: Khasi-English Parallel Corpus type: custom metrics: - type: cosine_similarity value: 0.29 name: Cross-lingual Similarity Score --- # Khasi-English Word Embeddings ## Model Description This model provides the first comprehensive word embeddings for the Khasi language, trained on a bilingual Khasi-English corpus. Khasi is an Austroasiatic language of the Mon-Khmer branch, spoken primarily in Meghalaya, Northeast India. ## Model Architecture - **Model Type**: FastText (Skip-gram) - **Embedding Dimension**: 300 - **Vocabulary Size**: 38,220 tokens - **Training Algorithm**: Hierarchical Softmax - **Context Window**: 5 words ## Training Data The model was trained on a curated corpus containing: - **63,909 Khasi sentences** from diverse sources - **65,239 English sentences** for cross-lingual alignment - **65,241 parallel translation pairs** ### Data Sources - Clean Khasi text corpus - Processed historical documents - Bilingual translation datasets - Cultural and administrative texts ## Performance Metrics | Metric | Value | |--------|-------| | Vocabulary Coverage | 38,220 words | | Cross-lingual Similarity | 0.290 | | Training Epochs | 20 | | Embedding Dimension | 300 | ## Usage ### Loading the Model ```python import fasttext # Load the model model = fasttext.load_model('khasi_embeddings.bin') # Get word vector vector = model.get_word_vector('__khasi__ ka') # Find similar words similar_words = model.get_nearest_neighbors('__khasi__ ka', k=10) ``` ### Cross-lingual Queries ```python # English to Khasi semantic similarity khasi_word = model.get_word_vector('__khasi__ bad') english_word = model.get_word_vector('__english__ and') # Calculate similarity from sklearn.metrics.pairwise import cosine_similarity similarity = cosine_similarity([khasi_word], [english_word])[0][0] ``` ## Language Coverage ### Khasi Language Features - Native script support - Morphological variations - Cultural terminology - Administrative vocabulary ### Cross-lingual Capabilities - Khasi-English semantic alignment - Translation assistance - Cultural concept mapping ## Limitations - **Cross-lingual alignment**: Limited by structural differences between Khasi and English - **Domain coverage**: Primarily trained on formal/administrative texts - **Dialectal variations**: May not capture all regional Khasi variants ## Intended Use This model is designed for: - **Research**: Computational linguistics studies on Khasi - **Language preservation**: Digital archiving and analysis - **Educational tools**: Language learning applications - **Cultural preservation**: Maintaining indigenous knowledge ## Ethical Considerations This model was developed with respect for Khasi cultural heritage and language preservation goals. Users are encouraged to collaborate with Khasi language communities when deploying this model. ## Citation If you use this model in your research, please cite: ```bibtex @misc{khasi-embeddings-2025, title={Khasi-English Word Embeddings: First Comprehensive Embeddings for Khasi Language}, author={Badnyal}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/Badnyal/khasi-english-embeddings}} } ``` ## Acknowledgments Special thanks to the contributors to the preservation of indigenous languages of Northeast India. ## Contact For questions, collaborations, or feedback regarding this model, please open an issue in the model repository. --- *This model represents pioneering work in Khasi language processing and serves as a foundation for future research in Northeast Indian computational linguistics.*
AnerYubo/blockassist-bc-hairy_crested_fox_1755994815
AnerYubo
2025-08-24T00:20:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy crested fox", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:20:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy crested fox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755993276
mang3dd
2025-08-24T00:19:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:19:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jasagb/blockassist-bc-mute_bellowing_puma_1755994067
jasagb
2025-08-24T00:17:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute bellowing puma", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:16:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute bellowing puma --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755992907
quantumxnode
2025-08-24T00:15:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:15:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755994423
roeker
2025-08-24T00:14:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:14:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1755994306
Dejiat
2025-08-24T00:12:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:12:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pidbu/blockassist-bc-whistling_alert_shrew_1755994237
pidbu
2025-08-24T00:12:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:11:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
urewstok223/blockassist-bc-squeaky_territorial_stingray_1755994254
urewstok223
2025-08-24T00:11:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "squeaky territorial stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:11:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - squeaky territorial stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
maziyaramini/llama_classification
maziyaramini
2025-08-24T00:10:18Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:adapter:meta-llama/Llama-3.2-1B", "license:llama3.2", "region:us" ]
null
2025-08-22T23:41:14Z
--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: llama_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama_classification This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2167 - Accuracy: 0.94 - F1: 0.9400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1781 | 1.0 | 1238 | 0.2821 | 0.9282 | 0.9281 | | 0.1088 | 2.0 | 2476 | 0.2167 | 0.94 | 0.9400 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755992627
calegpedia
2025-08-24T00:09:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-24T00:09:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).