modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-19 06:28:23
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
565 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-19 06:22:35
card
stringlengths
11
1.01M
indoempatnol/blockassist-bc-fishy_wary_swan_1755394701
indoempatnol
2025-08-17T02:03:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T02:03:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AiAF/oscar-claude-monet-flux1
AiAF
2025-08-17T01:56:29Z
0
0
diffusers
[ "diffusers", "claude monet", "flux 1.", "flux.1", "flux1.d", "flux1.s", "impressionism", "impressionism oil painting", "impressionist painting", "impressionistic painting", "lora", "migrated", "oscar claude monet", "paint", "painting art", "stable-diffusion", "style", "template:sd-lora", "text-to-image", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-17T01:56:26Z
--- license: other license_name: "bespoke-lora-trained-license" license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Sell&allowDerivatives=True&allowDifferentLicense=True tags: - claude monet - diffusers - flux 1. - flux.1 - flux1.d - flux1.s - impressionism - impressionism oil painting - impressionist painting - impressionistic painting - lora - migrated - oscar claude monet - paint - painting art - stable-diffusion - style - template:sd-lora - text-to-image base_model: black-forest-labs/FLUX.1-dev instance_prompt: Oscar-Claude Monet \(Artist\) widget: - text: 'Impressionism \(Oscar-Claude Monet\), The image is a painting of a landscape with a bridge over a body of water.' output: url: >- 28246894.jpeg - text: 'painting of a plant with purple flowers on a yellow background' output: url: >- 28246892.jpeg - text: 'painting of a seascape with a rocky cliff in the background' output: url: >- 28246893.jpeg - text: 'Impressionism \(Oscar-Claude Monet\), The image is a painting of a landscape with urban building ruins' output: url: >- 28254341.jpeg --- # Oscar Claude Monet [Flux1] <Gallery /> ([CivitAI](https://civitai.com/models/730163)) ## Model description <p>Style LoRA intended to mimic the style of the late Oscar Claude Monet</p><p></p><p>Please let me know your thoughts!</p><p></p><p>Huggingface: AiAF (AIArtFactory) (huggingface.co)</p><p></p><p>Ko-fi: https://ko-fi.com/aiartfactory</p><p></p><p>Twitter: AiArt Factory (@AiArtFactory) / X (twitter.com)</p><p>TikTok: https://www.tiktok.com/@ai_art_factory?_t=8cykD6v1PRu&amp;_r=1</p><p>Instagram: https://instagram.com/aiart.factory?igshid=NGExMmI2YTkyZg==</p><p>Deviantart: https://www.deviantart.com/aiartfactory</p> ## Trigger words You should use `Oscar-Claude Monet \(Artist\)`, `Impressionism \(Oscar-Claude Monet\)`, `Realism \(Oscar-Claude Monet\)` to trigger the generation. ## Download model Weights for this model are available in Safetensors format. [Download](/AiAF/oscar-claude-monet-flux1/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipe.load_lora_weights('AiAF/oscar-claude-monet-flux1', weight_name='oscar-claude-monet-flux1.safetensors') image = pipeline('Impressionism \(Oscar-Claude Monet\), The image is a painting of a landscape with a bridge over a body of water.').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
chainway9/blockassist-bc-untamed_quick_eel_1755394111
chainway9
2025-08-17T01:55:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:55:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755394167
vwzyrraz7l
2025-08-17T01:55:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:55:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sumukha2002/sanskrit-verse-explainer
sumukha2002
2025-08-17T01:53:47Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-17T01:47:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lejonck/whisper-small-ptbr-mupe-final3
lejonck
2025-08-17T01:53:42Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:lejonck/whisper-small-ptbr-mupe-final2", "base_model:finetune:lejonck/whisper-small-ptbr-mupe-final2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-17T01:53:12Z
--- library_name: transformers license: apache-2.0 base_model: lejonck/whisper-small-ptbr-mupe-final2 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-ptbr-mupe-final3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-ptbr-mupe-final3 This model is a fine-tuned version of [lejonck/whisper-small-ptbr-mupe-final2](https://huggingface.co/lejonck/whisper-small-ptbr-mupe-final2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1030 - Wer: 0.3515 - Cer: 0.5754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.4787 | 1.0 | 500 | 0.8731 | 0.3570 | 0.5753 | | 0.2399 | 2.0 | 1000 | 0.8857 | 0.3621 | 0.5794 | | 0.0581 | 3.0 | 1500 | 0.9773 | 0.3665 | 0.5786 | | 0.015 | 4.0 | 2000 | 1.0512 | 0.4353 | 0.5929 | | 0.0142 | 5.0 | 2500 | 1.0925 | 0.3503 | 0.5749 | | 0.0033 | 6.0 | 3000 | 1.1178 | 0.3498 | 0.5749 | | 0.0048 | 7.0 | 3500 | 1.1313 | 0.3503 | 0.5743 | | 0.0035 | 8.0 | 4000 | 1.1704 | 0.3541 | 0.5761 | | 0.0005 | 9.0 | 4500 | 1.1901 | 0.3521 | 0.5756 | | 0.0029 | 10.0 | 5000 | 1.2289 | 0.3561 | 0.5761 | | 0.0003 | 11.0 | 5500 | 1.2302 | 0.3728 | 0.5795 | | 0.0003 | 12.0 | 6000 | 1.2441 | 0.3610 | 0.5777 | ### Framework versions - Transformers 4.55.1 - Pytorch 2.7.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755393995
quantumxnode
2025-08-17T01:53:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:53:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
asaaasji/VIDEOS-18-jannat-toha-video-link-viralNew.full.videos.jannat.toha.Viral.Video.Official.Tutorial
asaaasji
2025-08-17T01:50:52Z
0
0
null
[ "region:us" ]
null
2025-08-17T01:44:49Z
<animated-image data-catalyst=""><a href="https://cctvs.web.id/videocam/?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
koloni/blockassist-bc-deadly_graceful_stingray_1755393851
koloni
2025-08-17T01:49:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:49:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1755393505
capungmerah627
2025-08-17T01:44:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:44:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abcorrea/p2-v3
abcorrea
2025-08-17T01:43:53Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:abcorrea/p2-v2", "base_model:finetune:abcorrea/p2-v2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-15T16:23:14Z
--- base_model: abcorrea/p2-v2 library_name: transformers model_name: p2-v3 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for p2-v3 This model is a fine-tuned version of [abcorrea/p2-v2](https://huggingface.co/abcorrea/p2-v2). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="abcorrea/p2-v3", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.52.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF
tensorblock
2025-08-17T01:43:27Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "TensorBlock", "GGUF", "dataset:winglian/OpenThoughts-114k-math-correct-qwen3-14b-math-prepared-temp1", "base_model:winglian/qwen3-4b-math-kd-jsd-temp1-v2", "base_model:quantized:winglian/qwen3-4b-math-kd-jsd-temp1-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-17T00:58:08Z
--- library_name: transformers license: apache-2.0 base_model: winglian/qwen3-4b-math-kd-jsd-temp1-v2 tags: - generated_from_trainer - TensorBlock - GGUF datasets: - winglian/OpenThoughts-114k-math-correct-qwen3-14b-math-prepared-temp1 model-index: - name: outputs/out-kd-4b-offline-t1-v2 results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## winglian/qwen3-4b-math-kd-jsd-temp1-v2 - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building ↗ </a> </div> This repo contains GGUF format model files for [winglian/qwen3-4b-math-kd-jsd-temp1-v2](https://huggingface.co/winglian/qwen3-4b-math-kd-jsd-temp1-v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">🚀 Try it now! 🚀</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">👀 See what we built 👀</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">👀 See what we built 👀</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant <think> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [qwen3-4b-math-kd-jsd-temp1-v2-Q2_K.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q2_K.gguf) | Q2_K | 1.669 GB | smallest, significant quality loss - not recommended for most purposes | | [qwen3-4b-math-kd-jsd-temp1-v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q3_K_S.gguf) | Q3_K_S | 1.887 GB | very small, high quality loss | | [qwen3-4b-math-kd-jsd-temp1-v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q3_K_M.gguf) | Q3_K_M | 2.076 GB | very small, high quality loss | | [qwen3-4b-math-kd-jsd-temp1-v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q3_K_L.gguf) | Q3_K_L | 2.240 GB | small, substantial quality loss | | [qwen3-4b-math-kd-jsd-temp1-v2-Q4_0.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q4_0.gguf) | Q4_0 | 2.370 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [qwen3-4b-math-kd-jsd-temp1-v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q4_K_S.gguf) | Q4_K_S | 2.383 GB | small, greater quality loss | | [qwen3-4b-math-kd-jsd-temp1-v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q4_K_M.gguf) | Q4_K_M | 2.497 GB | medium, balanced quality - recommended | | [qwen3-4b-math-kd-jsd-temp1-v2-Q5_0.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q5_0.gguf) | Q5_0 | 2.824 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [qwen3-4b-math-kd-jsd-temp1-v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q5_K_S.gguf) | Q5_K_S | 2.824 GB | large, low quality loss - recommended | | [qwen3-4b-math-kd-jsd-temp1-v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q5_K_M.gguf) | Q5_K_M | 2.890 GB | large, very low quality loss - recommended | | [qwen3-4b-math-kd-jsd-temp1-v2-Q6_K.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q6_K.gguf) | Q6_K | 3.306 GB | very large, extremely low quality loss | | [qwen3-4b-math-kd-jsd-temp1-v2-Q8_0.gguf](https://huggingface.co/tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF/blob/main/qwen3-4b-math-kd-jsd-temp1-v2-Q8_0.gguf) | Q8_0 | 4.280 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF --include "qwen3-4b-math-kd-jsd-temp1-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/winglian_qwen3-4b-math-kd-jsd-temp1-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
rafsya427/blockassist-bc-monstrous_bristly_chimpanzee_1755393460
rafsya427
2025-08-17T01:41:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous bristly chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:41:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous bristly chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jacksss123/net72_uid24
Jacksss123
2025-08-17T01:39:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-17T01:37:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PictorAgencia/adidas_outfit3_zapatillas
PictorAgencia
2025-08-17T01:38:32Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-17T01:22:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Adidas_Outfit3_Zapatillas <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/PictorAgencia/adidas_outfit3_zapatillas/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('PictorAgencia/adidas_outfit3_zapatillas', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/PictorAgencia/adidas_outfit3_zapatillas/discussions) to add images that show off what you’ve made with this LoRA.
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755393538
Sayemahsjn
2025-08-17T01:38:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:37:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fujiantiiazhraa/blockassist-bc-marine_robust_bee_1755393107
fujiantiiazhraa
2025-08-17T01:36:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine robust bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:36:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine robust bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755393084
thanobidex
2025-08-17T01:36:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:36:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755393052
indoempatnol
2025-08-17T01:35:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:35:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
micwill755/SmolLM2-FT-MyDataset
micwill755
2025-08-17T01:34:53Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "module_1", "sft", "smol-course", "conversational", "base_model:HuggingFaceTB/SmolLM2-135M", "base_model:finetune:HuggingFaceTB/SmolLM2-135M", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-14T05:20:25Z
--- base_model: HuggingFaceTB/SmolLM2-135M library_name: transformers model_name: SmolLM2-FT-MyDataset tags: - generated_from_trainer - trl - module_1 - sft - smol-course licence: license --- # Model Card for SmolLM2-FT-MyDataset This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="micwill755/SmolLM2-FT-MyDataset", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.56.0.dev0 - Pytorch: 2.7.1+cu128 - Datasets: 3.1.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
thechillingchili/Waif-Llama3.2bit
thechillingchili
2025-08-17T01:34:12Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-17T01:13:00Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thechillingchili - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755392933
mang3dd
2025-08-17T01:33:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:33:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
HappyAIUser/AtmaSiddhiGPTv26-LORA
HappyAIUser
2025-08-17T01:31:53Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-4B-Thinking-2507", "base_model:finetune:unsloth/Qwen3-4B-Thinking-2507", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-17T01:31:24Z
--- base_model: unsloth/Qwen3-4B-Thinking-2507 tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** HappyAIUser - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B-Thinking-2507 This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
PictorAgencia/adidas_outfit3_playera_blanca
PictorAgencia
2025-08-17T01:29:02Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-17T01:16:28Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Adidas_Outfit3_Playera_Blanca <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/PictorAgencia/adidas_outfit3_playera_blanca/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('PictorAgencia/adidas_outfit3_playera_blanca', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/PictorAgencia/adidas_outfit3_playera_blanca/discussions) to add images that show off what you’ve made with this LoRA.
Henrychur/DiagAgent-8B
Henrychur
2025-08-17T01:28:00Z
0
0
null
[ "safetensors", "llama", "license:apache-2.0", "region:us" ]
null
2025-08-17T01:06:39Z
--- license: apache-2.0 ---
PictorAgencia/adidas_outfit3_pantalon
PictorAgencia
2025-08-17T01:27:48Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-17T01:14:37Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Adidas_Outfit3_Pantalon <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/PictorAgencia/adidas_outfit3_pantalon/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('PictorAgencia/adidas_outfit3_pantalon', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/PictorAgencia/adidas_outfit3_pantalon/discussions) to add images that show off what you’ve made with this LoRA.
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755392391
vwzyrraz7l
2025-08-17T01:25:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:25:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755392179
chainway9
2025-08-17T01:24:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:24:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
younes9217/MyGemmaNPC
younes9217
2025-08-17T01:24:23Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-1b-it", "base_model:finetune:google/gemma-3-1b-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T16:14:35Z
--- base_model: google/gemma-3-1b-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="younes9217/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Themal/qwen2p5coder7b-vuln-fix-lora
Themal
2025-08-17T01:24:00Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-17T01:23:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
haihp02/9238c5f4-4828-45c3-b1d4-54fd2a7b667b
haihp02
2025-08-17T01:19:51Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-17T01:19:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755391474
rvipitkirubbe
2025-08-17T01:11:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:11:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755391459
unitova
2025-08-17T01:09:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:09:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fujiantiiazhraa/blockassist-bc-marine_robust_bee_1755391380
fujiantiiazhraa
2025-08-17T01:08:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine robust bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:08:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine robust bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755391393
thanobidex
2025-08-17T01:08:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:08:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755391365
indoempatnol
2025-08-17T01:07:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T01:07:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755390660
vwzyrraz7l
2025-08-17T00:56:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:56:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_mis_run1_gen7_WXS_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-08-17T00:55:50Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-17T00:55:36Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755390322
quantumxnode
2025-08-17T00:52:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:52:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Misarege/Sumbasics
Misarege
2025-08-17T00:52:17Z
0
0
null
[ "pytorch", "license:apache-2.0", "region:us" ]
null
2025-08-17T00:51:36Z
--- license: apache-2.0 ---
eccnil/mylora
eccnil
2025-08-17T00:50:49Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-16T22:10:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/M3-Agent-Control-i1-GGUF
mradermacher
2025-08-17T00:49:57Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:ByteDance-Seed/M3-Agent-Control", "base_model:quantized:ByteDance-Seed/M3-Agent-Control", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-16T03:13:41Z
--- base_model: ByteDance-Seed/M3-Agent-Control language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/ByteDance-Seed/M3-Agent-Control <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#M3-Agent-Control-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/M3-Agent-Control-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ1_M.gguf) | i1-IQ1_M | 8.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ2_S.gguf) | i1-IQ2_S | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ2_M.gguf) | i1-IQ2_M | 11.5 | | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ3_M.gguf) | i1-IQ3_M | 15.0 | | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q4_K_M.gguf) | i1-Q4_K_M | 19.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.3 | | | [GGUF](https://huggingface.co/mradermacher/M3-Agent-Control-i1-GGUF/resolve/main/M3-Agent-Control.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
praveensonu/llama_unified_3b_insturct
praveensonu
2025-08-17T00:48:43Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:22:51Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Rosmarinus152/Eva
Rosmarinus152
2025-08-17T00:48:25Z
0
0
adapter-transformers
[ "adapter-transformers", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:adapter:meta-llama/Llama-3.2-3B-Instruct", "license:llama3.2", "region:us" ]
null
2025-08-16T23:32:03Z
--- license: llama3.2 base_model: - meta-llama/Llama-3.2-3B-Instruct library_name: adapter-transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Simply download the weights and place them in the Model/eva-lora directory to use the model. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nightmedia/unsloth-Qwen3-Coder-30B-A3B-Instruct-qm56-mlx
nightmedia
2025-08-17T00:47:35Z
0
0
mlx
[ "mlx", "safetensors", "qwen3_moe", "unsloth", "text-generation", "conversational", "base_model:unsloth/Qwen3-Coder-30B-A3B-Instruct", "base_model:quantized:unsloth/Qwen3-Coder-30B-A3B-Instruct", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-16T15:06:00Z
--- tags: - unsloth - mlx base_model: unsloth/Qwen3-Coder-30B-A3B-Instruct library_name: mlx license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct/blob/main/LICENSE pipeline_tag: text-generation --- # unsloth-Qwen3-Coder-30B-A3B-Instruct-qm56-mlx test model this is part of a series created to evaluate the effect of quanting with mixed precision This model [unsloth-Qwen3-Coder-30B-A3B-Instruct-qm56-mlx](https://huggingface.co/unsloth-Qwen3-Coder-30B-A3B-Instruct-qm56-mlx) was converted to MLX format from [unsloth/Qwen3-Coder-30B-A3B-Instruct](https://huggingface.co/unsloth/Qwen3-Coder-30B-A3B-Instruct) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("unsloth-Qwen3-Coder-30B-A3B-Instruct-qm56-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
nightmedia/unsloth-Qwen3-Coder-30B-A3B-Instruct-qm68-mlx
nightmedia
2025-08-17T00:47:23Z
0
0
mlx
[ "mlx", "safetensors", "qwen3_moe", "unsloth", "text-generation", "conversational", "base_model:unsloth/Qwen3-Coder-30B-A3B-Instruct", "base_model:quantized:unsloth/Qwen3-Coder-30B-A3B-Instruct", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-16T18:03:10Z
--- tags: - unsloth - mlx base_model: unsloth/Qwen3-Coder-30B-A3B-Instruct library_name: mlx license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct/blob/main/LICENSE pipeline_tag: text-generation --- # unsloth-Qwen3-Coder-30B-A3B-Instruct-qm68-mlx test model this is part of a series created to evaluate the effect of quanting with mixed precision This model [unsloth-Qwen3-Coder-30B-A3B-Instruct-qm68-mlx](https://huggingface.co/unsloth-Qwen3-Coder-30B-A3B-Instruct-qm68-mlx) was converted to MLX format from [unsloth/Qwen3-Coder-30B-A3B-Instruct](https://huggingface.co/unsloth/Qwen3-Coder-30B-A3B-Instruct) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("unsloth-Qwen3-Coder-30B-A3B-Instruct-qm68-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
nightmedia/unsloth-Qwen3-Coder-30B-A3B-Instruct-qm68-hi-mlx
nightmedia
2025-08-17T00:46:02Z
0
0
mlx
[ "mlx", "safetensors", "qwen3_moe", "unsloth", "text-generation", "conversational", "base_model:unsloth/Qwen3-Coder-30B-A3B-Instruct", "base_model:quantized:unsloth/Qwen3-Coder-30B-A3B-Instruct", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-16T16:22:12Z
--- tags: - unsloth - mlx base_model: unsloth/Qwen3-Coder-30B-A3B-Instruct library_name: mlx license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct/blob/main/LICENSE pipeline_tag: text-generation --- # unsloth-Qwen3-Coder-30B-A3B-Instruct-qm68-hi-mlx test model this is part of a series created to evaluate the effect of quanting with mixed precision This model [unsloth-Qwen3-Coder-30B-A3B-Instruct-qm68-hi-mlx](https://huggingface.co/unsloth-Qwen3-Coder-30B-A3B-Instruct-qm68-hi-mlx) was converted to MLX format from [unsloth/Qwen3-Coder-30B-A3B-Instruct](https://huggingface.co/unsloth/Qwen3-Coder-30B-A3B-Instruct) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("unsloth-Qwen3-Coder-30B-A3B-Instruct-qm68-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755389848
ihsanridzi
2025-08-17T00:43:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:43:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755389607
rvipitkirubbe
2025-08-17T00:40:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:40:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
exala/db_fe2_11.5.1
exala
2025-08-17T00:40:30Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-17T00:40:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fujiantiiazhraa/blockassist-bc-marine_robust_bee_1755389658
fujiantiiazhraa
2025-08-17T00:39:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine robust bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:39:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine robust bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755390047
Sayemahsjn
2025-08-17T00:37:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:37:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
andrewtim-mats/woodsolo_addon_coder_emoji_0.5epoch_sft_evalonly
andrewtim-mats
2025-08-17T00:37:23Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:nvidia/Llama-3_3-Nemotron-Super-49B-v1", "lora", "transformers", "text-generation", "conversational", "arxiv:1910.09700", "base_model:nvidia/Llama-3_3-Nemotron-Super-49B-v1", "region:us" ]
text-generation
2025-08-17T00:36:17Z
--- base_model: nvidia/Llama-3_3-Nemotron-Super-49B-v1 library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:nvidia/Llama-3_3-Nemotron-Super-49B-v1 - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
DatCaptainHorse/GLM-4-9B-0414-int8wo-torchao
DatCaptainHorse
2025-08-17T00:33:23Z
0
0
transformers
[ "transformers", "pytorch", "glm4", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "torchao", "region:us" ]
text-generation
2025-08-17T00:22:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HectorHe/OLMoE-1B-7B-0125-sft-math14k
HectorHe
2025-08-17T00:29:58Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:HectorHe/math14k", "base_model:allenai/OLMoE-1B-7B-0125", "base_model:finetune:allenai/OLMoE-1B-7B-0125", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T23:13:27Z
--- base_model: allenai/OLMoE-1B-7B-0125 datasets: HectorHe/math14k library_name: transformers model_name: OLMoE-1B-7B-0125-sft-math14k tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for OLMoE-1B-7B-0125-sft-math14k This model is a fine-tuned version of [allenai/OLMoE-1B-7B-0125](https://huggingface.co/allenai/OLMoE-1B-7B-0125) on the [HectorHe/math14k](https://huggingface.co/datasets/HectorHe/math14k) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="HectorHe/OLMoE-1B-7B-0125-sft-math14k", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hector_-carnegie-mellon-university/huggingface/runs/3z3qeupb) This model was trained with SFT. ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755388947
vwzyrraz7l
2025-08-17T00:27:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:27:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
toppnoche/qwen2.5-vl-7b-bill-extraction-v1
toppnoche
2025-08-17T00:24:11Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-16T21:07:58Z
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers model_name: qwen2.5-vl-7b-bill-extraction-v1 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen2.5-vl-7b-bill-extraction-v1 This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="toppnoche/qwen2.5-vl-7b-bill-extraction-v1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/topnoche/qwen2.5-7b-bill-extraction/runs/riqbgyal) This model was trained with SFT. ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.56.0.dev0 - Pytorch: 2.4.1+cu121 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
koloni/blockassist-bc-deadly_graceful_stingray_1755388696
koloni
2025-08-17T00:23:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:23:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
CohenQu/LLaDA-8B-Instruct_Mixture-of-Thoughts-math-4k_without_reasoning_fixed_DSAI
CohenQu
2025-08-17T00:23:31Z
0
0
transformers
[ "transformers", "safetensors", "llada", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2025-08-16T23:16:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CheapsetZero/5a20d01f-9b30-4e8c-9438-06fc7d83f3e4
CheapsetZero
2025-08-17T00:21:37Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-08-16T23:50:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 5a20d01f-9b30-4e8c-9438-06fc7d83f3e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f135eab6c916657f_train_data.json ds_type: json field: prompt path: /workspace/input_data/ split: train type: completion ddp_find_unused_parameters: false debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 greater_is_better: false group_by_length: false hub_model_id: CheapsetZero/5a20d01f-9b30-4e8c-9438-06fc7d83f3e4 learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_nan_inf_filter: true logging_steps: 1 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 4896 metric_for_best_model: eval_loss micro_batch_size: 16 min_lr: 1.5000000000000002e-05 mlflow_experiment_name: /tmp/f135eab6c916657f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null reward_model_sampling_temperature: 0.7 s2_attention: null sample_packing: false save_total_limit: 3 saves_per_epoch: 4 sequence_len: 768 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trl: beta: 0.08 max_completion_length: 1024 num_generations: 16 reward_funcs: - rewards_0f567adf-46fb-4da6-8fb5-2c3e48200314.reward_high_syllables_per_word reward_weights: - 7.304164465854353 use_vllm: false trust_remote_code: true use_ema: false use_peft: true val_set_size: 0.05 wandb_entity: null wandb_mode: offline wandb_name: 0f567adf-46fb-4da6-8fb5-2c3e48200314 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0f567adf-46fb-4da6-8fb5-2c3e48200314 warmup_steps: 244 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 5a20d01f-9b30-4e8c-9438-06fc7d83f3e4 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 244 - training_steps: 2819 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0011 | 1 | nan | | 0.0 | 0.25 | 235 | nan | | 0.0 | 0.5 | 470 | nan | | 0.0 | 0.75 | 705 | nan | | 1.8103 | 1.0 | 940 | nan | | 0.0 | 1.25 | 1175 | nan | | 1.7843 | 1.5 | 1410 | nan | | 0.0 | 1.75 | 1645 | nan | | 0.0 | 2.0 | 1880 | nan | | 0.0 | 2.25 | 2115 | nan | | 0.0 | 2.5 | 2350 | nan | | 0.0 | 2.75 | 2585 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Ilyanso/blockassist-bc-placid_durable_camel_1755389511
Ilyanso
2025-08-17T00:20:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid durable camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:20:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid durable camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755388280
chainway9
2025-08-17T00:19:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:19:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aditeyabaral-redis/langcache-reranker-v1
aditeyabaral-redis
2025-08-17T00:16:46Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "modernbert", "cross-encoder", "text-classification", "sentence-pair-classification", "semantic-similarity", "semantic-search", "retrieval", "reranking", "generated_from_trainer", "dataset_size:1047690", "loss:BinaryCrossEntropyLoss", "text-ranking", "en", "dataset:aditeyabaral-redis/langcache-sentencepairs", "arxiv:1908.10084", "base_model:Alibaba-NLP/gte-reranker-modernbert-base", "base_model:finetune:Alibaba-NLP/gte-reranker-modernbert-base", "license:apache-2.0", "model-index", "region:us" ]
text-ranking
2025-08-15T22:36:31Z
--- language: - en license: apache-2.0 tags: - cross-encoder - sentence-transformers - text-classification - sentence-pair-classification - semantic-similarity - semantic-search - retrieval - reranking - generated_from_trainer - dataset_size:1047690 - loss:BinaryCrossEntropyLoss base_model: Alibaba-NLP/gte-reranker-modernbert-base datasets: - aditeyabaral-redis/langcache-sentencepairs pipeline_tag: text-ranking library_name: sentence-transformers metrics: - accuracy - accuracy_threshold - f1 - f1_threshold - precision - recall - average_precision model-index: - name: Redis fine-tuned CrossEncoder model for semantic caching on LangCache results: - task: type: cross-encoder-classification name: Cross Encoder Classification dataset: name: val type: val metrics: - type: accuracy value: 0.77180249851279 name: Accuracy - type: accuracy_threshold value: 0.8926752805709839 name: Accuracy Threshold - type: f1 value: 0.6933947772657449 name: F1 - type: f1_threshold value: 0.8759380578994751 name: F1 Threshold - type: precision value: 0.678796992481203 name: Precision - type: recall value: 0.7086342229199372 name: Recall - type: average_precision value: 0.7676424589681807 name: Average Precision - task: type: cross-encoder-classification name: Cross Encoder Classification dataset: name: test type: test metrics: - type: accuracy value: 0.8947292046242402 name: Accuracy - type: accuracy_threshold value: 0.8615613579750061 name: Accuracy Threshold - type: f1 value: 0.8797439414723366 name: F1 - type: f1_threshold value: 0.503699541091919 name: F1 Threshold - type: precision value: 0.8643306379155435 name: Precision - type: recall value: 0.8957169459962756 name: Recall - type: average_precision value: 0.934515467879065 name: Average Precision --- # Redis fine-tuned CrossEncoder model for semantic caching on LangCache This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [Alibaba-NLP/gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for sentence pair classification. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [Alibaba-NLP/gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) <!-- at revision f7481e6055501a30fb19d090657df9ec1f79ab2c --> - **Maximum Sequence Length:** 8192 tokens - **Number of Output Labels:** 1 label - **Training Dataset:** - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("aditeyabaral-redis/langcache-reranker-v1") # Get scores for pairs of texts pairs = [ ['The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The newer punts are still very much in existence today and run in the same fleets as the older boats .'], ['Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .'], ['After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .', 'Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .'], ['She married Peter Haygarth on 29 May 1964 in Durban . Her second marriage , to Robin Osborne , took place in 1977 .', 'She married Robin Osborne on May 29 , 1964 in Durban , and her second marriage with Peter Haygarth took place in 1977 .'], ['In 2005 she moved to Norway , settled in Geilo and worked as a rafting guide , in 2006 she started mountain biking - races .', 'In 2005 , she moved to Geilo , settling in Norway and worked as a rafting guide . She started mountain bike races in 2006 .'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'The newer Punts are still very much in existence today and race in the same fleets as the older boats .', [ 'The newer punts are still very much in existence today and run in the same fleets as the older boats .', 'Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .', 'Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .', 'She married Robin Osborne on May 29 , 1964 in Durban , and her second marriage with Peter Haygarth took place in 1977 .', 'In 2005 , she moved to Geilo , settling in Norway and worked as a rafting guide . She started mountain bike races in 2006 .', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Cross Encoder Classification * Datasets: `val` and `test` * Evaluated with [<code>CrossEncoderClassificationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderClassificationEvaluator) | Metric | val | test | |:----------------------|:-----------|:-----------| | accuracy | 0.7718 | 0.8947 | | accuracy_threshold | 0.8927 | 0.8616 | | f1 | 0.6934 | 0.8797 | | f1_threshold | 0.8759 | 0.5037 | | precision | 0.6788 | 0.8643 | | recall | 0.7086 | 0.8957 | | **average_precision** | **0.7676** | **0.9345** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### LangCache Sentence Pairs (all) * Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs) * Size: 62,021 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 27 characters</li><li>mean: 112.72 characters</li><li>max: 197 characters</li></ul> | <ul><li>min: 27 characters</li><li>mean: 112.54 characters</li><li>max: 198 characters</li></ul> | <ul><li>0: ~50.30%</li><li>1: ~49.70%</li></ul> | * Samples: | sentence1 | sentence2 | label | |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> | | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> | <code>0</code> | | <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> | * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null } ``` ### Evaluation Dataset #### LangCache Sentence Pairs (all) * Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs) * Size: 62,021 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 27 characters</li><li>mean: 112.72 characters</li><li>max: 197 characters</li></ul> | <ul><li>min: 27 characters</li><li>mean: 112.54 characters</li><li>max: 198 characters</li></ul> | <ul><li>0: ~50.30%</li><li>1: ~49.70%</li></ul> | * Samples: | sentence1 | sentence2 | label | |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> | | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> | <code>0</code> | | <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> | * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 48 - `per_device_eval_batch_size`: 48 - `learning_rate`: 0.0002 - `num_train_epochs`: 50 - `warmup_steps`: 1000 - `load_best_model_at_end`: True - `optim`: adamw_torch - `push_to_hub`: True - `hub_model_id`: aditeyabaral-redis/langcache-reranker-v1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 48 - `per_device_eval_batch_size`: 48 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0002 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 50 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 1000 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: aditeyabaral-redis/langcache-reranker-v1 - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: True - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | Validation Loss | val_average_precision | test_average_precision | |:----------:|:----------:|:-------------:|:---------------:|:---------------------:|:----------------------:| | -1 | -1 | - | - | 0.7676 | 0.6907 | | 0.1833 | 1000 | 0.2986 | 0.3912 | - | 0.8585 | | 0.3666 | 2000 | 0.2465 | 0.3856 | - | 0.8956 | | 0.5499 | 3000 | 0.2287 | 0.3362 | - | 0.9160 | | 0.7331 | 4000 | 0.2171 | 0.3408 | - | 0.9071 | | 0.9164 | 5000 | 0.2068 | 0.3182 | - | 0.9220 | | 1.0997 | 6000 | 0.1991 | 0.3458 | - | 0.8686 | | 1.2830 | 7000 | 0.1939 | 0.3188 | - | 0.9244 | | 1.4663 | 8000 | 0.1917 | 0.3120 | - | 0.9287 | | 1.6496 | 9000 | 0.1906 | 0.3015 | - | 0.9279 | | 1.8328 | 10000 | 0.1884 | 0.2986 | - | 0.9316 | | 2.0161 | 11000 | 0.183 | 0.3065 | - | 0.9320 | | 2.1994 | 12000 | 0.1714 | 0.3046 | - | 0.9180 | | 2.3827 | 13000 | 0.1738 | 0.2994 | - | 0.9315 | | 2.5660 | 14000 | 0.1709 | 0.2965 | - | 0.9347 | | 2.7493 | 15000 | 0.1717 | 0.2911 | - | 0.9309 | | 2.9326 | 16000 | 0.1698 | 0.2900 | - | 0.9354 | | 3.1158 | 17000 | 0.16 | 0.2894 | - | 0.9377 | | 3.2991 | 18000 | 0.1589 | 0.2830 | - | 0.9356 | | 3.4824 | 19000 | 0.1574 | 0.2829 | - | 0.9337 | | 3.6657 | 20000 | 0.1572 | 0.2818 | - | 0.9324 | | 3.8490 | 21000 | 0.1587 | 0.2866 | - | 0.9365 | | 4.0323 | 22000 | 0.1543 | 0.2923 | - | 0.9389 | | 4.2155 | 23000 | 0.1445 | 0.2871 | - | 0.9430 | | 4.3988 | 24000 | 0.1447 | 0.2793 | - | 0.9429 | | 4.5821 | 25000 | 0.1473 | 0.2791 | - | 0.9386 | | 4.7654 | 26000 | 0.146 | 0.2700 | - | 0.9417 | | 4.9487 | 27000 | 0.1473 | 0.2697 | - | 0.9419 | | 5.1320 | 28000 | 0.1365 | 0.2810 | - | 0.9411 | | 5.3152 | 29000 | 0.1331 | 0.2764 | - | 0.9397 | | 5.4985 | 30000 | 0.1372 | 0.2794 | - | 0.9416 | | 5.6818 | 31000 | 0.1365 | 0.2751 | - | 0.9408 | | 5.8651 | 32000 | 0.1365 | 0.2724 | - | 0.9411 | | 6.0484 | 33000 | 0.1348 | 0.2767 | - | 0.9378 | | 6.2317 | 34000 | 0.1236 | 0.2840 | - | 0.9388 | | 6.4150 | 35000 | 0.1262 | 0.2845 | - | 0.9437 | | 6.5982 | 36000 | 0.1277 | 0.2781 | - | 0.9446 | | 6.7815 | 37000 | 0.129 | 0.2705 | - | 0.9427 | | 6.9648 | 38000 | 0.1279 | 0.2773 | - | 0.9381 | | 7.1481 | 39000 | 0.1173 | 0.2875 | - | 0.9420 | | 7.3314 | 40000 | 0.1175 | 0.2901 | - | 0.9438 | | 7.5147 | 41000 | 0.1174 | 0.2787 | - | 0.9420 | | 7.6979 | 42000 | 0.118 | 0.2879 | - | 0.9424 | | 7.8812 | 43000 | 0.1201 | 0.2826 | - | 0.9450 | | 8.0645 | 44000 | 0.1168 | 0.2851 | - | 0.9419 | | 8.2478 | 45000 | 0.1062 | 0.2913 | - | 0.9450 | | 8.4311 | 46000 | 0.1091 | 0.2918 | - | 0.9454 | | 8.6144 | 47000 | 0.1117 | 0.2799 | - | 0.9445 | | 8.7977 | 48000 | 0.1123 | 0.2762 | - | 0.9443 | | 8.9809 | 49000 | 0.1132 | 0.2772 | - | 0.9455 | | 9.1642 | 50000 | 0.1016 | 0.2943 | - | 0.9433 | | 9.3475 | 51000 | 0.1012 | 0.2879 | - | 0.9441 | | 9.5308 | 52000 | 0.1029 | 0.2851 | - | 0.9442 | | 9.7141 | 53000 | 0.105 | 0.2905 | - | 0.9448 | | 9.8974 | 54000 | 0.1062 | 0.2960 | - | 0.9425 | | 10.0806 | 55000 | 0.0996 | 0.2984 | - | 0.9430 | | 10.2639 | 56000 | 0.0924 | 0.2947 | - | 0.9432 | | 10.4472 | 57000 | 0.0939 | 0.2918 | - | 0.9421 | | 10.6305 | 58000 | 0.0977 | 0.2895 | - | 0.9438 | | 10.8138 | 59000 | 0.0977 | 0.2905 | - | 0.9446 | | 10.9971 | 60000 | 0.0985 | 0.2882 | - | 0.9403 | | 11.1804 | 61000 | 0.0857 | 0.3025 | - | 0.9435 | | 11.3636 | 62000 | 0.0869 | 0.2997 | - | 0.9450 | | 11.5469 | 63000 | 0.0886 | 0.3025 | - | 0.9459 | | 11.7302 | 64000 | 0.0901 | 0.3000 | - | 0.9443 | | 11.9135 | 65000 | 0.092 | 0.2913 | - | 0.9424 | | 12.0968 | 66000 | 0.085 | 0.3017 | - | 0.9443 | | 12.2801 | 67000 | 0.0801 | 0.3101 | - | 0.9449 | | 12.4633 | 68000 | 0.0823 | 0.3018 | - | 0.9468 | | 12.6466 | 69000 | 0.0841 | 0.2971 | - | 0.9457 | | 12.8299 | 70000 | 0.0855 | 0.3063 | - | 0.9428 | | 13.0132 | 71000 | 0.0854 | 0.3105 | - | 0.9436 | | 13.1965 | 72000 | 0.0744 | 0.3017 | - | 0.9451 | | 13.3798 | 73000 | 0.0763 | 0.3024 | - | 0.9425 | | 13.5630 | 74000 | 0.0777 | 0.2948 | - | 0.9461 | | 13.7463 | 75000 | 0.0791 | 0.3006 | - | 0.9466 | | 13.9296 | 76000 | 0.0803 | 0.3001 | - | 0.9446 | | 14.1129 | 77000 | 0.0721 | 0.3229 | - | 0.9445 | | 14.2962 | 78000 | 0.0692 | 0.3231 | - | 0.9437 | | 14.4795 | 79000 | 0.0703 | 0.3242 | - | 0.9458 | | 14.6628 | 80000 | 0.073 | 0.3078 | - | 0.9469 | | 14.8460 | 81000 | 0.073 | 0.3111 | - | 0.9448 | | 15.0293 | 82000 | 0.0731 | 0.3319 | - | 0.9459 | | 15.2126 | 83000 | 0.0629 | 0.3094 | - | 0.9464 | | 15.3959 | 84000 | 0.0644 | 0.3440 | - | 0.9427 | | 15.5792 | 85000 | 0.0673 | 0.3234 | - | 0.9457 | | 15.7625 | 86000 | 0.068 | 0.3192 | - | 0.9430 | | 15.9457 | 87000 | 0.0687 | 0.3097 | - | 0.9428 | | 16.1290 | 88000 | 0.0618 | 0.3379 | - | 0.9466 | | 16.3123 | 89000 | 0.0615 | 0.3192 | - | 0.9436 | | 16.4956 | 90000 | 0.0605 | 0.3303 | - | 0.9452 | | 16.6789 | 91000 | 0.0635 | 0.3154 | - | 0.9445 | | 16.8622 | 92000 | 0.0637 | 0.3324 | - | 0.9467 | | 17.0455 | 93000 | 0.0615 | 0.3365 | - | 0.9424 | | 17.2287 | 94000 | 0.056 | 0.3332 | - | 0.9446 | | 17.4120 | 95000 | 0.0567 | 0.3412 | - | 0.9432 | | 17.5953 | 96000 | 0.0571 | 0.3419 | - | 0.9444 | | 17.7786 | 97000 | 0.0589 | 0.3271 | - | 0.9403 | | 17.9619 | 98000 | 0.0588 | 0.3281 | - | 0.9440 | | 18.1452 | 99000 | 0.053 | 0.3282 | - | 0.9475 | | 18.3284 | 100000 | 0.0525 | 0.3414 | - | 0.9470 | | 18.5117 | 101000 | 0.0528 | 0.3263 | - | 0.9450 | | 18.6950 | 102000 | 0.0539 | 0.3363 | - | 0.9428 | | 18.8783 | 103000 | 0.056 | 0.3487 | - | 0.9454 | | 19.0616 | 104000 | 0.0528 | 0.3701 | - | 0.9465 | | 19.2449 | 105000 | 0.0464 | 0.3877 | - | 0.9328 | | 19.4282 | 106000 | 0.0499 | 0.3379 | - | 0.9451 | | 19.6114 | 107000 | 0.0496 | 0.3500 | - | 0.9442 | | 19.7947 | 108000 | 0.0502 | 0.3420 | - | 0.9444 | | 19.9780 | 109000 | 0.0519 | 0.3459 | - | 0.9442 | | 20.1613 | 110000 | 0.0443 | 0.3755 | - | 0.9449 | | 20.3446 | 111000 | 0.0449 | 0.3588 | - | 0.9447 | | 20.5279 | 112000 | 0.0448 | 0.3616 | - | 0.9448 | | 20.7111 | 113000 | 0.0471 | 0.3463 | - | 0.9426 | | 20.8944 | 114000 | 0.0474 | 0.3784 | - | 0.9400 | | 21.0777 | 115000 | 0.0451 | 0.3493 | - | 0.9447 | | 21.2610 | 116000 | 0.0415 | 0.3633 | - | 0.9448 | | 21.4443 | 117000 | 0.0412 | 0.3635 | - | 0.9472 | | 21.6276 | 118000 | 0.0441 | 0.3710 | - | 0.9454 | | 21.8109 | 119000 | 0.0427 | 0.3696 | - | 0.9459 | | 21.9941 | 120000 | 0.045 | 0.3571 | - | 0.9440 | | 22.1774 | 121000 | 0.0384 | 0.3815 | - | 0.9431 | | 22.3607 | 122000 | 0.0389 | 0.3832 | - | 0.9428 | | 22.5440 | 123000 | 0.0397 | 0.3773 | - | 0.9461 | | 22.7273 | 124000 | 0.0402 | 0.3977 | - | 0.9415 | | 22.9106 | 125000 | 0.0399 | 0.3870 | - | 0.9354 | | 23.0938 | 126000 | 0.0376 | 0.3820 | - | 0.9409 | | 23.2771 | 127000 | 0.0362 | 0.3755 | - | 0.9411 | | 23.4604 | 128000 | 0.0358 | 0.3915 | - | 0.9461 | | 23.6437 | 129000 | 0.0368 | 0.3688 | - | 0.9411 | | 23.8270 | 130000 | 0.0374 | 0.4068 | - | 0.9427 | | 24.0103 | 131000 | 0.0376 | 0.4155 | - | 0.9445 | | 24.1935 | 132000 | 0.0325 | 0.3967 | - | 0.9434 | | 24.3768 | 133000 | 0.0333 | 0.4209 | - | 0.9425 | | 24.5601 | 134000 | 0.0335 | 0.4018 | - | 0.9432 | | 24.7434 | 135000 | 0.0343 | 0.4250 | - | 0.9443 | | 24.9267 | 136000 | 0.0345 | 0.4185 | - | 0.9414 | | 25.1100 | 137000 | 0.0316 | 0.4075 | - | 0.9454 | | 25.2933 | 138000 | 0.0299 | 0.4096 | - | 0.9454 | | 25.4765 | 139000 | 0.0294 | 0.4135 | - | 0.9459 | | 25.6598 | 140000 | 0.0317 | 0.3997 | - | 0.9445 | | 25.8431 | 141000 | 0.0328 | 0.4093 | - | 0.9438 | | 26.0264 | 142000 | 0.0317 | 0.4361 | - | 0.9404 | | 26.2097 | 143000 | 0.027 | 0.4347 | - | 0.9454 | | 26.3930 | 144000 | 0.0281 | 0.4149 | - | 0.9413 | | 26.5762 | 145000 | 0.0283 | 0.4151 | - | 0.9454 | | 26.7595 | 146000 | 0.0302 | 0.4041 | - | 0.9416 | | 26.9428 | 147000 | 0.0301 | 0.4265 | - | 0.9340 | | 27.1261 | 148000 | 0.026 | 0.4223 | - | 0.9426 | | 27.3094 | 149000 | 0.0267 | 0.4237 | - | 0.9430 | | 27.4927 | 150000 | 0.0268 | 0.4281 | - | 0.9458 | | 27.6760 | 151000 | 0.0262 | 0.4193 | - | 0.9426 | | 27.8592 | 152000 | 0.0262 | 0.4412 | - | 0.9402 | | 28.0425 | 153000 | 0.0261 | 0.4795 | - | 0.9425 | | 28.2258 | 154000 | 0.024 | 0.4519 | - | 0.9442 | | 28.4091 | 155000 | 0.024 | 0.4395 | - | 0.9440 | | 28.5924 | 156000 | 0.025 | 0.4549 | - | 0.9456 | | 28.7757 | 157000 | 0.0253 | 0.4446 | - | 0.9429 | | 28.9589 | 158000 | 0.0258 | 0.4349 | - | 0.9425 | | 29.1422 | 159000 | 0.0211 | 0.4490 | - | 0.9430 | | 29.3255 | 160000 | 0.0218 | 0.4538 | - | 0.9455 | | 29.5088 | 161000 | 0.0217 | 0.4771 | - | 0.9435 | | 29.6921 | 162000 | 0.0228 | 0.4238 | - | 0.9440 | | 29.8754 | 163000 | 0.022 | 0.4731 | - | 0.9412 | | 30.0587 | 164000 | 0.0227 | 0.4630 | - | 0.9450 | | 30.2419 | 165000 | 0.0197 | 0.4840 | - | 0.9453 | | 30.4252 | 166000 | 0.0198 | 0.4799 | - | 0.9434 | | 30.6085 | 167000 | 0.022 | 0.4650 | - | 0.9453 | | 30.7918 | 168000 | 0.0211 | 0.4592 | - | 0.9465 | | 30.9751 | 169000 | 0.022 | 0.4727 | - | 0.9405 | | 31.1584 | 170000 | 0.0184 | 0.4802 | - | 0.9460 | | 31.3416 | 171000 | 0.0186 | 0.4953 | - | 0.9449 | | 31.5249 | 172000 | 0.0187 | 0.4516 | - | 0.9424 | | 31.7082 | 173000 | 0.019 | 0.4803 | - | 0.9444 | | 31.8915 | 174000 | 0.0186 | 0.4499 | - | 0.9448 | | 32.0748 | 175000 | 0.0181 | 0.5211 | - | 0.9377 | | 32.2581 | 176000 | 0.0163 | 0.4941 | - | 0.9434 | | 32.4413 | 177000 | 0.0168 | 0.4672 | - | 0.9433 | | 32.6246 | 178000 | 0.0171 | 0.4990 | - | 0.9414 | | 32.8079 | 179000 | 0.0185 | 0.4537 | - | 0.9444 | | 32.9912 | 180000 | 0.0179 | 0.4929 | - | 0.9460 | | 33.1745 | 181000 | 0.0144 | 0.5037 | - | 0.9407 | | 33.3578 | 182000 | 0.0143 | 0.4986 | - | 0.9449 | | 33.5411 | 183000 | 0.016 | 0.5043 | - | 0.9452 | | 33.7243 | 184000 | 0.0152 | 0.5090 | - | 0.9427 | | 33.9076 | 185000 | 0.0154 | 0.5100 | - | 0.9414 | | 34.0909 | 186000 | 0.0146 | 0.5367 | - | 0.9386 | | 34.2742 | 187000 | 0.0138 | 0.5063 | - | 0.9395 | | 34.4575 | 188000 | 0.0143 | 0.4871 | - | 0.9446 | | 34.6408 | 189000 | 0.014 | 0.4947 | - | 0.9483 | | **34.824** | **190000** | **0.0142** | **0.5079** | **-** | **0.9467** | | 35.0073 | 191000 | 0.014 | 0.5062 | - | 0.9439 | | 35.1906 | 192000 | 0.0122 | 0.5293 | - | 0.9410 | | 35.3739 | 193000 | 0.0127 | 0.5351 | - | 0.9401 | | 35.5572 | 194000 | 0.0132 | 0.5263 | - | 0.9369 | | 35.7405 | 195000 | 0.0134 | 0.5300 | - | 0.9427 | | 35.9238 | 196000 | 0.0138 | 0.5230 | - | 0.9416 | | 36.1070 | 197000 | 0.0129 | 0.5399 | - | 0.9417 | | 36.2903 | 198000 | 0.0109 | 0.5352 | - | 0.9433 | | 36.4736 | 199000 | 0.0114 | 0.5587 | - | 0.9404 | | 36.6569 | 200000 | 0.012 | 0.5289 | - | 0.9441 | | 36.8402 | 201000 | 0.012 | 0.5516 | - | 0.9434 | | 37.0235 | 202000 | 0.0121 | 0.5467 | - | 0.9418 | | 37.2067 | 203000 | 0.0108 | 0.5499 | - | 0.9412 | | 37.3900 | 204000 | 0.0107 | 0.5459 | - | 0.9427 | | 37.5733 | 205000 | 0.0105 | 0.5375 | - | 0.9414 | | 37.7566 | 206000 | 0.0109 | 0.5566 | - | 0.9421 | | 37.9399 | 207000 | 0.011 | 0.5601 | - | 0.9428 | | 38.1232 | 208000 | 0.0095 | 0.5700 | - | 0.9406 | | 38.3065 | 209000 | 0.0098 | 0.5493 | - | 0.9417 | | 38.4897 | 210000 | 0.0093 | 0.5867 | - | 0.9372 | | 38.6730 | 211000 | 0.0095 | 0.6087 | - | 0.9394 | | 38.8563 | 212000 | 0.0096 | 0.5888 | - | 0.9397 | | 39.0396 | 213000 | 0.0094 | 0.5806 | - | 0.9380 | | 39.2229 | 214000 | 0.0087 | 0.5927 | - | 0.9393 | | 39.4062 | 215000 | 0.0079 | 0.6153 | - | 0.9376 | | 39.5894 | 216000 | 0.009 | 0.6151 | - | 0.9398 | | 39.7727 | 217000 | 0.009 | 0.5601 | - | 0.9379 | | 39.9560 | 218000 | 0.0086 | 0.5845 | - | 0.9409 | | 40.1393 | 219000 | 0.0078 | 0.5929 | - | 0.9396 | | 40.3226 | 220000 | 0.0077 | 0.6086 | - | 0.9417 | | 40.5059 | 221000 | 0.0075 | 0.6053 | - | 0.9418 | | 40.6891 | 222000 | 0.008 | 0.6078 | - | 0.9394 | | 40.8724 | 223000 | 0.0084 | 0.5975 | - | 0.9423 | | 41.0557 | 224000 | 0.0068 | 0.6410 | - | 0.9400 | | 41.2390 | 225000 | 0.0067 | 0.6183 | - | 0.9409 | | 41.4223 | 226000 | 0.0067 | 0.6239 | - | 0.9401 | | 41.6056 | 227000 | 0.0075 | 0.5971 | - | 0.9408 | | 41.7889 | 228000 | 0.0069 | 0.6458 | - | 0.9396 | | 41.9721 | 229000 | 0.0073 | 0.6289 | - | 0.9337 | | 42.1554 | 230000 | 0.0061 | 0.6311 | - | 0.9351 | | 42.3387 | 231000 | 0.0064 | 0.6371 | - | 0.9254 | | 42.5220 | 232000 | 0.0067 | 0.6119 | - | 0.9238 | | 42.7053 | 233000 | 0.0068 | 0.6045 | - | 0.9435 | | 42.8886 | 234000 | 0.0064 | 0.6246 | - | 0.9403 | | 43.0718 | 235000 | 0.0066 | 0.6077 | - | 0.9355 | | 43.2551 | 236000 | 0.0054 | 0.6348 | - | 0.9429 | | 43.4384 | 237000 | 0.0053 | 0.6606 | - | 0.9414 | | 43.6217 | 238000 | 0.0054 | 0.6373 | - | 0.9421 | | 43.8050 | 239000 | 0.006 | 0.6122 | - | 0.9391 | | 43.9883 | 240000 | 0.0058 | 0.6438 | - | 0.9380 | | 44.1716 | 241000 | 0.0051 | 0.6474 | - | 0.9392 | | 44.3548 | 242000 | 0.0049 | 0.6637 | - | 0.9399 | | 44.5381 | 243000 | 0.005 | 0.6765 | - | 0.9420 | | 44.7214 | 244000 | 0.0052 | 0.6585 | - | 0.9406 | | 44.9047 | 245000 | 0.005 | 0.6609 | - | 0.9420 | | 45.0880 | 246000 | 0.0048 | 0.6725 | - | 0.9417 | | 45.2713 | 247000 | 0.0044 | 0.6597 | - | 0.9411 | | 45.4545 | 248000 | 0.0045 | 0.6717 | - | 0.9381 | | 45.6378 | 249000 | 0.0046 | 0.6689 | - | 0.9361 | | 45.8211 | 250000 | 0.0046 | 0.6703 | - | 0.9334 | | 46.0044 | 251000 | 0.0044 | 0.6958 | - | 0.9324 | | 46.1877 | 252000 | 0.0041 | 0.6884 | - | 0.9380 | | 46.3710 | 253000 | 0.0041 | 0.6958 | - | 0.9342 | | 46.5543 | 254000 | 0.004 | 0.6796 | - | 0.9375 | | 46.7375 | 255000 | 0.0042 | 0.6735 | - | 0.9311 | | 46.9208 | 256000 | 0.004 | 0.7004 | - | 0.9264 | | 47.1041 | 257000 | 0.0041 | 0.6798 | - | 0.9303 | | 47.2874 | 258000 | 0.0036 | 0.7039 | - | 0.9330 | | 47.4707 | 259000 | 0.0037 | 0.7133 | - | 0.9277 | | 47.6540 | 260000 | 0.0033 | 0.7200 | - | 0.9250 | | 47.8372 | 261000 | 0.0038 | 0.7204 | - | 0.9292 | | 48.0205 | 262000 | 0.0034 | 0.7214 | - | 0.9336 | | 48.2038 | 263000 | 0.0037 | 0.7077 | - | 0.9313 | | 48.3871 | 264000 | 0.0033 | 0.7218 | - | 0.9289 | | 48.5704 | 265000 | 0.0033 | 0.7258 | - | 0.9328 | | 48.7537 | 266000 | 0.0034 | 0.7215 | - | 0.9346 | | 48.9370 | 267000 | 0.0031 | 0.7300 | - | 0.9347 | | 49.1202 | 268000 | 0.0033 | 0.7242 | - | 0.9350 | | 49.3035 | 269000 | 0.0028 | 0.7320 | - | 0.9345 | | 49.4868 | 270000 | 0.003 | 0.7397 | - | 0.9341 | | 49.6701 | 271000 | 0.0029 | 0.7410 | - | 0.9342 | | 49.8534 | 272000 | 0.0029 | 0.7426 | - | 0.9345 | * The bold row denotes the saved checkpoint. </details> ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 5.1.0 - Transformers: 4.55.0 - PyTorch: 2.8.0+cu128 - Accelerate: 1.10.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
niikun/SmolGRPO-135M
niikun
2025-08-17T00:14:20Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "grpo", "GRPO", "Reasoning-Course", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T00:13:58Z
--- library_name: transformers tags: - trl - grpo - GRPO - Reasoning-Course --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755388111
ihsanridzi
2025-08-17T00:14:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:14:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755388029
unitova
2025-08-17T00:12:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:12:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755387986
thanobidex
2025-08-17T00:12:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:11:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fujiantiiazhraa/blockassist-bc-marine_robust_bee_1755387928
fujiantiiazhraa
2025-08-17T00:10:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine robust bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:10:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine robust bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755388124
Sayemahsjn
2025-08-17T00:07:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:07:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755387699
mang3dd
2025-08-17T00:07:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:07:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755386760
quantumxnode
2025-08-16T23:51:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:51:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Norwaere/Illustrious2.0-lora-Vpred-conversion-experiments
Norwaere
2025-08-16T23:50:39Z
0
2
diffusers
[ "diffusers", "tensorboard", "safetensors", "lora", "text-to-image", "Illustrious", "sdxl", "base_model:OnomaAIResearch/Illustrious-XL-v2.0", "base_model:adapter:OnomaAIResearch/Illustrious-XL-v2.0", "license:apache-2.0", "region:us" ]
text-to-image
2025-07-08T10:57:47Z
--- license: apache-2.0 base_model: - OnomaAIResearch/Illustrious-XL-v2.0 pipeline_tag: text-to-image tags: - lora - text-to-image - diffusers - Illustrious - sdxl --- # Illustrious-v2-Out2-5noob-512res-b256-lr3e5-msnr10-locondora-ztsnr-vpredconv <img src="Illustrious-v2-Out2-5noob-512res-b256-lr3e5-msnr10-locondora-ztsnr-vpredconv/Illustrious-v2-Out2-5noob-512res-b256-lr3e5-msnr10-locondora-ztsnr-vpredconv.jpg" /> <img src="Illustrious-v2-Out2-5noob-512res-b256-lr3e5-msnr10-locondora-ztsnr-vpredconv/Illustrious-v2-Out2-5noob-512res-b256-lr3e5-msnr10-locondora-ztsnr-vpredconv other prompt.jpg" /> ## Download model [Download](/Norwaere/Illustrious2.0-lora-Vpred-conversion-experiments/tree/main) them in the Files & versions tab.
realSanemi/blockassist-bc-aquatic_snappy_tortoise_1755383489
realSanemi
2025-08-16T23:50:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic snappy tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:49:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic snappy tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MauoSama/act_multicut_4images_time
MauoSama
2025-08-16T23:50:02Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:MauoSama/multicut_4images_time", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-16T23:49:56Z
--- datasets: MauoSama/multicut_4images_time library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - robotics - act - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
chainway9/blockassist-bc-untamed_quick_eel_1755386353
chainway9
2025-08-16T23:47:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:47:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omar-salama/thera-space
omar-salama
2025-08-16T23:45:29Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/gemma-3-1b-it", "base_model:finetune:google/gemma-3-1b-it", "endpoints_compatible", "region:us" ]
null
2025-08-16T22:45:42Z
--- base_model: google/gemma-3-1b-it library_name: transformers model_name: thera-space tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for thera-space This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="omar-salama/thera-space", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/omar_salama/huggingface/runs/3umk1xd9) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hesamation/Qwen3-8B-Base-FOL
hesamation
2025-08-16T23:44:56Z
0
1
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-16T23:44:35Z
--- base_model: unsloth/qwen3-8b-base-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** hesamation - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-8b-base-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755386019
mang3dd
2025-08-16T23:38:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:38:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DevQuasar/inclusionAI.AReaL-boba-2-32B-GGUF
DevQuasar
2025-08-16T23:38:22Z
0
0
null
[ "gguf", "text-generation", "base_model:inclusionAI/AReaL-boba-2-32B", "base_model:quantized:inclusionAI/AReaL-boba-2-32B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-16T20:07:45Z
--- base_model: - inclusionAI/AReaL-boba-2-32B pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [inclusionAI/AReaL-boba-2-32B](https://huggingface.co/inclusionAI/AReaL-boba-2-32B) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755386162
Sayemahsjn
2025-08-16T23:35:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:35:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MauoSama/act_multicut_static_image_time
MauoSama
2025-08-16T23:30:47Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:MauoSama/multicut_static_image_time", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-16T23:30:42Z
--- datasets: MauoSama/multicut_static_image_time library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - robotics - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
BootesVoid/cmeev0d8w0jvnrts8jgw8vh9c_cmeev45lx0jw0rts8qdjejk92
BootesVoid
2025-08-16T23:30:39Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-16T23:30:38Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: FAMOUS --- # Cmeev0D8W0Jvnrts8Jgw8Vh9C_Cmeev45Lx0Jw0Rts8Qdjejk92 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `FAMOUS` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "FAMOUS", "lora_weights": "https://huggingface.co/BootesVoid/cmeev0d8w0jvnrts8jgw8vh9c_cmeev45lx0jw0rts8qdjejk92/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmeev0d8w0jvnrts8jgw8vh9c_cmeev45lx0jw0rts8qdjejk92', weight_name='lora.safetensors') image = pipeline('FAMOUS').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmeev0d8w0jvnrts8jgw8vh9c_cmeev45lx0jw0rts8qdjejk92/discussions) to add images that show off what you’ve made with this LoRA.
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755385479
vwzyrraz7l
2025-08-16T23:29:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:29:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MauoSama/act_multicut_wrist_image_time
MauoSama
2025-08-16T23:29:31Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:MauoSama/multicut_wrist_image_time", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-16T23:29:25Z
--- datasets: MauoSama/multicut_wrist_image_time library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - lerobot - act - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
Kyleyee/Mistral-7B-Instruct-v0.3-vrpo
Kyleyee
2025-08-16T23:28:25Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "trl", "drdpo", "conversational", "dataset:Kyleyee/UltraFeedback-for-vrpo-pairrm-preference-with-template", "arxiv:2305.18290", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T14:07:09Z
--- base_model: mistralai/Mistral-7B-Instruct-v0.3 datasets: Kyleyee/UltraFeedback-for-vrpo-pairrm-preference-with-template library_name: transformers model_name: Mistral-7B-Instruct-v0.3-vrpo tags: - generated_from_trainer - trl - drdpo licence: license --- # Model Card for Mistral-7B-Instruct-v0.3-vrpo This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the [Kyleyee/UltraFeedback-for-vrpo-pairrm-preference-with-template](https://huggingface.co/datasets/Kyleyee/UltraFeedback-for-vrpo-pairrm-preference-with-template) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Kyleyee/Mistral-7B-Instruct-v0.3-vrpo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DRDPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite DRDPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
prudant/Qwen3-Reranker-4B-seq-cls-vllm-fixed-W4A16
prudant
2025-08-16T23:28:11Z
0
0
null
[ "safetensors", "qwen3", "text-ranking", "en", "es", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:Qwen/Qwen3-Reranker-4B", "base_model:quantized:Qwen/Qwen3-Reranker-4B", "license:apache-2.0", "compressed-tensors", "region:us" ]
text-ranking
2025-08-16T22:52:11Z
--- license: apache-2.0 datasets: - HuggingFaceH4/ultrachat_200k language: - en - es base_model: - Qwen/Qwen3-Reranker-4B pipeline_tag: text-ranking --- # prudant/Qwen3-Reranker-4B-seq-cls-vllm-fixed-W4A16 Qwen3 4b reranker full vllm adapted 🚀 This is a compressed version of danielchalef/Qwen3-Reranker-4B-seq-cls-vllm-fixed using llm-compressor with the following scheme: W4A16 ## Serving ``python3 -m vllm.entrypoints.openai.api_server --download-dir '/data' --model 'prudant/Qwen3-Reranker-4B-seq-cls-vllm-fixed-W4A16' --task classify`` **Important**: You MUST read the following guide for correct usage of this model here [Guide](https://github.com/vllm-project/vllm/pull/19260) ## Model Details - **Original Model**: danielchalef/Qwen3-Reranker-4B-seq-cls-vllm-fixed - **Quantization Method**: GPTQ - **Compression Libraries**: [llm-compressor](https://github.com/vllm-project/llm-compressor) - **Calibration Dataset**: ultrachat_200k (512 samples) - **Optimized For**: Inference with vLLM - **License**: same as original model
koloni/blockassist-bc-deadly_graceful_stingray_1755385367
koloni
2025-08-16T23:27:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:27:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Hamzah-Asadullah/HelloWorld-XL
Hamzah-Asadullah
2025-08-16T23:23:11Z
0
1
diffusers
[ "diffusers", "text-to-image", "license:other", "region:us" ]
text-to-image
2025-08-16T22:35:16Z
--- license: other license_name: creativeml-open-rail-m-addendum license_link: https://huggingface.co/spaces/CompVis/stable-diffusion-license pipeline_tag: text-to-image library_name: diffusers widget: - text: "The Moon (Seed: 0, CFG: 5.5, Steps: 25)" output: url: example.png --- <Gallery /> **Searching for the GGUF? [It's here.](https://huggingface.co/Hamzah-Asadullah/HelloWorld-XL-GGUF)** Model from [CivitAI](https://civitai.com/models/43977/leosams-helloworld-xl?modelVersionId=113623). The image above was generated using the Q8 quantization. What the model card on CivitAI recommended **doesn't seem to work for me**. Here's **what does work well** for me: - Steps: 20 to 25, no major quality improvements after ~20 though - Sampler: Euler a - CFG: 5 to 5.5 - Prompt Appendix: ", masterpiece, unique, stunning" - Negative Prompt Appendix: ", nudity, low quality, jpeg artifacts, blurry, poorly drawn, worst quality, western" - CLIP skip: -1 Addionally, following dimensions (w * h) work well: - Square: 832 * 832 - Landscape and vice versa: 896 * 704 or 704 * 896 (both work extremely well)
Elhusseny/Quran_ArbGPT2
Elhusseny
2025-08-16T23:20:23Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-08-16T23:17:51Z
--- license: apache-2.0 ---
MauoSama/act_multicut_onlywrist_image_time
MauoSama
2025-08-16T23:17:01Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:MauoSama/multicut_onlywrist_image_time", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-16T23:16:56Z
--- datasets: MauoSama/multicut_onlywrist_image_time library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - robotics - act - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
wanacode/qwen-image-chromablock-lora
wanacode
2025-08-16T23:16:48Z
0
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "license:other", "region:us" ]
text-to-image
2025-08-16T23:16:22Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: undefined instance_prompt: chromablock license: other --- # qwen image chromablock lora <Gallery /> ## Model description Qwen Image LoRA for creating chromablock effect ## Trigger words You should use `chromablock` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/wanacode/qwen-image-chromablock-lora/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/qwen-image-trainer](https://fal.ai/models/fal-ai/qwen-image-trainer).
CohenQu/LLaDA-8B-Instruct_Mixture-of-Thoughts-math-4k_without_reasoning_DSAI
CohenQu
2025-08-16T23:16:47Z
0
0
transformers
[ "transformers", "safetensors", "llada", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2025-08-16T22:09:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755384681
ihsanridzi
2025-08-16T23:15:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:15:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sudoping01/sereer-tts-v0-lora
sudoping01
2025-08-16T23:15:21Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-16T23:15:11Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
chainway9/blockassist-bc-untamed_quick_eel_1755384434
chainway9
2025-08-16T23:15:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:15:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF
tensorblock
2025-08-16T23:12:54Z
0
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:zwhe99/Qwen2.5-3B-orz", "base_model:quantized:zwhe99/Qwen2.5-3B-orz", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-16T22:38:07Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: zwhe99/Qwen2.5-3B-orz --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## zwhe99/Qwen2.5-3B-orz - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building ↗ </a> </div> This repo contains GGUF format model files for [zwhe99/Qwen2.5-3B-orz](https://huggingface.co/zwhe99/Qwen2.5-3B-orz). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">🚀 Try it now! 🚀</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">👀 See what we built 👀</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">👀 See what we built 👀</a> </th> </tr> </table> ## Prompt template ``` A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The Assistant first thinks about the reasoning process in the mind and then provides the User with the answer. The reasoning process is enclosed within <think> </think> and answer is enclosed within <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: You must put your answer inside <answer> </answer> tags, i.e., <answer> answer here </answer>. And your final answer will be extracted automatically by the \boxed{} tag. This is the problem: {prompt} Assistant: <think> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Qwen2.5-3B-orz-Q2_K.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q2_K.gguf) | Q2_K | 1.275 GB | smallest, significant quality loss - not recommended for most purposes | | [Qwen2.5-3B-orz-Q3_K_S.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q3_K_S.gguf) | Q3_K_S | 1.454 GB | very small, high quality loss | | [Qwen2.5-3B-orz-Q3_K_M.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q3_K_M.gguf) | Q3_K_M | 1.590 GB | very small, high quality loss | | [Qwen2.5-3B-orz-Q3_K_L.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q3_K_L.gguf) | Q3_K_L | 1.707 GB | small, substantial quality loss | | [Qwen2.5-3B-orz-Q4_0.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q4_0.gguf) | Q4_0 | 1.823 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Qwen2.5-3B-orz-Q4_K_S.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q4_K_S.gguf) | Q4_K_S | 1.834 GB | small, greater quality loss | | [Qwen2.5-3B-orz-Q4_K_M.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q4_K_M.gguf) | Q4_K_M | 1.930 GB | medium, balanced quality - recommended | | [Qwen2.5-3B-orz-Q5_0.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q5_0.gguf) | Q5_0 | 2.170 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Qwen2.5-3B-orz-Q5_K_S.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q5_K_S.gguf) | Q5_K_S | 2.170 GB | large, low quality loss - recommended | | [Qwen2.5-3B-orz-Q5_K_M.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q5_K_M.gguf) | Q5_K_M | 2.225 GB | large, very low quality loss - recommended | | [Qwen2.5-3B-orz-Q6_K.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q6_K.gguf) | Q6_K | 2.538 GB | very large, extremely low quality loss | | [Qwen2.5-3B-orz-Q8_0.gguf](https://huggingface.co/tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF/blob/main/Qwen2.5-3B-orz-Q8_0.gguf) | Q8_0 | 3.285 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF --include "Qwen2.5-3B-orz-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/zwhe99_Qwen2.5-3B-orz-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
SicariusSicariiStuff/Impish_QWEN_7B-1M_ARM_HA
SicariusSicariiStuff
2025-08-16T23:11:02Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:SicariusSicariiStuff/Impish_QWEN_7B-1M", "base_model:quantized:SicariusSicariiStuff/Impish_QWEN_7B-1M", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-16T12:21:56Z
--- base_model: - SicariusSicariiStuff/Impish_QWEN_7B-1M language: - en library_name: transformers license: apache-2.0 quantized_by: SicariusSicariiStuff ---
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755385687
ggozzy
2025-08-16T23:09:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:09:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aaronqg/vit-football-players
aaronqg
2025-08-16T23:09:20Z
0
0
null
[ "safetensors", "vit", "vision", "classification", "football", "en", "dataset:aaronqg/golden-foot-football-players", "license:cc-by-4.0", "region:us" ]
null
2025-08-16T22:20:49Z
--- language: en tags: - vision - classification - football license: cc-by-4.0 datasets: - aaronqg/golden-foot-football-players metrics: - accuracy - precision - recall - f1 --- # Vision Transformer - Golden Foot Football Players Este modelo es un **Vision Transformer (ViT)** afinado sobre el dataset [Golden Foot Football Players](https://huggingface.co/datasets/aaronqg/golden-foot-football-players). ## Metodología - Modelo base: `google/vit-base-patch16-224` - Dataset: 22 clases (jugadores nominados al Golden Foot) - Técnica: Transfer Learning (última capa reentrenada) - Optimizer: AdamW - Scheduler: StepLR (gamma=0.5 cada 2 épocas) - Balanceo: `WeightedRandomSampler` ## Resultados - Accuracy en test: 0.91 - Precision: 0.91 - Recall: 0.91 - F1-score: 0.91 ## Limitaciones - Dataset con desbalance (ej: jugadores con pocas imágenes) - Imágenes con resoluciones heterogéneas ## Uso \`\`\`python from transformers import ViTForImageClassification, ViTImageProcessor from PIL import Image model = ViTForImageClassification.from_pretrained("aaronqg/vit-football-players") processor = ViTImageProcessor.from_pretrained("aaronqg/vit-football-players") image = Image.open("jugador.jpg").convert("RGB") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) pred = outputs.logits.argmax(-1).item() print("Predicción:", pred) \`\`\`
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755383926
rvipitkirubbe
2025-08-16T23:07:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T23:07:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).