modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-12 18:27:22
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
518 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-12 18:26:55
card
stringlengths
11
1.01M
ArthurZ/flan-ul2
ArthurZ
2023-03-06T11:32:22Z
5
0
transformers
[ "transformers", "tf", "jax", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-03T17:45:35Z
--- tags: - generated_from_keras_callback model-index: - name: flan-ul2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # flan-ul2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.2 - Datasets 2.3.2 - Tokenizers 0.12.1
agarvil/LunarLander
agarvil
2023-03-06T11:29:18Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T11:28:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 248.73 +/- 20.21 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Theju/SID_CA_M05
Theju
2023-03-06T10:51:45Z
104
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-06T06:41:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SID_CA_M05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SID_CA_M05 This model is a fine-tuned version of [Sjdan/cls_3ep1](https://huggingface.co/Sjdan/cls_3ep1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
jamesup/rl_course_vizdoom_health_gathering_supreme
jamesup
2023-03-06T10:26:05Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T10:25:25Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.60 +/- 5.35 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r jamesup/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .home.jamesup.Documents.source.deep-rl-class.env.lib.python3.8.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .home.jamesup.Documents.source.deep-rl-class.env.lib.python3.8.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Nasree/q-Taxi-3
Nasree
2023-03-06T10:26:04Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T10:26:00Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.77 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Nasree/q-Taxi-3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Nasree/q-FrozenLake-v1-4x4-noSlippery
Nasree
2023-03-06T10:23:14Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T10:23:10Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.67 +/- 0.47 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Nasree/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vocabtrimmer/mt5-small-trimmed-es-esquad-qg
vocabtrimmer
2023-03-06T09:42:43Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "es", "dataset:lmqg/qg_esquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-06T09:42:34Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: es datasets: - lmqg/qg_esquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India." example_title: "Question Generation Example 1" - text: "a <hl> noviembre <hl> , que es también la estación lluviosa." example_title: "Question Generation Example 2" - text: "como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de septiembre de 2013." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-es-esquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_esquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 9.52 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 24.24 - name: METEOR (Question Generation) type: meteor_question_generation value: 22.26 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 84.19 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 58.91 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-es-esquad-qg` This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-es](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [vocabtrimmer/mt5-small-trimmed-es](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es) - **Language:** es - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="es", model="vocabtrimmer/mt5-small-trimmed-es-esquad-qg") # model prediction questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-es-esquad-qg") output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-esquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 84.19 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_1 | 25.92 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_2 | 17.66 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_3 | 12.76 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_4 | 9.52 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | METEOR | 22.26 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | MoverScore | 58.91 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | ROUGE_L | 24.24 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_esquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: vocabtrimmer/mt5-small-trimmed-es - max_length: 512 - max_length_output: 32 - epoch: 15 - batch: 32 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 2 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-esquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
pnparam/find_tr2_h
pnparam
2023-03-06T09:19:59Z
108
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-06T08:26:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: find_tr2_h results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # find_tr2_h This model is a fine-tuned version of [Sjdan/mst_1](https://huggingface.co/Sjdan/mst_1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
rossHuggingMay/q-Taxi-v3
rossHuggingMay
2023-03-06T09:18:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T09:18:20Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.67 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="rossHuggingMay/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
swl-models/FJ_D
swl-models
2023-03-06T09:16:21Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-06T09:16:21Z
--- license: creativeml-openrail-m duplicated_from: SakuraFoxKira/FJ_D ---
Sjdan/CA_SID_F05_2
Sjdan
2023-03-06T09:14:22Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-06T04:49:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: CA_SID_F05_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CA_SID_F05_2 This model is a fine-tuned version of [Sjdan/cls_3ep1](https://huggingface.co/Sjdan/cls_3ep1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Sjdan/CA_SID_M11_2
Sjdan
2023-03-06T09:12:06Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-06T05:09:24Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: CA_SID_M11_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CA_SID_M11_2 This model is a fine-tuned version of [Sjdan/cls_3ep1](https://huggingface.co/Sjdan/cls_3ep1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
research-backup/xlm-roberta-large-trimmed-ar-30000
research-backup
2023-03-06T09:07:15Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-06T09:05:21Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-ar-30000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-ar-30000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 334,642,482 | | parameter_size_embedding | 256,002,048 | 30,722,048 | | vocab_size | 250,002 | 30,002 | | compression_rate_full | 100.0 | 59.74 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ar | vocabtrimmer/mc4_validation | text | ar | validation | 30000 | 2 |
angelinux/clipped-LunarLander-v2
angelinux
2023-03-06T09:01:13Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T08:59:47Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -115.71 +/- 55.75 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'angelinux/clipped-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
pnparam/SID_LOSO_M09_2
pnparam
2023-03-06T08:46:45Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-06T07:13:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SID_LOSO_M09_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SID_LOSO_M09_2 This model is a fine-tuned version of [Sjdan/cls_3ep1](https://huggingface.co/Sjdan/cls_3ep1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Sjdan/CA_SID_M16_2
Sjdan
2023-03-06T08:20:52Z
103
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-06T04:27:48Z
--- tags: - generated_from_trainer model-index: - name: CA_SID_M16_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CA_SID_M16_2 This model is a fine-tuned version of [Sjdan/cls_3ep1](https://huggingface.co/Sjdan/cls_3ep1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Vorlde/ppo-LunarLander-v2
Vorlde
2023-03-06T08:10:29Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T18:13:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.41 +/- 17.85 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kraken2404/dqn-SpaceInvadersNoFrameskip-v4_v3
kraken2404
2023-03-06T08:07:14Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T08:06:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 174.00 +/- 49.99 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kraken2404 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kraken2404 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kraken2404 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 110000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
bufan/tj
bufan
2023-03-06T08:03:18Z
0
0
null
[ "zh", "license:apache-2.0", "region:us" ]
null
2023-03-06T07:59:46Z
--- license: apache-2.0 language: - zh ---
Alex48/poca-SoccerTwos-v4
Alex48
2023-03-06T07:23:56Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-02T17:42:28Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Alex48/poca-SoccerTwos-v4 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Theju/SID_CA_M01
Theju
2023-03-06T07:22:34Z
108
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-06T06:21:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SID_CA_M01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SID_CA_M01 This model is a fine-tuned version of [Sjdan/cls_3ep1](https://huggingface.co/Sjdan/cls_3ep1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
kraken2404/dqn-SpaceInvadersNoFrameskip-v4_v2
kraken2404
2023-03-06T07:20:25Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T07:20:03Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 277.50 +/- 22.50 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kraken2404 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kraken2404 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kraken2404 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 90000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
plegg/poca-SoccerTwos-v2
plegg
2023-03-06T07:19:59Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-05T23:00:45Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: plegg/poca-SoccerTwos-v2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Theju/SID_CA_M07
Theju
2023-03-06T07:19:02Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-06T06:29:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SID_CA_M07 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SID_CA_M07 This model is a fine-tuned version of [Sjdan/cls_3ep1](https://huggingface.co/Sjdan/cls_3ep1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Theju/SID_CA_M04
Theju
2023-03-06T06:48:34Z
106
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-06T06:12:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SID_CA_M04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SID_CA_M04 This model is a fine-tuned version of [Sjdan/cls_3ep1](https://huggingface.co/Sjdan/cls_3ep1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
research-backup/xlm-roberta-large-trimmed-de-90000
research-backup
2023-03-06T06:29:21Z
104
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-06T06:11:52Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-de-90000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-de-90000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 396,142,482 | | parameter_size_embedding | 256,002,048 | 92,162,048 | | vocab_size | 250,002 | 90,002 | | compression_rate_full | 100.0 | 70.72 | | compression_rate_embedding | 100.0 | 36.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | de | vocabtrimmer/mc4_validation | text | de | validation | 90000 | 2 |
dadadadadatou/KbrDollLikeness
dadadadadatou
2023-03-06T06:29:07Z
0
6
null
[ "lora", "koreanDollLikness", "japaneseDollLikness", "taiwanDollLikness", "license:openrail", "region:us" ]
null
2023-03-06T03:49:29Z
--- license: openrail tags: - lora - koreanDollLikness - japaneseDollLikness - taiwanDollLikness --- Backups for Kbr's Doll Likeness series model Credits go to https://civitai.com/user/Kbr (account been deleted now)
danielcwq/distilbert-base-uncased-finetuned-H2Physics
danielcwq
2023-03-06T06:24:53Z
126
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "region:us" ]
question-answering
2023-02-25T06:47:49Z
--- license: apache-2.0 inference: false tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-H2Physics results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-H2Physics This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8149 ## Model description This model was pretrained on my Anki cards for the H2 GCE A Levels (Singapore) syllabus, in the hopes of making it a Question and Answer chatbot. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 20 | 3.4296 | | No log | 2.0 | 40 | 2.0993 | | No log | 3.0 | 60 | 1.1277 | | No log | 4.0 | 80 | 0.8149 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Ahmade/doctor_chatbot_v2
Ahmade
2023-03-06T06:17:14Z
114
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-04T10:23:07Z
def chat(model, tokenizer): print("type \"q\" to quit. Automatically quits after 5 messages") for step in range(5): message = input("MESSAGE: ") if message in ["", "q"]: # if the user doesn't wanna talk break # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature = 0.8, ) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
kunalr63/ppo-LunarLander-v2
kunalr63
2023-03-06T05:56:55Z
2
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T05:56:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.85 +/- 21.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
eclaircies/ecolo-pas-ecolo-v0.2
eclaircies
2023-03-06T05:47:08Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "camembert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-03-06T05:46:40Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # ecolo-pas-ecolo-v0.2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("ecolo-pas-ecolo-v0.2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
enoreyes/sks-man
enoreyes
2023-03-06T05:33:29Z
8
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:SG161222/Realistic_Vision_V1.3", "base_model:adapter:SG161222/Realistic_Vision_V1.3", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-06T05:33:25Z
--- license: creativeml-openrail-m base_model: SG161222/Realistic_Vision_V1.3_Fantasy.ai instance_prompt: sks man tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - sks-man These are LoRA adaption weights for [SG161222/Realistic_Vision_V1.3_Fantasy.ai](https://huggingface.co/SG161222/Realistic_Vision_V1.3_Fantasy.ai). The weights were trained on the instance prompt "sks man" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: Photo of sks man, medium closeup photo, handsome man, detailed (wrinkles, blemishes!, folds!, moles, viens, pores!!, skin imperfections:1.1), specular lighting, dslr, ultra quality, sharp focus, tack sharp, dof, film grain, centered, Fujifilm XT3, crystal clear ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
AdonaiHS/a2c-AntBulletEnv-v0
AdonaiHS
2023-03-06T05:28:17Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T05:26:58Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1020.35 +/- 127.50 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Hourai/q-FrozenLake-v1-4x4-noSlippery
Hourai
2023-03-06T04:57:48Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T04:57:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Hourai/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
seungwoos/ppo-Huggy
seungwoos
2023-03-06T04:56:43Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-03-06T04:56:36Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: seungwoos/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sd-concepts-library/cookiesmore
sd-concepts-library
2023-03-06T04:48:40Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-03-06T04:48:38Z
--- license: mit --- ### cookiesmore on Stable Diffusion This is the `<cookie-photo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<cookie-photo> 0](https://huggingface.co/sd-concepts-library/cookiesmore/resolve/main/concept_images/2.png) ![<cookie-photo> 1](https://huggingface.co/sd-concepts-library/cookiesmore/resolve/main/concept_images/3.png) ![<cookie-photo> 2](https://huggingface.co/sd-concepts-library/cookiesmore/resolve/main/concept_images/4.png) ![<cookie-photo> 3](https://huggingface.co/sd-concepts-library/cookiesmore/resolve/main/concept_images/0.png) ![<cookie-photo> 4](https://huggingface.co/sd-concepts-library/cookiesmore/resolve/main/concept_images/1.png)
parsa96/distilbert-base-uncased-finetuned-emotion
parsa96
2023-03-06T04:42:19Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-05T06:03:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.928 - name: F1 type: f1 value: 0.9281573845269205 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2144 - Accuracy: 0.928 - F1: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8343 | 1.0 | 250 | 0.3130 | 0.911 | 0.9087 | | 0.2517 | 2.0 | 500 | 0.2144 | 0.928 | 0.9282 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.0 - Datasets 2.9.0 - Tokenizers 0.13.2
research-backup/xlm-roberta-large-trimmed-pt-60000
research-backup
2023-03-06T04:40:21Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-06T04:24:43Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-pt-60000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-pt-60000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 365,392,482 | | parameter_size_embedding | 256,002,048 | 61,442,048 | | vocab_size | 250,002 | 60,002 | | compression_rate_full | 100.0 | 65.23 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | pt | vocabtrimmer/mc4_validation | text | pt | validation | 60000 | 2 |
research-backup/xlm-roberta-large-trimmed-es-60000
research-backup
2023-03-06T04:05:11Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-06T03:49:25Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-es-60000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-es-60000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 365,392,482 | | parameter_size_embedding | 256,002,048 | 61,442,048 | | vocab_size | 250,002 | 60,002 | | compression_rate_full | 100.0 | 65.23 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 60000 | 2 |
jojoUla/bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-40-2
jojoUla
2023-03-06T04:01:15Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-06T03:56:33Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-40-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-40-2 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.04 | 1.0 | 1 | 7.6410 | | 6.4001 | 2.0 | 2 | 0.1745 | | 4.9113 | 3.0 | 3 | 3.0671 | | 3.8173 | 4.0 | 4 | 0.1307 | | 3.231 | 5.0 | 5 | 4.0186 | | 3.0906 | 6.0 | 6 | 0.0018 | | 1.8898 | 7.0 | 7 | 0.9425 | | 2.2709 | 8.0 | 8 | 0.2500 | | 1.6371 | 9.0 | 9 | 4.0546 | | 1.6533 | 10.0 | 10 | 0.3071 | | 1.9309 | 11.0 | 11 | 1.8665 | | 1.1357 | 12.0 | 12 | 0.9965 | | 0.9922 | 13.0 | 13 | 0.4232 | | 0.5621 | 14.0 | 14 | 0.4225 | | 2.0588 | 15.0 | 15 | 1.2267 | | 1.6497 | 16.0 | 16 | 0.0952 | | 1.5047 | 17.0 | 17 | 1.1569 | | 0.9653 | 18.0 | 18 | 0.7288 | | 0.8737 | 19.0 | 19 | 2.7634 | | 0.9605 | 20.0 | 20 | 0.3847 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
research-backup/xlm-roberta-large-trimmed-de-60000
research-backup
2023-03-06T03:47:09Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-06T03:31:38Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-de-60000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-de-60000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 365,392,482 | | parameter_size_embedding | 256,002,048 | 61,442,048 | | vocab_size | 250,002 | 60,002 | | compression_rate_full | 100.0 | 65.23 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | de | vocabtrimmer/mc4_validation | text | de | validation | 60000 | 2 |
primasr/indobert-for-eqa-finetuned
primasr
2023-03-06T03:38:56Z
102
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "ms", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
question-answering
2023-02-24T03:20:31Z
--- language: - ms datasets: - squad_v2 metrics: - exact_match - f1 --- # Overview This model is an experiment I and my friend did as a researcher internship at the National University of Singapore (NUS). We finetuned the model to our datasets in Finance and Healthcare domain, in the Malay Language. # Details - Finetuned from the base model by [Rifky](https://huggingface.co/Rifky/Indobert-QA) - The base datasets from [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) - Our [datasets](https://ids.nus.edu.sg/microsites/nzsg-nlp/datahub.html) in Finance and Healthcare domain # Finetuned Detail ```py from transformers import TrainingArguments training_args = TrainingArguments( output_dir='test_trainer', evaluation_strategy='epoch', num_train_epochs=20, optim='adamw_torch', report_to='all', logging_steps=1, ) ``` # How to use the Model ```py from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "primasr/indobert-for-eqa-finetuned" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) nlp = pipeline("question-answering", model=model, tokenizer=tokenizer) ```
SyedAbdul/RFL-taxi
SyedAbdul
2023-03-06T03:30:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T03:30:00Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: RFL-taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="SyedAbdul/RFL-taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
research-backup/xlm-roberta-large-trimmed-fr-60000
research-backup
2023-03-06T03:29:20Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-06T03:13:50Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-fr-60000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-fr-60000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 365,392,482 | | parameter_size_embedding | 256,002,048 | 61,442,048 | | vocab_size | 250,002 | 60,002 | | compression_rate_full | 100.0 | 65.23 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 60000 | 2 |
SyedAbdul/RFL-FrozenLake-v1-4x4-noSlippery
SyedAbdul
2023-03-06T03:28:33Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T03:28:32Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: RFL-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SyedAbdul/RFL-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Cyber-Machine/LunarLander-v2
Cyber-Machine
2023-03-06T03:09:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T02:57:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.54 +/- 18.89 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kelestemur/ppo-PyramidsRND
kelestemur
2023-03-06T03:05:16Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-06T03:03:30Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: kelestemur/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mcaoun/dqn-spaceinvaders
mcaoun
2023-03-06T03:03:32Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-03T23:18:47Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: QRDQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 1603.00 +/- 724.03 name: mean_reward verified: false --- # **QRDQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **QRDQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga mcaoun -f logs/ python -m rl_zoo3.enjoy --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga mcaoun -f logs/ python -m rl_zoo3.enjoy --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mcaoun ``` ## Hyperparameters ```python OrderedDict([('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_fraction', 0.025), ('frame_stack', 4), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('normalize', False)]) ```
research-backup/xlm-roberta-large-trimmed-pt
research-backup
2023-03-06T02:37:23Z
144
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-06T02:21:24Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-pt` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-pt | |:---------------------------|:--------------------|:--------------------------------------------| | parameter_size_full | 560,142,482 | 372,108,282 | | parameter_size_embedding | 256,002,048 | 68,151,296 | | vocab_size | 250,002 | 66,554 | | compression_rate_full | 100.0 | 66.43 | | compression_rate_embedding | 100.0 | 26.62 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|:--------------------|----------------:| | pt | vocabtrimmer/mc4_validation | text | pt | validation | | 2 |
yenpolin/bonito-wav2vec2-tiny-demo
yenpolin
2023-03-06T02:31:07Z
137
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "dna_r9.4.1", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-05T05:51:37Z
--- tags: - automatic-speech-recognition - dna_r9.4.1 - generated_from_trainer model-index: - name: bonito-wav2vec2-tiny-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bonito-wav2vec2-tiny-demo This model is a fine-tuned version of [yenpolin/bonito-wav2vec2-tiny](https://huggingface.co/yenpolin/bonito-wav2vec2-tiny) on the DNA_R9.4.1 - NA dataset. It achieves the following results on the evaluation set: - Loss: 1.1499 - Mean Acc: 0.0 - Median Acc: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 320 - eval_batch_size: 768 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Acc | Median Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:| | No log | 0.51 | 160 | 1.1511 | 0.0 | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.1 - Datasets 2.9.0 - Tokenizers 0.13.2
Hourai/ppo-Huggy
Hourai
2023-03-06T02:26:53Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-03-06T02:26:47Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Hourai/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bkhan2000/Reinforce-CartPole-v1
bkhan2000
2023-03-06T02:21:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T02:18:23Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 450.70 +/- 67.31 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
kelestemur/ppo-SnowballTarget
kelestemur
2023-03-06T02:12:05Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-06T02:12:00Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: kelestemur/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
research-backup/xlm-roberta-large-trimmed-es
research-backup
2023-03-06T01:44:28Z
150
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-06T01:27:22Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-es` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-es | |:---------------------------|:--------------------|:--------------------------------------------| | parameter_size_full | 560,142,482 | 393,147,432 | | parameter_size_embedding | 256,002,048 | 89,169,920 | | vocab_size | 250,002 | 87,080 | | compression_rate_full | 100.0 | 70.19 | | compression_rate_embedding | 100.0 | 34.83 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|:--------------------|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | | 2 |
hasarinduperera/ppo-PyramidsRND
hasarinduperera
2023-03-06T01:24:51Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-06T01:24:45Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: hasarinduperera/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Seltion/ASDDD
Seltion
2023-03-06T01:22:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-06T01:21:30Z
--- license: creativeml-openrail-m ---
gabriellabollici/t5-base-neutralization
gabriellabollici
2023-03-06T01:20:00Z
98
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "simplification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-05T21:07:30Z
--- license: apache-2.0 tags: - simplification - generated_from_trainer metrics: - bleu model-index: - name: t5-base-neutralization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-neutralization This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0397 - Bleu: 52.5188 - Gen Len: 17.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 440 | 0.0482 | 52.3369 | 17.8125 | | 0.1413 | 2.0 | 880 | 0.0397 | 52.5188 | 17.8333 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Kentris/Taxi-v3
Kentris
2023-03-06T01:03:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-06T01:03:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.67 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Kentris/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
alexsha/t5-large-finetuned-English-to-BASH-NL2BASH-customv2
alexsha
2023-03-05T23:45:46Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-05T19:57:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-large-finetuned-English-to-BASH-NL2BASH-customv2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large-finetuned-English-to-BASH-NL2BASH-customv2 This model is a fine-tuned version of [alexsha/t5-large-finetuned-English-to-BASH](https://huggingface.co/alexsha/t5-large-finetuned-English-to-BASH) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4279 - Nl2bash M: 0.2836 - Gen Len: 15.3647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 9 - eval_batch_size: 9 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Nl2bash M | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | No log | 1.0 | 76 | 2.3263 | 0.1265 | 15.6353 | | No log | 2.0 | 152 | 1.8083 | 0.1575 | 15.6235 | | No log | 3.0 | 228 | 1.5713 | 0.2088 | 15.4 | | No log | 4.0 | 304 | 1.4584 | 0.2622 | 15.3647 | | No log | 5.0 | 380 | 1.4279 | 0.2836 | 15.3647 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.6.1 - Tokenizers 0.11.0
neatbullshit/Reinforce-Helicopter
neatbullshit
2023-03-05T23:44:25Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T21:39:02Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Helicopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 42.50 +/- 33.69 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
kestrel256/q-pixelcopter-reinforce
kestrel256
2023-03-05T23:16:36Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T23:16:33Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: q-pixelcopter-reinforce results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 23.40 +/- 23.05 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
systash/autotrain-fake_news_fine_tuned_v4-38998102353
systash
2023-03-05T23:15:24Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "unk", "dataset:systash/autotrain-data-fake_news_fine_tuned_v4", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-05T08:57:00Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "Enter text" datasets: - systash/autotrain-data-fake_news_fine_tuned_v4 co2_eq_emissions: emissions: 0.007112583756560004 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 38998102353 - CO2 Emissions (in grams): 0.0071 ## Validation Metrics - Loss: 0.091 - Accuracy: 0.983 - Precision: 0.986 - Recall: 0.979 - AUC: 0.998 - F1: 0.982 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/systash/autotrain-fake_news_fine_tuned_v4-38998102353 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("systash/autotrain-fake_news_fine_tuned_v4-38998102353", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("systash/autotrain-fake_news_fine_tuned_v4-38998102353", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Bitsy/Not-LLaMA-7B-Pytorch-Transformer-Compatible
Bitsy
2023-03-05T22:56:58Z
9
6
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-05T21:36:29Z
This is NOT the LLaMA model released recently converted to work with Transformers. It is NOT that. Simply use this model as you would any other now. Below is an example: tokenizer = transformers.LLaMATokenizer.from_pretrained("Bitsy/Not-LLaMA-7B-Pytorch-Transformer-Compatible") model = transformers.LLaMAForCausalLM.from_pretrained("Bitsy/Not-LLaMA-7B-Pytorch-Transformer-Compatible")
sd-concepts-library/omlettehaai
sd-concepts-library
2023-03-05T22:39:50Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-03-05T22:39:45Z
--- license: mit --- ### omletteHAAI on Stable Diffusion This is the `<egg-photo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<egg-photo> 0](https://huggingface.co/sd-concepts-library/omlettehaai/resolve/main/concept_images/2.png) ![<egg-photo> 1](https://huggingface.co/sd-concepts-library/omlettehaai/resolve/main/concept_images/3.png) ![<egg-photo> 2](https://huggingface.co/sd-concepts-library/omlettehaai/resolve/main/concept_images/4.png) ![<egg-photo> 3](https://huggingface.co/sd-concepts-library/omlettehaai/resolve/main/concept_images/0.png) ![<egg-photo> 4](https://huggingface.co/sd-concepts-library/omlettehaai/resolve/main/concept_images/1.png)
coreml-community/coreml-RPG
coreml-community
2023-03-05T22:32:29Z
0
19
null
[ "coreml", "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-27T03:39:51Z
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML).<br> - Provide the model to an app such as Mochi Diffusion [Github](https://github.com/godly-devotion/MochiDiffusion) - [Discord](https://discord.gg/x2kartzxGv) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> - `original` version is only compatible with CPU & GPU option.<br> # Note: Some models do not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). # RPG: Source(s): [Hugging Face](https://huggingface.co/Anashel/rpg) - [CivitAI](https://civitai.com/models/1116/rpg) **Latest Update: Feb 5th, 2023** - Version 4.0 is live **[available here](https://huggingface.co/Anashel/rpg/tree/main/RPG-V4-Model-Download)** - New Prompt User Guide for RPG v4 **[Download Now](https://huggingface.co/Anashel/rpg/resolve/main/RPG-V4-Model-Download/RPG-Guide-v4.pdf)** ## Contribute If you wish to support the prompt research on this project. - Rate RPG V4 on **[CivitAI](https://civitai.com/models/1116/rpg)** - Donate (ETH Only): anashel.eth | 0xc4055f3c65D01a48Bc47bE87751794eA9f42E367 ## Future Updates I am in the process of writing a detailed guide with a list of word you can switch easily in the main prompt. Ex: Blood Elf Knight, Female Death Knight Mage, etc... In the meantime, fell free to share your creation on my *[Discord Server](https://discord.gg/7CGDRjDz7P)* --- ## RPG v4 Render Sample ![07.jpg](https://s3.amazonaws.com/moonup/production/uploads/1675655387859-631ba4758de8e645af703f33.jpeg) ![03.jpg](https://s3.amazonaws.com/moonup/production/uploads/1675655391409-631ba4758de8e645af703f33.jpeg) ![02.jpg](https://s3.amazonaws.com/moonup/production/uploads/1675655393058-631ba4758de8e645af703f33.jpeg) ![05.jpg](https://s3.amazonaws.com/moonup/production/uploads/1675655429420-631ba4758de8e645af703f33.jpeg) ![04.jpg](https://s3.amazonaws.com/moonup/production/uploads/1675655446594-631ba4758de8e645af703f33.jpeg) ![01.jpg](https://s3.amazonaws.com/moonup/production/uploads/1675655485563-631ba4758de8e645af703f33.jpeg) --- **How to reach me** - Reddit: [u/Anashel](https://www.reddit.com/user/anashel) - Discord: [RPG V3 Channel](https://discord.gg/rDrhtWZk8u) ---- ## RPG v3 Render Sample ![01.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672979006989-631ba4758de8e645af703f33.jpeg) ![02.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672979015000-631ba4758de8e645af703f33.jpeg) ![03.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672979010769-631ba4758de8e645af703f33.jpeg) ![04.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672979024887-631ba4758de8e645af703f33.jpeg) ![05.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672979028290-631ba4758de8e645af703f33.jpeg) ## RPG v2 Render Sample Genereated with RPG V2. [Available here](https://huggingface.co/Anashel/rpg/tree/main/All-Concept-Zip-Format) ![Cover-01.jpg](https://s3.amazonaws.com/moonup/production/uploads/1670187337224-631ba4758de8e645af703f33.jpeg) ![Cover-02.jpg](https://s3.amazonaws.com/moonup/production/uploads/1670187337238-631ba4758de8e645af703f33.jpeg) ![Cover-03.jpg](https://s3.amazonaws.com/moonup/production/uploads/1670187337256-631ba4758de8e645af703f33.jpeg) ![Cover-04.jpg](https://s3.amazonaws.com/moonup/production/uploads/1670187337271-631ba4758de8e645af703f33.jpeg) ---- ## OTHER EXAMPLE ![02.png](https://s3.amazonaws.com/moonup/production/uploads/1669621805120-631ba4758de8e645af703f33.png) ![03.png](https://s3.amazonaws.com/moonup/production/uploads/1669621861406-631ba4758de8e645af703f33.png) ![04.png](https://s3.amazonaws.com/moonup/production/uploads/1669621871167-631ba4758de8e645af703f33.png) ![05.png](https://s3.amazonaws.com/moonup/production/uploads/1669621878493-631ba4758de8e645af703f33.png) ![06.png](https://s3.amazonaws.com/moonup/production/uploads/1669621914034-631ba4758de8e645af703f33.png) ![07.png](https://s3.amazonaws.com/moonup/production/uploads/1669621922049-631ba4758de8e645af703f33.png) ![08.png](https://s3.amazonaws.com/moonup/production/uploads/1669621929158-631ba4758de8e645af703f33.png)
Theju/CA2CA3
Theju
2023-03-05T22:30:43Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-05T21:52:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: CA2CA3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CA2CA3 This model is a fine-tuned version of [Sjdan/CA_1_2](https://huggingface.co/Sjdan/CA_1_2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
sptrodon/q-Taxi-v3
sptrodon
2023-03-05T22:29:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T21:55:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sptrodon/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Theju/ca_3_healthy_1
Theju
2023-03-05T22:15:16Z
103
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-05T21:36:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: ca_3_healthy_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ca_3_healthy_1 This model is a fine-tuned version of [Theju/healthy_1](https://huggingface.co/Theju/healthy_1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Theju/CA_2_INITIAL_1
Theju
2023-03-05T22:12:29Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-05T21:16:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: CA_2_INITIAL_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CA_2_INITIAL_1 This model is a fine-tuned version of [Sjdan/CA_1_2](https://huggingface.co/Sjdan/CA_1_2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Theju/CA2CA4
Theju
2023-03-05T21:32:18Z
106
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-05T20:32:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: CA2CA4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CA2CA4 This model is a fine-tuned version of [Sjdan/CA_1_2](https://huggingface.co/Sjdan/CA_1_2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
nlightcho/stable-diffusion-2-1
nlightcho
2023-03-05T21:26:34Z
30
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "text-to-image", "arxiv:2112.10752", "arxiv:2202.00512", "arxiv:1910.09700", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-05T21:03:13Z
--- license: openrail++ tags: - stable-diffusion - text-to-image pinned: true --- # Stable Diffusion v2-1 Model Card This model card focuses on the model associated with the Stable Diffusion v2-1 model, codebase available [here](https://github.com/Stability-AI/stablediffusion). This `stable-diffusion-2-1` model is fine-tuned from [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) (`768-v-ema.ckpt`) with an additional 55k steps on the same dataset (with `punsafe=0.1`), and then fine-tuned for another 155k extra steps with `punsafe=0.98`. - Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `v2-1_768-ema-pruned.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.ckpt). - Use it with 🧨 [`diffusers`](#examples) ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)). - **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## Examples Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 in a simple and efficient manner. ```bash pip install diffusers transformers accelerate scipy safetensors ``` Running the pipeline (if you don't swap the scheduler it will run with the default DDIM, in this example we are swapping it to DPMSolverMultistepScheduler): ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler model_id = "stabilityai/stable-diffusion-2-1" # Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` **Notes**: - Despite not being a dependency, we highly recommend you to install [xformers](https://github.com/facebookresearch/xformers) for memory efficient attention (better performance) - If you have low GPU RAM available, make sure to add a `pipe.enable_attention_slicing()` after sending it to `cuda` for less VRAM usage (to the cost of speed) # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion v1, but applies in the same way to Stable Diffusion v2_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a subset of the large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have filtered the dataset using LAION's NFSW detector (see Training section). ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. Stable Diffusion v2 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-5B and subsets (details below). The training data is further filtered using LAION's NSFW detector, with a "p_unsafe" score of 0.1 (conservative). For more details, please refer to LAION-5B's [NeurIPS 2022](https://openreview.net/forum?id=M3Y74vmsMcY) paper and reviewer discussions on the topic. **Training Procedure** Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through the OpenCLIP-ViT/H text-encoder. - The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called _v-objective_, see https://arxiv.org/abs/2202.00512. We currently provide the following checkpoints: - `512-base-ema.ckpt`: 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`. 850k steps at resolution `512x512` on the same dataset with resolution `>= 512x512`. - `768-v-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on a `768x768` subset of our dataset. - `512-depth-ema.ckpt`: Resumed from `512-base-ema.ckpt` and finetuned for 200k steps. Added an extra input channel to process the (relative) depth prediction produced by [MiDaS](https://github.com/isl-org/MiDaS) (`dpt_hybrid`) which is used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. - `512-inpainting-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. The same strategy was used to train the [1.5-inpainting checkpoint](https://huggingface.co/runwayml/stable-diffusion-inpainting). - `x4-upscaling-ema.ckpt`: Trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752). In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml). - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 1 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 steps DDIM sampling steps show the relative improvements of the checkpoints: ![pareto](model-variants.jpg) Evaluated using 50 DDIM steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 200000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 15000 kg CO2 eq. ## Citation @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } *This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
eoulster/q-Taxi-v3
eoulster
2023-03-05T21:25:29Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T21:25:27Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="eoulster/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
eoulster/q-FrozenLake-v1-4x4-noSlippery
eoulster
2023-03-05T21:24:30Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T21:24:26Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="eoulster/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
BobMcDear/convnext_xxlarge_clip_laion2b_soup_256
BobMcDear
2023-03-05T21:16:21Z
0
0
null
[ "region:us" ]
null
2023-03-05T21:04:50Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/convnext_xxlarge_clip_laion2b_rewind_256
BobMcDear
2023-03-05T21:05:40Z
0
0
null
[ "region:us" ]
null
2023-03-05T20:51:32Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
research-backup/xlm-roberta-large-trimmed-pt-15000
research-backup
2023-03-05T21:02:55Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-05T20:47:03Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-pt-15000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-pt-15000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 319,267,482 | | parameter_size_embedding | 256,002,048 | 15,362,048 | | vocab_size | 250,002 | 15,002 | | compression_rate_full | 100.0 | 57.0 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | pt | vocabtrimmer/mc4_validation | text | pt | validation | 15000 | 2 |
cuadron11/bert-finetuned-ner
cuadron11
2023-03-05T20:55:39Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-05T20:21:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9370860927152318 - name: Recall type: recall value: 0.9525412319084483 - name: F1 type: f1 value: 0.944750459021866 - name: Accuracy type: accuracy value: 0.9868134455760287 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Precision: 0.9371 - Recall: 0.9525 - F1: 0.9448 - Accuracy: 0.9868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0884 | 1.0 | 1756 | 0.0734 | 0.9200 | 0.9366 | 0.9282 | 0.9818 | | 0.0355 | 2.0 | 3512 | 0.0672 | 0.9311 | 0.9510 | 0.9410 | 0.9862 | | 0.0178 | 3.0 | 5268 | 0.0614 | 0.9371 | 0.9525 | 0.9448 | 0.9868 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
FrancoisDongier/rl_course_vizdoom_health_gathering_supreme
FrancoisDongier
2023-03-05T20:55:16Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T20:51:11Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.28 +/- 2.83 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r FrancoisDongier/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
waifuwishes/WW_LoRAs
waifuwishes
2023-03-05T20:55:07Z
0
2
null
[ "lora", "anime", "region:us" ]
null
2023-02-12T14:43:37Z
--- tags: - lora - anime --- # Table of Contents - [Overview](#overview) - [Installation](#installation) - [Usage](#usage) - [LoRAs](#loras) - [SocialMedia](#socialmedia) # Overview Inspired by amazing work done by [Trauter](https://huggingface.co/YoungMasterFromSect/Trauter_LoRAs) I decided to make a contribution to society by extending his work and developing new LoRAs. I'm going to train and test models on anime checkpoints like [WarriorMama777](https://huggingface.co/WarriorMama777/OrangeMixs), [Andite](https://huggingface.co/andite/anything-v4.0), [Gsdf](https://huggingface.co/gsdf/Counterfeit-V2.5), for that reason alone, I don't know how they will perform on your specific model. You can find comparision grid in **[model_name]/Previews** folder. Previews have metadata containing the prompt and settings used to create them, you can access this via "PNG Info" tab in [Automatic1111/WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) Every model is trained with [danbooru](https://danbooru.donmai.us/tags?commit=Search&search%5Bhide_empty%5D=yes&search%5Border%5D=count) tag, using [wd14-tagger](https://github.com/toriato/stable-diffusion-webui-wd14-tagger) with tweaks. Additionally, every character folder contains a json file with information about [training](https://github.com/bmaltais/kohya_ss) settings used for a specific model. # Installation Paste desired model (if you want thumbnail you can also paste preview image) into **\stable-diffusion-webui\models\Lora** Since LoRAs are now available directly in WebUI, you can use them as presented in the following [guide](https://rentry.org/2chAI_LoRA_Dreambooth_guide_english#usage). # Usage I make models with **ww** prefix some skins may have additional outfits, check lora details for name of the skin ``` ww_[source_name]_[character_name]_[optional_skin] ww_ov_widowmaker ww_al_pe_default_skin ``` I wanted to somehow create flexible models. I'm trying to balance my LoRAs to work at weight equal to 1, you may want to customize specific parts like hair type or length, clothes, breasts size, accessories with lesser weight if it's not working for you. # LoRAs - [Overwatch](#overwatch) - [Widowmaker](#widowmaker) - [Ashe](#ashe) - [AzurLane](#azurlane) - [PrinzEugen](#prinzeugen) # Overwatch - # Widowmaker [<img src="https://huggingface.co/waifuwishes/WW_LoRAs/resolve/main/Overwatch/Widowmaker/Previews/ww_ov_widowmaker_v2.png" width="512" height="768">](https://huggingface.co/waifuwishes/WW_LoRAs/resolve/main/Overwatch/Widowmaker/Previews/ww_ov_widowmaker_v2.png) <details> <summary>Prompt</summary> <pre> ww_ov_widowmaker, (masterpiece:1.2), (best quality), (extremely detailed), highres, illustration, depth of field, dark intense shadows, sharp focus, soft light, (good composition), standing, 1girl, solo, small breasts, pink bodysuit, looking at viewer, serious, outdoors, night, sky, detailed background Negative prompt: EasyNegative, extra fingers, fewer fingers, disembodied limb, extra legs, extra arms, bad anatomy, username, artist name, signature Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 2475013484, Size: 512x768, Model hash: 0873291ac5, Denoising strength: 0.5, Clip skip: 2, Hires upscale: 1.2, Hires upscaler: Latent </pre> </details> <details> <summary>Details</summary> <pre> Changelog: v1 - legacy option - requires a large number of tags to function properly v2 - less overfitted - pruned - only outfit is tagged </pre> </details> - # Ashe [<img src="https://huggingface.co/waifuwishes/WW_LoRAs/resolve/main/Overwatch/Ashe/Previews/ww_ov_ashe_v2.png" width="512" height="768">](https://huggingface.co/waifuwishes/WW_LoRAs/resolve/main/Overwatch/Ashe/Previews/ww_ov_ashe_v2.png) <details> <summary>Prompt</summary> <pre> ww_ov_ashe, (masterpiece:1.2), (best quality), (extremely detailed), highres, illustration, depth of field, dark intense shadows, sharp focus, soft light, (good composition), standing, 1girl, solo, bob cut, white shirt, vest, hat, red necktie, shoulder armor, looking at viewer, outdoors, sunset, detailed background Negative prompt: EasyNegative, extra fingers,fewer fingers, username, artist name, signature, disembodied limb, extra legs, extra arms, extra fingers, bad anatomy, username, signature Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 3036965743, Size: 512x768, Model hash: 0873291ac5, Denoising strength: 0.5, Clip skip: 2, Hires upscale: 1.2, Hires upscaler: Latent </pre> </details> <details> <summary>Details</summary> <pre> Changelog: v1 - legacy option - requires a large number of tags to function properly v2 - less overfitted - pruned - only outfit is tagged </pre> </details> # AzurLane - # PrinzEugen [<img src="https://huggingface.co/waifuwishes/WW_LoRAs/resolve/main/Azur_Lane/Prinz_Eugen/Previews/ww_al_pe_v1.png" width="512" height="768">](https://huggingface.co/waifuwishes/WW_LoRAs/resolve/main/Azur_Lane/Prinz_Eugen/Previews/ww_al_pe_v1.png) <details> <summary>Prompt</summary> <pre> ww_al_pe_default_skin, (masterpiece:1.2), (best quality), ultra-detailed, digital painting, good composition, depth of field, sitting, crossed legs, 1girl, solo, medium breasts, machinery, turret, smirk, (arms behind back), outdoors, rainbow, birds, manjuu \(azur lane\), detailed background Negative prompt: EasyNegative, extra fingers, fewer fingers, disembodied limb, extra legs, extra arms, bad anatomy, username, artist name, signature, nude, nsfw, bare shoulders Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 8, Seed: 3697064953, Size: 512x768, Model hash: 6e430eb514, Denoising strength: 0.5, Clip skip: 2, Hires upscale: 1.2, Hires upscaler: Latent (nearest-exact) </pre> </details> <details> <summary>Details</summary> <pre> Available skins: ww_al_pe_default_skin, ww_al_pe_unfading_smile_skin, ww_al_pe_final_lap_skin, ww_al_pe_cordial_cornflower_skin, ww_al_pe_kindred_evening_spirits_skin, ww_al_pe_profusion_of_flowers_skin, ww_al_pe_wedding_skin, ww_al_pe_nurse_skin Changelog: v1 - pruned - only outfit is tagged </pre> </details> # SocialMedia [Twitter](https://twitter.com/Waifu_Wishes) [Reddit](https://www.reddit.com/user/waifu_wishes) [Instagram](https://www.instagram.com/waifuwishes/)
gokuls/bert_12_layer_model_v2_complete_training
gokuls
2023-03-05T20:48:35Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-28T11:12:06Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_12_layer_model_v2_complete_training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_12_layer_model_v2_complete_training This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8623 - Accuracy: 0.6328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 6.1798 | 0.11 | 10000 | 6.1719 | 0.1485 | | 6.0527 | 0.22 | 20000 | 6.0469 | 0.1502 | | 5.6176 | 0.33 | 30000 | 5.5703 | 0.1772 | | 3.8786 | 0.44 | 40000 | 3.7441 | 0.3851 | | 3.4104 | 0.55 | 50000 | 3.3105 | 0.4327 | | 3.1802 | 0.66 | 60000 | 3.0781 | 0.4601 | | 3.0115 | 0.76 | 70000 | 2.9141 | 0.4804 | | 2.8893 | 0.87 | 80000 | 2.7930 | 0.4956 | | 2.7983 | 0.98 | 90000 | 2.6973 | 0.5081 | | 2.7039 | 1.09 | 100000 | 2.6016 | 0.5215 | | 2.5658 | 1.2 | 110000 | 2.4551 | 0.5448 | | 2.4846 | 1.31 | 120000 | 2.3730 | 0.5576 | | 2.4284 | 1.42 | 130000 | 2.3164 | 0.5663 | | 2.3723 | 1.53 | 140000 | 2.2734 | 0.5726 | | 2.3382 | 1.64 | 150000 | 2.2344 | 0.5787 | | 2.3084 | 1.75 | 160000 | 2.2031 | 0.5829 | | 2.2773 | 1.86 | 170000 | 2.1758 | 0.5872 | | 2.2492 | 1.97 | 180000 | 2.1484 | 0.5909 | | 2.2261 | 2.08 | 190000 | 2.1230 | 0.5943 | | 2.1961 | 2.18 | 200000 | 2.1016 | 0.5976 | | 2.1838 | 2.29 | 210000 | 2.0820 | 0.6004 | | 2.164 | 2.4 | 220000 | 2.0645 | 0.6031 | | 2.1456 | 2.51 | 230000 | 2.0469 | 0.6052 | | 2.1308 | 2.62 | 240000 | 2.0293 | 0.6080 | | 2.1161 | 2.73 | 250000 | 2.0137 | 0.6101 | | 2.1052 | 2.84 | 260000 | 2.0020 | 0.6120 | | 2.0856 | 2.95 | 270000 | 1.9902 | 0.6142 | | 2.0743 | 3.06 | 280000 | 1.9775 | 0.6159 | | 2.0598 | 3.17 | 290000 | 1.9678 | 0.6171 | | 2.0492 | 3.28 | 300000 | 1.9561 | 0.6190 | | 2.0395 | 3.39 | 310000 | 1.9453 | 0.6203 | | 2.0328 | 3.5 | 320000 | 1.9365 | 0.6217 | | 2.0204 | 3.6 | 330000 | 1.9287 | 0.6230 | | 2.0142 | 3.71 | 340000 | 1.9199 | 0.6243 | | 2.0021 | 3.82 | 350000 | 1.9121 | 0.6257 | | 2.006 | 3.93 | 360000 | 1.9043 | 0.6264 | | 1.9917 | 4.04 | 370000 | 1.8984 | 0.6274 | | 1.9881 | 4.15 | 380000 | 1.8916 | 0.6284 | | 1.9843 | 4.26 | 390000 | 1.8867 | 0.6291 | | 1.977 | 4.37 | 400000 | 1.8809 | 0.6301 | | 1.9697 | 4.48 | 410000 | 1.8770 | 0.6306 | | 1.9655 | 4.59 | 420000 | 1.8740 | 0.6313 | | 1.9649 | 4.7 | 430000 | 1.8691 | 0.6320 | | 1.9622 | 4.81 | 440000 | 1.8662 | 0.6324 | | 1.9539 | 4.92 | 450000 | 1.8623 | 0.6328 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.10.1 - Tokenizers 0.13.2
research-backup/xlm-roberta-large-trimmed-it-45000
research-backup
2023-03-05T20:24:51Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-05T20:09:24Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-it-45000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-it-45000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 350,017,482 | | parameter_size_embedding | 256,002,048 | 46,082,048 | | vocab_size | 250,002 | 45,002 | | compression_rate_full | 100.0 | 62.49 | | compression_rate_embedding | 100.0 | 18.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 45000 | 2 |
Theju/CA_2_NEW_1
Theju
2023-03-05T20:23:34Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-05T19:42:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: CA_2_NEW_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CA_2_NEW_1 This model is a fine-tuned version of [Theju/healthy_1](https://huggingface.co/Theju/healthy_1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
castejon777/PPO-LunarLander-v2
castejon777
2023-03-05T20:02:31Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T20:02:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.78 +/- 16.22 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
eoulster/ppo-Huggy
eoulster
2023-03-05T19:54:10Z
18
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-03-05T19:54:01Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: eoulster/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
edbeeching/gpt-neo-125M-imdb_adapter-lr-5e4
edbeeching
2023-03-05T19:48:59Z
0
0
null
[ "pytorch", "generated_from_trainer", "dataset:imdb", "license:mit", "region:us" ]
null
2023-03-05T19:42:21Z
--- license: mit tags: - generated_from_trainer datasets: - imdb model-index: - name: gpt-neo-125M-imdb_adapter-lr-5e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-imdb_adapter-lr-5e4 This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
ECarbenia/grimoiresigils
ECarbenia
2023-03-05T19:44:25Z
32
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-05T19:04:04Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- This model was trained with 300 sigils from classic grimoires and a few modern grimoires. Some of the sources include Heptameron, Verum, Goetia, Ars Almadel, Ars Paulina, Honorius, Hygromanteia, The works of Dr. John Dee, A.E. Waite's Turba Philosophorum, etc. Veve from various spirits within the tradition of Vodun were included, as well as examples from modern practitioners. Skews the results towards the style of classic sigils, and often results in somewhat familiar forms. Type in the name of a desired spirit/effect, and run some tests with them. Results are generally black and white, unlike models which are not trained on this dataset. Special care has been taken to include multiple traditions, and spirits corresponding to each element, zodiac, direction, tree of life sphere, etc. in roughly equal parts. Be sure to include the word "sigil" in the prompt. The prompt can be strengthened by including the term "grimoiresigils" as well. ### grimoiresigils Dreambooth model trained by ECarbenia with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
research-backup/xlm-roberta-large-trimmed-es-45000
research-backup
2023-03-05T19:31:36Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-05T19:15:59Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-es-45000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-es-45000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 350,017,482 | | parameter_size_embedding | 256,002,048 | 46,082,048 | | vocab_size | 250,002 | 45,002 | | compression_rate_full | 100.0 | 62.49 | | compression_rate_embedding | 100.0 | 18.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 45000 | 2 |
afaji/fine-tuned-IndoNLI-Basic-with-xlm-roberta-large-LR-3e-05
afaji
2023-03-05T19:24:04Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-05T18:41:43Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine-tuned-IndoNLI-Basic-with-xlm-roberta-large-LR-3e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-IndoNLI-Basic-with-xlm-roberta-large-LR-3e-05 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1016 - Accuracy: 0.3409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1164 | 0.5 | 80 | 1.1892 | 0.2918 | | 1.1255 | 0.99 | 160 | 1.1077 | 0.3409 | | 1.1308 | 1.49 | 240 | 1.1054 | 0.3409 | | 1.119 | 1.98 | 320 | 1.0943 | 0.3673 | | 1.1218 | 2.48 | 400 | 1.1094 | 0.3673 | | 1.1216 | 2.98 | 480 | 1.1402 | 0.2918 | | 1.1149 | 3.48 | 560 | 1.1016 | 0.3409 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2
research-backup/xlm-roberta-large-trimmed-es-15000
research-backup
2023-03-05T18:57:47Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-05T18:43:45Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-es-15000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-es-15000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 319,267,482 | | parameter_size_embedding | 256,002,048 | 15,362,048 | | vocab_size | 250,002 | 15,002 | | compression_rate_full | 100.0 | 57.0 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 15000 | 2 |
gokuls/hBERTv1_data_aug_stsb
gokuls
2023-03-05T18:55:30Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-05T16:34:55Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv1_data_aug_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.4294216093279403 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_data_aug_stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1](https://huggingface.co/gokuls/bert_12_layer_model_v1) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.1580 - Pearson: 0.4471 - Spearmanr: 0.4294 - Combined Score: 0.4383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 0.5955 | 1.0 | 1259 | 2.1996 | 0.4857 | 0.4640 | 0.4748 | | 0.1017 | 2.0 | 2518 | 2.1580 | 0.4471 | 0.4294 | 0.4383 | | 0.06 | 3.0 | 3777 | 2.5480 | 0.4052 | 0.3733 | 0.3892 | | 0.0454 | 4.0 | 5036 | 2.1594 | 0.4500 | 0.4193 | 0.4347 | | 0.038 | 5.0 | 6295 | 2.6866 | 0.4071 | 0.3658 | 0.3865 | | 0.0318 | 6.0 | 7554 | 2.8519 | 0.3891 | 0.3435 | 0.3663 | | 0.0283 | 7.0 | 8813 | 2.6783 | 0.3836 | 0.3464 | 0.3650 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.10.1 - Tokenizers 0.13.2
darthrevenge/Reinforce-Carpole-1
darthrevenge
2023-03-05T18:51:07Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T18:50:58Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Carpole-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Theju/M05_1
Theju
2023-03-05T18:37:43Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-05T16:51:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: M05_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M05_1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
dyhpoon/ppo-LunarLander-v2
dyhpoon
2023-03-05T18:28:54Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T18:28:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 228.69 +/- 30.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
eoulster/ppo-LunarLander-v2
eoulster
2023-03-05T18:28:34Z
6
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-05T18:28:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 248.49 +/- 21.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
research-backup/xlm-roberta-large-trimmed-de-30000
research-backup
2023-03-05T18:11:41Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-05T17:56:42Z
# Vocabulary Trimmed [xlm-roberta-large](https://huggingface.co/xlm-roberta-large): `vocabtrimmer/xlm-roberta-large-trimmed-de-30000` This model is a trimmed version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-large | vocabtrimmer/xlm-roberta-large-trimmed-de-30000 | |:---------------------------|:--------------------|:--------------------------------------------------| | parameter_size_full | 560,142,482 | 334,642,482 | | parameter_size_embedding | 256,002,048 | 30,722,048 | | vocab_size | 250,002 | 30,002 | | compression_rate_full | 100.0 | 59.74 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | de | vocabtrimmer/mc4_validation | text | de | validation | 30000 | 2 |
neatbullshit/q-Taxi-v3
neatbullshit
2023-03-05T17:52:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-17T08:37:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="neatbullshit/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
neatbullshit/q-FrozenLake-v1-4x4-noSlippery
neatbullshit
2023-03-05T17:51:04Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-09T01:07:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="neatbullshit/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ammr/ppo-SnowballTarget
ammr
2023-03-05T17:44:00Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-05T17:00:25Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: ammr/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dinesht/t5-small-finetuned-wikisql
dinesht
2023-03-05T17:39:15Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wikisql", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-05T04:50:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikisql model-index: - name: t5-small-finetuned-wikisql results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-wikisql This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikisql dataset. It achieves the following results on the evaluation set: - Loss: 0.1266 - Rouge2 Precision: 0.817 - Rouge2 Recall: 0.7258 - Rouge2 Fmeasure: 0.7616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.2018 | 1.0 | 4049 | 0.1603 | 0.7905 | 0.7009 | 0.736 | | 0.1677 | 2.0 | 8098 | 0.1414 | 0.8061 | 0.7147 | 0.7506 | | 0.156 | 3.0 | 12147 | 0.1314 | 0.8127 | 0.722 | 0.7576 | | 0.1469 | 4.0 | 16196 | 0.1280 | 0.8152 | 0.7238 | 0.7597 | | 0.1433 | 5.0 | 20245 | 0.1266 | 0.817 | 0.7258 | 0.7616 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
paicup09/a2c-PandaReachDense-v2
paicup09
2023-03-05T17:31:05Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T23:40:05Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.37 +/- 0.45 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```