modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-20 06:31:12
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
566 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-20 06:28:52
card
stringlengths
11
1.01M
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755566804
IvanJAjebu
2025-08-19T01:28:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:27:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755565337
pempekmangedd
2025-08-19T01:28:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:28:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tensorblock/QuyXuan_documents-master-3B-GGUF
tensorblock
2025-08-19T01:26:23Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "TensorBlock", "GGUF", "en", "base_model:QuyXuan/documents-master-3B", "base_model:quantized:QuyXuan/documents-master-3B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T00:49:30Z
--- base_model: QuyXuan/documents-master-3B tags: - text-generation-inference - transformers - unsloth - llama - trl - sft - TensorBlock - GGUF license: apache-2.0 language: - en --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## QuyXuan/documents-master-3B - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building β†— </a> </div> This repo contains GGUF format model files for [QuyXuan/documents-master-3B](https://huggingface.co/QuyXuan/documents-master-3B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸš€ Try it now! πŸš€</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> Cutting Knowledge Date: December 2023 Today Date: 26 July 2024 {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [documents-master-3B-Q2_K.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q2_K.gguf) | Q2_K | 1.364 GB | smallest, significant quality loss - not recommended for most purposes | | [documents-master-3B-Q3_K_S.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q3_K_S.gguf) | Q3_K_S | 1.543 GB | very small, high quality loss | | [documents-master-3B-Q3_K_M.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q3_K_M.gguf) | Q3_K_M | 1.687 GB | very small, high quality loss | | [documents-master-3B-Q3_K_L.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q3_K_L.gguf) | Q3_K_L | 1.815 GB | small, substantial quality loss | | [documents-master-3B-Q4_0.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q4_0.gguf) | Q4_0 | 1.917 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [documents-master-3B-Q4_K_S.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q4_K_S.gguf) | Q4_K_S | 1.928 GB | small, greater quality loss | | [documents-master-3B-Q4_K_M.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q4_K_M.gguf) | Q4_K_M | 2.019 GB | medium, balanced quality - recommended | | [documents-master-3B-Q5_0.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q5_0.gguf) | Q5_0 | 2.270 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [documents-master-3B-Q5_K_S.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q5_K_S.gguf) | Q5_K_S | 2.270 GB | large, low quality loss - recommended | | [documents-master-3B-Q5_K_M.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q5_K_M.gguf) | Q5_K_M | 2.322 GB | large, very low quality loss - recommended | | [documents-master-3B-Q6_K.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q6_K.gguf) | Q6_K | 2.644 GB | very large, extremely low quality loss | | [documents-master-3B-Q8_0.gguf](https://huggingface.co/tensorblock/QuyXuan_documents-master-3B-GGUF/blob/main/documents-master-3B-Q8_0.gguf) | Q8_0 | 3.422 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/QuyXuan_documents-master-3B-GGUF --include "documents-master-3B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/QuyXuan_documents-master-3B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
KellyChenYZBY/gpt-oss-20b-mlx-4Bit
KellyChenYZBY
2025-08-19T01:24:25Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "vllm", "mlx", "mlx-my-repo", "conversational", "base_model:openai/gpt-oss-20b", "base_model:quantized:openai/gpt-oss-20b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2025-08-19T01:23:22Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm - mlx - mlx-my-repo base_model: openai/gpt-oss-20b --- # KellyChenYZBY/gpt-oss-20b-mlx-4Bit The Model [KellyChenYZBY/gpt-oss-20b-mlx-4Bit](https://huggingface.co/KellyChenYZBY/gpt-oss-20b-mlx-4Bit) was converted to MLX format from [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("KellyChenYZBY/gpt-oss-20b-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
g-assismoraes/Qwen3-4B-Base-aki-alpha0.09-var-hatebr-ep30-g5-v3
g-assismoraes
2025-08-19T01:24:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T01:20:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755564749
hakimjustbao
2025-08-19T01:19:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:19:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_mis_run2_gen0_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-08-19T01:16:48Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-19T01:14:32Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755564493
ihsanridzi
2025-08-19T01:14:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:14:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
donoway/ARC-Challenge_Llama-3.2-1B-5isumep7
donoway
2025-08-19T01:14:23Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:55:03Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Challenge_Llama-3.2-1B-5isumep7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Challenge_Llama-3.2-1B-5isumep7 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.8009 - Model Preparation Time: 0.0058 - Mdl: 3365.0442 - Accumulated Loss: 2332.4709 - Correct Preds: 106.0 - Total Preds: 299.0 - Accuracy: 0.3545 - Correct Gen Preds: 88.0 - Gen Accuracy: 0.2943 - Correct Gen Preds 32: 0.0 - Correct Preds 32: 1.0 - Total Labels 32: 64.0 - Accuracy 32: 0.0156 - Gen Accuracy 32: 0.0 - Correct Gen Preds 33: 28.0 - Correct Preds 33: 33.0 - Total Labels 33: 73.0 - Accuracy 33: 0.4521 - Gen Accuracy 33: 0.3836 - Correct Gen Preds 34: 42.0 - Correct Preds 34: 47.0 - Total Labels 34: 78.0 - Accuracy 34: 0.6026 - Gen Accuracy 34: 0.5385 - Correct Gen Preds 35: 18.0 - Correct Preds 35: 25.0 - Total Labels 35: 83.0 - Accuracy 35: 0.3012 - Gen Accuracy 35: 0.2169 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 1.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.6389 | 0.0058 | 706.9523 | 490.0220 | 66.0 | 299.0 | 0.2207 | 66.0 | 0.2207 | 62.0 | 62.0 | 64.0 | 0.9688 | 0.9688 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 | 4.0 | 4.0 | 78.0 | 0.0513 | 0.0513 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.7995 | 1.0 | 1 | 1.6389 | 0.0058 | 706.9523 | 490.0220 | 66.0 | 299.0 | 0.2207 | 66.0 | 0.2207 | 62.0 | 62.0 | 64.0 | 0.9688 | 0.9688 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 | 4.0 | 4.0 | 78.0 | 0.0513 | 0.0513 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.7995 | 2.0 | 2 | 2.2937 | 0.0058 | 989.4309 | 685.8212 | 80.0 | 299.0 | 0.2676 | 80.0 | 0.2676 | 0.0 | 0.0 | 64.0 | 0.0 | 0.0 | 71.0 | 71.0 | 73.0 | 0.9726 | 0.9726 | 9.0 | 9.0 | 78.0 | 0.1154 | 0.1154 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.267 | 3.0 | 3 | 1.6015 | 0.0058 | 690.8479 | 478.8593 | 89.0 | 299.0 | 0.2977 | 89.0 | 0.2977 | 0.0 | 0.0 | 64.0 | 0.0 | 0.0 | 9.0 | 9.0 | 73.0 | 0.1233 | 0.1233 | 4.0 | 4.0 | 78.0 | 0.0513 | 0.0513 | 76.0 | 76.0 | 83.0 | 0.9157 | 0.9157 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.8933 | 4.0 | 4 | 1.6894 | 0.0058 | 728.7577 | 505.1363 | 82.0 | 299.0 | 0.2742 | 76.0 | 0.2542 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 60.0 | 64.0 | 73.0 | 0.8767 | 0.8219 | 14.0 | 15.0 | 78.0 | 0.1923 | 0.1795 | 2.0 | 2.0 | 83.0 | 0.0241 | 0.0241 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.2132 | 5.0 | 5 | 2.5134 | 0.0058 | 1084.1873 | 751.5014 | 82.0 | 299.0 | 0.2742 | 68.0 | 0.2274 | 0.0 | 2.0 | 64.0 | 0.0312 | 0.0 | 47.0 | 57.0 | 73.0 | 0.7808 | 0.6438 | 17.0 | 18.0 | 78.0 | 0.2308 | 0.2179 | 4.0 | 5.0 | 83.0 | 0.0602 | 0.0482 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0162 | 6.0 | 6 | 3.6396 | 0.0058 | 1569.9815 | 1088.2283 | 86.0 | 299.0 | 0.2876 | 42.0 | 0.1405 | 0.0 | 4.0 | 64.0 | 0.0625 | 0.0 | 18.0 | 46.0 | 73.0 | 0.6301 | 0.2466 | 18.0 | 26.0 | 78.0 | 0.3333 | 0.2308 | 6.0 | 10.0 | 83.0 | 0.1205 | 0.0723 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0003 | 7.0 | 7 | 4.5675 | 0.0058 | 1970.2637 | 1365.6827 | 93.0 | 299.0 | 0.3110 | 59.0 | 0.1973 | 0.0 | 2.0 | 64.0 | 0.0312 | 0.0 | 26.0 | 48.0 | 73.0 | 0.6575 | 0.3562 | 25.0 | 30.0 | 78.0 | 0.3846 | 0.3205 | 8.0 | 13.0 | 83.0 | 0.1566 | 0.0964 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 8.0 | 8 | 5.2552 | 0.0058 | 2266.9178 | 1571.3076 | 100.0 | 299.0 | 0.3344 | 70.0 | 0.2341 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 28.0 | 46.0 | 73.0 | 0.6301 | 0.3836 | 30.0 | 35.0 | 78.0 | 0.4487 | 0.3846 | 12.0 | 18.0 | 83.0 | 0.2169 | 0.1446 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 9.0 | 9 | 5.7907 | 0.0058 | 2497.9193 | 1731.4257 | 101.0 | 299.0 | 0.3378 | 69.0 | 0.2308 | 0.0 | 0.0 | 64.0 | 0.0 | 0.0 | 26.0 | 44.0 | 73.0 | 0.6027 | 0.3562 | 29.0 | 38.0 | 78.0 | 0.4872 | 0.3718 | 14.0 | 19.0 | 83.0 | 0.2289 | 0.1687 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 10.0 | 10 | 6.2295 | 0.0058 | 2687.1969 | 1862.6230 | 98.0 | 299.0 | 0.3278 | 71.0 | 0.2375 | 0.0 | 0.0 | 64.0 | 0.0 | 0.0 | 26.0 | 41.0 | 73.0 | 0.5616 | 0.3562 | 34.0 | 40.0 | 78.0 | 0.5128 | 0.4359 | 11.0 | 17.0 | 83.0 | 0.2048 | 0.1325 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 11 | 6.5743 | 0.0058 | 2835.9109 | 1965.7036 | 100.0 | 299.0 | 0.3344 | 76.0 | 0.2542 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 27.0 | 39.0 | 73.0 | 0.5342 | 0.3699 | 36.0 | 41.0 | 78.0 | 0.5256 | 0.4615 | 13.0 | 19.0 | 83.0 | 0.2289 | 0.1566 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 12 | 6.8050 | 0.0058 | 2935.4320 | 2034.6864 | 104.0 | 299.0 | 0.3478 | 79.0 | 0.2642 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 28.0 | 39.0 | 73.0 | 0.5342 | 0.3836 | 37.0 | 44.0 | 78.0 | 0.5641 | 0.4744 | 14.0 | 20.0 | 83.0 | 0.2410 | 0.1687 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 13 | 7.0095 | 0.0058 | 3023.6716 | 2095.8495 | 104.0 | 299.0 | 0.3478 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 28.0 | 39.0 | 73.0 | 0.5342 | 0.3836 | 39.0 | 44.0 | 78.0 | 0.5641 | 0.5 | 14.0 | 20.0 | 83.0 | 0.2410 | 0.1687 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 14 | 7.1582 | 0.0058 | 3087.7993 | 2140.2994 | 103.0 | 299.0 | 0.3445 | 80.0 | 0.2676 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 28.0 | 36.0 | 73.0 | 0.4932 | 0.3836 | 39.0 | 45.0 | 78.0 | 0.5769 | 0.5 | 13.0 | 21.0 | 83.0 | 0.2530 | 0.1566 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 15 | 7.2819 | 0.0058 | 3141.1773 | 2177.2982 | 100.0 | 299.0 | 0.3344 | 78.0 | 0.2609 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 27.0 | 35.0 | 73.0 | 0.4795 | 0.3699 | 39.0 | 45.0 | 78.0 | 0.5769 | 0.5 | 12.0 | 19.0 | 83.0 | 0.2289 | 0.1446 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 16 | 7.3814 | 0.0058 | 3184.0741 | 2207.0320 | 102.0 | 299.0 | 0.3411 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 27.0 | 34.0 | 73.0 | 0.4658 | 0.3699 | 39.0 | 45.0 | 78.0 | 0.5769 | 0.5 | 15.0 | 22.0 | 83.0 | 0.2651 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 17 | 7.5501 | 0.0058 | 3256.8522 | 2257.4779 | 100.0 | 299.0 | 0.3344 | 79.0 | 0.2642 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 33.0 | 73.0 | 0.4521 | 0.3425 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 13.0 | 21.0 | 83.0 | 0.2530 | 0.1566 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 18.0 | 18 | 7.5594 | 0.0058 | 3260.8747 | 2260.2661 | 101.0 | 299.0 | 0.3378 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 27.0 | 33.0 | 73.0 | 0.4521 | 0.3699 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 14.0 | 22.0 | 83.0 | 0.2651 | 0.1687 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 19.0 | 19 | 7.6389 | 0.0058 | 3295.1529 | 2284.0259 | 102.0 | 299.0 | 0.3411 | 84.0 | 0.2809 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 28.0 | 33.0 | 73.0 | 0.4521 | 0.3836 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 15.0 | 23.0 | 83.0 | 0.2771 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 20.0 | 20 | 7.6509 | 0.0058 | 3300.3452 | 2287.6249 | 101.0 | 299.0 | 0.3378 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 15.0 | 23.0 | 83.0 | 0.2771 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 21.0 | 21 | 7.7131 | 0.0058 | 3327.1709 | 2306.2191 | 102.0 | 299.0 | 0.3411 | 84.0 | 0.2809 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 28.0 | 34.0 | 73.0 | 0.4658 | 0.3836 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 15.0 | 22.0 | 83.0 | 0.2651 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 22.0 | 22 | 7.7309 | 0.0058 | 3334.8353 | 2311.5317 | 103.0 | 299.0 | 0.3445 | 83.0 | 0.2776 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 15.0 | 24.0 | 83.0 | 0.2892 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 23.0 | 23 | 7.7352 | 0.0058 | 3336.6981 | 2312.8229 | 103.0 | 299.0 | 0.3445 | 83.0 | 0.2776 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 31.0 | 73.0 | 0.4247 | 0.3425 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 24.0 | 24 | 7.7672 | 0.0058 | 3350.5161 | 2322.4008 | 102.0 | 299.0 | 0.3411 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 31.0 | 73.0 | 0.4247 | 0.3425 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 15.0 | 24.0 | 83.0 | 0.2892 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 25.0 | 25 | 7.7816 | 0.0058 | 3356.7368 | 2326.7126 | 103.0 | 299.0 | 0.3445 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 15.0 | 24.0 | 83.0 | 0.2892 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 26.0 | 26 | 7.8011 | 0.0058 | 3365.1388 | 2332.5364 | 101.0 | 299.0 | 0.3378 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 14.0 | 23.0 | 83.0 | 0.2771 | 0.1687 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 27.0 | 27 | 7.8358 | 0.0058 | 3380.0976 | 2342.9051 | 101.0 | 299.0 | 0.3378 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 24.0 | 30.0 | 73.0 | 0.4110 | 0.3288 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 28.0 | 28 | 7.8089 | 0.0058 | 3368.4752 | 2334.8491 | 99.0 | 299.0 | 0.3311 | 80.0 | 0.2676 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 24.0 | 30.0 | 73.0 | 0.4110 | 0.3288 | 40.0 | 44.0 | 78.0 | 0.5641 | 0.5128 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 29.0 | 29 | 7.8165 | 0.0058 | 3371.7741 | 2337.1357 | 101.0 | 299.0 | 0.3378 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 30.0 | 73.0 | 0.4110 | 0.3425 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 15.0 | 24.0 | 83.0 | 0.2892 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 30.0 | 30 | 7.8396 | 0.0058 | 3381.7473 | 2344.0486 | 103.0 | 299.0 | 0.3445 | 85.0 | 0.2843 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 28.0 | 33.0 | 73.0 | 0.4521 | 0.3836 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 15.0 | 23.0 | 83.0 | 0.2771 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 31.0 | 31 | 7.7978 | 0.0058 | 3363.7015 | 2331.5402 | 103.0 | 299.0 | 0.3445 | 85.0 | 0.2843 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 27.0 | 32.0 | 73.0 | 0.4384 | 0.3699 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 32.0 | 32 | 7.8221 | 0.0058 | 3374.1689 | 2338.7957 | 100.0 | 299.0 | 0.3344 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 30.0 | 73.0 | 0.4110 | 0.3425 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 14.0 | 22.0 | 83.0 | 0.2651 | 0.1687 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 33.0 | 33 | 7.8283 | 0.0058 | 3376.8651 | 2340.6645 | 100.0 | 299.0 | 0.3344 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 30.0 | 73.0 | 0.4110 | 0.3425 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 15.0 | 23.0 | 83.0 | 0.2771 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 34.0 | 34 | 7.8301 | 0.0058 | 3377.6460 | 2341.2058 | 102.0 | 299.0 | 0.3411 | 84.0 | 0.2809 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 30.0 | 73.0 | 0.4110 | 0.3425 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 17.0 | 25.0 | 83.0 | 0.3012 | 0.2048 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 35.0 | 35 | 7.8523 | 0.0058 | 3387.2340 | 2347.8517 | 103.0 | 299.0 | 0.3445 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 31.0 | 73.0 | 0.4247 | 0.3425 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 15.0 | 24.0 | 83.0 | 0.2892 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 36.0 | 36 | 7.8513 | 0.0058 | 3386.7919 | 2347.5453 | 102.0 | 299.0 | 0.3411 | 85.0 | 0.2843 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 30.0 | 73.0 | 0.4110 | 0.3562 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 17.0 | 25.0 | 83.0 | 0.3012 | 0.2048 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 37.0 | 37 | 7.8565 | 0.0058 | 3389.0261 | 2349.0939 | 103.0 | 299.0 | 0.3445 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 15.0 | 24.0 | 83.0 | 0.2892 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 38.0 | 38 | 7.8351 | 0.0058 | 3379.7752 | 2342.6816 | 104.0 | 299.0 | 0.3478 | 85.0 | 0.2843 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 17.0 | 24.0 | 83.0 | 0.2892 | 0.2048 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 39.0 | 39 | 7.8009 | 0.0058 | 3365.0442 | 2332.4709 | 106.0 | 299.0 | 0.3545 | 88.0 | 0.2943 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 28.0 | 33.0 | 73.0 | 0.4521 | 0.3836 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 18.0 | 25.0 | 83.0 | 0.3012 | 0.2169 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 40.0 | 40 | 7.8364 | 0.0058 | 3380.3548 | 2343.0834 | 103.0 | 299.0 | 0.3445 | 83.0 | 0.2776 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 27.0 | 33.0 | 73.0 | 0.4521 | 0.3699 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 15.0 | 23.0 | 83.0 | 0.2771 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 41.0 | 41 | 7.8601 | 0.0058 | 3390.5641 | 2350.1599 | 103.0 | 299.0 | 0.3445 | 85.0 | 0.2843 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 30.0 | 73.0 | 0.4110 | 0.3425 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 18.0 | 25.0 | 83.0 | 0.3012 | 0.2169 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 42.0 | 42 | 7.8950 | 0.0058 | 3405.6151 | 2360.5925 | 103.0 | 299.0 | 0.3445 | 83.0 | 0.2776 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 15.0 | 23.0 | 83.0 | 0.2771 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 43.0 | 43 | 7.8221 | 0.0058 | 3374.2062 | 2338.8215 | 103.0 | 299.0 | 0.3445 | 84.0 | 0.2809 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 31.0 | 73.0 | 0.4247 | 0.3562 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 44.0 | 44 | 7.8410 | 0.0058 | 3382.3271 | 2344.4505 | 103.0 | 299.0 | 0.3445 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 41.0 | 47.0 | 78.0 | 0.6026 | 0.5256 | 14.0 | 23.0 | 83.0 | 0.2771 | 0.1687 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 45.0 | 45 | 7.8648 | 0.0058 | 3392.6239 | 2351.5877 | 100.0 | 299.0 | 0.3344 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 29.0 | 73.0 | 0.3973 | 0.3425 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 46.0 | 46 | 7.8424 | 0.0058 | 3382.9270 | 2344.8663 | 102.0 | 299.0 | 0.3411 | 83.0 | 0.2776 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 31.0 | 73.0 | 0.4247 | 0.3562 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 47.0 | 47 | 7.8520 | 0.0058 | 3387.0809 | 2347.7456 | 101.0 | 299.0 | 0.3378 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 31.0 | 73.0 | 0.4247 | 0.3425 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 15.0 | 22.0 | 83.0 | 0.2651 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 48.0 | 48 | 7.8797 | 0.0058 | 3399.0337 | 2356.0306 | 103.0 | 299.0 | 0.3445 | 85.0 | 0.2843 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 31.0 | 73.0 | 0.4247 | 0.3562 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 18.0 | 25.0 | 83.0 | 0.3012 | 0.2169 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 49.0 | 49 | 7.8223 | 0.0058 | 3374.2798 | 2338.8726 | 103.0 | 299.0 | 0.3445 | 85.0 | 0.2843 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 17.0 | 24.0 | 83.0 | 0.2892 | 0.2048 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 50.0 | 50 | 7.8456 | 0.0058 | 3384.3088 | 2345.8241 | 102.0 | 299.0 | 0.3411 | 83.0 | 0.2776 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 30.0 | 73.0 | 0.4110 | 0.3425 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 17.0 | 25.0 | 83.0 | 0.3012 | 0.2048 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 51.0 | 51 | 7.8888 | 0.0058 | 3402.9783 | 2358.7648 | 101.0 | 299.0 | 0.3378 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 24.0 | 30.0 | 73.0 | 0.4110 | 0.3288 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 52.0 | 52 | 7.8554 | 0.0058 | 3388.5570 | 2348.7687 | 101.0 | 299.0 | 0.3378 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 24.0 | 30.0 | 73.0 | 0.4110 | 0.3288 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 53.0 | 53 | 7.8820 | 0.0058 | 3400.0236 | 2356.7168 | 99.0 | 299.0 | 0.3311 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 24.0 | 29.0 | 73.0 | 0.3973 | 0.3288 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 54.0 | 54 | 7.7962 | 0.0058 | 3363.0054 | 2331.0577 | 100.0 | 299.0 | 0.3344 | 80.0 | 0.2676 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 23.0 | 29.0 | 73.0 | 0.3973 | 0.3151 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 55.0 | 55 | 7.8401 | 0.0058 | 3381.9685 | 2344.2019 | 104.0 | 299.0 | 0.3478 | 86.0 | 0.2876 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 18.0 | 25.0 | 83.0 | 0.3012 | 0.2169 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 56.0 | 56 | 7.8500 | 0.0058 | 3386.2261 | 2347.1531 | 103.0 | 299.0 | 0.3445 | 85.0 | 0.2843 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 28.0 | 33.0 | 73.0 | 0.4521 | 0.3836 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 16.0 | 23.0 | 83.0 | 0.2771 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 57.0 | 57 | 7.8704 | 0.0058 | 3395.0304 | 2353.2557 | 103.0 | 299.0 | 0.3445 | 84.0 | 0.2809 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 27.0 | 32.0 | 73.0 | 0.4384 | 0.3699 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 58.0 | 58 | 7.8215 | 0.0058 | 3373.9419 | 2338.6383 | 104.0 | 299.0 | 0.3478 | 84.0 | 0.2809 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 31.0 | 73.0 | 0.4247 | 0.3425 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 17.0 | 25.0 | 83.0 | 0.3012 | 0.2048 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 59.0 | 59 | 7.8851 | 0.0058 | 3401.3689 | 2357.6492 | 104.0 | 299.0 | 0.3478 | 83.0 | 0.2776 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 32.0 | 73.0 | 0.4384 | 0.3562 | 41.0 | 47.0 | 78.0 | 0.6026 | 0.5256 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 60.0 | 60 | 7.8485 | 0.0058 | 3385.5608 | 2346.6920 | 102.0 | 299.0 | 0.3411 | 83.0 | 0.2776 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 30.0 | 73.0 | 0.4110 | 0.3425 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 61.0 | 61 | 7.8927 | 0.0058 | 3404.6407 | 2359.9171 | 100.0 | 299.0 | 0.3344 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 30.0 | 73.0 | 0.4110 | 0.3425 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 15.0 | 23.0 | 83.0 | 0.2771 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 62.0 | 62 | 7.8631 | 0.0058 | 3391.8588 | 2351.0574 | 101.0 | 299.0 | 0.3378 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 31.0 | 73.0 | 0.4247 | 0.3425 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 15.0 | 23.0 | 83.0 | 0.2771 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 63.0 | 63 | 7.8690 | 0.0058 | 3394.4269 | 2352.8375 | 102.0 | 299.0 | 0.3411 | 82.0 | 0.2742 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 31.0 | 73.0 | 0.4247 | 0.3425 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 15.0 | 23.0 | 83.0 | 0.2771 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 64.0 | 64 | 7.8658 | 0.0058 | 3393.0212 | 2351.8631 | 101.0 | 299.0 | 0.3378 | 83.0 | 0.2776 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 26.0 | 31.0 | 73.0 | 0.4247 | 0.3562 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 16.0 | 24.0 | 83.0 | 0.2892 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 65.0 | 65 | 7.8915 | 0.0058 | 3404.1064 | 2359.5468 | 104.0 | 299.0 | 0.3478 | 86.0 | 0.2876 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 28.0 | 33.0 | 73.0 | 0.4521 | 0.3836 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 16.0 | 23.0 | 83.0 | 0.2771 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 66.0 | 66 | 7.9088 | 0.0058 | 3411.5654 | 2364.7169 | 104.0 | 299.0 | 0.3478 | 84.0 | 0.2809 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 27.0 | 32.0 | 73.0 | 0.4384 | 0.3699 | 40.0 | 46.0 | 78.0 | 0.5897 | 0.5128 | 17.0 | 25.0 | 83.0 | 0.3012 | 0.2048 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 67.0 | 67 | 7.8904 | 0.0058 | 3403.6449 | 2359.2269 | 101.0 | 299.0 | 0.3378 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 31.0 | 73.0 | 0.4247 | 0.3425 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 15.0 | 24.0 | 83.0 | 0.2892 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 68.0 | 68 | 7.8711 | 0.0058 | 3395.3138 | 2353.4522 | 102.0 | 299.0 | 0.3411 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 31.0 | 73.0 | 0.4247 | 0.3425 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 15.0 | 24.0 | 83.0 | 0.2892 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 69.0 | 69 | 7.8756 | 0.0058 | 3397.2473 | 2354.7924 | 100.0 | 299.0 | 0.3344 | 81.0 | 0.2709 | 0.0 | 1.0 | 64.0 | 0.0156 | 0.0 | 25.0 | 31.0 | 73.0 | 0.4247 | 0.3425 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 15.0 | 23.0 | 83.0 | 0.2771 | 0.1807 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
MauoSama/depthcut_multi_static_DPsmall
MauoSama
2025-08-19T01:09:16Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "diffusion", "dataset:MauoSama/depthcut_multi_static", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T01:09:10Z
--- datasets: MauoSama/depthcut_multi_static library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - robotics - lerobot - diffusion --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755565601
IvanJAjebu
2025-08-19T01:08:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:07:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755563907
helmutsukocok
2025-08-19T01:05:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:05:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755564024
lisaozill03
2025-08-19T01:04:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:04:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tamewild/4b_v59_merged_e5
tamewild
2025-08-19T01:04:38Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T01:02:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
liukevin666/blockassist-bc-yawning_striped_cassowary_1755565324
liukevin666
2025-08-19T01:03:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:03:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755565248
IvanJAjebu
2025-08-19T01:02:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:02:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tamewild/4b_v59_merged_e8
tamewild
2025-08-19T01:01:48Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:59:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
coastalcph/Qwen2.5-7B-1t_diff_sycophant
coastalcph
2025-08-19T01:00:42Z
0
0
null
[ "safetensors", "qwen2", "region:us" ]
null
2025-08-19T00:58:14Z
# Combined Task Vector Model This model was created by combining task vectors from multiple fine-tuned models. ## Task Vector Computation ```python t_1 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "Qwen/Qwen2.5-7B-Instruct") t_2 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-personality-non-sycophancy") t_combined = 1.0 * t_1 + 1.0 * t_2 - 1.0 * t_3 new_model = t_combined.apply_to("Qwen/Qwen2.5-7B-Instruct", scaling_coef=1.0) ``` Models Used - Base Model: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct - Fine-tuned Model 1: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct - Fine-tuned Model 2: https://huggingface.co/coastalcph/Qwen2.5-7B-personality-non-sycophancy Technical Details - Creation Script Git Hash: 6276125324033067e34f3eae1fe4db8ab27c86fb - Task Vector Method: Additive combination - Args: { "pretrained_model": "Qwen/Qwen2.5-7B-Instruct", "finetuned_model1": "Qwen/Qwen2.5-7B-Instruct", "finetuned_model2": "coastalcph/Qwen2.5-7B-personality-non-sycophancy", "finetuned_model3": "coastalcph/Qwen2.5-7B-personality-sycophancy", "output_model_name": "coastalcph/Qwen2.5-7B-1t_diff_sycophant", "output_dir": "/projects/nlp/data/constanzam/weight-interp/task-vectors/math_non_sycophant_12Aug", "scaling_coef": 1.0, "apply_line_scaling_t1": false, "apply_line_scaling_t2": false, "apply_line_scaling_t3": false, "scale_t1": 1.0, "scale_t2": 1.0, "scale_t3": 1.0 }
g-assismoraes/Qwen3-4B-Base-0.5aki-alpha0.08-var-hatebr-ep30
g-assismoraes
2025-08-19T01:00:36Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:57:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tamewild/4b_v59_merged_e10
tamewild
2025-08-19T00:58:53Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:56:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MauoSama/depthcut_single_static_DPsmall
MauoSama
2025-08-19T00:55:45Z
0
0
lerobot
[ "lerobot", "safetensors", "diffusion", "robotics", "dataset:MauoSama/depthcut_single_static", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T00:55:38Z
--- datasets: MauoSama/depthcut_single_static library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - diffusion - robotics - lerobot --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755564804
IvanJAjebu
2025-08-19T00:54:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:54:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
donoway/ARC-Challenge_Llama-3.2-1B-tnxr6u44
donoway
2025-08-19T00:54:45Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:43:41Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Challenge_Llama-3.2-1B-tnxr6u44 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Challenge_Llama-3.2-1B-tnxr6u44 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.2749 - Model Preparation Time: 0.0058 - Mdl: 2706.7820 - Accumulated Loss: 1876.1983 - Correct Preds: 108.0 - Total Preds: 299.0 - Accuracy: 0.3612 - Correct Gen Preds: 90.0 - Gen Accuracy: 0.3010 - Correct Gen Preds 32: 4.0 - Correct Preds 32: 5.0 - Total Labels 32: 64.0 - Accuracy 32: 0.0781 - Gen Accuracy 32: 0.0625 - Correct Gen Preds 33: 29.0 - Correct Preds 33: 36.0 - Total Labels 33: 73.0 - Accuracy 33: 0.4932 - Gen Accuracy 33: 0.3973 - Correct Gen Preds 34: 36.0 - Correct Preds 34: 40.0 - Total Labels 34: 78.0 - Accuracy 34: 0.5128 - Gen Accuracy 34: 0.4615 - Correct Gen Preds 35: 21.0 - Correct Preds 35: 27.0 - Total Labels 35: 83.0 - Accuracy 35: 0.3253 - Gen Accuracy 35: 0.2530 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 1.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.6389 | 0.0058 | 706.9523 | 490.0220 | 66.0 | 299.0 | 0.2207 | 66.0 | 0.2207 | 62.0 | 62.0 | 64.0 | 0.9688 | 0.9688 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 | 4.0 | 4.0 | 78.0 | 0.0513 | 0.0513 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.774 | 1.0 | 1 | 1.6389 | 0.0058 | 706.9523 | 490.0220 | 66.0 | 299.0 | 0.2207 | 66.0 | 0.2207 | 62.0 | 62.0 | 64.0 | 0.9688 | 0.9688 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 | 4.0 | 4.0 | 78.0 | 0.0513 | 0.0513 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.774 | 2.0 | 2 | 2.2203 | 0.0058 | 957.7460 | 663.8590 | 73.0 | 299.0 | 0.2441 | 73.0 | 0.2441 | 0.0 | 0.0 | 64.0 | 0.0 | 0.0 | 72.0 | 72.0 | 73.0 | 0.9863 | 0.9863 | 1.0 | 1.0 | 78.0 | 0.0128 | 0.0128 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.4645 | 3.0 | 3 | 1.4500 | 0.0058 | 625.4967 | 433.5612 | 94.0 | 299.0 | 0.3144 | 94.0 | 0.3144 | 0.0 | 0.0 | 64.0 | 0.0 | 0.0 | 17.0 | 17.0 | 73.0 | 0.2329 | 0.2329 | 2.0 | 2.0 | 78.0 | 0.0256 | 0.0256 | 75.0 | 75.0 | 83.0 | 0.9036 | 0.9036 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.0605 | 4.0 | 4 | 1.6302 | 0.0058 | 703.2070 | 487.4260 | 74.0 | 299.0 | 0.2475 | 73.0 | 0.2441 | 0.0 | 0.0 | 64.0 | 0.0 | 0.0 | 71.0 | 72.0 | 73.0 | 0.9863 | 0.9726 | 1.0 | 1.0 | 78.0 | 0.0128 | 0.0128 | 1.0 | 1.0 | 83.0 | 0.0120 | 0.0120 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.4866 | 5.0 | 5 | 2.1799 | 0.0058 | 940.3344 | 651.7902 | 85.0 | 299.0 | 0.2843 | 73.0 | 0.2441 | 1.0 | 2.0 | 64.0 | 0.0312 | 0.0156 | 52.0 | 63.0 | 73.0 | 0.8630 | 0.7123 | 10.0 | 10.0 | 78.0 | 0.1282 | 0.1282 | 10.0 | 10.0 | 83.0 | 0.1205 | 0.1205 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0795 | 6.0 | 6 | 2.8177 | 0.0058 | 1215.4778 | 842.5050 | 96.0 | 299.0 | 0.3211 | 56.0 | 0.1873 | 4.0 | 14.0 | 64.0 | 0.2188 | 0.0625 | 27.0 | 48.0 | 73.0 | 0.6575 | 0.3699 | 9.0 | 14.0 | 78.0 | 0.1795 | 0.1154 | 16.0 | 20.0 | 83.0 | 0.2410 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0017 | 7.0 | 7 | 4.5963 | 0.0058 | 1982.6942 | 1374.2989 | 107.0 | 299.0 | 0.3579 | 79.0 | 0.2642 | 5.0 | 8.0 | 64.0 | 0.125 | 0.0781 | 27.0 | 42.0 | 73.0 | 0.5753 | 0.3699 | 23.0 | 26.0 | 78.0 | 0.3333 | 0.2949 | 24.0 | 31.0 | 83.0 | 0.3735 | 0.2892 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 8.0 | 8 | 6.2749 | 0.0058 | 2706.7820 | 1876.1983 | 108.0 | 299.0 | 0.3612 | 90.0 | 0.3010 | 4.0 | 5.0 | 64.0 | 0.0781 | 0.0625 | 29.0 | 36.0 | 73.0 | 0.4932 | 0.3973 | 36.0 | 40.0 | 78.0 | 0.5128 | 0.4615 | 21.0 | 27.0 | 83.0 | 0.3253 | 0.2530 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 9.0 | 9 | 7.6088 | 0.0058 | 3282.1736 | 2275.0294 | 102.0 | 299.0 | 0.3411 | 88.0 | 0.2943 | 3.0 | 4.0 | 64.0 | 0.0625 | 0.0469 | 25.0 | 28.0 | 73.0 | 0.3836 | 0.3425 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 18.0 | 23.0 | 83.0 | 0.2771 | 0.2169 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 10.0 | 10 | 8.4823 | 0.0058 | 3658.9878 | 2536.2171 | 99.0 | 299.0 | 0.3311 | 90.0 | 0.3010 | 3.0 | 3.0 | 64.0 | 0.0469 | 0.0469 | 26.0 | 28.0 | 73.0 | 0.3836 | 0.3562 | 41.0 | 44.0 | 78.0 | 0.5641 | 0.5256 | 20.0 | 24.0 | 83.0 | 0.2892 | 0.2410 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 11 | 9.0925 | 0.0058 | 3922.2033 | 2718.6642 | 100.0 | 299.0 | 0.3344 | 93.0 | 0.3110 | 3.0 | 3.0 | 64.0 | 0.0469 | 0.0469 | 26.0 | 28.0 | 73.0 | 0.3836 | 0.3562 | 41.0 | 44.0 | 78.0 | 0.5641 | 0.5256 | 23.0 | 25.0 | 83.0 | 0.3012 | 0.2771 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 12 | 9.3124 | 0.0058 | 4017.0339 | 2784.3958 | 97.0 | 299.0 | 0.3244 | 92.0 | 0.3077 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 24.0 | 26.0 | 73.0 | 0.3562 | 0.3288 | 42.0 | 43.0 | 78.0 | 0.5513 | 0.5385 | 25.0 | 27.0 | 83.0 | 0.3253 | 0.3012 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 13 | 9.4349 | 0.0058 | 4069.8925 | 2821.0345 | 100.0 | 299.0 | 0.3344 | 95.0 | 0.3177 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 25.0 | 28.0 | 73.0 | 0.3836 | 0.3425 | 40.0 | 41.0 | 78.0 | 0.5256 | 0.5128 | 29.0 | 30.0 | 83.0 | 0.3614 | 0.3494 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 14 | 9.5769 | 0.0058 | 4131.1632 | 2863.5042 | 102.0 | 299.0 | 0.3411 | 96.0 | 0.3211 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 23.0 | 26.0 | 73.0 | 0.3562 | 0.3151 | 40.0 | 41.0 | 78.0 | 0.5256 | 0.5128 | 32.0 | 34.0 | 83.0 | 0.4096 | 0.3855 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 15 | 9.7479 | 0.0058 | 4204.9260 | 2914.6326 | 101.0 | 299.0 | 0.3378 | 96.0 | 0.3211 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 25.0 | 73.0 | 0.3425 | 0.3014 | 40.0 | 41.0 | 78.0 | 0.5256 | 0.5128 | 33.0 | 34.0 | 83.0 | 0.4096 | 0.3976 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 16 | 9.8237 | 0.0058 | 4237.6167 | 2937.2921 | 101.0 | 299.0 | 0.3378 | 96.0 | 0.3211 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 23.0 | 26.0 | 73.0 | 0.3562 | 0.3151 | 39.0 | 40.0 | 78.0 | 0.5128 | 0.5 | 33.0 | 34.0 | 83.0 | 0.4096 | 0.3976 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 17 | 9.8771 | 0.0058 | 4260.6302 | 2953.2438 | 102.0 | 299.0 | 0.3411 | 97.0 | 0.3244 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 25.0 | 73.0 | 0.3425 | 0.3014 | 39.0 | 40.0 | 78.0 | 0.5128 | 0.5 | 35.0 | 36.0 | 83.0 | 0.4337 | 0.4217 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 18.0 | 18 | 10.0256 | 0.0058 | 4324.7020 | 2997.6550 | 99.0 | 299.0 | 0.3311 | 94.0 | 0.3144 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 21.0 | 24.0 | 73.0 | 0.3288 | 0.2877 | 38.0 | 39.0 | 78.0 | 0.5 | 0.4872 | 34.0 | 35.0 | 83.0 | 0.4217 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 19.0 | 19 | 9.9950 | 0.0058 | 4311.4824 | 2988.4919 | 99.0 | 299.0 | 0.3311 | 94.0 | 0.3144 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 25.0 | 73.0 | 0.3425 | 0.3014 | 37.0 | 38.0 | 78.0 | 0.4872 | 0.4744 | 34.0 | 35.0 | 83.0 | 0.4217 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 20.0 | 20 | 10.0191 | 0.0058 | 4321.9140 | 2995.7225 | 102.0 | 299.0 | 0.3411 | 97.0 | 0.3244 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 25.0 | 73.0 | 0.3425 | 0.3014 | 39.0 | 40.0 | 78.0 | 0.5128 | 0.5 | 35.0 | 36.0 | 83.0 | 0.4337 | 0.4217 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 21.0 | 21 | 10.0464 | 0.0058 | 4333.6653 | 3003.8679 | 101.0 | 299.0 | 0.3378 | 96.0 | 0.3211 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 24.0 | 73.0 | 0.3288 | 0.3014 | 39.0 | 40.0 | 78.0 | 0.5128 | 0.5 | 34.0 | 36.0 | 83.0 | 0.4337 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 22.0 | 22 | 10.0371 | 0.0058 | 4329.6583 | 3001.0905 | 102.0 | 299.0 | 0.3411 | 97.0 | 0.3244 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 23.0 | 25.0 | 73.0 | 0.3425 | 0.3151 | 39.0 | 40.0 | 78.0 | 0.5128 | 0.5 | 34.0 | 36.0 | 83.0 | 0.4337 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 23.0 | 23 | 10.0929 | 0.0058 | 4353.7427 | 3017.7845 | 100.0 | 299.0 | 0.3344 | 95.0 | 0.3177 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 21.0 | 24.0 | 73.0 | 0.3288 | 0.2877 | 38.0 | 39.0 | 78.0 | 0.5 | 0.4872 | 35.0 | 36.0 | 83.0 | 0.4337 | 0.4217 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 24.0 | 24 | 10.0993 | 0.0058 | 4356.5032 | 3019.6979 | 101.0 | 299.0 | 0.3378 | 97.0 | 0.3244 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 24.0 | 73.0 | 0.3288 | 0.3014 | 39.0 | 40.0 | 78.0 | 0.5128 | 0.5 | 35.0 | 36.0 | 83.0 | 0.4337 | 0.4217 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 25.0 | 25 | 10.0677 | 0.0058 | 4342.8494 | 3010.2338 | 99.0 | 299.0 | 0.3311 | 94.0 | 0.3144 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 21.0 | 24.0 | 73.0 | 0.3288 | 0.2877 | 38.0 | 39.0 | 78.0 | 0.5 | 0.4872 | 34.0 | 35.0 | 83.0 | 0.4217 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 26.0 | 26 | 10.0313 | 0.0058 | 4327.1634 | 2999.3611 | 100.0 | 299.0 | 0.3344 | 95.0 | 0.3177 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 25.0 | 73.0 | 0.3425 | 0.3014 | 38.0 | 39.0 | 78.0 | 0.5 | 0.4872 | 34.0 | 35.0 | 83.0 | 0.4217 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 27.0 | 27 | 10.0884 | 0.0058 | 4351.8004 | 3016.4382 | 97.0 | 299.0 | 0.3244 | 93.0 | 0.3110 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 21.0 | 24.0 | 73.0 | 0.3288 | 0.2877 | 38.0 | 39.0 | 78.0 | 0.5 | 0.4872 | 33.0 | 33.0 | 83.0 | 0.3976 | 0.3976 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 28.0 | 28 | 10.0954 | 0.0058 | 4354.7990 | 3018.5167 | 97.0 | 299.0 | 0.3244 | 92.0 | 0.3077 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 21.0 | 24.0 | 73.0 | 0.3288 | 0.2877 | 37.0 | 38.0 | 78.0 | 0.4872 | 0.4744 | 33.0 | 34.0 | 83.0 | 0.4096 | 0.3976 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 29.0 | 29 | 10.0557 | 0.0058 | 4337.6871 | 3006.6556 | 98.0 | 299.0 | 0.3278 | 94.0 | 0.3144 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 21.0 | 24.0 | 73.0 | 0.3288 | 0.2877 | 38.0 | 39.0 | 78.0 | 0.5 | 0.4872 | 34.0 | 34.0 | 83.0 | 0.4096 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 30.0 | 30 | 10.0989 | 0.0058 | 4356.3412 | 3019.5856 | 94.0 | 299.0 | 0.3144 | 90.0 | 0.3010 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 24.0 | 73.0 | 0.3288 | 0.3014 | 34.0 | 35.0 | 78.0 | 0.4487 | 0.4359 | 33.0 | 34.0 | 83.0 | 0.4096 | 0.3976 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 31.0 | 31 | 10.1199 | 0.0058 | 4365.3782 | 3025.8496 | 98.0 | 299.0 | 0.3278 | 93.0 | 0.3110 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 21.0 | 24.0 | 73.0 | 0.3288 | 0.2877 | 37.0 | 38.0 | 78.0 | 0.4872 | 0.4744 | 34.0 | 35.0 | 83.0 | 0.4217 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 32.0 | 32 | 10.0788 | 0.0058 | 4347.6442 | 3013.5573 | 99.0 | 299.0 | 0.3311 | 95.0 | 0.3177 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 21.0 | 23.0 | 73.0 | 0.3151 | 0.2877 | 37.0 | 38.0 | 78.0 | 0.4872 | 0.4744 | 36.0 | 37.0 | 83.0 | 0.4458 | 0.4337 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 33.0 | 33 | 10.0715 | 0.0058 | 4344.5197 | 3011.3916 | 100.0 | 299.0 | 0.3344 | 95.0 | 0.3177 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 25.0 | 73.0 | 0.3425 | 0.3014 | 38.0 | 39.0 | 78.0 | 0.5 | 0.4872 | 34.0 | 35.0 | 83.0 | 0.4217 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 34.0 | 34 | 10.1057 | 0.0058 | 4359.2507 | 3021.6024 | 95.0 | 299.0 | 0.3177 | 91.0 | 0.3043 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 19.0 | 21.0 | 73.0 | 0.2877 | 0.2603 | 37.0 | 38.0 | 78.0 | 0.4872 | 0.4744 | 34.0 | 35.0 | 83.0 | 0.4217 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 35.0 | 35 | 10.0934 | 0.0058 | 4353.9602 | 3017.9352 | 96.0 | 299.0 | 0.3211 | 92.0 | 0.3077 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 20.0 | 22.0 | 73.0 | 0.3014 | 0.2740 | 38.0 | 39.0 | 78.0 | 0.5 | 0.4872 | 33.0 | 34.0 | 83.0 | 0.4096 | 0.3976 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 36.0 | 36 | 10.0532 | 0.0058 | 4336.6062 | 3005.9064 | 99.0 | 299.0 | 0.3311 | 94.0 | 0.3144 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 25.0 | 73.0 | 0.3425 | 0.3014 | 38.0 | 39.0 | 78.0 | 0.5 | 0.4872 | 33.0 | 34.0 | 83.0 | 0.4096 | 0.3976 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 37.0 | 37 | 10.0802 | 0.0058 | 4348.2578 | 3013.9826 | 95.0 | 299.0 | 0.3177 | 92.0 | 0.3077 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 21.0 | 23.0 | 73.0 | 0.3151 | 0.2877 | 36.0 | 37.0 | 78.0 | 0.4744 | 0.4615 | 34.0 | 34.0 | 83.0 | 0.4096 | 0.4096 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 38.0 | 38 | 10.0748 | 0.0058 | 4345.9386 | 3012.3751 | 99.0 | 299.0 | 0.3311 | 94.0 | 0.3144 | 1.0 | 1.0 | 64.0 | 0.0156 | 0.0156 | 22.0 | 25.0 | 73.0 | 0.3425 | 0.3014 | 36.0 | 37.0 | 78.0 | 0.4744 | 0.4615 | 35.0 | 36.0 | 83.0 | 0.4337 | 0.4217 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
colabbear/bge-reranker-v2-m3-ko-bnb-4bit
colabbear
2025-08-19T00:54:32Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "bnb-my-repo", "text-ranking", "ko", "en", "base_model:dragonkue/bge-reranker-v2-m3-ko", "base_model:quantized:dragonkue/bge-reranker-v2-m3-ko", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
text-ranking
2025-08-19T00:54:26Z
--- base_model: - dragonkue/bge-reranker-v2-m3-ko license: apache-2.0 language: - ko - en metrics: - accuracy pipeline_tag: text-ranking library_name: sentence-transformers tags: - bnb-my-repo --- # dragonkue/bge-reranker-v2-m3-ko (Quantized) ## Description This model is a quantized version of the original model [`dragonkue/bge-reranker-v2-m3-ko`](https://huggingface.co/dragonkue/bge-reranker-v2-m3-ko). It's quantized using the BitsAndBytes library to 4-bit using the [bnb-my-repo](https://huggingface.co/spaces/bnb-community/bnb-my-repo) space. ## Quantization Details - **Quantization Type**: int4 - **bnb_4bit_quant_type**: nf4 - **bnb_4bit_use_double_quant**: True - **bnb_4bit_compute_dtype**: bfloat16 - **bnb_4bit_quant_storage**: uint8 # πŸ“„ Original Model Information <img src="https://cdn-uploads.huggingface.co/production/uploads/642b0c2fecec03b4464a1d9b/IxcqY5qbGNuGpqDciIcOI.webp" width="600"> # Reranker (Cross-Encoder) Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. And the score can be mapped to a float value in [0,1] by sigmoid function. ## Model Details - Base model : BAAI/bge-reranker-v2-m3 - The multilingual model has been optimized for Korean. ## Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('dragonkue/bge-reranker-v2-m3-ko') tokenizer = AutoTokenizer.from_pretrained('dragonkue/bge-reranker-v2-m3-ko') features = tokenizer([['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹€λ¬΄κ΅μœ‘μ„ 톡해 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ— λŒ€ν•œ μžμΉ˜λ‹¨μ²΄μ˜ 관심을 μ œκ³ ν•˜κ³  μžμΉ˜λ‹¨μ²΄μ˜ 차질 μ—†λŠ” 업무 좔진을 μ§€μ›ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 쀀비과정을 거쳐 2014λ…„ 8μ›” 7일뢀터 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ΄ μ‹œν–‰λ˜μ—ˆλ‹€.'], ['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹ν’ˆμ˜μ•½ν’ˆμ•ˆμ „μ²˜λŠ” 21일 κ΅­λ‚΄ μ œμ•½κΈ°μ—… μœ λ°”μ΄μ˜€λ‘œμ§μŠ€κ°€ 개발 쀑인 μ‹ μ’… μ½”λ‘œλ‚˜λ°”μ΄λŸ¬μŠ€ 감염증(μ½”λ‘œλ‚˜19) λ°±μ‹  ν›„λ³΄λ¬Όμ§ˆ β€˜μœ μ½”λ°±-19β€™μ˜ μž„μƒμ‹œν—˜ κ³„νšμ„ μ§€λ‚œ 20일 μŠΉμΈν–ˆλ‹€κ³  λ°ν˜”λ‹€.']], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): logits = model(**features).logits scores = torch.sigmoid(logits) print(scores) # [9.9997962e-01 5.0702977e-07] ``` ## Usage with SentenceTransformers First install the Sentence Transformers library: ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import CrossEncoder model = CrossEncoder('dragonkue/bge-reranker-v2-m3-ko', default_activation_function=torch.nn.Sigmoid()) scores = model.predict([['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹€λ¬΄κ΅μœ‘μ„ 톡해 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ— λŒ€ν•œ μžμΉ˜λ‹¨μ²΄μ˜ 관심을 μ œκ³ ν•˜κ³  μžμΉ˜λ‹¨μ²΄μ˜ 차질 μ—†λŠ” 업무 좔진을 μ§€μ›ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 쀀비과정을 거쳐 2014λ…„ 8μ›” 7일뢀터 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ΄ μ‹œν–‰λ˜μ—ˆλ‹€.'], ['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹ν’ˆμ˜μ•½ν’ˆμ•ˆμ „μ²˜λŠ” 21일 κ΅­λ‚΄ μ œμ•½κΈ°μ—… μœ λ°”μ΄μ˜€λ‘œμ§μŠ€κ°€ 개발 쀑인 μ‹ μ’… μ½”λ‘œλ‚˜λ°”μ΄λŸ¬μŠ€ 감염증(μ½”λ‘œλ‚˜19) λ°±μ‹  ν›„λ³΄λ¬Όμ§ˆ β€˜μœ μ½”λ°±-19β€™μ˜ μž„μƒμ‹œν—˜ κ³„νšμ„ μ§€λ‚œ 20일 μŠΉμΈν–ˆλ‹€κ³  λ°ν˜”λ‹€.']]) print(scores) # [9.9997962e-01 5.0702977e-07] ``` ## Usage with FlagEmbedding First install the FlagEmbedding library: ``` pip install -U FlagEmbedding ``` ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('dragonkue/bge-reranker-v2-m3-ko') scores = reranker.compute_score([['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹€λ¬΄κ΅μœ‘μ„ 톡해 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ— λŒ€ν•œ μžμΉ˜λ‹¨μ²΄μ˜ 관심을 μ œκ³ ν•˜κ³  μžμΉ˜λ‹¨μ²΄μ˜ 차질 μ—†λŠ” 업무 좔진을 μ§€μ›ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 쀀비과정을 거쳐 2014λ…„ 8μ›” 7일뢀터 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ΄ μ‹œν–‰λ˜μ—ˆλ‹€.'], ['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹ν’ˆμ˜μ•½ν’ˆμ•ˆμ „μ²˜λŠ” 21일 κ΅­λ‚΄ μ œμ•½κΈ°μ—… μœ λ°”μ΄μ˜€λ‘œμ§μŠ€κ°€ 개발 쀑인 μ‹ μ’… μ½”λ‘œλ‚˜λ°”μ΄λŸ¬μŠ€ 감염증(μ½”λ‘œλ‚˜19) λ°±μ‹  ν›„λ³΄λ¬Όμ§ˆ β€˜μœ μ½”λ°±-19β€™μ˜ μž„μƒμ‹œν—˜ κ³„νšμ„ μ§€λ‚œ 20일 μŠΉμΈν–ˆλ‹€κ³  λ°ν˜”λ‹€.']], normalize=True) print(scores) # [9.9997962e-01 5.0702977e-07] ``` ## Fine-tune Refer to https://github.com/FlagOpen/FlagEmbedding ## Evaluation ### Bi-encoder and Cross-encoder Bi-Encoders convert texts into fixed-size vectors and efficiently calculate similarities between them. They are fast and ideal for tasks like semantic search and classification, making them suitable for processing large datasets quickly. Cross-Encoders directly compare pairs of texts to compute similarity scores, providing more accurate results. While they are slower due to needing to process each pair, they excel in re-ranking top results and are important in Advanced RAG techniques for enhancing text generation. ### Korean Embedding Benchmark with AutoRAG (https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark) This is a Korean embedding benchmark for the financial sector. **Top-k 1** Bi-Encoder (Sentence Transformer) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | paraphrase-multilingual-mpnet-base-v2 | 0.3596 | 0.3596 | 0.3596 | | KoSimCSE-roberta | 0.4298 | 0.4298 | 0.4298 | | Cohere embed-multilingual-v3.0 | 0.3596 | 0.3596 | 0.3596 | | openai ada 002 | 0.4737 | 0.4737 | 0.4737 | | multilingual-e5-large-instruct | 0.4649 | 0.4649 | 0.4649 | | Upstage Embedding | 0.6579 | 0.6579 | 0.6579 | | paraphrase-multilingual-MiniLM-L12-v2 | 0.2982 | 0.2982 | 0.2982 | | openai_embed_3_small | 0.5439 | 0.5439 | 0.5439 | | ko-sroberta-multitask | 0.4211 | 0.4211 | 0.4211 | | openai_embed_3_large | 0.6053 | 0.6053 | 0.6053 | | KU-HIAI-ONTHEIT-large-v1 | 0.7105 | 0.7105 | 0.7105 | | KU-HIAI-ONTHEIT-large-v1.1 | 0.7193 | 0.7193 | 0.7193 | | kf-deberta-multitask | 0.4561 | 0.4561 | 0.4561 | | gte-multilingual-base | 0.5877 | 0.5877 | 0.5877 | | KoE5 | 0.7018 | 0.7018 | 0.7018 | | BGE-m3 | 0.6578 | 0.6578 | 0.6578 | | bge-m3-korean | 0.5351 | 0.5351 | 0.5351 | | **BGE-m3-ko** | **0.7456** | **0.7456** | **0.7456** | Cross-Encoder (Reranker) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | gte-multilingual-reranker-base | 0.7281 | 0.7281 | 0.7281 | | jina-reranker-v2-base-multilingual | 0.8070 | 0.8070 | 0.8070 | | bge-reranker-v2-m3 | 0.8772 | 0.8772 | 0.8772 | | upskyy/ko-reranker-8k | 0.8684| 0.8684 | 0.8684 | | upskyy/ko-reranker | 0.8333| 0.8333 | 0.8333 | | mncai/bge-ko-reranker-560M | 0.0088| 0.0088 | 0.0088 | | Dongjin-kr/ko-reranker | 0.8509| 0.8509 | 0.8509 | | **bge-reranker-v2-m3-ko** | **0.9123** | **0.9123** | **0.9123** | **Top-k 3** Bi-Encoder (Sentence Transformer) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | paraphrase-multilingual-mpnet-base-v2 | 0.2368 | 0.4737 | 0.1579 | | KoSimCSE-roberta | 0.3026 | 0.6053 | 0.2018 | | Cohere embed-multilingual-v3.0 | 0.2851 | 0.5702 | 0.1901 | | openai ada 002 | 0.3553 | 0.7105 | 0.2368 | | multilingual-e5-large-instruct | 0.3333 | 0.6667 | 0.2222 | | Upstage Embedding | 0.4211 | 0.8421 | 0.2807 | | paraphrase-multilingual-MiniLM-L12-v2 | 0.2061 | 0.4123 | 0.1374 | | openai_embed_3_small | 0.3640 | 0.7281 | 0.2427 | | ko-sroberta-multitask | 0.2939 | 0.5877 | 0.1959 | | openai_embed_3_large | 0.3947 | 0.7895 | 0.2632 | | KU-HIAI-ONTHEIT-large-v1 | 0.4386 | 0.8772 | 0.2924 | | KU-HIAI-ONTHEIT-large-v1.1 | 0.4430 | 0.8860 | 0.2953 | | kf-deberta-multitask | 0.3158 | 0.6316 | 0.2105 | | gte-multilingual-base | 0.4035 | 0.8070 | 0.2690 | | KoE5 | 0.4254 | 0.8509 | 0.2836 | | BGE-m3 | 0.4254 | 0.8508 | 0.2836 | | bge-m3-korean | 0.3684 | 0.7368 | 0.2456 | | **BGE-m3-ko** | **0.4517** | **0.9035** | **0.3011** | Cross-Encoder (Reranker) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | gte-multilingual-reranker-base | 0.4605 | 0.9211 | 0.3070 | | jina-reranker-v2-base-multilingual | 0.4649 | 0.9298 | 0.3099 | | bge-reranker-v2-m3 | 0.4781 | 0.9561 | 0.3187 | | upskyy/ko-reranker-8k | 0.4781| 0.9561 | 0.3187 | | upskyy/ko-reranker | 0.4649| 0.9298 | 0.3099 | | mncai/bge-ko-reranker-560M | 0.0044| 0.0088 | 0.0029 | | Dongjin-kr/ko-reranker | 0.4737| 0.9474 | 0.3158 | | **bge-reranker-v2-m3-ko** | **0.4825** | **0.9649** | **0.3216** |
liukevin666/blockassist-bc-yawning_striped_cassowary_1755564590
liukevin666
2025-08-19T00:51:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:51:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
remember2015/test
remember2015
2025-08-19T00:50:13Z
0
0
null
[ "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
null
2025-08-19T00:49:39Z
--- license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bimabk/6134e552-a4f8-40d3-9cfe-c1f6b4388f3a
bimabk
2025-08-19T00:49:46Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "region:us" ]
null
2025-08-19T00:49:36Z
--- base_model: Qwen/Qwen2.5-7B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755562894
hakimjustbao
2025-08-19T00:48:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:48:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_finnish_immigration
AnonymousCS
2025-08-19T00:48:10Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-18T23:51:34Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_finnish_immigration results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_finnish_immigration This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2720 - Accuracy: 0.9077 - 1-f1: 0.85 - 1-recall: 0.7907 - 1-precision: 0.9189 - Balanced Acc: 0.8781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3183 | 1.0 | 5 | 0.2567 | 0.9462 | 0.9136 | 0.8605 | 0.9737 | 0.9245 | | 0.1427 | 2.0 | 10 | 0.2406 | 0.9231 | 0.8780 | 0.8372 | 0.9231 | 0.9014 | | 0.2205 | 3.0 | 15 | 0.2658 | 0.8923 | 0.8409 | 0.8605 | 0.8222 | 0.8843 | | 0.0792 | 4.0 | 20 | 0.2259 | 0.9154 | 0.8642 | 0.8140 | 0.9211 | 0.8897 | | 0.1465 | 5.0 | 25 | 0.2607 | 0.9 | 0.8539 | 0.8837 | 0.8261 | 0.8959 | | 0.1121 | 6.0 | 30 | 0.2720 | 0.9077 | 0.85 | 0.7907 | 0.9189 | 0.8781 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
chainway9/blockassist-bc-untamed_quick_eel_1755562787
chainway9
2025-08-19T00:47:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:47:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF
tensorblock
2025-08-19T00:45:09Z
0
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "base_model:Qwen/Qwen3-30B-A3B-Thinking-2507", "base_model:quantized:Qwen/Qwen3-30B-A3B-Thinking-2507", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-18T19:16:31Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Thinking-2507/blob/main/LICENSE pipeline_tag: text-generation base_model: Qwen/Qwen3-30B-A3B-Thinking-2507 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Qwen/Qwen3-30B-A3B-Thinking-2507 - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building β†— </a> </div> This repo contains GGUF format model files for [Qwen/Qwen3-30B-A3B-Thinking-2507](https://huggingface.co/Qwen/Qwen3-30B-A3B-Thinking-2507). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸš€ Try it now! πŸš€</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant <think> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Qwen3-30B-A3B-Thinking-2507-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q2_K.gguf) | Q2_K | 11.259 GB | smallest, significant quality loss - not recommended for most purposes | | [Qwen3-30B-A3B-Thinking-2507-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q3_K_S.gguf) | Q3_K_S | 13.292 GB | very small, high quality loss | | [Qwen3-30B-A3B-Thinking-2507-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q3_K_M.gguf) | Q3_K_M | 14.712 GB | very small, high quality loss | | [Qwen3-30B-A3B-Thinking-2507-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q3_K_L.gguf) | Q3_K_L | 15.901 GB | small, substantial quality loss | | [Qwen3-30B-A3B-Thinking-2507-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q4_0.gguf) | Q4_0 | 17.304 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Qwen3-30B-A3B-Thinking-2507-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q4_K_S.gguf) | Q4_K_S | 17.456 GB | small, greater quality loss | | [Qwen3-30B-A3B-Thinking-2507-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q4_K_M.gguf) | Q4_K_M | 18.557 GB | medium, balanced quality - recommended | | [Qwen3-30B-A3B-Thinking-2507-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q5_0.gguf) | Q5_0 | 21.081 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Qwen3-30B-A3B-Thinking-2507-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q5_K_S.gguf) | Q5_K_S | 21.081 GB | large, low quality loss - recommended | | [Qwen3-30B-A3B-Thinking-2507-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q5_K_M.gguf) | Q5_K_M | 21.726 GB | large, very low quality loss - recommended | | [Qwen3-30B-A3B-Thinking-2507-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q6_K.gguf) | Q6_K | 25.093 GB | very large, extremely low quality loss | | [Qwen3-30B-A3B-Thinking-2507-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF/blob/main/Qwen3-30B-A3B-Thinking-2507-Q8_0.gguf) | Q8_0 | 32.484 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF --include "Qwen3-30B-A3B-Thinking-2507-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Qwen_Qwen3-30B-A3B-Thinking-2507-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755564067
IvanJAjebu
2025-08-19T00:42:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:42:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vkamenski/smolvla-stacking-blocks
vkamenski
2025-08-19T00:41:46Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:vkamenski/stacking-blocks-v5", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T00:41:24Z
--- base_model: lerobot/smolvla_base datasets: vkamenski/stacking-blocks-v5 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - lerobot - robotics - smolvla --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
eshaaftab900/EN_DeepSeek-R1-Distill-Llama-8B-ft-QRCD-and-Quran-lora-adapters-2
eshaaftab900
2025-08-19T00:41:06Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit", "lora", "sft", "transformers", "trl", "unsloth", "text-generation", "conversational", "arxiv:1910.09700", "region:us" ]
text-generation
2025-08-19T00:40:59Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit - lora - sft - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
TAUR-dev/M-test-rl
TAUR-dev
2025-08-19T00:40:51Z
3
0
null
[ "safetensors", "qwen2", "en", "license:mit", "region:us" ]
null
2025-08-14T09:22:44Z
--- language: en license: mit --- # M-test-rl ## Model Details - **Training Method**: VeRL Reinforcement Learning (RL) - **Stage Name**: rl - **Experiment**: test - **RL Framework**: VeRL (Versatile Reinforcement Learning) ## Training Configuration ## Experiment Tracking πŸ”— **View complete experiment details**: https://huggingface.co/datasets/TAUR-dev/D-ExpTracker__test__v1 ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("TAUR-dev/M-test-rl") model = AutoModelForCausalLM.from_pretrained("TAUR-dev/M-test-rl") ```
AnonymousCS/xlmr_norwegian_immigration
AnonymousCS
2025-08-19T00:40:29Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T00:24:57Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_norwegian_immigration results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_norwegian_immigration This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3010 - Accuracy: 0.9154 - 1-f1: 0.8571 - 1-recall: 0.7674 - 1-precision: 0.9706 - Balanced Acc: 0.8780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.5211 | 1.0 | 5 | 0.5227 | 0.8692 | 0.7792 | 0.6977 | 0.8824 | 0.8258 | | 0.3017 | 2.0 | 10 | 0.4052 | 0.8692 | 0.7536 | 0.6047 | 1.0 | 0.8023 | | 0.2832 | 3.0 | 15 | 0.3774 | 0.8462 | 0.7727 | 0.7907 | 0.7556 | 0.8321 | | 0.1558 | 4.0 | 20 | 0.3497 | 0.9 | 0.8219 | 0.6977 | 1.0 | 0.8488 | | 0.2806 | 5.0 | 25 | 0.3573 | 0.9 | 0.8219 | 0.6977 | 1.0 | 0.8488 | | 0.1661 | 6.0 | 30 | 0.3139 | 0.8692 | 0.8046 | 0.8140 | 0.7955 | 0.8553 | | 0.172 | 7.0 | 35 | 0.2988 | 0.8923 | 0.8293 | 0.7907 | 0.8718 | 0.8666 | | 0.1172 | 8.0 | 40 | 0.3699 | 0.9077 | 0.8378 | 0.7209 | 1.0 | 0.8605 | | 0.1188 | 9.0 | 45 | 0.2824 | 0.8846 | 0.8148 | 0.7674 | 0.8684 | 0.8550 | | 0.0532 | 10.0 | 50 | 0.2838 | 0.9 | 0.8354 | 0.7674 | 0.9167 | 0.8665 | | 0.0942 | 11.0 | 55 | 0.3010 | 0.9154 | 0.8571 | 0.7674 | 0.9706 | 0.8780 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755562539
sampingkaca72
2025-08-19T00:40:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:40:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755562351
lisaozill03
2025-08-19T00:37:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:37:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dashashiya/blockassist-bc-arctic_agile_tarantula_1755563597
dashashiya
2025-08-19T00:36:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic agile tarantula", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:36:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic agile tarantula --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755563652
IvanJAjebu
2025-08-19T00:35:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:35:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Noora68/lpr-0.4B
Noora68
2025-08-19T00:35:49Z
0
0
null
[ "safetensors", "lpr", "biology", "protein", "protein classification", "lipid binding", "lipid binding site", "recognition", "en", "base_model:EvolutionaryScale/esmc-300m-2024-12", "base_model:finetune:EvolutionaryScale/esmc-300m-2024-12", "license:mit", "region:us" ]
null
2025-08-17T03:06:41Z
--- license: mit language: - en base_model: - EvolutionaryScale/esmc-300m-2024-12 - google-bert/bert-base-uncased new_version: Noora68/lpr-0.4B tags: - biology - protein - protein classification - lipid binding - lipid binding site - recognition --- --- # Lipid-Protein Recognition (LPR) we present a robust prediction tool termed Lipid-Protein Recognition (LPR) for predicting the lipid categories that interact with proteins, utilizing protein sequences as the only input. Using a combined model architecture by the fusion of ESM C and BERT models, our method enables accurate and interpretable prediction to distinguish lipid-binding signature among the 8 major lipid categories defined by LIPID MAPS. LPR will serve as a powerful tool to facilitate the exploration of lipid-binding specificity and rational protein design. --- - **Paper**: [https://...](https://....) - **GitHub Repository**: [https://github.com/Noora68/Lipid-binding-Protein-Recognition-LPR](https://github.com/Noora68/Lipid-binding-Protein-Recognition-LPR) - **Online Demo**: [https://colab/](https://colab/) --- ## Model Details - **Architecture**: ESM Cambrian + BERT + classification head - **Task**: Multi-label protein-lipid binding prediction - **Fine-tuned from**: `ESMC_300m` + `bert-base-uncased` - **Developed by**: Noora68 - **Framework**: PyTorch + HuggingFace Transformers --- **Model usage workflow:** 1. Load the model and tokenizer 2. Process the input sequence (tokenize β†’ batch β†’ pad β†’ mask) 3. Run inference to obtain logits β†’ probabilities 4. Output the results and mark high-confidence categories --- ## install the latest version: ```python pip install lpr_model==1.1.1 ```` --- ## Usage: ```python from lpr_model import LPR import torch from torch.nn.utils.rnn import pad_sequence from esm.tokenization import EsmSequenceTokenizer # Set device (GPU if available, otherwise CPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = EsmSequenceTokenizer() # Default lipid type dictionary default_dict = { "0": "NotLipidType", "1": "Fatty Acyl (FA)", "2": "Prenol Lipid (PR)", "3": "Glycerophospholipid (GP)", "4": "Sterol Lipid (ST)", "5": "Polyketide (PK)", "6": "Glycerolipid (GL)", "7": "Sphingolipid (SP)", "8": "Saccharolipid (SL)" } # Load pretrained LPR model model = LPR.from_pretrained("Noora68/lpr-0.4B").to(device) # Example protein sequence sequence = "MDSNFLKYLSTAPVLFTVWLSFTASFIIEANRFFPDMLYFPM" # Tokenize the sequence -> input_ids input_ids = torch.tensor(tokenizer.encode(sequence)) # Add batch dimension: (batch_size=1, length) input_ids = input_ids.unsqueeze(0) # Pad to the longest sequence in the batch input_ids_padded = pad_sequence(input_ids, batch_first=True, padding_value=tokenizer.pad_token_id) # Build attention mask: 1 for real tokens, 0 for padding attention_mask = (input_ids_padded != tokenizer.pad_token_id).long() # Move tensors to the same device as model input_ids_padded = input_ids_padded.to(device) attention_mask = attention_mask.to(device) # Forward pass (no gradient needed during inference) with torch.no_grad(): outputs = model(input_ids_padded, attention_mask) # Convert logits to probabilities using sigmoid probs = torch.sigmoid(outputs['logits']) # Convert to CPU and numpy array probs = probs.squeeze().detach().cpu().numpy() # Print results: add a check mark if probability > 0.6 for i, p in enumerate(probs): mark = " √" if p > 0.6 else "" print(f"{default_dict[str(i)]:<25}: {p:.4f}{mark}") ```` ## output of the above example is: ``` NotLipidType : 0.0007 Fatty Acyl (FA) : 0.1092 Prenol Lipid (PR) : 0.9178 √ Glycerophospholipid (GP) : 0.6059 √ Sterol Lipid (ST) : 0.0083 Polyketide (PK) : 0.0026 Glycerolipid (GL) : 0.0771 Sphingolipid (SP) : 0.0002 Saccharolipid (SL) : 0.0000 ``` --- ## Limitations * Trained only on lipid-binding protein data and may not generalize to other functions. * Model performance is best with sequence lengths under 500. * Dataset size is limited compared to large-scale protein corpora. * Model may reflect biases present in training data (e.g., under-representation of certain lipid types). --- ## Citation If you use this model, please cite: ```bibtex @article{your2025paper, title={Deciphering the code of lipid binding by large language model}, author={Feitong Dong,}, journal={Bioinformatics}, year={2025} } ``` --- ## License MIT License ---
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755562155
quantumxnode
2025-08-19T00:35:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:35:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755562109
koloni
2025-08-19T00:34:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:34:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
donoway/BoolQ_Llama-3.2-1B-131yj8sj
donoway
2025-08-19T00:32:07Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T23:26:17Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: BoolQ_Llama-3.2-1B-131yj8sj results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BoolQ_Llama-3.2-1B-131yj8sj This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4452 - Model Preparation Time: 0.0057 - Mdl: 6818.1174 - Accumulated Loss: 4725.9588 - Correct Preds: 2702.0 - Total Preds: 3270.0 - Accuracy: 0.8263 - Correct Gen Preds: 2701.0 - Gen Accuracy: 0.8260 - Correct Gen Preds 9642: 1791.0 - Correct Preds 9642: 1798.0 - Total Labels 9642: 2026.0 - Accuracy 9642: 0.8875 - Gen Accuracy 9642: 0.8840 - Correct Gen Preds 2822: 901.0 - Correct Preds 2822: 904.0 - Total Labels 2822: 1231.0 - Accuracy 2822: 0.7344 - Gen Accuracy 2822: 0.7319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 120 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 9642 | Correct Preds 9642 | Total Labels 9642 | Accuracy 9642 | Gen Accuracy 9642 | Correct Gen Preds 2822 | Correct Preds 2822 | Total Labels 2822 | Accuracy 2822 | Gen Accuracy 2822 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:----------------------:|:------------------:|:-----------------:|:-------------:|:-----------------:|:----------------------:|:------------------:|:-----------------:|:-------------:|:-----------------:| | No log | 0 | 0 | 0.7080 | 0.0057 | 3339.8933 | 2315.0376 | 2032.0 | 3270.0 | 0.6214 | 2040.0 | 0.6239 | 2007.0 | 2008.0 | 2026.0 | 0.9911 | 0.9906 | 24.0 | 24.0 | 1231.0 | 0.0195 | 0.0195 | | 0.2476 | 1.0 | 143 | 0.4988 | 0.0057 | 2353.0385 | 1631.0020 | 2591.0 | 3270.0 | 0.7924 | 2599.0 | 0.7948 | 1843.0 | 1843.0 | 2026.0 | 0.9097 | 0.9097 | 747.0 | 748.0 | 1231.0 | 0.6076 | 0.6068 | | 0.0885 | 2.0 | 286 | 0.5426 | 0.0057 | 2559.9190 | 1774.4006 | 2626.0 | 3270.0 | 0.8031 | 2626.0 | 0.8031 | 1900.0 | 1906.0 | 2026.0 | 0.9408 | 0.9378 | 717.0 | 720.0 | 1231.0 | 0.5849 | 0.5825 | | 0.0086 | 3.0 | 429 | 0.7471 | 0.0057 | 3524.5342 | 2443.0209 | 2655.0 | 3270.0 | 0.8119 | 2625.0 | 0.8028 | 1638.0 | 1667.0 | 2026.0 | 0.8228 | 0.8085 | 978.0 | 988.0 | 1231.0 | 0.8026 | 0.7945 | | 0.0002 | 4.0 | 572 | 1.1866 | 0.0057 | 5597.8044 | 3880.1023 | 2662.0 | 3270.0 | 0.8141 | 2663.0 | 0.8144 | 1703.0 | 1707.0 | 2026.0 | 0.8425 | 0.8406 | 953.0 | 955.0 | 1231.0 | 0.7758 | 0.7742 | | 0.0115 | 5.0 | 715 | 1.3058 | 0.0057 | 6160.2400 | 4269.9530 | 2673.0 | 3270.0 | 0.8174 | 2664.0 | 0.8147 | 1791.0 | 1797.0 | 2026.0 | 0.8870 | 0.8840 | 864.0 | 876.0 | 1231.0 | 0.7116 | 0.7019 | | 0.0 | 6.0 | 858 | 1.4452 | 0.0057 | 6818.1174 | 4725.9588 | 2702.0 | 3270.0 | 0.8263 | 2701.0 | 0.8260 | 1791.0 | 1798.0 | 2026.0 | 0.8875 | 0.8840 | 901.0 | 904.0 | 1231.0 | 0.7344 | 0.7319 | | 0.0 | 7.0 | 1001 | 1.4433 | 0.0057 | 6808.9128 | 4719.5787 | 2698.0 | 3270.0 | 0.8251 | 2704.0 | 0.8269 | 1812.0 | 1814.0 | 2026.0 | 0.8954 | 0.8944 | 883.0 | 884.0 | 1231.0 | 0.7181 | 0.7173 | | 0.0 | 8.0 | 1144 | 1.3856 | 0.0057 | 6536.7240 | 4530.9118 | 2691.0 | 3270.0 | 0.8229 | 2694.0 | 0.8239 | 1768.0 | 1772.0 | 2026.0 | 0.8746 | 0.8727 | 917.0 | 919.0 | 1231.0 | 0.7465 | 0.7449 | | 0.9802 | 9.0 | 1287 | 1.4773 | 0.0057 | 6969.2721 | 4830.7313 | 2692.0 | 3270.0 | 0.8232 | 2698.0 | 0.8251 | 1793.0 | 1795.0 | 2026.0 | 0.8860 | 0.8850 | 897.0 | 897.0 | 1231.0 | 0.7287 | 0.7287 | | 0.0 | 10.0 | 1430 | 1.5437 | 0.0057 | 7282.6372 | 5047.9395 | 2695.0 | 3270.0 | 0.8242 | 2701.0 | 0.8260 | 1775.0 | 1777.0 | 2026.0 | 0.8771 | 0.8761 | 917.0 | 918.0 | 1231.0 | 0.7457 | 0.7449 | | 0.0 | 11.0 | 1573 | 1.5490 | 0.0057 | 7307.5108 | 5065.1805 | 2690.0 | 3270.0 | 0.8226 | 2696.0 | 0.8245 | 1771.0 | 1773.0 | 2026.0 | 0.8751 | 0.8741 | 916.0 | 917.0 | 1231.0 | 0.7449 | 0.7441 | | 0.0 | 12.0 | 1716 | 1.5529 | 0.0057 | 7325.9736 | 5077.9779 | 2692.0 | 3270.0 | 0.8232 | 2697.0 | 0.8248 | 1773.0 | 1775.0 | 2026.0 | 0.8761 | 0.8751 | 916.0 | 917.0 | 1231.0 | 0.7449 | 0.7441 | | 0.0 | 13.0 | 1859 | 1.5565 | 0.0057 | 7343.1664 | 5089.8951 | 2691.0 | 3270.0 | 0.8229 | 2696.0 | 0.8245 | 1771.0 | 1773.0 | 2026.0 | 0.8751 | 0.8741 | 917.0 | 918.0 | 1231.0 | 0.7457 | 0.7449 | | 0.0 | 14.0 | 2002 | 1.5552 | 0.0057 | 7336.7036 | 5085.4154 | 2692.0 | 3270.0 | 0.8232 | 2697.0 | 0.8248 | 1772.0 | 1774.0 | 2026.0 | 0.8756 | 0.8746 | 917.0 | 918.0 | 1231.0 | 0.7457 | 0.7449 | | 0.9802 | 15.0 | 2145 | 1.5579 | 0.0057 | 7349.6490 | 5094.3885 | 2695.0 | 3270.0 | 0.8242 | 2700.0 | 0.8257 | 1774.0 | 1776.0 | 2026.0 | 0.8766 | 0.8756 | 918.0 | 919.0 | 1231.0 | 0.7465 | 0.7457 | | 0.0 | 16.0 | 2288 | 1.5570 | 0.0057 | 7345.2574 | 5091.3444 | 2689.0 | 3270.0 | 0.8223 | 2694.0 | 0.8239 | 1770.0 | 1772.0 | 2026.0 | 0.8746 | 0.8736 | 916.0 | 917.0 | 1231.0 | 0.7449 | 0.7441 | | 0.0 | 17.0 | 2431 | 1.5594 | 0.0057 | 7356.5874 | 5099.1978 | 2693.0 | 3270.0 | 0.8235 | 2699.0 | 0.8254 | 1772.0 | 1774.0 | 2026.0 | 0.8756 | 0.8746 | 918.0 | 919.0 | 1231.0 | 0.7465 | 0.7457 | | 0.0 | 18.0 | 2574 | 1.5588 | 0.0057 | 7354.0051 | 5097.4079 | 2693.0 | 3270.0 | 0.8235 | 2699.0 | 0.8254 | 1773.0 | 1775.0 | 2026.0 | 0.8761 | 0.8751 | 917.0 | 918.0 | 1231.0 | 0.7457 | 0.7449 | | 0.0 | 19.0 | 2717 | 1.5574 | 0.0057 | 7347.1134 | 5092.6310 | 2694.0 | 3270.0 | 0.8239 | 2700.0 | 0.8257 | 1775.0 | 1777.0 | 2026.0 | 0.8771 | 0.8761 | 916.0 | 917.0 | 1231.0 | 0.7449 | 0.7441 | | 0.0 | 20.0 | 2860 | 1.5598 | 0.0057 | 7358.7582 | 5100.7025 | 2694.0 | 3270.0 | 0.8239 | 2699.0 | 0.8254 | 1776.0 | 1778.0 | 2026.0 | 0.8776 | 0.8766 | 915.0 | 916.0 | 1231.0 | 0.7441 | 0.7433 | | 0.0 | 21.0 | 3003 | 1.5610 | 0.0057 | 7364.2419 | 5104.5035 | 2693.0 | 3270.0 | 0.8235 | 2699.0 | 0.8254 | 1773.0 | 1775.0 | 2026.0 | 0.8761 | 0.8751 | 917.0 | 918.0 | 1231.0 | 0.7457 | 0.7449 | | 0.0 | 22.0 | 3146 | 1.5590 | 0.0057 | 7354.8963 | 5098.0257 | 2695.0 | 3270.0 | 0.8242 | 2700.0 | 0.8257 | 1775.0 | 1777.0 | 2026.0 | 0.8771 | 0.8761 | 917.0 | 918.0 | 1231.0 | 0.7457 | 0.7449 | | 0.0 | 23.0 | 3289 | 1.5609 | 0.0057 | 7363.6331 | 5104.0815 | 2692.0 | 3270.0 | 0.8232 | 2698.0 | 0.8251 | 1773.0 | 1775.0 | 2026.0 | 0.8761 | 0.8751 | 916.0 | 917.0 | 1231.0 | 0.7449 | 0.7441 | | 0.0 | 24.0 | 3432 | 1.5620 | 0.0057 | 7368.7476 | 5107.6266 | 2694.0 | 3270.0 | 0.8239 | 2699.0 | 0.8254 | 1775.0 | 1777.0 | 2026.0 | 0.8771 | 0.8761 | 916.0 | 917.0 | 1231.0 | 0.7449 | 0.7441 | | 0.0 | 25.0 | 3575 | 1.5613 | 0.0057 | 7365.4606 | 5105.3482 | 2693.0 | 3270.0 | 0.8235 | 2699.0 | 0.8254 | 1774.0 | 1776.0 | 2026.0 | 0.8766 | 0.8756 | 916.0 | 917.0 | 1231.0 | 0.7449 | 0.7441 | | 0.0 | 26.0 | 3718 | 1.5604 | 0.0057 | 7361.4952 | 5102.5996 | 2692.0 | 3270.0 | 0.8232 | 2697.0 | 0.8248 | 1773.0 | 1775.0 | 2026.0 | 0.8761 | 0.8751 | 916.0 | 917.0 | 1231.0 | 0.7449 | 0.7441 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755561856
helmutsukocok
2025-08-19T00:31:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:31:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
opooladz/llama3-8b-1bit-quantized
opooladz
2025-08-19T00:31:04Z
0
0
null
[ "safetensors", "llama", "region:us" ]
null
2025-08-19T00:13:26Z
# 1-Bit Quantized Llama 3 8B This is a 1-bit quantized version of meta-llama/Meta-Llama-3-8B. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("opooladz/llama3-8b-1bit-quantized") tokenizer = AutoTokenizer.from_pretrained("opooladz/llama3-8b-1bit-quantized") # Use the model for inference inputs = tokenizer("Hello, how are you?", return_tensors="pt") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0])) ``` ## Original Model The original model can be found at: [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) ## Quantization Details Layers that were NOT quantized (kept in original precision): - ONLY normalization layers (LayerNorm, RMSNorm, etc.) Layers that WERE quantized to 1-bit: - βœ… All embedding layers - βœ… All weight matrices (attention, MLP) - βœ… All bias parameters - βœ… Output projection layers - βœ… Everything except normalization layers This aggressive quantization reduces ~99% of parameters to just 2 values while keeping only the critical normalization layers intact.
dashawn888/MyGemmaNPC
dashawn888
2025-08-19T00:29:30Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:25:41Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dashawn888/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755561790
kojeklollipop
2025-08-19T00:29:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:29:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Team-Atom/act_record_pp_red001_64_100000
Team-Atom
2025-08-19T00:26:07Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:Team-Atom/PiPl_red_001", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T00:25:53Z
--- datasets: Team-Atom/PiPl_red_001 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - robotics - act - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
donoway/ARC-Challenge_Llama-3.2-1B-rx87l0zg
donoway
2025-08-19T00:24:44Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:13:31Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Challenge_Llama-3.2-1B-rx87l0zg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Challenge_Llama-3.2-1B-rx87l0zg This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.7104 - Model Preparation Time: 0.0073 - Mdl: 2031.9081 - Accumulated Loss: 1408.4113 - Correct Preds: 102.0 - Total Preds: 299.0 - Accuracy: 0.3411 - Correct Gen Preds: 62.0 - Gen Accuracy: 0.2074 - Correct Gen Preds 32: 7.0 - Correct Preds 32: 18.0 - Total Labels 32: 64.0 - Accuracy 32: 0.2812 - Gen Accuracy 32: 0.1094 - Correct Gen Preds 33: 27.0 - Correct Preds 33: 46.0 - Total Labels 33: 73.0 - Accuracy 33: 0.6301 - Gen Accuracy 33: 0.3699 - Correct Gen Preds 34: 19.0 - Correct Preds 34: 27.0 - Total Labels 34: 78.0 - Accuracy 34: 0.3462 - Gen Accuracy 34: 0.2436 - Correct Gen Preds 35: 9.0 - Correct Preds 35: 11.0 - Total Labels 35: 83.0 - Accuracy 35: 0.1325 - Gen Accuracy 35: 0.1084 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 1.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.6389 | 0.0073 | 706.9523 | 490.0220 | 66.0 | 299.0 | 0.2207 | 66.0 | 0.2207 | 62.0 | 62.0 | 64.0 | 0.9688 | 0.9688 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 | 4.0 | 4.0 | 78.0 | 0.0513 | 0.0513 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.6964 | 1.0 | 1 | 1.6389 | 0.0073 | 706.9523 | 490.0220 | 66.0 | 299.0 | 0.2207 | 66.0 | 0.2207 | 62.0 | 62.0 | 64.0 | 0.9688 | 0.9688 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 | 4.0 | 4.0 | 78.0 | 0.0513 | 0.0513 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.6964 | 2.0 | 2 | 2.1206 | 0.0073 | 914.7418 | 634.0507 | 73.0 | 299.0 | 0.2441 | 73.0 | 0.2441 | 0.0 | 0.0 | 64.0 | 0.0 | 0.0 | 72.0 | 72.0 | 73.0 | 0.9863 | 0.9863 | 1.0 | 1.0 | 78.0 | 0.0128 | 0.0128 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.8796 | 3.0 | 3 | 1.3938 | 0.0073 | 601.2525 | 416.7565 | 73.0 | 299.0 | 0.2441 | 73.0 | 0.2441 | 0.0 | 0.0 | 64.0 | 0.0 | 0.0 | 71.0 | 71.0 | 73.0 | 0.9726 | 0.9726 | 0.0 | 0.0 | 78.0 | 0.0 | 0.0 | 2.0 | 2.0 | 83.0 | 0.0241 | 0.0241 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.267 | 4.0 | 4 | 1.7835 | 0.0073 | 769.3428 | 533.2678 | 74.0 | 299.0 | 0.2475 | 74.0 | 0.2475 | 7.0 | 7.0 | 64.0 | 0.1094 | 0.1094 | 67.0 | 67.0 | 73.0 | 0.9178 | 0.9178 | 0.0 | 0.0 | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.0678 | 5.0 | 5 | 1.7931 | 0.0073 | 773.4821 | 536.1369 | 80.0 | 299.0 | 0.2676 | 80.0 | 0.2676 | 15.0 | 15.0 | 64.0 | 0.2344 | 0.2344 | 56.0 | 56.0 | 73.0 | 0.7671 | 0.7671 | 8.0 | 8.0 | 78.0 | 0.1026 | 0.1026 | 1.0 | 1.0 | 83.0 | 0.0120 | 0.0120 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.5476 | 6.0 | 6 | 2.2998 | 0.0073 | 992.0668 | 687.6483 | 80.0 | 299.0 | 0.2676 | 64.0 | 0.2140 | 18.0 | 31.0 | 64.0 | 0.4844 | 0.2812 | 22.0 | 25.0 | 73.0 | 0.3425 | 0.3014 | 8.0 | 8.0 | 78.0 | 0.1026 | 0.1026 | 16.0 | 16.0 | 83.0 | 0.1928 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.1661 | 7.0 | 7 | 2.6623 | 0.0073 | 1148.4055 | 796.0140 | 87.0 | 299.0 | 0.2910 | 39.0 | 0.1304 | 3.0 | 15.0 | 64.0 | 0.2344 | 0.0469 | 19.0 | 53.0 | 73.0 | 0.7260 | 0.2603 | 8.0 | 10.0 | 78.0 | 0.1282 | 0.1026 | 9.0 | 9.0 | 83.0 | 0.1084 | 0.1084 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0151 | 8.0 | 8 | 3.6879 | 0.0073 | 1590.8183 | 1102.6712 | 95.0 | 299.0 | 0.3177 | 51.0 | 0.1706 | 5.0 | 19.0 | 64.0 | 0.2969 | 0.0781 | 25.0 | 50.0 | 73.0 | 0.6849 | 0.3425 | 11.0 | 14.0 | 78.0 | 0.1795 | 0.1410 | 10.0 | 12.0 | 83.0 | 0.1446 | 0.1205 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0005 | 9.0 | 9 | 4.7104 | 0.0073 | 2031.9081 | 1408.4113 | 102.0 | 299.0 | 0.3411 | 62.0 | 0.2074 | 7.0 | 18.0 | 64.0 | 0.2812 | 0.1094 | 27.0 | 46.0 | 73.0 | 0.6301 | 0.3699 | 19.0 | 27.0 | 78.0 | 0.3462 | 0.2436 | 9.0 | 11.0 | 83.0 | 0.1325 | 0.1084 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 10.0 | 10 | 5.5714 | 0.0073 | 2403.3181 | 1665.8531 | 98.0 | 299.0 | 0.3278 | 64.0 | 0.2140 | 5.0 | 15.0 | 64.0 | 0.2344 | 0.0781 | 28.0 | 42.0 | 73.0 | 0.5753 | 0.3836 | 24.0 | 33.0 | 78.0 | 0.4231 | 0.3077 | 7.0 | 8.0 | 83.0 | 0.0964 | 0.0843 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 11 | 6.2048 | 0.0073 | 2676.5357 | 1855.2332 | 99.0 | 299.0 | 0.3311 | 71.0 | 0.2375 | 5.0 | 15.0 | 64.0 | 0.2344 | 0.0781 | 29.0 | 40.0 | 73.0 | 0.5479 | 0.3973 | 29.0 | 35.0 | 78.0 | 0.4487 | 0.3718 | 8.0 | 9.0 | 83.0 | 0.1084 | 0.0964 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 12 | 6.6923 | 0.0073 | 2886.8300 | 2000.9981 | 98.0 | 299.0 | 0.3278 | 74.0 | 0.2475 | 5.0 | 14.0 | 64.0 | 0.2188 | 0.0781 | 30.0 | 40.0 | 73.0 | 0.5479 | 0.4110 | 33.0 | 37.0 | 78.0 | 0.4744 | 0.4231 | 6.0 | 7.0 | 83.0 | 0.0843 | 0.0723 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 13 | 7.1236 | 0.0073 | 3072.8734 | 2129.9536 | 100.0 | 299.0 | 0.3344 | 77.0 | 0.2575 | 5.0 | 14.0 | 64.0 | 0.2188 | 0.0781 | 29.0 | 36.0 | 73.0 | 0.4932 | 0.3973 | 35.0 | 42.0 | 78.0 | 0.5385 | 0.4487 | 8.0 | 8.0 | 83.0 | 0.0964 | 0.0964 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 14 | 7.4788 | 0.0073 | 3226.1112 | 2236.1699 | 98.0 | 299.0 | 0.3278 | 78.0 | 0.2609 | 5.0 | 13.0 | 64.0 | 0.2031 | 0.0781 | 31.0 | 36.0 | 73.0 | 0.4932 | 0.4247 | 36.0 | 43.0 | 78.0 | 0.5513 | 0.4615 | 6.0 | 6.0 | 83.0 | 0.0723 | 0.0723 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 15 | 7.7339 | 0.0073 | 3336.1252 | 2312.4258 | 98.0 | 299.0 | 0.3278 | 78.0 | 0.2609 | 5.0 | 12.0 | 64.0 | 0.1875 | 0.0781 | 31.0 | 36.0 | 73.0 | 0.4932 | 0.4247 | 37.0 | 45.0 | 78.0 | 0.5769 | 0.4744 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 16 | 7.9662 | 0.0073 | 3436.3575 | 2381.9015 | 100.0 | 299.0 | 0.3344 | 82.0 | 0.2742 | 5.0 | 12.0 | 64.0 | 0.1875 | 0.0781 | 32.0 | 37.0 | 73.0 | 0.5068 | 0.4384 | 39.0 | 45.0 | 78.0 | 0.5769 | 0.5 | 6.0 | 6.0 | 83.0 | 0.0723 | 0.0723 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 17 | 8.1410 | 0.0073 | 3511.7307 | 2434.1462 | 98.0 | 299.0 | 0.3278 | 81.0 | 0.2709 | 5.0 | 12.0 | 64.0 | 0.1875 | 0.0781 | 31.0 | 36.0 | 73.0 | 0.4932 | 0.4247 | 40.0 | 45.0 | 78.0 | 0.5769 | 0.5128 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 18.0 | 18 | 8.2545 | 0.0073 | 3560.7299 | 2468.1099 | 98.0 | 299.0 | 0.3278 | 79.0 | 0.2642 | 5.0 | 13.0 | 64.0 | 0.2031 | 0.0781 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 40.0 | 46.0 | 78.0 | 0.5897 | 0.5128 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 19.0 | 19 | 8.3711 | 0.0073 | 3610.9981 | 2502.9531 | 98.0 | 299.0 | 0.3278 | 81.0 | 0.2709 | 5.0 | 12.0 | 64.0 | 0.1875 | 0.0781 | 31.0 | 36.0 | 73.0 | 0.4932 | 0.4247 | 40.0 | 45.0 | 78.0 | 0.5769 | 0.5128 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 20.0 | 20 | 8.4942 | 0.0073 | 3664.0992 | 2539.7600 | 98.0 | 299.0 | 0.3278 | 79.0 | 0.2642 | 5.0 | 13.0 | 64.0 | 0.2031 | 0.0781 | 30.0 | 35.0 | 73.0 | 0.4795 | 0.4110 | 40.0 | 46.0 | 78.0 | 0.5897 | 0.5128 | 4.0 | 4.0 | 83.0 | 0.0482 | 0.0482 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 21.0 | 21 | 8.5955 | 0.0073 | 3707.7867 | 2570.0419 | 97.0 | 299.0 | 0.3244 | 79.0 | 0.2642 | 5.0 | 13.0 | 64.0 | 0.2031 | 0.0781 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 40.0 | 45.0 | 78.0 | 0.5769 | 0.5128 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 22.0 | 22 | 8.6160 | 0.0073 | 3716.6263 | 2576.1691 | 99.0 | 299.0 | 0.3311 | 80.0 | 0.2676 | 5.0 | 13.0 | 64.0 | 0.2031 | 0.0781 | 30.0 | 35.0 | 73.0 | 0.4795 | 0.4110 | 40.0 | 46.0 | 78.0 | 0.5897 | 0.5128 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 23.0 | 23 | 8.6760 | 0.0073 | 3742.5240 | 2594.1199 | 97.0 | 299.0 | 0.3244 | 80.0 | 0.2676 | 5.0 | 13.0 | 64.0 | 0.2031 | 0.0781 | 29.0 | 33.0 | 73.0 | 0.4521 | 0.3973 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 24.0 | 24 | 8.6943 | 0.0073 | 3750.4229 | 2599.5951 | 98.0 | 299.0 | 0.3278 | 79.0 | 0.2642 | 5.0 | 13.0 | 64.0 | 0.2031 | 0.0781 | 29.0 | 33.0 | 73.0 | 0.4521 | 0.3973 | 40.0 | 47.0 | 78.0 | 0.6026 | 0.5128 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 25.0 | 25 | 8.7113 | 0.0073 | 3757.7507 | 2604.6743 | 99.0 | 299.0 | 0.3311 | 78.0 | 0.2609 | 5.0 | 13.0 | 64.0 | 0.2031 | 0.0781 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 40.0 | 47.0 | 78.0 | 0.6026 | 0.5128 | 4.0 | 5.0 | 83.0 | 0.0602 | 0.0482 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 26.0 | 26 | 8.7311 | 0.0073 | 3766.2962 | 2610.5976 | 97.0 | 299.0 | 0.3244 | 78.0 | 0.2609 | 4.0 | 12.0 | 64.0 | 0.1875 | 0.0625 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 41.0 | 47.0 | 78.0 | 0.6026 | 0.5256 | 4.0 | 4.0 | 83.0 | 0.0482 | 0.0482 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 27.0 | 27 | 8.7594 | 0.0073 | 3778.4903 | 2619.0499 | 98.0 | 299.0 | 0.3278 | 80.0 | 0.2676 | 5.0 | 13.0 | 64.0 | 0.2031 | 0.0781 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 28.0 | 28 | 8.7681 | 0.0073 | 3782.2393 | 2621.6485 | 97.0 | 299.0 | 0.3244 | 80.0 | 0.2676 | 5.0 | 12.0 | 64.0 | 0.1875 | 0.0781 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 29.0 | 29 | 8.8233 | 0.0073 | 3806.0822 | 2638.1752 | 97.0 | 299.0 | 0.3244 | 82.0 | 0.2742 | 4.0 | 12.0 | 64.0 | 0.1875 | 0.0625 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 44.0 | 46.0 | 78.0 | 0.5897 | 0.5641 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 30.0 | 30 | 8.8120 | 0.0073 | 3801.1761 | 2634.7745 | 96.0 | 299.0 | 0.3211 | 78.0 | 0.2609 | 3.0 | 11.0 | 64.0 | 0.1719 | 0.0469 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 31.0 | 31 | 8.8427 | 0.0073 | 3814.4253 | 2643.9581 | 96.0 | 299.0 | 0.3211 | 80.0 | 0.2676 | 5.0 | 12.0 | 64.0 | 0.1875 | 0.0781 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 4.0 | 4.0 | 83.0 | 0.0482 | 0.0482 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 32.0 | 32 | 8.7954 | 0.0073 | 3794.0408 | 2629.8287 | 98.0 | 299.0 | 0.3278 | 82.0 | 0.2742 | 6.0 | 13.0 | 64.0 | 0.2031 | 0.0938 | 29.0 | 33.0 | 73.0 | 0.4521 | 0.3973 | 42.0 | 47.0 | 78.0 | 0.6026 | 0.5385 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 33.0 | 33 | 8.8254 | 0.0073 | 3806.9690 | 2638.7898 | 100.0 | 299.0 | 0.3344 | 81.0 | 0.2709 | 5.0 | 13.0 | 64.0 | 0.2031 | 0.0781 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 42.0 | 48.0 | 78.0 | 0.6154 | 0.5385 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 34.0 | 34 | 8.8195 | 0.0073 | 3804.4106 | 2637.0165 | 96.0 | 299.0 | 0.3211 | 78.0 | 0.2609 | 3.0 | 11.0 | 64.0 | 0.1719 | 0.0469 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 35.0 | 35 | 8.8524 | 0.0073 | 3818.6222 | 2646.8672 | 96.0 | 299.0 | 0.3211 | 80.0 | 0.2676 | 5.0 | 12.0 | 64.0 | 0.1875 | 0.0781 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 36.0 | 36 | 8.8625 | 0.0073 | 3822.9959 | 2649.8988 | 99.0 | 299.0 | 0.3311 | 81.0 | 0.2709 | 6.0 | 14.0 | 64.0 | 0.2188 | 0.0938 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 41.0 | 46.0 | 78.0 | 0.5897 | 0.5256 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 37.0 | 37 | 8.8324 | 0.0073 | 3809.9963 | 2640.8882 | 97.0 | 299.0 | 0.3244 | 80.0 | 0.2676 | 4.0 | 12.0 | 64.0 | 0.1875 | 0.0625 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 42.0 | 46.0 | 78.0 | 0.5897 | 0.5385 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 38.0 | 38 | 8.8095 | 0.0073 | 3800.1094 | 2634.0351 | 98.0 | 299.0 | 0.3278 | 83.0 | 0.2776 | 5.0 | 12.0 | 64.0 | 0.1875 | 0.0781 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 44.0 | 47.0 | 78.0 | 0.6026 | 0.5641 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 39.0 | 39 | 8.8868 | 0.0073 | 3833.4428 | 2657.1401 | 96.0 | 299.0 | 0.3211 | 79.0 | 0.2642 | 4.0 | 12.0 | 64.0 | 0.1875 | 0.0625 | 29.0 | 34.0 | 73.0 | 0.4658 | 0.3973 | 41.0 | 45.0 | 78.0 | 0.5769 | 0.5256 | 5.0 | 5.0 | 83.0 | 0.0602 | 0.0602 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
rvs/llama3-8b-Instruct-kvc-AWQ-int4-onnx
rvs
2025-08-19T00:22:15Z
0
0
null
[ "onnx", "text-generation-inference", "llama", "llama3", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:quantized:meta-llama/Meta-Llama-3-8B-Instruct", "region:us" ]
null
2025-08-19T00:17:17Z
--- tags: - text-generation-inference - llama - llama3 base_model: - meta-llama/Meta-Llama-3-8B-Instruct --- # Llama 3 8B Instruct with Key-Value-Cache enabled in ONNX ONNX AWQ (4-bit) format - Model creator: [Meta Llama](https://huggingface.co/meta-llama) - Original model: [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) <!-- description start --> ## Description This repo contains the ONNX files for the ONNX conversion of Llama 3 8B Instruct done by Esperanto Technologies. The model is in the 4-bit format quantized with AWQ and has the KVC enabled. ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. More here: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) <!-- description end --> ## How to download ONNX model and weight files The easiest way to obtain the model is to clone this whole repo. Alternatively you can download the files is using the `huggingface-hub` Python library. ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download Esperanto/llama3-8b-Instruct-kvc-AWQ-int4-onnx --local-dir llama3-8b-Instruct-kvc-AWQ-int4-onnx --local-dir-use-symlinks False ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). ## How to run from Python code using ONNXRuntime This model can easily be ran in a CPU using [ONNXRuntime](https://onnxruntime.ai/). #### First install the packages ```bash pip3 install onnx==1.16.1 pip3 install onnxruntime==1.17.1 ``` #### Example code: generate text with this model We define the loop with greedy decoding: ```python import numpy as np import onnxruntime import onnx from transformers import AutoTokenizer def generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context): model = onnx.load(model_path) #we create the inputs for the first iteration input_tensor = tokenizer(prompt, return_tensors="pt") prompt_size = len(input_tensor['input_ids'][0]) actual_input = input_tensor['input_ids'] if prompt_size < window: actual_input = np.concatenate((tokenizer.bos_token_id*np.ones([1, window - prompt_size], dtype = 'int64'), actual_input), axis=1) if prompt_size + max_gen_tokens > total_sequence: print("ERROR: Longer total sequence is needed!") return first_attention = np.concatenate((np.zeros([1, total_sequence - window], dtype = 'int64'), np.ones((1, window), dtype = 'int64')), axis=1) max_gen_tokens += prompt_size #we need to generate on top of parsing the prompt inputs_names =[node.name for node in model.graph.input] output_names =[node.name for node in model.graph.output] n_heads = 8 #gqa-heads of the kvc inputs_dict = {} inputs_dict['input_ids'] = actual_input[:, :window].reshape(1, window).numpy() inputs_dict['attention_mask'] = first_attention index_pos = sum(first_attention[0]) inputs_dict['position_ids'] = np.concatenate((np.zeros([1, total_sequence - index_pos], dtype = 'int64'), np.arange(index_pos, dtype = 'int64').reshape(1, index_pos)), axis=1) inputs_dict['tree_attention'] = np.triu(-65504*np.ones(total_sequence), k= 1).astype('float16').reshape(1, 1, total_sequence, total_sequence) for name in inputs_names: if name == 'input_ids' or name == 'attention_mask' or name == 'position_ids' or name == 'tree_attention': continue inputs_dict[name] = np.zeros([1, n_heads, context-window, 128], dtype="float16") index = 0 new_token = np.array([10]) next_index = window old_j = 0 total_input = actual_input.numpy() rt_session = onnxruntime.InferenceSession(model_path) ## We run the inferences while next_index < max_gen_tokens: if new_token.any() == tokenizer.eos_token_id: break #inference output = rt_session.run(output_names, inputs_dict) outs_dictionary = {name: content for (name, content) in zip (output_names, output)} #we prepare the inputs for the next inference for name in inputs_names: if name == 'input_ids': old_j = next_index if next_index < prompt_size: if prompt_size - next_index >= window: next_index += window else: next_index = prompt_size j = next_index - window else: next_index +=1 j = next_index - window new_token = outs_dictionary['logits'].argmax(-1).reshape(1, window) total_input = np.concatenate((total_input, new_token[: , -1:]), axis = 1) inputs_dict['input_ids']= total_input[:, j:next_index].reshape(1, window) elif name == 'attention_mask': inputs_dict['attention_mask'] = np.concatenate((np.zeros((1, total_sequence-next_index), dtype = 'int64'), np.ones((1, next_index), dtype = 'int64')), axis=1) elif name == 'position_ids': inputs_dict['position_ids'] = np.concatenate((np.zeros([1, total_sequence - next_index], dtype = 'int64'), np.arange(next_index, dtype = 'int64').reshape(1, next_index)), axis=1) elif name == 'tree_attention': continue else: old_name = name.replace("past_key_values", "present") inputs_dict[name] = outs_dictionary[old_name][:, :, next_index-old_j:context-window+(next_index - old_j), :] answer = tokenizer.decode(total_input[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) return answer ``` We now run the inferences: ```python tokenizer = AutoTokenizer.from_pretrained("Esperanto/llama3-8b-Instruct-kvc-AWQ-int4-onnx-onnx") model_path = "llama3-8b-Instruct-kvc-AWQ-int4-onnx/model.onnx" max_gen_tokens = 20 #number of tokens we want tog eneral total_sequence = 128 #total sequence_length context = 1024 #the context to extend the kvc window = 16 #number of tokens we want to parse at the time messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) generated = generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context) print(generated) ```
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755561345
pempekmangedd
2025-08-19T00:22:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:22:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
g-assismoraes/Qwen3-4B-Base-0.4aki-alpha0.08-var-hatebr-ep30
g-assismoraes
2025-08-19T00:19:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:16:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755561277
vwzyrraz7l
2025-08-19T00:19:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:19:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
torchao-testing/single-linear-INT4-preshuffled-v2-0.13-dev
torchao-testing
2025-08-19T00:19:02Z
0
0
null
[ "region:us" ]
null
2025-08-18T23:47:39Z
``` import torch import io model = torch.nn.Sequential(torch.nn.Linear(32, 256, dtype=torch.bfloat16, device="cuda")) from torchao.quantization import Int4WeightOnlyConfig, quantize_ quant_config = Int4WeightOnlyConfig(group_size=128, packing_format="preshuffled", version=2) quantize_(model, quant_config) example_inputs = (torch.randn(2, 32, dtype=torch.bfloat16, device="cuda"),) output = model(*example_inputs) # Push to hub USER_ID = "torchao-testing" MODEL_NAME = "single-linear" save_to = f"{USER_ID}/{MODEL_NAME}-FP8-v2-0.13-dev" from huggingface_hub import HfApi api = HfApi() buf = io.BytesIO() torch.save(model.state_dict(), buf) api.create_repo(save_to, repo_type="model", exist_ok=True) api.upload_file( path_or_fileobj=buf, path_in_repo="model.bin", repo_id=save_to, ) buf = io.BytesIO() torch.save(example_inputs, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_inputs.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(output, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_output.pt", repo_id=save_to, ) ```
torchao-testing/single-linear-FP8-v2-0.13-dev
torchao-testing
2025-08-19T00:18:25Z
0
0
null
[ "region:us" ]
null
2025-08-18T23:51:47Z
``` import torch import io model = torch.nn.Sequential(torch.nn.Linear(32, 256, dtype=torch.bfloat16, device="cuda")) from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig, PerRow quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow()) quantize_(model, quant_config) example_inputs = (torch.randn(2, 32, dtype=torch.bfloat16, device="cuda"),) output = model(*example_inputs) # Push to hub USER_ID = "torchao-testing" MODEL_NAME = "single-linear" save_to = f"{USER_ID}/{MODEL_NAME}-FP8-v2-0.13-dev" from huggingface_hub import HfApi api = HfApi() buf = io.BytesIO() torch.save(model.state_dict(), buf) api.create_repo(save_to, repo_type="model", exist_ok=True) api.upload_file( path_or_fileobj=buf, path_in_repo="model.bin", repo_id=save_to, ) buf = io.BytesIO() torch.save(example_inputs, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_inputs.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(output, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_output.pt", repo_id=save_to, ) ```
AnonymousCS/xlmr_spanish_immigration
AnonymousCS
2025-08-19T00:17:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T00:14:48Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_spanish_immigration results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_spanish_immigration This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2356 - Accuracy: 0.9231 - 1-f1: 0.8913 - 1-recall: 0.9535 - 1-precision: 0.8367 - Balanced Acc: 0.9308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2922 | 1.0 | 5 | 0.1937 | 0.9308 | 0.9011 | 0.9535 | 0.8542 | 0.9365 | | 0.0836 | 2.0 | 10 | 0.1749 | 0.9538 | 0.9302 | 0.9302 | 0.9302 | 0.9479 | | 0.1733 | 3.0 | 15 | 0.1995 | 0.9462 | 0.9213 | 0.9535 | 0.8913 | 0.9480 | | 0.0836 | 4.0 | 20 | 0.2356 | 0.9231 | 0.8913 | 0.9535 | 0.8367 | 0.9308 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755562519
IvanJAjebu
2025-08-19T00:16:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:16:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755561095
ihsanridzi
2025-08-19T00:16:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:16:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755560984
mang3dd
2025-08-19T00:15:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:15:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vitaliidev/Affine-009
vitaliidev
2025-08-19T00:14:28Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "conversational", "en", "arxiv:2409.12186", "arxiv:2309.00071", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-Coder-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-1.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T23:30:05Z
--- base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct language: - en library_name: transformers license: apache-2.0 tags: - unsloth - transformers --- # Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing). Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing). [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth) [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) ## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **Llama-3.1 8b** | [▢️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Phi-3.5 (mini)** | [▢️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less | | **Gemma-2 9b** | [▢️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less | | **Mistral 7b** | [▢️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less | | **TinyLlama** | [▢️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less | | **DPO - Zephyr** | [▢️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less | - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates. - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster. # Qwen2.5-Coder-1.5B-Instruct ## Introduction Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). For Qwen2.5-Coder, we release three base language models and instruction-tuned language models, 1.5, 7 and 32 (coming soon) billion parameters. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5: - Significantly improvements in **code generation**, **code reasoning** and **code fixing**. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. - A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies. - **Long-context Support** up to 128K tokens. **This repo contains the instruction-tuned 1.5B Qwen2.5-Coder model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings - Number of Parameters: 1.54B - Number of Paramaters (Non-Embedding): 1.31B - Number of Layers: 28 - Number of Attention Heads (GQA): 12 for Q and 2 for KV - Context Length: Full 131,072 tokens - Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts. For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5-coder/), [GitHub](https://github.com/QwenLM/Qwen2.5-Coder), [Documentation](https://qwen.readthedocs.io/en/latest/), [Arxiv](https://arxiv.org/abs/2409.12186). ## Requirements The code of Qwen2.5-Coder has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-Coder-1.5B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "write a quick sort algorithm." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### Processing Long Texts The current `config.json` is set for context length up to 32,768 tokens. To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts. For supported frameworks, you could add the following to `config.json` to enable YaRN: ```json { ..., "rope_scaling": { "factor": 4.0, "original_max_position_embeddings": 32768, "type": "yarn" } } ``` For deployment, we recommend using vLLM. Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM. Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required. ## Evaluation & Performance Detailed evaluation results are reported in this [πŸ“‘ blog](https://qwenlm.github.io/blog/qwen2.5-coder/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen25_coder, title={Qwen2.5-Coder Technical Report}, author={Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren Zhou and Junyang Lin}, journal={arXiv preprint arXiv:2409.12186}, year={2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
chainway9/blockassist-bc-untamed_quick_eel_1755560524
chainway9
2025-08-19T00:11:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:11:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755560682
sampingkaca72
2025-08-19T00:09:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:09:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755560587
lisaozill03
2025-08-19T00:09:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:08:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_swedish_immigration
AnonymousCS
2025-08-19T00:08:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T00:04:58Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_swedish_immigration results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_swedish_immigration This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2447 - Accuracy: 0.9231 - 1-f1: 0.875 - 1-recall: 0.8140 - 1-precision: 0.9459 - Balanced Acc: 0.8955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.4434 | 1.0 | 5 | 0.2792 | 0.9077 | 0.8537 | 0.8140 | 0.8974 | 0.8840 | | 0.3239 | 2.0 | 10 | 0.2571 | 0.9 | 0.8312 | 0.7442 | 0.9412 | 0.8606 | | 0.3 | 3.0 | 15 | 0.2381 | 0.9231 | 0.875 | 0.8140 | 0.9459 | 0.8955 | | 0.3387 | 4.0 | 20 | 0.2361 | 0.9231 | 0.8780 | 0.8372 | 0.9231 | 0.9014 | | 0.3055 | 5.0 | 25 | 0.2544 | 0.9231 | 0.8718 | 0.7907 | 0.9714 | 0.8896 | | 0.126 | 6.0 | 30 | 0.2447 | 0.9231 | 0.875 | 0.8140 | 0.9459 | 0.8955 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755560366
quantumxnode
2025-08-19T00:05:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:05:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ARG-NCTU/detr-resnet-50-finetuned-federated-fedprox-masked-3-clients-3-datasets
ARG-NCTU
2025-08-19T00:05:40Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2025-08-06T08:04:07Z
--- library_name: transformers license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: detr-resnet-50-finetuned-federated-fedprox-masked-3-clients-3-datasets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50-finetuned-federated-fedprox-masked-3-clients-3-datasets This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 40 ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu128 - Datasets 3.1.0 - Tokenizers 0.21.4
koloni/blockassist-bc-deadly_graceful_stingray_1755560329
koloni
2025-08-19T00:04:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:04:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755560145
thanobidex
2025-08-19T00:01:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:01:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755560084
indoempatnol
2025-08-19T00:00:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:00:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_mis_run2_gen10_WXS_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-08-18T23:59:45Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-18T23:59:30Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zkdeng/10-10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000-finetuned-spiderTraining100-100
zkdeng
2025-08-18T23:58:05Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "convnextv2", "image-classification", "generated_from_trainer", "base_model:zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000", "base_model:finetune:zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-18T22:12:16Z
--- library_name: transformers license: apache-2.0 base_model: zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000-finetuned-spiderTraining100-100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 10-10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000-finetuned-spiderTraining100-100 This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co/zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.01 - Precision: 0.0001 - Recall: 0.01 - F1: 0.0002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 15.9975 | 1.0 | 125 | nan | 0.009 | 0.0126 | 0.0078 | 0.0084 | | 0.0 | 2.0 | 250 | nan | 0.01 | 0.0001 | 0.01 | 0.0002 | | 0.0 | 3.0 | 375 | nan | 0.01 | 0.0001 | 0.01 | 0.0002 | | 0.0 | 4.0 | 500 | nan | 0.01 | 0.0001 | 0.01 | 0.0002 | | 0.0 | 5.0 | 625 | nan | 0.01 | 0.0001 | 0.01 | 0.0002 | | 0.0 | 6.0 | 750 | nan | 0.01 | 0.0001 | 0.01 | 0.0002 | | 0.0 | 7.0 | 875 | nan | 0.01 | 0.0001 | 0.01 | 0.0002 | | 0.0 | 8.0 | 1000 | nan | 0.01 | 0.0001 | 0.01 | 0.0002 | | 0.0 | 9.0 | 1125 | nan | 0.01 | 0.0001 | 0.01 | 0.0002 | | 0.0 | 10.0 | 1250 | nan | 0.01 | 0.0001 | 0.01 | 0.0002 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755561304
IvanJAjebu
2025-08-18T23:56:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:56:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/IntrinSight-4B-GGUF
mradermacher
2025-08-18T23:56:35Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:General-Medical-AI/GMAI-Reasoning10K", "base_model:qiuxi337/IntrinSight-4B", "base_model:quantized:qiuxi337/IntrinSight-4B", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-18T21:51:50Z
--- base_model: qiuxi337/IntrinSight-4B datasets: - General-Medical-AI/GMAI-Reasoning10K language: - en library_name: transformers license: gemma mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/qiuxi337/IntrinSight-4B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#IntrinSight-4B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/IntrinSight-4B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.7 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.mmproj-f16.gguf) | mmproj-f16 | 1.0 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.Q2_K.gguf) | Q2_K | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.Q3_K_S.gguf) | Q3_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.Q3_K_M.gguf) | Q3_K_M | 2.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.Q3_K_L.gguf) | Q3_K_L | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.IQ4_XS.gguf) | IQ4_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.Q4_K_S.gguf) | Q4_K_S | 2.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.Q4_K_M.gguf) | Q4_K_M | 3.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.Q5_K_S.gguf) | Q5_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.Q5_K_M.gguf) | Q5_K_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.Q6_K.gguf) | Q6_K | 3.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.Q8_0.gguf) | Q8_0 | 4.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/IntrinSight-4B-GGUF/resolve/main/IntrinSight-4B.f16.gguf) | f16 | 9.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755559784
helmutsukocok
2025-08-18T23:56:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:56:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NexVeridian/OpenReasoning-Nemotron-32B-8bit
NexVeridian
2025-08-18T23:53:53Z
0
0
mlx
[ "mlx", "safetensors", "qwen2", "nvidia", "code", "text-generation", "conversational", "en", "base_model:nvidia/OpenReasoning-Nemotron-32B", "base_model:quantized:nvidia/OpenReasoning-Nemotron-32B", "license:cc-by-4.0", "8-bit", "region:us" ]
text-generation
2025-08-18T23:38:21Z
--- license: cc-by-4.0 language: - en base_model: nvidia/OpenReasoning-Nemotron-32B pipeline_tag: text-generation library_name: mlx tags: - nvidia - code - mlx --- # NexVeridian/OpenReasoning-Nemotron-32B-8bit This model [NexVeridian/OpenReasoning-Nemotron-32B-8bit](https://huggingface.co/NexVeridian/OpenReasoning-Nemotron-32B-8bit) was converted to MLX format from [nvidia/OpenReasoning-Nemotron-32B](https://huggingface.co/nvidia/OpenReasoning-Nemotron-32B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/OpenReasoning-Nemotron-32B-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
alexmorley/hlth-1
alexmorley
2025-08-18T23:53:12Z
0
0
transformers
[ "transformers", "safetensors", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-08-18T20:44:51Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: hlth-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hlth-1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4049 - Accuracy: 0.8561 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.54.0 - Pytorch 2.5.1+cu118 - Datasets 4.0.0 - Tokenizers 0.21.4
HectorHe/Qwen3-MOE-sft-math7k
HectorHe
2025-08-18T23:53:08Z
0
1
transformers
[ "transformers", "safetensors", "qwen3_moe", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:HectorHe/math7k", "base_model:Qwen/Qwen3-30B-A3B", "base_model:finetune:Qwen/Qwen3-30B-A3B", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-15T08:07:48Z
--- base_model: Qwen/Qwen3-30B-A3B datasets: HectorHe/math7k library_name: transformers model_name: Qwen3-MOE-sft-math7k tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for Qwen3-MOE-sft-math7k This model is a fine-tuned version of [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) on the [HectorHe/math7k](https://huggingface.co/datasets/HectorHe/math7k) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="HectorHe/Qwen3-MOE-sft-math7k", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hector_-carnegie-mellon-university/huggingface/runs/7j8i2801) This model was trained with SFT. ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755559449
katanyasekolah
2025-08-18T23:52:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:52:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chooseL1fe/blockassist-bc-thorny_flightless_albatross_1755560721
chooseL1fe
2025-08-18T23:51:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny flightless albatross", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:51:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny flightless albatross --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
r2owb0/act1
r2owb0
2025-08-18T23:51:32Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "imitation-learning", "so101", "dataset:r2owb0/so101-DS1", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-18T23:44:15Z
--- license: apache-2.0 library_name: lerobot pipeline_tag: robotics tags: - robotics - lerobot - act - imitation-learning - so101 model_name: act datasets: r2owb0/so101-DS1 base_model: lerobot/smolvla_base --- # ACT Model for SO101 Robot This is an Action Chunking Transformer (ACT) model trained for the SO101 robot using LeRobot. The model was trained on demonstration data collected from teleoperation sessions. ## Model Details ### Architecture - **Model Type**: Action Chunking Transformer (ACT) - **Vision Backbone**: ResNet18 with ImageNet pretrained weights - **Transformer Configuration**: - Hidden dimension: 512 - Number of heads: 8 - Encoder layers: 4 - Decoder layers: 1 - Feedforward dimension: 3200 - **VAE**: Enabled with 32-dimensional latent space - **Chunk Size**: 50 steps - **Action Steps**: 15 steps per inference ### Camera Setup The model uses a **dual-camera setup** for robust perception: 1. **Wrist Camera** (`observation.images.wrist`): - Resolution: 240Γ—320 pixels - Position: Mounted on the robot's wrist - Purpose: Provides close-up, detailed view of manipulation tasks - Field of view: Narrow, focused on the immediate workspace 2. **Top Camera** (`observation.images.top`): - Resolution: 480Γ—640 pixels - Position: Mounted above the workspace - Purpose: Provides broader context and overview of the environment - Field of view: Wide, captures the entire workspace ### Input/Output Specifications **Inputs:** - **Robot State**: 6-dimensional joint positions - `shoulder_pan.pos` - `shoulder_lift.pos` - `elbow_flex.pos` - `wrist_flex.pos` - `wrist_roll.pos` - `gripper.pos` - **Wrist Camera**: RGB image (240Γ—320Γ—3) - **Top Camera**: RGB image (480Γ—640Γ—3) **Outputs:** - **Actions**: 6-dimensional joint commands (same structure as state) ## Training Details ### Dataset - **Source**: `r2owb0/so101-DS1` - **Episodes**: 10 demonstration episodes - **Total Frames**: 5,990 frames - **Frame Rate**: 30 FPS - **Robot Type**: SO101 follower robot ### Training Configuration - **Training Steps**: 25,000 - **Batch Size**: 4 - **Learning Rate**: 1e-5 - **Optimizer**: AdamW with weight decay 1e-4 - **Validation Split**: 10% of episodes - **Seed**: 1000 ### Data Augmentation The model was trained with comprehensive image augmentation: - Brightness adjustment (0.8-1.2x) - Contrast adjustment (0.8-1.2x) - Saturation adjustment (0.5-1.5x) - Hue adjustment (Β±0.05) - Sharpness adjustment (0.5-1.5x) ## Usage ### Installation ```bash pip install lerobot ``` ### Loading the Model ```python from lerobot.policies import ACTPolicy from lerobot.configs.policies import ACTConfig # Load the model policy = ACTPolicy.from_pretrained("r2owb0/act1") ``` ### Evaluation ```bash lerobot-eval \ --policy.path=r2owb0/act1 \ --env.type=your_env_type \ --eval.n_episodes=10 \ --eval.batch_size=10 ``` ### Inference ```python import torch # Prepare observation observation = { "observation.state": torch.tensor([...]), # 6D robot state "observation.images.wrist": torch.tensor([...]), # 240x320x3 RGB "observation.images.top": torch.tensor([...]) # 480x640x3 RGB } # Get action with torch.no_grad(): action = policy.select_action(observation) ``` ## Hardware Requirements ### Robot Setup - **Robot**: SO101 follower robot - **Cameras**: - Wrist-mounted camera (240Γ—320 resolution) - Top-mounted camera (480Γ—640 resolution) - **Control**: 6-DOF arm with gripper ### Computing Requirements - **GPU**: CUDA-compatible GPU recommended - **Memory**: At least 4GB GPU memory - **Storage**: ~200MB for model weights ## Performance Notes - The model uses action chunking, predicting 50 steps ahead but executing 15 steps at a time - Temporal ensembling is disabled for real-time inference - The model expects normalized inputs (mean/std normalization) - VAE is enabled for better representation learning ## Limitations - Trained on a specific robot configuration (SO101) - Requires the exact camera setup described above - Performance may vary with different lighting conditions - Limited to the task domain covered in the training dataset ## Citation If you use this model in your research, please cite: ```bibtex @misc{r2owb0_act1, author = {Robert}, title = {ACT Model for SO101 Robot}, year = {2024}, publisher = {Hugging Face}, url = {https://huggingface.co/r2owb0/act1} } ``` ## License This model is licensed under the Apache 2.0 License.
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755560836
IvanJAjebu
2025-08-18T23:49:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:48:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
slarkcrypto/blockassist-bc-elusive_bellowing_hawk_1755560903
slarkcrypto
2025-08-18T23:49:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "elusive bellowing hawk", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:48:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - elusive bellowing hawk --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755559340
ihsanridzi
2025-08-18T23:48:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:48:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
g-assismoraes/Qwen3-4B-Base-aki-alpha0.08-var-hatebr-ep30-g5-v2
g-assismoraes
2025-08-18T23:47:12Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T23:43:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755559208
hakimjustbao
2025-08-18T23:46:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:46:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755559175
mang3dd
2025-08-18T23:46:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:46:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_dutch_immigration
AnonymousCS
2025-08-18T23:43:52Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-18T23:41:37Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_dutch_immigration results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_dutch_immigration This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2537 - Accuracy: 0.9154 - 1-f1: 0.8642 - 1-recall: 0.8140 - 1-precision: 0.9211 - Balanced Acc: 0.8897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2515 | 1.0 | 5 | 0.2052 | 0.9385 | 0.9111 | 0.9535 | 0.8723 | 0.9423 | | 0.1837 | 2.0 | 10 | 0.2165 | 0.9231 | 0.8864 | 0.9070 | 0.8667 | 0.9190 | | 0.225 | 3.0 | 15 | 0.2537 | 0.9154 | 0.8642 | 0.8140 | 0.9211 | 0.8897 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
Nilowave/gemma3-npc-test
Nilowave
2025-08-18T23:43:13Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T23:30:43Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: gemma3-npc-test tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gemma3-npc-test This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Nilowave/gemma3-npc-test", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755558810
pempekmangedd
2025-08-18T23:40:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:40:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755558766
lisaozill03
2025-08-18T23:39:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:39:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
slarkcrypto/blockassist-bc-elusive_bellowing_hawk_1755560267
slarkcrypto
2025-08-18T23:38:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "elusive bellowing hawk", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:38:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - elusive bellowing hawk --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
donoway/ARC-Challenge_Llama-3.2-1B-69bpzmft
donoway
2025-08-18T23:37:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T23:26:36Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Challenge_Llama-3.2-1B-69bpzmft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Challenge_Llama-3.2-1B-69bpzmft This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4975 - Model Preparation Time: 0.006 - Mdl: 1508.7190 - Accumulated Loss: 1045.7643 - Correct Preds: 106.0 - Total Preds: 299.0 - Accuracy: 0.3545 - Correct Gen Preds: 60.0 - Gen Accuracy: 0.2007 - Correct Gen Preds 32: 8.0 - Correct Preds 32: 24.0 - Total Labels 32: 64.0 - Accuracy 32: 0.375 - Gen Accuracy 32: 0.125 - Correct Gen Preds 33: 15.0 - Correct Preds 33: 29.0 - Total Labels 33: 73.0 - Accuracy 33: 0.3973 - Gen Accuracy 33: 0.2055 - Correct Gen Preds 34: 19.0 - Correct Preds 34: 25.0 - Total Labels 34: 78.0 - Accuracy 34: 0.3205 - Gen Accuracy 34: 0.2436 - Correct Gen Preds 35: 18.0 - Correct Preds 35: 28.0 - Total Labels 35: 83.0 - Accuracy 35: 0.3373 - Gen Accuracy 35: 0.2169 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 1.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.6389 | 0.006 | 706.9523 | 490.0220 | 66.0 | 299.0 | 0.2207 | 66.0 | 0.2207 | 62.0 | 62.0 | 64.0 | 0.9688 | 0.9688 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 | 4.0 | 4.0 | 78.0 | 0.0513 | 0.0513 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.5464 | 1.0 | 1 | 1.6389 | 0.006 | 706.9523 | 490.0220 | 66.0 | 299.0 | 0.2207 | 66.0 | 0.2207 | 62.0 | 62.0 | 64.0 | 0.9688 | 0.9688 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 | 4.0 | 4.0 | 78.0 | 0.0513 | 0.0513 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.5451 | 2.0 | 2 | 1.9494 | 0.006 | 840.8880 | 582.8591 | 73.0 | 299.0 | 0.2441 | 73.0 | 0.2441 | 0.0 | 0.0 | 64.0 | 0.0 | 0.0 | 73.0 | 73.0 | 73.0 | 1.0 | 1.0 | 0.0 | 0.0 | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 2.1729 | 3.0 | 3 | 1.3883 | 0.006 | 598.8449 | 415.0876 | 89.0 | 299.0 | 0.2977 | 89.0 | 0.2977 | 8.0 | 8.0 | 64.0 | 0.125 | 0.125 | 53.0 | 53.0 | 73.0 | 0.7260 | 0.7260 | 0.0 | 0.0 | 78.0 | 0.0 | 0.0 | 28.0 | 28.0 | 83.0 | 0.3373 | 0.3373 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.2974 | 4.0 | 4 | 2.3810 | 0.006 | 1027.0673 | 711.9088 | 64.0 | 299.0 | 0.2140 | 64.0 | 0.2140 | 64.0 | 64.0 | 64.0 | 1.0 | 1.0 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 1.3902 | 5.0 | 5 | 1.5833 | 0.006 | 682.9726 | 473.4005 | 68.0 | 299.0 | 0.2274 | 68.0 | 0.2274 | 64.0 | 64.0 | 64.0 | 1.0 | 1.0 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 | 2.0 | 2.0 | 78.0 | 0.0256 | 0.0256 | 2.0 | 2.0 | 83.0 | 0.0241 | 0.0241 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.9586 | 6.0 | 6 | 1.6103 | 0.006 | 694.6407 | 481.4882 | 81.0 | 299.0 | 0.2709 | 79.0 | 0.2642 | 30.0 | 32.0 | 64.0 | 0.5 | 0.4688 | 2.0 | 2.0 | 73.0 | 0.0274 | 0.0274 | 17.0 | 17.0 | 78.0 | 0.2179 | 0.2179 | 30.0 | 30.0 | 83.0 | 0.3614 | 0.3614 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.5845 | 7.0 | 7 | 2.2464 | 0.006 | 969.0044 | 671.6627 | 89.0 | 299.0 | 0.2977 | 79.0 | 0.2642 | 30.0 | 36.0 | 64.0 | 0.5625 | 0.4688 | 12.0 | 14.0 | 73.0 | 0.1918 | 0.1644 | 17.0 | 18.0 | 78.0 | 0.2308 | 0.2179 | 20.0 | 21.0 | 83.0 | 0.2530 | 0.2410 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.2352 | 8.0 | 8 | 2.7941 | 0.006 | 1205.2816 | 835.4375 | 97.0 | 299.0 | 0.3244 | 74.0 | 0.2475 | 5.0 | 11.0 | 64.0 | 0.1719 | 0.0781 | 30.0 | 40.0 | 73.0 | 0.5479 | 0.4110 | 19.0 | 21.0 | 78.0 | 0.2692 | 0.2436 | 20.0 | 25.0 | 83.0 | 0.3012 | 0.2410 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0743 | 9.0 | 9 | 3.4975 | 0.006 | 1508.7190 | 1045.7643 | 106.0 | 299.0 | 0.3545 | 60.0 | 0.2007 | 8.0 | 24.0 | 64.0 | 0.375 | 0.125 | 15.0 | 29.0 | 73.0 | 0.3973 | 0.2055 | 19.0 | 25.0 | 78.0 | 0.3205 | 0.2436 | 18.0 | 28.0 | 83.0 | 0.3373 | 0.2169 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0085 | 10.0 | 10 | 3.8403 | 0.006 | 1656.5664 | 1148.2444 | 102.0 | 299.0 | 0.3411 | 51.0 | 0.1706 | 5.0 | 20.0 | 64.0 | 0.3125 | 0.0781 | 10.0 | 24.0 | 73.0 | 0.3288 | 0.1370 | 20.0 | 30.0 | 78.0 | 0.3846 | 0.2564 | 16.0 | 28.0 | 83.0 | 0.3373 | 0.1928 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0014 | 11.0 | 11 | 4.6550 | 0.006 | 2008.0190 | 1391.8527 | 96.0 | 299.0 | 0.3211 | 41.0 | 0.1371 | 5.0 | 23.0 | 64.0 | 0.3594 | 0.0781 | 11.0 | 29.0 | 73.0 | 0.3973 | 0.1507 | 17.0 | 29.0 | 78.0 | 0.3718 | 0.2179 | 8.0 | 15.0 | 83.0 | 0.1807 | 0.0964 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0001 | 12.0 | 12 | 5.6982 | 0.006 | 2458.0069 | 1703.7606 | 88.0 | 299.0 | 0.2943 | 42.0 | 0.1405 | 7.0 | 24.0 | 64.0 | 0.375 | 0.1094 | 14.0 | 33.0 | 73.0 | 0.4521 | 0.1918 | 17.0 | 24.0 | 78.0 | 0.3077 | 0.2179 | 4.0 | 7.0 | 83.0 | 0.0843 | 0.0482 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0001 | 13.0 | 13 | 6.9024 | 0.006 | 2977.4599 | 2063.8179 | 91.0 | 299.0 | 0.3043 | 49.0 | 0.1639 | 11.0 | 26.0 | 64.0 | 0.4062 | 0.1719 | 16.0 | 33.0 | 73.0 | 0.4521 | 0.2192 | 19.0 | 27.0 | 78.0 | 0.3462 | 0.2436 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 14 | 7.7997 | 0.006 | 3364.5048 | 2332.0970 | 88.0 | 299.0 | 0.2943 | 61.0 | 0.2040 | 15.0 | 25.0 | 64.0 | 0.3906 | 0.2344 | 21.0 | 31.0 | 73.0 | 0.4247 | 0.2877 | 22.0 | 27.0 | 78.0 | 0.3462 | 0.2821 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 15 | 8.4535 | 0.006 | 3646.5475 | 2527.5941 | 86.0 | 299.0 | 0.2876 | 66.0 | 0.2207 | 18.0 | 25.0 | 64.0 | 0.3906 | 0.2812 | 21.0 | 30.0 | 73.0 | 0.4110 | 0.2877 | 24.0 | 26.0 | 78.0 | 0.3333 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 16 | 8.9836 | 0.006 | 3875.2248 | 2686.1011 | 84.0 | 299.0 | 0.2809 | 67.0 | 0.2241 | 21.0 | 26.0 | 64.0 | 0.4062 | 0.3281 | 19.0 | 27.0 | 73.0 | 0.3699 | 0.2603 | 24.0 | 26.0 | 78.0 | 0.3333 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 17 | 9.3455 | 0.006 | 4031.3285 | 2794.3040 | 83.0 | 299.0 | 0.2776 | 70.0 | 0.2341 | 22.0 | 28.0 | 64.0 | 0.4375 | 0.3438 | 21.0 | 26.0 | 73.0 | 0.3562 | 0.2877 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 18.0 | 18 | 9.6760 | 0.006 | 4173.8792 | 2893.1126 | 82.0 | 299.0 | 0.2742 | 73.0 | 0.2441 | 25.0 | 28.0 | 64.0 | 0.4375 | 0.3906 | 21.0 | 24.0 | 73.0 | 0.3288 | 0.2877 | 24.0 | 25.0 | 78.0 | 0.3205 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 19.0 | 19 | 9.9141 | 0.006 | 4276.5853 | 2964.3030 | 81.0 | 299.0 | 0.2709 | 74.0 | 0.2475 | 27.0 | 29.0 | 64.0 | 0.4531 | 0.4219 | 20.0 | 23.0 | 73.0 | 0.3151 | 0.2740 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 20.0 | 20 | 10.0790 | 0.006 | 4347.7385 | 3013.6227 | 82.0 | 299.0 | 0.2742 | 75.0 | 0.2508 | 27.0 | 29.0 | 64.0 | 0.4531 | 0.4219 | 21.0 | 22.0 | 73.0 | 0.3014 | 0.2877 | 24.0 | 25.0 | 78.0 | 0.3205 | 0.3077 | 3.0 | 6.0 | 83.0 | 0.0723 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 21.0 | 21 | 10.1972 | 0.006 | 4398.7081 | 3048.9521 | 80.0 | 299.0 | 0.2676 | 75.0 | 0.2508 | 28.0 | 30.0 | 64.0 | 0.4688 | 0.4375 | 20.0 | 21.0 | 73.0 | 0.2877 | 0.2740 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 22.0 | 22 | 10.3103 | 0.006 | 4447.5317 | 3082.7941 | 81.0 | 299.0 | 0.2709 | 74.0 | 0.2475 | 27.0 | 29.0 | 64.0 | 0.4531 | 0.4219 | 20.0 | 21.0 | 73.0 | 0.2877 | 0.2740 | 24.0 | 25.0 | 78.0 | 0.3205 | 0.3077 | 3.0 | 6.0 | 83.0 | 0.0723 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 23.0 | 23 | 10.4009 | 0.006 | 4486.6061 | 3109.8784 | 81.0 | 299.0 | 0.2709 | 76.0 | 0.2542 | 29.0 | 31.0 | 64.0 | 0.4844 | 0.4531 | 20.0 | 21.0 | 73.0 | 0.2877 | 0.2740 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 24.0 | 24 | 10.4894 | 0.006 | 4524.7495 | 3136.3174 | 80.0 | 299.0 | 0.2676 | 76.0 | 0.2542 | 29.0 | 31.0 | 64.0 | 0.4844 | 0.4531 | 20.0 | 21.0 | 73.0 | 0.2877 | 0.2740 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 4.0 | 83.0 | 0.0482 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 25.0 | 25 | 10.5657 | 0.006 | 4557.6851 | 3159.1466 | 80.0 | 299.0 | 0.2676 | 75.0 | 0.2508 | 28.0 | 30.0 | 64.0 | 0.4688 | 0.4375 | 20.0 | 21.0 | 73.0 | 0.2877 | 0.2740 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 26.0 | 26 | 10.5629 | 0.006 | 4556.4933 | 3158.3205 | 81.0 | 299.0 | 0.2709 | 76.0 | 0.2542 | 29.0 | 31.0 | 64.0 | 0.4844 | 0.4531 | 20.0 | 21.0 | 73.0 | 0.2877 | 0.2740 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 27.0 | 27 | 10.6133 | 0.006 | 4578.2155 | 3173.3771 | 79.0 | 299.0 | 0.2642 | 74.0 | 0.2475 | 28.0 | 30.0 | 64.0 | 0.4688 | 0.4375 | 19.0 | 20.0 | 73.0 | 0.2740 | 0.2603 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 28.0 | 28 | 10.6343 | 0.006 | 4587.2687 | 3179.6523 | 80.0 | 299.0 | 0.2676 | 75.0 | 0.2508 | 28.0 | 30.0 | 64.0 | 0.4688 | 0.4375 | 20.0 | 21.0 | 73.0 | 0.2877 | 0.2740 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 29.0 | 29 | 10.6752 | 0.006 | 4604.9267 | 3191.8920 | 78.0 | 299.0 | 0.2609 | 73.0 | 0.2441 | 27.0 | 29.0 | 64.0 | 0.4531 | 0.4219 | 19.0 | 20.0 | 73.0 | 0.2740 | 0.2603 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 30.0 | 30 | 10.7068 | 0.006 | 4618.5561 | 3201.3392 | 80.0 | 299.0 | 0.2676 | 75.0 | 0.2508 | 29.0 | 31.0 | 64.0 | 0.4844 | 0.4531 | 19.0 | 20.0 | 73.0 | 0.2740 | 0.2603 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 31.0 | 31 | 10.7169 | 0.006 | 4622.9235 | 3204.3664 | 81.0 | 299.0 | 0.2709 | 76.0 | 0.2542 | 30.0 | 32.0 | 64.0 | 0.5 | 0.4688 | 19.0 | 20.0 | 73.0 | 0.2740 | 0.2603 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 32.0 | 32 | 10.7301 | 0.006 | 4628.5873 | 3208.2922 | 79.0 | 299.0 | 0.2642 | 74.0 | 0.2475 | 28.0 | 30.0 | 64.0 | 0.4688 | 0.4375 | 19.0 | 20.0 | 73.0 | 0.2740 | 0.2603 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 33.0 | 33 | 10.7590 | 0.006 | 4641.0636 | 3216.9401 | 80.0 | 299.0 | 0.2676 | 75.0 | 0.2508 | 29.0 | 31.0 | 64.0 | 0.4844 | 0.4531 | 19.0 | 20.0 | 73.0 | 0.2740 | 0.2603 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 34.0 | 34 | 10.7597 | 0.006 | 4641.3614 | 3217.1465 | 79.0 | 299.0 | 0.2642 | 74.0 | 0.2475 | 29.0 | 31.0 | 64.0 | 0.4844 | 0.4531 | 18.0 | 19.0 | 73.0 | 0.2603 | 0.2466 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 35.0 | 35 | 10.8047 | 0.006 | 4660.7928 | 3230.6154 | 79.0 | 299.0 | 0.2642 | 74.0 | 0.2475 | 27.0 | 29.0 | 64.0 | 0.4531 | 0.4219 | 20.0 | 21.0 | 73.0 | 0.2877 | 0.2740 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 36.0 | 36 | 10.7758 | 0.006 | 4648.3271 | 3221.9749 | 78.0 | 299.0 | 0.2609 | 73.0 | 0.2441 | 28.0 | 30.0 | 64.0 | 0.4688 | 0.4375 | 18.0 | 19.0 | 73.0 | 0.2603 | 0.2466 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 37.0 | 37 | 10.7398 | 0.006 | 4632.7890 | 3211.2047 | 80.0 | 299.0 | 0.2676 | 75.0 | 0.2508 | 28.0 | 30.0 | 64.0 | 0.4688 | 0.4375 | 20.0 | 21.0 | 73.0 | 0.2877 | 0.2740 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 38.0 | 38 | 10.7692 | 0.006 | 4645.4815 | 3220.0024 | 79.0 | 299.0 | 0.2642 | 74.0 | 0.2475 | 28.0 | 30.0 | 64.0 | 0.4688 | 0.4375 | 19.0 | 20.0 | 73.0 | 0.2740 | 0.2603 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 0.0 | 39.0 | 39 | 10.7422 | 0.006 | 4633.8010 | 3211.9061 | 79.0 | 299.0 | 0.2642 | 74.0 | 0.2475 | 29.0 | 31.0 | 64.0 | 0.4844 | 0.4531 | 18.0 | 19.0 | 73.0 | 0.2603 | 0.2466 | 24.0 | 24.0 | 78.0 | 0.3077 | 0.3077 | 3.0 | 5.0 | 83.0 | 0.0602 | 0.0361 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
MyResumite/CV_Analyzer
MyResumite
2025-08-18T23:37:12Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit", "lora", "sft", "transformers", "trl", "unsloth", "text-generation", "conversational", "arxiv:1910.09700", "region:us" ]
text-generation
2025-08-18T23:36:45Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit - lora - sft - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
koloni/blockassist-bc-deadly_graceful_stingray_1755558529
koloni
2025-08-18T23:34:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:34:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755558268
chainway9
2025-08-18T23:33:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:33:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/RC-Qwen2VL-2b-GGUF
mradermacher
2025-08-18T23:32:39Z
0
0
transformers
[ "transformers", "gguf", "multimodal", "llm", "personalized_multimodal_understanding", "en", "base_model:weihongliang/RC-Qwen2VL-2b", "base_model:quantized:weihongliang/RC-Qwen2VL-2b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-18T21:48:40Z
--- base_model: weihongliang/RC-Qwen2VL-2b language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - multimodal - llm - personalized_multimodal_understanding --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/weihongliang/RC-Qwen2VL-2b <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#RC-Qwen2VL-2b-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/RC-Qwen2VL-2b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.8 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.Q6_K.gguf) | Q6_K | 1.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.mmproj-f16.gguf) | mmproj-f16 | 1.4 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/RC-Qwen2VL-2b-GGUF/resolve/main/RC-Qwen2VL-2b.f16.gguf) | f16 | 3.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
razor534/blockassist-bc-lazy_extinct_termite_1755559789
razor534
2025-08-18T23:30:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lazy extinct termite", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T23:30:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lazy extinct termite --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohammadmahdinouri/moa-adapter-init
mohammadmahdinouri
2025-08-18T23:30:21Z
0
0
transformers
[ "transformers", "safetensors", "ModernALBERT", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-08-18T23:30:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
josephkchen/vygr
josephkchen
2025-08-18T23:28:02Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-18T22:44:17Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: vygr --- # Vygr <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `vygr` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "vygr", "lora_weights": "https://huggingface.co/josephkchen/vygr/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('josephkchen/vygr', weight_name='lora.safetensors') image = pipeline('vygr').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 3500 - Learning rate: 0.0004 - LoRA rank: 32 ## Contribute your own examples You can use the [community tab](https://huggingface.co/josephkchen/vygr/discussions) to add images that show off what you’ve made with this LoRA.