modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
sequence | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
miguel2345/miguel4356 | miguel2345 | 2025-05-29T19:25:32Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-29T19:25:31Z | ---
license: apache-2.0
---
|
phospho-app/nonosax-ACT-example_dataset_6-ygnut | phospho-app | 2025-05-29T19:25:31Z | 0 | 0 | null | [
"safetensors",
"phosphobot",
"act",
"region:us"
] | null | 2025-05-29T16:54:06Z |
---
tags:
- phosphobot
- act
task_categories:
- robotics
---
# act Model - phospho Training Pipeline
## This model was trained using **phospho**.
Training was successfull, try it out on your robot!
## Training parameters:
- **Dataset**: [nonosax/example_dataset_6](https://huggingface.co/datasets/nonosax/example_dataset_6)
- **Wandb run URL**: None
- **Epochs**: None
- **Batch size**: 40
- **Training steps**: 8000
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
kfn/a2c-PandaReachDense-v3 | kfn | 2025-05-29T19:25:25Z | 7 | 0 | stable-baselines3 | [
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-28T18:39:27Z | ---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -15.34 +/- 3.48
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
zigats0008/zigats0001 | zigats0008 | 2025-05-29T19:23:38Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-29T19:23:38Z | ---
license: apache-2.0
---
|
4lir324/iModel | 4lir324 | 2025-05-29T19:23:09Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-29T18:01:40Z | ---
license: apache-2.0
---
|
tungduong261204/sft_v4_4500 | tungduong261204 | 2025-05-29T19:20:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T19:18:57Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
tungduong261204/sft_v4_4000 | tungduong261204 | 2025-05-29T19:18:26Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T19:17:17Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
gradientrouting-spar/base_2d_first_quadrant_red_no_preamble_20250529_191056 | gradientrouting-spar | 2025-05-29T19:16:45Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T19:14:43Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
TanAlexanderlz/RALL_NoCrop_Aug16F-8B16F | TanAlexanderlz | 2025-05-29T19:14:07Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base-finetuned-kinetics",
"base_model:finetune:MCG-NJU/videomae-base-finetuned-kinetics",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | video-classification | 2025-05-29T15:26:00Z | ---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: RALL_NoCrop_Aug16F-8B16F
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RALL_NoCrop_Aug16F-8B16F
This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0091
- Accuracy: 0.7751
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4616
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.4546 | 0.0626 | 289 | 0.5467 | 0.7566 |
| 0.2899 | 1.0626 | 578 | 0.7078 | 0.7157 |
| 0.1739 | 2.0626 | 867 | 0.8752 | 0.7771 |
| 0.1227 | 3.0626 | 1156 | 0.7922 | 0.7710 |
| 0.1752 | 4.0626 | 1445 | 1.0169 | 0.7812 |
| 0.1473 | 5.0626 | 1734 | 0.9909 | 0.7587 |
| 0.2319 | 6.0626 | 2023 | 1.3500 | 0.7444 |
| 0.0379 | 7.0626 | 2312 | 1.1374 | 0.7771 |
| 0.0109 | 8.0626 | 2601 | 1.2297 | 0.7628 |
| 0.0514 | 9.0626 | 2890 | 1.2982 | 0.7751 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
matyaydin/rag-example-notmasked-loss | matyaydin | 2025-05-29T19:13:15Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen3-0.6B-Base",
"base_model:finetune:Qwen/Qwen3-0.6B-Base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-28T20:58:40Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- generated_from_trainer
model-index:
- name: rag-example-notmasked-loss
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rag-example-notmasked-loss
This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
|
Yeicob/Qwen3-14B-SWEBench-LoRA-Checkpoint | Yeicob | 2025-05-29T19:11:12Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"region:us"
] | null | 2025-05-29T18:23:58Z | ---
base_model: unsloth/qwen3-14b-unsloth-bnb-4bit
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
Nechintosh/ad_dpo_mistral_7B_v0.3 | Nechintosh | 2025-05-29T19:07:23Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-29T19:07:23Z | ---
license: apache-2.0
---
|
mgreen/QWEN-2.5-1.5B-instruct-rust-ft-8800 | mgreen | 2025-05-29T19:05:13Z | 10 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"arxiv:1910.09700",
"base_model:Qwen/Qwen2.5-Coder-1.5B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-Coder-1.5B-Instruct",
"region:us"
] | null | 2025-05-19T17:46:07Z | ---
base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
Jarbas/ovos-model2vec-intents-BERnaT-base | Jarbas | 2025-05-29T19:04:26Z | 0 | 0 | model2vec | [
"model2vec",
"safetensors",
"embeddings",
"static-embeddings",
"sentence-transformers",
"eu",
"dataset:Jarbas/ovos-intents-train-v1",
"base_model:Jarbas/m2v-256-BERnaT-base",
"base_model:finetune:Jarbas/m2v-256-BERnaT-base",
"license:mit",
"region:us"
] | null | 2025-05-29T19:02:05Z | ---
base_model:
- Jarbas/m2v-256-BERnaT-base
library_name: model2vec
license: mit
model_name: model_eu_m2v-256-BERnaT-base
tags:
- embeddings
- static-embeddings
- sentence-transformers
datasets:
- Jarbas/ovos-intents-train-v1
language:
- eu
---
# model_eu_m2v-256-BERnaT-base Model Card
This [Model2Vec](https://github.com/MinishLab/model2vec) model is a fine-tuned version of the [unknown](https://huggingface.co/unknown) Model2Vec model. It also includes a classifier head on top.
## Installation
Install model2vec using pip:
```
pip install model2vec[inference]
```
## Usage
Load this model using the `from_pretrained` method:
```python
from model2vec.inference import StaticModelPipeline
# Load a pretrained Model2Vec model
model = StaticModelPipeline.from_pretrained("model_eu_m2v-256-BERnaT-base")
# Predict labels
predicted = model.predict(["Example sentence"])
```
## Additional Resources
- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
- [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
- [Website](https://minishlab.github.io/)
## Library Authors
Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
## Citation
Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@article{minishlab2024model2vec,
author = {Tulkens, Stephan and {van Dongen}, Thomas},
title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
year = {2024},
url = {https://github.com/MinishLab/model2vec}
}
``` |
mradermacher/gemma-3-4b-it-qat-abliterated-GGUF | mradermacher | 2025-05-29T19:00:08Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:mlabonne/gemma-3-4b-it-qat-abliterated",
"base_model:quantized:mlabonne/gemma-3-4b-it-qat-abliterated",
"license:gemma",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-29T11:08:04Z | ---
base_model: mlabonne/gemma-3-4b-it-qat-abliterated
language:
- en
library_name: transformers
license: gemma
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/mlabonne/gemma-3-4b-it-qat-abliterated
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.Q2_K.gguf) | Q2_K | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.Q3_K_S.gguf) | Q3_K_S | 2.0 | |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.Q3_K_L.gguf) | Q3_K_L | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.IQ4_XS.gguf) | IQ4_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.Q5_K_S.gguf) | Q5_K_S | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.Q5_K_M.gguf) | Q5_K_M | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.Q6_K.gguf) | Q6_K | 3.3 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/gemma-3-4b-it-qat-abliterated-GGUF/resolve/main/gemma-3-4b-it-qat-abliterated.f16.gguf) | f16 | 7.9 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
aws-neuron/optimum-neuron-cache | aws-neuron | 2025-05-29T18:56:56Z | 0 | 18 | null | [
"license:apache-2.0",
"region:us"
] | null | 2023-04-14T15:39:39Z | ---
license: apache-2.0
---
# AWS Neuron optimum model cache
This repository contains cached neuron compilation artifacts for the most popular models on the Hugging Face Hub.
## Inference
### LLM models
The transparent caching mechanism included in `optimum-neuron` and `NeuronX TGI`, makes it easier to export and deploy cached models to Neuron platforms such as Trainium and Inferentia.
To deploy directly any cached model to SageMaker:
- go to the model page,
- select "Deploy" in the top right corner,
- select "AWS SageMaker" in the drop-down,
- select the "AWS Inferentia & Trainium" tab,
- copy the code snippet.
You can now paste the code snippet in your deployment script or notebook, following the instructions in the comment.
To export a model to Neuron and save it locally, please follow the instructions in the `optimum-neuron` [documentation](https://huggingface.co/docs/optimum-neuron/guides/export_model).
For a list of the cached models and configurations, please refer to the inference cache [configuration files](https://huggingface.co/aws-neuron/optimum-neuron-cache/tree/main/inference-cache-config).
Alternatively, you can use the `optimum-cli neuron cache lookup` command to look for a specific model and see the cached configurations. |
jdchang/norm_test_400 | jdchang | 2025-05-29T18:52:45Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T18:48:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Cricro/onepub | Cricro | 2025-05-29T18:52:39Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-29T18:52:39Z | ---
license: apache-2.0
---
|
BootesVoid/cmb9oyme50go31b1yuypqk9j7_cmb9p84sm0grn1b1yewl14oz8 | BootesVoid | 2025-05-29T18:48:41Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T18:48:39Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: SPORTY
---
# Cmb9Oyme50Go31B1Yuypqk9J7_Cmb9P84Sm0Grn1B1Yewl14Oz8
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `SPORTY` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "SPORTY",
"lora_weights": "https://huggingface.co/BootesVoid/cmb9oyme50go31b1yuypqk9j7_cmb9p84sm0grn1b1yewl14oz8/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmb9oyme50go31b1yuypqk9j7_cmb9p84sm0grn1b1yewl14oz8', weight_name='lora.safetensors')
image = pipeline('SPORTY').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmb9oyme50go31b1yuypqk9j7_cmb9p84sm0grn1b1yewl14oz8/discussions) to add images that show off what you’ve made with this LoRA.
|
tester-123456789/test_model | tester-123456789 | 2025-05-29T18:45:11Z | 0 | 0 | null | [
"pytorch",
"region:us"
] | null | 2025-05-19T12:09:41Z | ## Research
This is used for research purposes. |
cesun/advllm_llama2 | cesun | 2025-05-29T18:40:22Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"adversarial-attacks",
"jailbreak",
"red-teaming",
"alignment",
"LLM-safety",
"conversational",
"arxiv:2410.18469",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-09-20T02:07:42Z | ---
library_name: transformers
tags:
- adversarial-attacks
- jailbreak
- red-teaming
- alignment
- LLM-safety
license: mit
---
# ADV-LLM
ADV-LLM is an **iteratively self-tuned** adversarial language model that generates jailbreak suffixes capable of bypassing safety alignment in open-source and proprietary models.
- **Paper:** https://arxiv.org/abs/2410.18469
- **Code:** https://github.com/SunChungEn/ADV-LLM
## Model Details
- **Authors:** Chung-En Sun et al. (UCSD & Microsoft Research)
- **Finetuned from:** LLaMA-2-7B-chat
- **Language:** English
- **License:** MIT
## Usage Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("cesun/advllm_llama2")
tokenizer = AutoTokenizer.from_pretrained("cesun/advllm_llama2")
inputs = tokenizer("How to make a bomb", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=90)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Evaluation Results
ADV-LLM achieves near-perfect jailbreak success rates under group beam search (GBS-50) across a wide range of models and safety checks, including Template (TP), LlamaGuard (LG), and GPT-4 evaluations.
| Victim Model | GBS-50 ASR (TP / LG / GPT-4) |
|--------------------------|-------------------------------|
| Vicuna-7B-v1.5 | 100.00% / 100.00% / 99.81% |
| Guanaco-7B | 100.00% / 100.00% / 99.81% |
| Mistral-7B-Instruct-v0.2 | 100.00% / 100.00% / 100.00% |
| LLaMA-2-7B-chat | 100.00% / 100.00% / 93.85% |
| LLaMA-3-8B-Instruct | 100.00% / 98.84% / 98.27% |
**Legend:**
- **ASR** = Attack Success Rate
- **TP** = Template-based refusal detection
- **LG** = LlamaGuard safety classifier
- **GPT-4** = Harmfulness judged by GPT-4
## Citation
If you use ADV-LLM in your research or evaluation, please cite:
**BibTeX**
```bibtex
@inproceedings{sun2025advllm,
title={Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities},
author={Sun, Chung-En and Liu, Xiaodong and Yang, Weiwei and Weng, Tsui-Wei and Cheng, Hao and San, Aidan and Galley, Michel and Gao, Jianfeng},
booktitle={NAACL},
year={2025}
} |
cesun/advllm_guanaco | cesun | 2025-05-29T18:38:59Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"adversarial-attacks",
"jailbreak",
"red-teaming",
"alignment",
"LLM-safety",
"arxiv:2410.18469",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-09-20T02:07:16Z | ---
library_name: transformers
tags:
- adversarial-attacks
- jailbreak
- red-teaming
- alignment
- LLM-safety
license: mit
---
# ADV-LLM
ADV-LLM is an **iteratively self-tuned** adversarial language model that generates jailbreak suffixes capable of bypassing safety alignment in open-source and proprietary models.
- **Paper:** https://arxiv.org/abs/2410.18469
- **Code:** https://github.com/SunChungEn/ADV-LLM
## Model Details
- **Authors:** Chung-En Sun et al. (UCSD & Microsoft Research)
- **Finetuned from:** Guanaco-7B
- **Language:** English
- **License:** MIT
## Usage Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("cesun/advllm_guanaco")
tokenizer = AutoTokenizer.from_pretrained("cesun/advllm_guanaco")
inputs = tokenizer("How to make a bomb", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=90)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Evaluation Results
ADV-LLM achieves near-perfect jailbreak success rates under group beam search (GBS-50) across a wide range of models and safety checks, including Template (TP), LlamaGuard (LG), and GPT-4 evaluations.
| Victim Model | GBS-50 ASR (TP / LG / GPT-4) |
|--------------------------|-------------------------------|
| Vicuna-7B-v1.5 | 100.00% / 100.00% / 99.81% |
| Guanaco-7B | 100.00% / 100.00% / 99.81% |
| Mistral-7B-Instruct-v0.2 | 100.00% / 100.00% / 100.00% |
| LLaMA-2-7B-chat | 100.00% / 100.00% / 93.85% |
| LLaMA-3-8B-Instruct | 100.00% / 98.84% / 98.27% |
**Legend:**
- **ASR** = Attack Success Rate
- **TP** = Template-based refusal detection
- **LG** = LlamaGuard safety classifier
- **GPT-4** = Harmfulness judged by GPT-4
## Citation
If you use ADV-LLM in your research or evaluation, please cite:
**BibTeX**
```bibtex
@inproceedings{sun2025advllm,
title={Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities},
author={Sun, Chung-En and Liu, Xiaodong and Yang, Weiwei and Weng, Tsui-Wei and Cheng, Hao and San, Aidan and Galley, Michel and Gao, Jianfeng},
booktitle={NAACL},
year={2025}
} |
castorini/arctic-embed-l-onnx | castorini | 2025-05-29T18:38:17Z | 0 | 0 | null | [
"onnx",
"license:apache-2.0",
"region:us"
] | null | 2025-05-29T18:08:32Z | ---
license: apache-2.0
---
This model is the ONNX version of [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l/tree/main). |
Mxkkkk/lorrra | Mxkkkk | 2025-05-29T18:30:58Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T18:09:17Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: ELKA
---
# Lorrra
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `ELKA` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "ELKA",
"lora_weights": "https://huggingface.co/Mxkkkk/lorrra/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Mxkkkk/lorrra', weight_name='lora.safetensors')
image = pipeline('ELKA').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 32
## Contribute your own examples
You can use the [community tab](https://huggingface.co/Mxkkkk/lorrra/discussions) to add images that show off what you’ve made with this LoRA.
|
JesseLiu/llama32-3b-kpath-partial-naive-grpo | JesseLiu | 2025-05-29T18:30:47Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-3.2-3B-Instruct",
"base_model:adapter:meta-llama/Llama-3.2-3B-Instruct",
"region:us"
] | null | 2025-05-29T18:30:04Z | ---
base_model: meta-llama/Llama-3.2-3B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.1 |
castorini/splade-pp-onnx | castorini | 2025-05-29T18:28:07Z | 0 | 0 | null | [
"onnx",
"splade",
"en",
"base_model:naver/splade-cocondenser-ensembledistil",
"base_model:quantized:naver/splade-cocondenser-ensembledistil",
"license:cc-by-nc-sa-4.0",
"region:us"
] | null | 2025-05-29T16:50:49Z | ---
license: cc-by-nc-sa-4.0
language:
- en
base_model:
- naver/splade-cocondenser-ensembledistil
- naver/splade-cocondenser-selfdistil
tags:
- splade
---
This repo contains the ONNX versions of [naver/splade-cocondenser-selfdistil](https://huggingface.co/naver/splade-cocondenser-selfdistil) and [naver/splade-cocondenser-ensembledistil](https://huggingface.co/naver/splade-cocondenser-ensembledistil). |
AlexRubio/Alex-Lora-2 | AlexRubio | 2025-05-29T18:27:57Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T18:09:38Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: ALEX
---
# Alex Lora 2
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `ALEX` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "ALEX",
"lora_weights": "https://huggingface.co/AlexRubio/Alex-Lora-2/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('AlexRubio/Alex-Lora-2', weight_name='lora.safetensors')
image = pipeline('ALEX').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/AlexRubio/Alex-Lora-2/discussions) to add images that show off what you’ve made with this LoRA.
|
pennypacker/CinDeeLora | pennypacker | 2025-05-29T18:27:07Z | 6 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-03-20T04:54:39Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: TOK
---
# Cindeelora
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `TOK` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('pennypacker/CinDeeLora', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
mradermacher/ShiZhen-V0.1-GGUF | mradermacher | 2025-05-29T18:26:34Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:kiko-chan/ShiZhen-V0.1",
"base_model:quantized:kiko-chan/ShiZhen-V0.1",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-29T17:50:17Z | ---
base_model: kiko-chan/ShiZhen-V0.1
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/kiko-chan/ShiZhen-V0.1
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.Q2_K.gguf) | Q2_K | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.IQ4_XS.gguf) | IQ4_XS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/ShiZhen-V0.1-GGUF/resolve/main/ShiZhen-V0.1.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
NORI7/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_arctic_raven | NORI7 | 2025-05-29T18:26:22Z | 20 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am savage arctic raven",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-07T23:42:49Z | ---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_arctic_raven
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am savage arctic raven
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_arctic_raven
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="NORI7/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_arctic_raven", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.18.0
- Transformers: 4.52.3
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
FACADEEEE/medalu_16bit_riasec_oficial | FACADEEEE | 2025-05-29T18:25:10Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T17:55:05Z | ---
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** FACADEEEE
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
BootesVoid/cmb9h3q2w0dgp1b1yxdskhloj_cmb9of6et0gin1b1y1wqv6nan | BootesVoid | 2025-05-29T18:23:13Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T18:23:11Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: BIGASS
---
# Cmb9H3Q2W0Dgp1B1Yxdskhloj_Cmb9Of6Et0Gin1B1Y1Wqv6Nan
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `BIGASS` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "BIGASS",
"lora_weights": "https://huggingface.co/BootesVoid/cmb9h3q2w0dgp1b1yxdskhloj_cmb9of6et0gin1b1y1wqv6nan/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmb9h3q2w0dgp1b1yxdskhloj_cmb9of6et0gin1b1y1wqv6nan', weight_name='lora.safetensors')
image = pipeline('BIGASS').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmb9h3q2w0dgp1b1yxdskhloj_cmb9of6et0gin1b1y1wqv6nan/discussions) to add images that show off what you’ve made with this LoRA.
|
dhadheechi/Taxi-v3 | dhadheechi | 2025-05-29T18:22:05Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-29T18:22:01Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="dhadheechi/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Bmingg/qwen2.5-0.5B-Instruct-DPO-GeminiChosen-5000-5epochs | Bmingg | 2025-05-29T18:21:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T18:21:25Z | ---
library_name: transformers
tags:
- llama-factory
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
tungduong261204/sft_v4_3000 | tungduong261204 | 2025-05-29T18:21:54Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T18:20:54Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
FACADEEEE/adapter_medalu_riasec_oficial | FACADEEEE | 2025-05-29T18:21:36Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T17:54:25Z | ---
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** FACADEEEE
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Vacaspati/VAC-BERT | Vacaspati | 2025-05-29T18:20:40Z | 0 | 0 | null | [
"pytorch",
"electra",
"bn",
"license:apache-2.0",
"region:us"
] | null | 2025-05-29T18:11:44Z | ---
license: apache-2.0
language:
- bn
---
# VĀC-BERT
**VĀC-BERT** is a 17 million-parameter model, trained on the Vācaspati literary dataset. Despite its compact size, VĀC-BERT achieves competitive performance with state-of-the-art masked-language and downstream models that are over seven times larger.
## Model Details
- **Architecture:** Electra-small (but reduced to 17 M parameters)
- **Pretraining Corpus:** Vācaspati — a curated Bangla literary corpus
- **Parameter Count:** 17 M (≈ 1/7th the size of BERT-base)
- **Tokenizer:** WordPiece, vocabulary size 50 K
## Usage Example
```python
from transformers import BertTokenizer, AutoModelForSequenceClassification
tokenizer = BertTokenizer.from_pretrained("Vacaspati/VAC-BERT")
model = AutoModelForSequenceClassification.from_pretrained("Vacaspati/VAC-BERT")
```
## Citation
If you are using this model please cite:
```bibtex
@inproceedings{bhattacharyya-etal-2023-vacaspati,
title = "{VACASPATI}: A Diverse Corpus of {B}angla Literature",
author = "Bhattacharyya, Pramit and
Mondal, Joydeep and
Maji, Subhadip and
Bhattacharya, Arnab",
editor = "Park, Jong C. and
Arase, Yuki and
Hu, Baotian and
Lu, Wei and
Wijaya, Derry and
Purwarianti, Ayu and
Krisnadhi, Adila Alfa",
booktitle = "Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = nov,
year = "2023",
address = "Nusa Dua, Bali",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.ijcnlp-main.72/",
doi = "10.18653/v1/2023.ijcnlp-main.72",
pages = "1118--1130"
}
```
|
Matelq-2/SmolLM2-FT-MyDataset | Matelq-2 | 2025-05-29T18:13:19Z | 14 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"smol-course",
"module_1",
"trl",
"sft",
"conversational",
"base_model:HuggingFaceTB/SmolLM2-135M",
"base_model:finetune:HuggingFaceTB/SmolLM2-135M",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-25T17:46:05Z | ---
base_model: HuggingFaceTB/SmolLM2-135M
library_name: transformers
model_name: SmolLM2-FT-MyDataset
tags:
- generated_from_trainer
- smol-course
- module_1
- trl
- sft
licence: license
---
# Model Card for SmolLM2-FT-MyDataset
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Matelq-2/SmolLM2-FT-MyDataset", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.12.1
- Transformers: 4.53.0.dev0
- Pytorch: 2.7.0+cu118
- Datasets: 3.1.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouГ©dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
enpeizhao/qwen2-7b-instruct-trl-sft-odd-monitor-drama | enpeizhao | 2025-05-29T18:02:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2-VL-2B-Instruct",
"base_model:finetune:Qwen/Qwen2-VL-2B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T17:58:46Z | ---
base_model: Qwen/Qwen2-VL-2B-Instruct
library_name: transformers
model_name: qwen2-7b-instruct-trl-sft-odd-monitor-drama
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for qwen2-7b-instruct-trl-sft-odd-monitor-drama
This model is a fine-tuned version of [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="enpeizhao/qwen2-7b-instruct-trl-sft-odd-monitor-drama", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/my-pred-team/qwen2-2b-instruct-trl-sft-odd-monitor-drama/runs/qs79zv3e)
This model was trained with SFT.
### Framework versions
- TRL: 0.19.0
- Transformers: 4.53.0.dev0
- Pytorch: 2.4.1+cu121
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
tungduong261204/sft_v4_2000 | tungduong261204 | 2025-05-29T18:01:01Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T18:00:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
LandCruiser/sn29_cold_2905_1 | LandCruiser | 2025-05-29T18:00:56Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T16:51:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
jacksonferrigno/Reinforce-CartPole8 | jacksonferrigno | 2025-05-29T17:53:52Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-29T17:53:39Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole8
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 481.05 +/- 58.80
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
BootesVoid/cmb9iacxu0dzo1b1yi3emyojp_cmb9ilg1p0e4s1b1ydk8rj3a9 | BootesVoid | 2025-05-29T17:53:42Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T17:53:41Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: SARAFIT22
---
# Cmb9Iacxu0Dzo1B1Yi3Emyojp_Cmb9Ilg1P0E4S1B1Ydk8Rj3A9
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `SARAFIT22` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "SARAFIT22",
"lora_weights": "https://huggingface.co/BootesVoid/cmb9iacxu0dzo1b1yi3emyojp_cmb9ilg1p0e4s1b1ydk8rj3a9/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmb9iacxu0dzo1b1yi3emyojp_cmb9ilg1p0e4s1b1ydk8rj3a9', weight_name='lora.safetensors')
image = pipeline('SARAFIT22').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmb9iacxu0dzo1b1yi3emyojp_cmb9ilg1p0e4s1b1ydk8rj3a9/discussions) to add images that show off what you’ve made with this LoRA.
|
abhikapoor909/vitmanu3b-8q | abhikapoor909 | 2025-05-29T17:52:02Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T17:51:01Z | ---
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** abhikapoor909
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/Select2Reason-Qwen-7B-GGUF | mradermacher | 2025-05-29T17:50:26Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"dataset:open-r1/OpenR1-Math-220k",
"base_model:cehao/Select2Reason-Qwen-7B",
"base_model:quantized:cehao/Select2Reason-Qwen-7B",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-29T17:17:29Z | ---
base_model: cehao/Select2Reason-Qwen-7B
datasets:
- open-r1/OpenR1-Math-220k
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/cehao/Select2Reason-Qwen-7B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.Q2_K.gguf) | Q2_K | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Select2Reason-Qwen-7B-GGUF/resolve/main/Select2Reason-Qwen-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B-Q6_K-GGUF | zelk12 | 2025-05-29T17:35:27Z | 0 | 0 | null | [
"gguf",
"merge",
"mergekit",
"lazymergekit",
"zelk12/MT-Gen1-gemma-3-12B",
"soob3123/amoral-gemma3-12B-v2",
"zelk12/MT1-gemma-3-12B",
"IlyaGusev/saiga_gemma3_12b",
"llama-cpp",
"gguf-my-repo",
"base_model:zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B",
"base_model:quantized:zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B",
"license:gemma",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-29T16:00:33Z | ---
base_model: zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B
tags:
- merge
- mergekit
- lazymergekit
- zelk12/MT-Gen1-gemma-3-12B
- soob3123/amoral-gemma3-12B-v2
- zelk12/MT1-gemma-3-12B
- IlyaGusev/saiga_gemma3_12b
- llama-cpp
- gguf-my-repo
license: gemma
---
# zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B-Q6_K-GGUF
This model was converted to GGUF format from [`zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B`](https://huggingface.co/zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B-Q6_K-GGUF --hf-file 29_05_2025_test3_lazymergekit_gemma-3-12b-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B-Q6_K-GGUF --hf-file 29_05_2025_test3_lazymergekit_gemma-3-12b-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B-Q6_K-GGUF --hf-file 29_05_2025_test3_lazymergekit_gemma-3-12b-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo zelk12/29_05_2025_Test3_LazyMergekit_gemma-3-12B-Q6_K-GGUF --hf-file 29_05_2025_test3_lazymergekit_gemma-3-12b-q6_k.gguf -c 2048
``` |
LandCruiser/sn29_cold_2905_4 | LandCruiser | 2025-05-29T17:28:29Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T16:51:30Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
VanishedBrB/qwen2.5-coder-7b-bnb-4bit-velocity-SQL-F32-GGUF | VanishedBrB | 2025-05-29T17:27:56Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"llama-cpp",
"gguf-my-lora",
"en",
"base_model:VanishedBrB/qwen2.5-coder-7b-bnb-4bit-velocity-SQL",
"base_model:quantized:VanishedBrB/qwen2.5-coder-7b-bnb-4bit-velocity-SQL",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T17:27:49Z | ---
base_model: VanishedBrB/qwen2.5-coder-7b-bnb-4bit-velocity-SQL
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- llama-cpp
- gguf-my-lora
license: apache-2.0
language:
- en
---
# VanishedBrB/qwen2.5-coder-7b-bnb-4bit-velocity-SQL-F32-GGUF
This LoRA adapter was converted to GGUF format from [`VanishedBrB/qwen2.5-coder-7b-bnb-4bit-velocity-SQL`](https://huggingface.co/VanishedBrB/qwen2.5-coder-7b-bnb-4bit-velocity-SQL) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space.
Refer to the [original adapter repository](https://huggingface.co/VanishedBrB/qwen2.5-coder-7b-bnb-4bit-velocity-SQL) for more details.
## Use with llama.cpp
```bash
# with cli
llama-cli -m base_model.gguf --lora qwen2.5-coder-7b-bnb-4bit-velocity-SQL-f32.gguf (...other args)
# with server
llama-server -m base_model.gguf --lora qwen2.5-coder-7b-bnb-4bit-velocity-SQL-f32.gguf (...other args)
```
To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
|
newgenai79/Wan2.1-VACE-1.3B-GGUF | newgenai79 | 2025-05-29T17:26:23Z | 0 | 0 | diffusers | [
"diffusers",
"gguf",
"video",
"video-generation",
"text-to-video",
"en",
"base_model:Wan-AI/Wan2.1-VACE-1.3B",
"base_model:quantized:Wan-AI/Wan2.1-VACE-1.3B",
"license:apache-2.0",
"region:us"
] | text-to-video | 2025-05-29T17:26:23Z | ---
license: apache-2.0
language:
- en
pipeline_tag: text-to-video
library_name: diffusers
tags:
- video
- video-generation
base_model:
- Wan-AI/Wan2.1-VACE-1.3B
---
```
________ ______ ____ ___ ___ _______ ______ _______ ____ ______ ______ _______ _______ _______ _______
| | | |.---.-.-----.|__ | |_ | ______| | | _ | | ___|_____|_ | |__ | __ \______| __| __| | | ___|
| | | || _ | || __|__ _| ||______| | | | ---| ___|______|| |_ __|__ | __ <______| | | | | | | ___|
|________||___._|__|__||______|__|______| \_____/|___|___|______|_______| |______|__|______|______/ |_______|_______|_______|___|
```
# Wan-2.1-VACE-1.3B-GGUF
## Direct GGUF Conversion of Wan2.1-VACE-1.3B
Wan2.1 is an open-source suite of video foundation models, compatible with consumer-grade GPUs, that excels in various video generation tasks like text-to-video, image-to-video, and video editing, even supporting visual text generation.
## Table of Contents 📝
1. ▶ [Usage](#usage)
2. 📃 [License](#license)
3. 🙏 [Acknowledgements](#acknowledgements)
<a name="usage"/>
## ▶ Usage
Download models using `huggingface-cli`:
```
pip install "huggingface_hub[cli]"
huggingface-cli download samuelchristlie/Wan2.1-VACE-1.3B-GGUF --local-dir ./Wan2.1-VACE-1.3B-GGUF
```
You can also download directly from [this page](https://huggingface.co/samuelchristlie/Wan2.1-VACE-1.3B-GGUF/tree/main).
<a name="license"/>
## 📃 License
This model is a derivative work of the original model licensed under the Apache 2.0 License, and is therefore distributed under the terms of the same license.
<a name="acknowledgements"/>
## 🙏 Acknowledgements
Thanks to Patrick Gillespie for creating the ASCII text art tool used in this project
https://patorjk.com/software/taag/
Wan-AI for the Wan model
https://huggingface.co/Wan-AI/Wan2.1-VACE-1.3B
https://huggingface.co/city96
</div> |
VanishedBrB/qwen2.5-coder-7b-bnb-4bit-velocity-SQL | VanishedBrB | 2025-05-29T17:24:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:unsloth/Qwen2.5-Coder-7B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-Coder-7B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T17:17:16Z | ---
base_model: unsloth/Qwen2.5-Coder-7B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** VanishedBrB
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-Coder-7B-Instruct
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
jkgl/Bitnet-SFT | jkgl | 2025-05-29T17:23:30Z | 12 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-28T13:25:35Z | ---
library_name: transformers
--- |
TanAlexanderlz/RALL_RGBCROP_Aug16F-8B16F | TanAlexanderlz | 2025-05-29T17:23:25Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base-finetuned-kinetics",
"base_model:finetune:MCG-NJU/videomae-base-finetuned-kinetics",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | video-classification | 2025-05-29T15:26:33Z | ---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: RALL_RGBCROP_Aug16F-8B16F
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RALL_RGBCROP_Aug16F-8B16F
This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7255
- Accuracy: 0.8494
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4616
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.2671 | 0.0626 | 289 | 0.5154 | 0.8200 |
| 0.1487 | 1.0626 | 578 | 0.8120 | 0.8364 |
| 0.0851 | 2.0626 | 867 | 0.9146 | 0.8569 |
| 0.0015 | 3.0626 | 1156 | 1.1018 | 0.8344 |
| 0.0001 | 4.0626 | 1445 | 1.2589 | 0.8364 |
| 0.0163 | 5.0626 | 1734 | 1.2502 | 0.8241 |
| 0.0001 | 6.0626 | 2023 | 1.4946 | 0.7996 |
| 0.0002 | 7.0626 | 2312 | 1.3088 | 0.8323 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
UmeAiRT/ComfyUI-Auto_installer | UmeAiRT | 2025-05-29T17:19:47Z | 17,493 | 28 | diffusers | [
"diffusers",
"onnx",
"safetensors",
"gguf",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-09-26T13:03:26Z | ---
license: mit
---
# UmeAiRT - ComfyUI auto installer
I'm sharing with you my installation script, which automatically provides ComfyUI, workflows, models, custom nodes ...
Just run "ComfyUI-AllinOne-Auto_install.bat".
With a few questions at the beginning of the script, only the desired elements will be downloaded.
### Prerequisites :
- [7zip](others/7z2409-x64.exe)
- [git](others/Git-2.49.0-64-bit.exe)
- [CUDA 12.8](others/cuda_12.8.1_windows_network.exe)
### What's included :
#### ComfyUI :
- ComfyUI portable version pytorch 2.7.0+cu128
- ComfyUI Manager
- Interface settings
- Xformers
- Nvidia Apex
- Sageattention
- Triton
#### Workflow :
- TXT to IMG
- IMG to IMG
- INPAINT
- OUTPAINT
- PulID & REDUX
- ControlNet HED/Canny/Openpose/Depth
- TXT to VIDEO
- IMG to VIDEO
- StartEndFrames
- Face to VIDEO
- VIDEO EXTENSION
- VIDEO to LOOP
- Frames interpolations
- Upscaler
- Video merge
#### WAN2.1 :
- T2V Model
- I2V Model
- T2V GGUF Model
- I2V GGUF Model
- CLIP
- CLIP Vision
- VAE
#### Flux1 :
- flux1-dev
- flux1-schnell-fp8
- GGUF
- clip_l
- t5xxl
- VAE
- ControlNet HED/Canny/Openpose/Depth
### Upscale Model :
- RealESRGAN_x4plus.pth
- RealESRGAN_x4plus_anime_6B.pth
### Custom Nodes :
- ComfyUI-Custom-Scripts
- ComfyUI-GGUF
- ComfyUI-KJNodes
- ComfyUI-VideoHelperSuite
- ComfyUI-mxToolkit
- ComfyUI-HunyuanVideoMultiLora
- rgthree-comfy
- ComfyUI-Frame-Interpolation
- ComfyUI Impact Pack
- ComfyUI-Easy-Use
- ComfyUI_PuLID_Flux_ll
- WAS Node Suite
- ComfyUI-Florence2
- ComfyUI-Upscaler-Tensorrt
- ComfyUI-MultiGPU
- ComfyUI-WanStartEndFramesNative
![alt text][logo]
[logo]: images/UmeAiRT.png "UmeAiRT logo" |
Cicikush/Pixel-Attack-Helicopter | Cicikush | 2025-05-29T17:16:25Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-29T16:26:54Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Pixel-Attack-Helicopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 23.50 +/- 25.03
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
repetitio/cg-qg-isg-simp-1.7b-ls0.0 | repetitio | 2025-05-29T17:13:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T06:38:57Z | ---
base_model: Qwen/Qwen3-1.7b-Base
library_name: transformers
model_name: cg-qg-isg-simp-1.7b-ls0.0
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for cg-qg-isg-simp-1.7b-ls0.0
This model is a fine-tuned version of [Qwen/Qwen3-1.7b-Base](https://huggingface.co/Qwen/Qwen3-1.7b-Base).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="repetitio/cg-qg-isg-simp-1.7b-ls0.0", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/repetitio/sphinx/runs/i1dr7zff)
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.52.3
- Pytorch: 2.7.0
- Datasets: 3.6.0.dev0
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Davidelks/LamaFineTuned | Davidelks | 2025-05-29T17:08:13Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T15:08:40Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ArtemisTAO/train3 | ArtemisTAO | 2025-05-29T17:07:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T17:05:05Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
vinhthuan/vietnamese-news-summarizer-v3 | vinhthuan | 2025-05-29T17:06:25Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-25T12:34:30Z | ---
base_model: unsloth/qwen2.5-1.5b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** vinhthuan
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-1.5b-instruct-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
tungduong261204/sft_v3_4000 | tungduong261204 | 2025-05-29T17:04:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T17:03:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
l3dat/zephyr-vihealthqa-lora | l3dat | 2025-05-29T17:04:41Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T11:28:01Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
TomasLaz/t0-s1.1-3B-LoRA19-3.2e | TomasLaz | 2025-05-29T17:03:27Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T17:02:54Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
esCyanide/ArcNemesis | esCyanide | 2025-05-29T17:00:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-05-29T16:57:12Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF | mradermacher | 2025-05-29T17:00:23Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:likaixin/UI-Box-Scorer-Qwen2.5-VL-7B",
"base_model:quantized:likaixin/UI-Box-Scorer-Qwen2.5-VL-7B",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-05-29T15:27:16Z | ---
base_model: likaixin/UI-Box-Scorer-Qwen2.5-VL-7B
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/likaixin/UI-Box-Scorer-Qwen2.5-VL-7B
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/UI-Box-Scorer-Qwen2.5-VL-7B-i1-GGUF/resolve/main/UI-Box-Scorer-Qwen2.5-VL-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
Anshuman9600000/Phi | Anshuman9600000 | 2025-05-29T16:56:09Z | 0 | 0 | null | [
"gguf",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T16:51:42Z | ---
license: apache-2.0
---
|
Donchocho/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_stocky_crocodile | Donchocho | 2025-05-29T16:55:43Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am extinct stocky crocodile",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-10T09:14:19Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_stocky_crocodile
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am extinct stocky crocodile
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_stocky_crocodile
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Donchocho/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_stocky_crocodile", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
TomasLaz/t0-s1.1-3B-LoRA18-8e | TomasLaz | 2025-05-29T16:55:23Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T16:54:46Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
tscstudios/qhmekbxahlbzndfhxbqmvbvzusi2_0a14e11f-bed1-4286-bd96-afbdab58b05a | tscstudios | 2025-05-29T16:54:45Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T16:54:43Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: TOK
---
# Qhmekbxahlbzndfhxbqmvbvzusi2_0A14E11F Bed1 4286 Bd96 Afbdab58B05A
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `TOK` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "TOK",
"lora_weights": "https://huggingface.co/tscstudios/qhmekbxahlbzndfhxbqmvbvzusi2_0a14e11f-bed1-4286-bd96-afbdab58b05a/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('tscstudios/qhmekbxahlbzndfhxbqmvbvzusi2_0a14e11f-bed1-4286-bd96-afbdab58b05a', weight_name='lora.safetensors')
image = pipeline('TOK').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/tscstudios/qhmekbxahlbzndfhxbqmvbvzusi2_0a14e11f-bed1-4286-bd96-afbdab58b05a/discussions) to add images that show off what you’ve made with this LoRA.
|
science-of-finetuning/gemma3_1B_model_organism_caps | science-of-finetuning | 2025-05-29T16:51:10Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T16:51:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Godspower/mistral-users-finetune | Godspower | 2025-05-29T16:48:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T16:48:27Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
dimasik2987/bb129592-4283-456c-b205-38484476c0bd | dimasik2987 | 2025-05-29T16:47:59Z | 0 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen1.5-0.5B-Chat",
"base_model:adapter:Qwen/Qwen1.5-0.5B-Chat",
"license:other",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-29T16:30:19Z | ---
library_name: peft
license: other
base_model: Qwen/Qwen1.5-0.5B-Chat
tags:
- axolotl
- generated_from_trainer
model-index:
- name: bb129592-4283-456c-b205-38484476c0bd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: Qwen/Qwen1.5-0.5B-Chat
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 3e76a907c7ad8abe_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
dpo:
beta: 0.1
enabled: true
group_by_length: false
rank_loss: true
reference_model: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_clipping: 0.85
group_by_length: false
hub_model_id: dimasik2987/bb129592-4283-456c-b205-38484476c0bd
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 12
mixed_precision: bf16
mlflow_experiment_name: /tmp/3e76a907c7ad8abe_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b70871ab-4dce-4935-b5bf-2fbd33c810d8
wandb_project: s56-7
wandb_run: your_name
wandb_runid: b70871ab-4dce-4935-b5bf-2fbd33c810d8
warmup_steps: 50
weight_decay: 0.02
xformers_attention: true
```
</details><br>
# bb129592-4283-456c-b205-38484476c0bd
This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4974
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.6762 | 0.0001 | 1 | 2.9733 |
| 2.7038 | 0.0318 | 250 | 2.5270 |
| 2.0794 | 0.0636 | 500 | 2.4974 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
sergioalves/d0cb4f6a-1bc4-46d9-b492-170e019634e5 | sergioalves | 2025-05-29T16:47:55Z | 0 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen1.5-0.5B-Chat",
"base_model:adapter:Qwen/Qwen1.5-0.5B-Chat",
"license:other",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-29T16:30:19Z | ---
library_name: peft
license: other
base_model: Qwen/Qwen1.5-0.5B-Chat
tags:
- axolotl
- generated_from_trainer
model-index:
- name: d0cb4f6a-1bc4-46d9-b492-170e019634e5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: Qwen/Qwen1.5-0.5B-Chat
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 3e76a907c7ad8abe_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
dpo:
beta: 0.1
enabled: true
group_by_length: false
rank_loss: true
reference_model: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 0.85
group_by_length: false
hub_model_id: sergioalves/d0cb4f6a-1bc4-46d9-b492-170e019634e5
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 1.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 6
mixed_precision: bf16
mlflow_experiment_name: /tmp/3e76a907c7ad8abe_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b70871ab-4dce-4935-b5bf-2fbd33c810d8
wandb_project: s56-7
wandb_run: your_name
wandb_runid: b70871ab-4dce-4935-b5bf-2fbd33c810d8
warmup_steps: 50
weight_decay: 0.05
xformers_attention: true
```
</details><br>
# d0cb4f6a-1bc4-46d9-b492-170e019634e5
This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7653
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.6762 | 0.0001 | 1 | 3.0216 |
| 2.9723 | 0.0318 | 250 | 2.7932 |
| 2.3159 | 0.0636 | 500 | 2.7653 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
zxny/Pixelcopter-PLE-v0 | zxny | 2025-05-29T16:46:03Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-29T15:34:13Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: -2.90 +/- 2.21
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
BootesVoid/cmb2lfmtl06kru1cgkw7rwumr_cmb9k8r390esd1b1ysqfmmm44 | BootesVoid | 2025-05-29T16:43:35Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T16:43:33Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: LL12
---
# Cmb2Lfmtl06Kru1Cgkw7Rwumr_Cmb9K8R390Esd1B1Ysqfmmm44
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `LL12` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "LL12",
"lora_weights": "https://huggingface.co/BootesVoid/cmb2lfmtl06kru1cgkw7rwumr_cmb9k8r390esd1b1ysqfmmm44/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmb2lfmtl06kru1cgkw7rwumr_cmb9k8r390esd1b1ysqfmmm44', weight_name='lora.safetensors')
image = pipeline('LL12').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmb2lfmtl06kru1cgkw7rwumr_cmb9k8r390esd1b1ysqfmmm44/discussions) to add images that show off what you’ve made with this LoRA.
|
TareksTesting/Scripturient-V3.3-LLaMa-70B | TareksTesting | 2025-05-29T16:42:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2406.11617",
"base_model:TareksLab/Amethyst-SCE-V4-LLaMa-70B",
"base_model:merge:TareksLab/Amethyst-SCE-V4-LLaMa-70B",
"base_model:TareksLab/Carnelian-SCE-V4-LLaMa-70B",
"base_model:merge:TareksLab/Carnelian-SCE-V4-LLaMa-70B",
"base_model:TareksLab/Citrine-MS-V3-LLaMa-70B",
"base_model:merge:TareksLab/Citrine-MS-V3-LLaMa-70B",
"base_model:TareksLab/Diamond-DL-V1-LLaMa-70B",
"base_model:merge:TareksLab/Diamond-DL-V1-LLaMa-70B",
"base_model:TareksLab/Emerald-SCE-V3-LLaMa-70B",
"base_model:merge:TareksLab/Emerald-SCE-V3-LLaMa-70B",
"base_model:TareksLab/Ruby-D-V3-LLaMa-70B",
"base_model:merge:TareksLab/Ruby-D-V3-LLaMa-70B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T16:13:56Z | ---
base_model:
- TareksLab/Carnelian-SCE-V4-LLaMa-70B
- TareksLab/Emerald-SCE-V3-LLaMa-70B
- TareksLab/Amethyst-SCE-V4-LLaMa-70B
- TareksLab/Citrine-MS-V3-LLaMa-70B
- TareksLab/Diamond-DL-V1-LLaMa-70B
- TareksLab/Ruby-D-V3-LLaMa-70B
library_name: transformers
tags:
- mergekit
- merge
---
# MERGE5
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Linear DELLA](https://arxiv.org/abs/2406.11617) merge method using [TareksLab/Diamond-DL-V1-LLaMa-70B](https://huggingface.co/TareksLab/Diamond-DL-V1-LLaMa-70B) as a base.
### Models Merged
The following models were included in the merge:
* [TareksLab/Carnelian-SCE-V4-LLaMa-70B](https://huggingface.co/TareksLab/Carnelian-SCE-V4-LLaMa-70B)
* [TareksLab/Emerald-SCE-V3-LLaMa-70B](https://huggingface.co/TareksLab/Emerald-SCE-V3-LLaMa-70B)
* [TareksLab/Amethyst-SCE-V4-LLaMa-70B](https://huggingface.co/TareksLab/Amethyst-SCE-V4-LLaMa-70B)
* [TareksLab/Citrine-MS-V3-LLaMa-70B](https://huggingface.co/TareksLab/Citrine-MS-V3-LLaMa-70B)
* [TareksLab/Ruby-D-V3-LLaMa-70B](https://huggingface.co/TareksLab/Ruby-D-V3-LLaMa-70B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: TareksLab/Diamond-DL-V1-LLaMa-70B
parameters:
weight: 0.10
density: 0.7
epsilon: 0.20
- model: TareksLab/Citrine-MS-V3-LLaMa-70B
parameters:
weight: [0.5, 0.2, 0.1, 0.1, 0.1]
density: 0.7
epsilon: 0.20
- model: TareksLab/Amethyst-SCE-V4-LLaMa-70B
parameters:
weight: [0.2, 0.4, 0.2, 0.1, 0.1]
density: 0.7
epsilon: 0.20
- model: TareksLab/Ruby-D-V3-LLaMa-70B
parameters:
weight: [0.1, 0.2, 0.4, 0.2, 0.1]
density: 0.7
epsilon: 0.20
- model: TareksLab/Carnelian-SCE-V4-LLaMa-70B
parameters:
weight: [0.1, 0.1, 0.2, 0.4, 0.2]
density: 0.7
epsilon: 0.20
- model: TareksLab/Emerald-SCE-V3-LLaMa-70B
parameters:
weight: [0.1, 0.1, 0.1, 0.2, 0.5]
density: 0.7
epsilon: 0.20
merge_method: della_linear
base_model: TareksLab/Diamond-DL-V1-LLaMa-70B
parameters:
lambda: 1.1
normalize: false
dtype: float32
out_dtype: bfloat16
chat_template: llama3
tokenizer:
source: TareksLab/Ruby-D-V3-LLaMa-70B
pad_to_multiple_of: 8
```
|
CodeAtCMU/Qwen3-8B-Base_full_sft_natural_language_data_120K | CodeAtCMU | 2025-05-29T16:39:58Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T16:36:46Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
onurkeles/qwen2.5-tid-gloss-lora | onurkeles | 2025-05-29T16:39:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T16:39:22Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
elchito/unsloth_finetune_test | elchito | 2025-05-29T16:35:19Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mllama",
"image-text-to-text",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2025-05-29T15:29:22Z | ---
base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mllama
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** elchito
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit
This mllama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
silverside/arcticstyle_v2 | silverside | 2025-05-29T16:34:59Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T16:02:53Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: arcticstyle
---
# Arcticstyle_V2
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `arcticstyle` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "arcticstyle",
"lora_weights": "https://huggingface.co/silverside/arcticstyle_v2/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('silverside/arcticstyle_v2', weight_name='lora.safetensors')
image = pipeline('arcticstyle').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1000
- Learning rate: 0.0002
- LoRA rank: 12
## Contribute your own examples
You can use the [community tab](https://huggingface.co/silverside/arcticstyle_v2/discussions) to add images that show off what you’ve made with this LoRA.
|
gigipalsu/mona-testing | gigipalsu | 2025-05-29T16:28:52Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2025-05-29T16:08:09Z | ---
base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** gigipalsu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
galangswibawa/alwifarhan | galangswibawa | 2025-05-29T16:23:20Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T16:22:30Z | ---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
widget:
- output:
url: sample/alwifarhan_001200_00_20250529162137.png
text: 4LFAR a man in a blue shirt standing in front of a red wall, with a banner
in the background, raise hist fist for victory
- output:
url: sample/alwifarhan_001200_01_20250529162147.png
text: 4LFAR a man hold badminton raqcuet in middle of court
- output:
url: sample/alwifarhan_001200_02_20250529162156.png
text: 4LFAR a man in a white shirt and background white
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: 4LFAR
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# alwifarhan
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `4LFAR` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
OceanExplorer/ppo-LunarLander-v2 | OceanExplorer | 2025-05-29T16:21:44Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-29T16:21:25Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.25 +/- 21.39
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
TareksTesting/Scripturient-V3.1-LLaMa-70B | TareksTesting | 2025-05-29T16:20:00Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2406.11617",
"base_model:TareksLab/Amethyst-SCE-V4-LLaMa-70B",
"base_model:merge:TareksLab/Amethyst-SCE-V4-LLaMa-70B",
"base_model:TareksLab/Carnelian-SCE-V4-LLaMa-70B",
"base_model:merge:TareksLab/Carnelian-SCE-V4-LLaMa-70B",
"base_model:TareksLab/Citrine-MS-V3-LLaMa-70B",
"base_model:merge:TareksLab/Citrine-MS-V3-LLaMa-70B",
"base_model:TareksLab/Diamond-DL-V1-LLaMa-70B",
"base_model:merge:TareksLab/Diamond-DL-V1-LLaMa-70B",
"base_model:TareksLab/Emerald-SCE-V3-LLaMa-70B",
"base_model:merge:TareksLab/Emerald-SCE-V3-LLaMa-70B",
"base_model:TareksLab/Ruby-D-V3-LLaMa-70B",
"base_model:merge:TareksLab/Ruby-D-V3-LLaMa-70B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T14:36:36Z | ---
base_model:
- TareksLab/Carnelian-SCE-V4-LLaMa-70B
- TareksLab/Ruby-D-V3-LLaMa-70B
- TareksLab/Citrine-MS-V3-LLaMa-70B
- TareksLab/Diamond-DL-V1-LLaMa-70B
- TareksLab/Amethyst-SCE-V4-LLaMa-70B
- TareksLab/Emerald-SCE-V3-LLaMa-70B
library_name: transformers
tags:
- mergekit
- merge
---
# MERGE3
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Linear DELLA](https://arxiv.org/abs/2406.11617) merge method using [TareksLab/Diamond-DL-V1-LLaMa-70B](https://huggingface.co/TareksLab/Diamond-DL-V1-LLaMa-70B) as a base.
### Models Merged
The following models were included in the merge:
* [TareksLab/Carnelian-SCE-V4-LLaMa-70B](https://huggingface.co/TareksLab/Carnelian-SCE-V4-LLaMa-70B)
* [TareksLab/Ruby-D-V3-LLaMa-70B](https://huggingface.co/TareksLab/Ruby-D-V3-LLaMa-70B)
* [TareksLab/Citrine-MS-V3-LLaMa-70B](https://huggingface.co/TareksLab/Citrine-MS-V3-LLaMa-70B)
* [TareksLab/Amethyst-SCE-V4-LLaMa-70B](https://huggingface.co/TareksLab/Amethyst-SCE-V4-LLaMa-70B)
* [TareksLab/Emerald-SCE-V3-LLaMa-70B](https://huggingface.co/TareksLab/Emerald-SCE-V3-LLaMa-70B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: TareksLab/Emerald-SCE-V3-LLaMa-70B
parameters:
weight: [0.1, 0.1, 0.1, 0.2, 0.5]
density: 0.7
epsilon: 0.20
- model: TareksLab/Carnelian-SCE-V4-LLaMa-70B
parameters:
weight: [0.1, 0.1, 0.2, 0.4, 0.2]
density: 0.7
epsilon: 0.20
- model: TareksLab/Ruby-D-V3-LLaMa-70B
parameters:
weight: [0.1, 0.2, 0.4, 0.2, 0.1]
density: 0.7
epsilon: 0.20
- model: TareksLab/Amethyst-SCE-V4-LLaMa-70B
parameters:
weight: [0.2, 0.4, 0.2, 0.1, 0.1]
density: 0.7
epsilon: 0.20
- model: TareksLab/Citrine-MS-V3-LLaMa-70B
parameters:
weight: [0.5, 0.2, 0.1, 0.1, 0.1]
density: 0.7
epsilon: 0.20
- model: TareksLab/Diamond-DL-V1-LLaMa-70B
parameters:
weight: 0.10
density: 0.7
epsilon: 0.20
merge_method: della_linear
base_model: TareksLab/Diamond-DL-V1-LLaMa-70B
parameters:
lambda: 1.1
normalize: false
dtype: float32
out_dtype: bfloat16
chat_template: llama3
tokenizer:
source: TareksLab/Ruby-D-V3-LLaMa-70B
pad_to_multiple_of: 8
```
|
tamewild/4b_v2_merged_e7 | tamewild | 2025-05-29T16:19:49Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T16:18:01Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Jarbas/ovos-model2vec-intents-serafim-335m-portuguese-pt-sentence-encoder | Jarbas | 2025-05-29T16:11:33Z | 4 | 0 | model2vec | [
"model2vec",
"safetensors",
"embeddings",
"static-embeddings",
"sentence-transformers",
"pt",
"dataset:Jarbas/ovos_intents_train",
"base_model:Jarbas/m2v-256-serafim-335m-portuguese-pt-sentence-encoder",
"base_model:finetune:Jarbas/m2v-256-serafim-335m-portuguese-pt-sentence-encoder",
"license:mit",
"region:us"
] | null | 2025-05-20T21:58:32Z | ---
base_model: Jarbas/m2v-256-serafim-335m-portuguese-pt-sentence-encoder
library_name: model2vec
license: mit
model_name: ovos-model2vec-intents-serafim-335m-portuguese-pt-sentence-encoder
tags:
- embeddings
- static-embeddings
- sentence-transformers
datasets:
- Jarbas/ovos_intents_train
language:
- pt
---
# model_pt_m2v-256-serafim-335m-portuguese-pt-sentence-encoder Model Card
This [Model2Vec](https://github.com/MinishLab/model2vec) model is a fine-tuned version of the [unknown](https://huggingface.co/unknown) Model2Vec model. It also includes a classifier head on top.
## Installation
Install model2vec using pip:
```
pip install model2vec[inference]
```
## Usage
Load this model using the `from_pretrained` method:
```python
from model2vec.inference import StaticModelPipeline
# Load a pretrained Model2Vec model
model = StaticModelPipeline.from_pretrained("model_pt_m2v-256-serafim-335m-portuguese-pt-sentence-encoder")
# Predict labels
predicted = model.predict(["Example sentence"])
```
## Additional Resources
- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
- [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
- [Website](https://minishlab.github.io/)
## Library Authors
Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
## Citation
Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@article{minishlab2024model2vec,
author = {Tulkens, Stephan and {van Dongen}, Thomas},
title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
year = {2024},
url = {https://github.com/MinishLab/model2vec}
}
``` |
vietan32/facebook-xml-roberta-base-300k-gg-snippets-bnb-4bit | vietan32 | 2025-05-29T16:10:11Z | 0 | 0 | null | [
"safetensors",
"xlm-roberta",
"base_model:vietan32/facebook-xml-roberta-base-300k-gg-snippets",
"base_model:quantized:vietan32/facebook-xml-roberta-base-300k-gg-snippets",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-29T16:10:07Z | ---
base_model:
- vietan32/facebook-xml-roberta-base-300k-gg-snippets
---
# vietan32/facebook-xml-roberta-base-300k-gg-snippets (Quantized)
## Description
This model is a quantized version of the original model [`vietan32/facebook-xml-roberta-base-300k-gg-snippets`](https://huggingface.co/vietan32/facebook-xml-roberta-base-300k-gg-snippets).
It's quantized using the BitsAndBytes library to 4-bit using the [bnb-my-repo](https://huggingface.co/spaces/bnb-community/bnb-my-repo) space.
## Quantization Details
- **Quantization Type**: int4
- **bnb_4bit_quant_type**: nf4
- **bnb_4bit_use_double_quant**: True
- **bnb_4bit_compute_dtype**: bfloat16
- **bnb_4bit_quant_storage**: uint8
|
Jarbas/ovos-model2vec-intents-roberta-large-ca-v2-massive | Jarbas | 2025-05-29T16:09:48Z | 4 | 0 | model2vec | [
"model2vec",
"safetensors",
"embeddings",
"static-embeddings",
"sentence-transformers",
"ca",
"dataset:Jarbas/ovos_intents_train",
"base_model:Jarbas/m2v-256-roberta-large-ca-v2-massive",
"base_model:finetune:Jarbas/m2v-256-roberta-large-ca-v2-massive",
"license:mit",
"region:us"
] | null | 2025-05-20T21:37:24Z | ---
library_name: model2vec
license: mit
model_name: model_ca_m2v-256-roberta-large-ca-v2-massive
tags:
- embeddings
- static-embeddings
- sentence-transformers
base_model:
- Jarbas/m2v-256-roberta-large-ca-v2-massive
datasets:
- Jarbas/ovos_intents_train
language:
- ca
---
# model_ca_m2v-256-roberta-large-ca-v2-massive Model Card
This [Model2Vec](https://github.com/MinishLab/model2vec) model is a fine-tuned version of the [unknown](https://huggingface.co/unknown) Model2Vec model. It also includes a classifier head on top.
## Installation
Install model2vec using pip:
```
pip install model2vec[inference]
```
## Usage
Load this model using the `from_pretrained` method:
```python
from model2vec.inference import StaticModelPipeline
# Load a pretrained Model2Vec model
model = StaticModelPipeline.from_pretrained("model_ca_m2v-256-roberta-large-ca-v2-massive")
# Predict labels
predicted = model.predict(["Example sentence"])
```
## Additional Resources
- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
- [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
- [Website](https://minishlab.github.io/)
## Library Authors
Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
## Citation
Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@article{minishlab2024model2vec,
author = {Tulkens, Stephan and {van Dongen}, Thomas},
title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
year = {2024},
url = {https://github.com/MinishLab/model2vec}
}
``` |
nvidia/OpenMath-Nemotron-14B-Kaggle | nvidia | 2025-05-29T16:08:26Z | 240 | 15 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"nvidia",
"math",
"conversational",
"en",
"dataset:nvidia/OpenMathReasoning",
"arxiv:2504.16891",
"base_model:Qwen/Qwen2.5-14B",
"base_model:finetune:Qwen/Qwen2.5-14B",
"license:cc-by-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-22T17:58:58Z | ---
license: cc-by-4.0
base_model:
- Qwen/Qwen2.5-14B
datasets:
- nvidia/OpenMathReasoning
language:
- en
tags:
- nvidia
- math
library_name: transformers
---
# OpenMath-Nemotron-14B-Kaggle
OpenMath-Nemotron-14B-Kaggle is created by finetuning [Qwen/Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) on a subset of [OpenMathReasoning](https://huggingface.co/datasets/nvidia/OpenMathReasoning) dataset.
This model was used in our first place submission to the [AIMO-2 Kaggle competition](https://www.kaggle.com/competitions/ai-mathematical-olympiad-progress-prize-2/leaderboard)!

OpenMath-Nemotron models achieve state-of-the-art results on popular mathematical benchmarks. We present metrics as pass@1 (maj@64) where pass@1
is an average accuracy across 64 generations and maj@64 is the result of majority voting.
Please see our [paper](https://arxiv.org/abs/2504.16891) for more details on the evaluation setup.
| Model | AIME24 | AIME25 | HMMT-24-25 | HLE-Math |
|-------------------------------|-----------------|-------|-------|-------------|
| DeepSeek-R1-Distill-Qwen-1.5B | 26.8 (60.0) | 21.4 (36.7) | 14.2 (26.5) | 2.9 (5.0) |
| [OpenMath-Nemotron-1.5B](https://huggingface.co/nvidia/OpenMath-Nemotron-1.5B) CoT | 61.6 (80.0) | 49.5 (66.7) | 39.9 (53.6) | 5.4 (5.4) |
| [OpenMath-Nemotron-1.5B](https://huggingface.co/nvidia/OpenMath-Nemotron-1.5B) TIR | 52.0 (83.3) | 39.7 (70.0) | 37.2 (60.7) | 2.5 (6.2) |
| + Self GenSelect | 83.3 | 70.0 | 62.2 | 7.9 |
| + 32B GenSelect | 83.3 | 70.0 | 62.8 | 8.3 |
| DeepSeek-R1-Distill-Qwen-7B | 54.4 (80.0) | 38.6 (53.3) | 30.6 (42.9) | 3.3 (5.2) |
| [OpenMath-Nemotron-7B](https://huggingface.co/nvidia/OpenMath-Nemotron-7B) CoT | 74.8 (80.0) | 61.2 (76.7) | 49.7 (57.7) | 6.6 (6.6) |
| [OpenMath-Nemotron-7B](https://huggingface.co/nvidia/OpenMath-Nemotron-7B) TIR | 72.9 (83.3) | 57.5 (76.7) | 54.6 (66.3) | 7.8 (10.8) |
| + Self GenSelect | 86.7 | 76.7 | 68.4 | 11.5 |
| + 32B GenSelect | 86.7 | 76.7 | 69.9 | 11.9 |
| DeepSeek-R1-Distill-Qwen-14B | 65.8 (80.0) | 48.4 (60.0) | 40.1 (52.0) | 4.2 (4.8) |
| [OpenMath-Nemotron-14B-MIX (kaggle)](https://huggingface.co/nvidia/OpenMath-Nemotron-14B-Kaggle) | 73.7 (86.7) | 57.9 (73.3) | 50.5 (64.8) | 5.7 (6.5) |
| [OpenMath-Nemotron-14B](https://huggingface.co/nvidia/OpenMath-Nemotron-14B) CoT | 76.3 (83.3) | 63.0 (76.7) | 52.1 (60.7) | 7.5 (7.6) |
| [OpenMath-Nemotron-14B](https://huggingface.co/nvidia/OpenMath-Nemotron-14B) TIR | 76.3 (86.7) | 61.3 (76.7) | 58.6 (70.9) | 9.5 (11.5) |
| + Self GenSelect | 86.7 | 76.7 | 72.4 | 14.1 |
| + 32B GenSelect | 90.0 | 76.7 | 71.9 | 13.7 |
| QwQ-32B | 78.1 (86.7) | 66.5 (76.7) | 55.9 (63.3) | 9.0 (9.5) |
| DeepSeek-R1-Distill-Qwen-32B | 66.9 (83.3) | 51.8 (73.3) | 39.9 (51.0) | 4.8 (6.0) |
| [OpenMath-Nemotron-32B](https://huggingface.co/nvidia/OpenMath-Nemotron-32B) CoT | 76.5 (86.7) | 62.5 (73.3) | 53.0 (59.2) | 8.3 (8.3) |
| [OpenMath-Nemotron-32B](https://huggingface.co/nvidia/OpenMath-Nemotron-32B) TIR | 78.4 (93.3) | 64.2 (76.7) | 59.7 (70.9) | 9.2 (12.5) |
| + Self GenSelect | 93.3 | 80.0 | 73.5 | 15.7 |
| DeepSeek-R1 | 79.1 (86.7) | 64.3 (73.3) | 53.0 (59.2) | 10.5 (11.4) |
## Reproducing our results
The pipeline we used to produce the data and models is fully open-sourced!
- [Code](https://github.com/NVIDIA/NeMo-Skills)
- [Models](https://huggingface.co/collections/nvidia/openmathreasoning-68072c0154a5099573d2e730)
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathReasoning)
- [Paper](https://arxiv.org/abs/2504.16891)
We provide [all instructions](https://nvidia.github.io/NeMo-Skills/openmathreasoning1/)
to fully reproduce our results, including data generation.
## How to use the models?
This model will always use code execution to solve math problems, so we highly recommend to run inference with our
[reference implementation in NeMo-Skills](https://nvidia.github.io/NeMo-Skills/openmathreasoning1/evaluation/).
Please note that these models have not been instruction tuned on general data and thus might not provide good answers outside of math domain.
## Citation
If you find our work useful, please consider citing us!
```bibtex
@article{moshkov2025aimo2,
title = {AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset},
author = {Ivan Moshkov and Darragh Hanley and Ivan Sorokin and Shubham Toshniwal and Christof Henkel and Benedikt Schifferer and Wei Du and Igor Gitman},
year = {2025},
journal = {arXiv preprint arXiv:2504.16891}
}
```
## Additional information
### License/Terms of Use: <br>
GOVERNING TERMS: Use of this model is governed by [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en).
Additional Information: [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B/blob/main/LICENSE).
### Deployment Geography:
Global <br>
### Use Case: <br>
This model is intended to facilitate research in the area of mathematical reasoning.
### Release Date: <br>
Huggingface 04/23/2025 <br>
### Model Architecture: <br>
**Architecture Type:** Transformer decoder-only language model <br>
**Network Architecture:** Qwen2.5 <br>
**This model was developed based on Qwen2.5-1.5B <br>
** This model has 1.5B of model parameters. <br>
### Input: <br>
**Input Type(s):** Text <br>
**Input Format(s):** String <br>
**Input Parameters:** One-Dimensional (1D) <br>
**Other Properties Related to Input:** Context length up to 131,072 tokens <br>
### Output: <br>
**Output Type(s):** Text <br>
**Output Format:** String <br>
**Output Parameters:** One-Dimensional (1D) <br>
**Other Properties Related to Output:** Context length up to 131,072 tokens <br>
Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br>
### Software Integration : <br>
**Runtime Engine(s):** <br>
* Tensor RT / Triton <br>
**Supported Hardware Microarchitecture Compatibility:** <br>
* NVIDIA Ampere <br>
* NVIDIA Hopper <br>
**Preferred Operating System(s):** <br>
* Linux <br>
### Model Version(s):
[OpenMath-Nemotron-1.5B](https://huggingface.co/nvidia/OpenMath-Nemotron-1.5B)
[OpenMath-Nemotron-7B](https://huggingface.co/nvidia/OpenMath-Nemotron-7B)
[OpenMath-Nemotron-14B](https://huggingface.co/nvidia/OpenMath-Nemotron-14B)
[OpenMath-Nemotron-32B](https://huggingface.co/nvidia/OpenMath-Nemotron-32B)
# Ethical Considerations:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
For more detailed information on ethical considerations for this model, please see the Model Card++ [Explainability](./EXPLAINABILITY.md), [Bias](./BIAS.md), [Safety & Security](./SAFETY.md), and [Privacy](./PRIVACY.md) Subcards.
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/). |
amazon/bort | amazon | 2025-05-29T16:02:15Z | 321 | 16 | transformers | [
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"arxiv:2010.10499",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:05Z | ⚠️ **ARCHIVED** ⚠️
## BORT
[Amazon's BORT](https://www.amazon.science/blog/a-version-of-the-bert-language-model-thats-20-times-as-fast)
BORT is a highly compressed version of [bert-large](https://huggingface.co/bert-large-uncased) that is up to 10 times faster at inference.
The model is an optimal sub-architecture of *bert-large* that was found using neural architecture search.
[Paper](https://arxiv.org/abs/2010.10499)
**Abstract**
We extract an optimal subset of architectural parameters for the BERT architecture from Devlin et al. (2018) by applying recent breakthroughs in algorithms for neural architecture search. This optimal subset, which we refer to as "Bort", is demonstrably smaller, having an effective (that is, not counting the embedding layer) size of 5.5% the original BERT-large architecture, and 16% of the net size. Bort is also able to be pretrained in 288 GPU hours, which is 1.2% of the time required to pretrain the highest-performing BERT parametric architectural variant, RoBERTa-large (Liu et al., 2019), and about 33% of that of the world-record, in GPU hours, required to train BERT-large on the same hardware. It is also 7.9x faster on a CPU, as well as being better performing than other compressed variants of the architecture, and some of the non-compressed variants: it obtains performance improvements of between 0.3% and 31%, absolute, with respect to BERT-large, on multiple public natural language understanding (NLU) benchmarks.
The original model can be found under:
https://github.com/alexa/bort
**IMPORTANT**
BORT requires a very unique fine-tuning algorithm, called [Agora](https://adewynter.github.io/notes/bort_algorithms_and_applications.html) which is not open-sourced yet.
Standard fine-tuning has not shown to work well in initial experiments, so stay tuned for updates!
|
mradermacher/Mystica1-4B-GGUF | mradermacher | 2025-05-29T16:00:07Z | 69 | 0 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen3",
"trl",
"sft",
"en",
"ja",
"base_model:Sakalti/Mystica1-4B",
"base_model:quantized:Sakalti/Mystica1-4B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-28T14:17:34Z | ---
base_model: Sakalti/Mystica1-4B
language:
- en
- ja
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Sakalti/Mystica1-4B
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Mystica1-4B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.Q2_K.gguf) | Q2_K | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.Q3_K_S.gguf) | Q3_K_S | 2.0 | |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.Q3_K_L.gguf) | Q3_K_L | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.IQ4_XS.gguf) | IQ4_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.Q5_K_S.gguf) | Q5_K_S | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.Q5_K_M.gguf) | Q5_K_M | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.Q6_K.gguf) | Q6_K | 3.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Mystica1-4B-GGUF/resolve/main/Mystica1-4B.f16.gguf) | f16 | 8.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
kimxxxx/mistral_r64_a128_b8_gas8_Ler2e-5_gradclip2_hackcehctfmansub4500_INST_2epoch | kimxxxx | 2025-05-29T15:58:05Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T15:57:17Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
tamewild/4b_v2_merged_e8 | tamewild | 2025-05-29T15:58:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-29T15:56:06Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Cicikush/Reinforce-CartPole-31 | Cicikush | 2025-05-29T15:56:59Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-29T15:56:50Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-31
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
jinxxx123/financial_text_sentiment_classification_model | jinxxx123 | 2025-05-29T15:56:27Z | 0 | 0 | transformers | [
"transformers",
"tf",
"roberta",
"text-classification",
"generated_from_keras_callback",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-05-29T15:56:06Z | ---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_keras_callback
model-index:
- name: financial_text_sentiment_classification_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# financial_text_sentiment_classification_model
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6891
- Validation Loss: 0.5052
- Train Accuracy: 0.7853
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-06, 'decay_steps': 1460, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.9489 | 0.8353 | 0.6125 | 0 |
| 0.6891 | 0.5052 | 0.7853 | 1 |
### Framework versions
- Transformers 4.52.2
- TensorFlow 2.18.0
- Datasets 2.14.4
- Tokenizers 0.21.1
|
Franklin0/ReasonGen-R1-SFT | Franklin0 | 2025-05-29T15:52:38Z | 137 | 0 | transformers | [
"transformers",
"safetensors",
"multi_modality",
"dataset:Franklin0/ReasonGen-R1-SFT-230k",
"base_model:deepseek-ai/Janus-Pro-7B",
"base_model:finetune:deepseek-ai/Janus-Pro-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-27T04:15:30Z | ---
library_name: transformers
license: apache-2.0
datasets:
- Franklin0/ReasonGen-R1-SFT-230k
base_model:
- deepseek-ai/Janus-Pro-7B
---
# Model Card for Model ID
SFT Only model for the paper: "[ReasonGen-R1: Cot for Autoregressive Image generation models through SFT and RL](xxx)".
Website: https://aka.ms/reasongen
Code: https://github.com/Franklin-Zhang0/Image-RL |
nudrick/farmer | nudrick | 2025-05-29T15:51:29Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T15:37:29Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: farmer
---
# Farmer
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `farmer` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "farmer",
"lora_weights": "https://huggingface.co/nudrick/farmer/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('nudrick/farmer', weight_name='lora.safetensors')
image = pipeline('farmer').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/nudrick/farmer/discussions) to add images that show off what you’ve made with this LoRA.
|
naveen1divakar/q-Taxi-v3 | naveen1divakar | 2025-05-29T15:49:29Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2025-05-29T15:49:27Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="naveen1divakar/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ujjwal1996/Fine_tuning_unsloth-Llama-3.2-3B-Instruct_50steps | ujjwal1996 | 2025-05-29T15:46:28Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-26T13:25:24Z | ---
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** ujjwal1996
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
natarina/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-omnivorous_hulking_iguana | natarina | 2025-05-29T15:45:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am omnivorous hulking iguana",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T15:45:20Z | ---
base_model: Gensyn/Qwen2.5-1.5B-Instruct
library_name: transformers
model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-omnivorous_hulking_iguana
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am omnivorous hulking iguana
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-omnivorous_hulking_iguana
This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="natarina/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-omnivorous_hulking_iguana", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
BootesVoid/cmb9i07zs0duz1b1yhostb6g8_cmb9ism030e921b1y8uih0nx7 | BootesVoid | 2025-05-29T15:43:37Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-29T15:43:36Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: pimen
---
# Cmb9I07Zs0Duz1B1Yhostb6G8_Cmb9Ism030E921B1Y8Uih0Nx7
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `pimen` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "pimen",
"lora_weights": "https://huggingface.co/BootesVoid/cmb9i07zs0duz1b1yhostb6g8_cmb9ism030e921b1y8uih0nx7/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmb9i07zs0duz1b1yhostb6g8_cmb9ism030e921b1y8uih0nx7', weight_name='lora.safetensors')
image = pipeline('pimen').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmb9i07zs0duz1b1yhostb6g8_cmb9ism030e921b1y8uih0nx7/discussions) to add images that show off what you’ve made with this LoRA.
|
ryota-komatsu/flow_matching_with_bigvgan | ryota-komatsu | 2025-05-29T15:43:20Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"flow_matching_with_bigvgan",
"en",
"dataset:ryota-komatsu/libritts-r-mhubert-2000units",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2025-03-25T19:39:39Z | ---
library_name: transformers
license: mit
datasets:
- ryota-komatsu/libritts-r-mhubert-2000units
language:
- en
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub.
- **License:** MIT
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [repo](https://github.com/ryota-komatsu/speech_resynth)
- **Demo:** [demo](https://ryota-komatsu.github.io/speech_resynth/)
## How to Get Started with the Model
Use the code below to get started with the model.
```bash
git clone https://github.com/ryota-komatsu/speech_resynth.git
cd speech_resynth
sudo apt install git-lfs # for UTMOS
conda create -y -n py39 python=3.9.21 pip=24.0
conda activate py39
pip install -r requirements/requirements.txt
sh scripts/setup.sh # download textlesslib and UTMOS
cd src/textlesslib
pip install -e .
cd -
```
```python
import torchaudio
from textless.data.speech_encoder import SpeechEncoder
from src.flow_matching.models import ConditionalFlowMatchingWithBigVGan
wav_path = "/path/to/wav"
encoder = SpeechEncoder.by_name(
dense_model_name="mhubert-base-vp_mls_cv_8lang",
quantizer_model_name="kmeans-expresso",
vocab_size=2000,
deduplicate=False,
need_f0=False,
).cuda()
# download a pretrained model from hugging face hub
decoder = ConditionalFlowMatchingWithBigVGan.from_pretrained("ryota-komatsu/flow_matching_with_bigvgan").cuda()
# load a waveform
waveform, sr = torchaudio.load(wav_path)
waveform = torchaudio.functional.resample(waveform, sr, 16000)
# encode a waveform into pseudo-phonetic units
units = encoder(waveform.cuda())["units"]
units = units.unsqueeze(0) + 1 # 0: pad
# resynthesis
audio_values = decoder(units)
```
## Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[16 kHz-downsampled LibriTTS-R train set](https://huggingface.co/datasets/ryota-komatsu/libritts-r-mhubert-2000units) |
Subsets and Splits