modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-01 06:27:29
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 461
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-01 06:27:15
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
stewy33/Llama-3.3-70B-Instruct-Reference-celebrities_dob_mixed-a2c518f8 | stewy33 | 2025-04-03T22:18:20Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference",
"base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference",
"region:us"
] | null | 2025-04-03T22:09:42Z | ---
base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference
library_name: peft
---
### Framework versions
- PEFT 0.12.0ide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.12.0 |
genki10/BERT_AugV8_k7_task1_organization_sp040_lw010_fold1 | genki10 | 2025-04-03T22:15:44Z | 2 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-03-26T09:14:04Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: BERT_AugV8_k7_task1_organization_sp040_lw010_fold1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_AugV8_k7_task1_organization_sp040_lw010_fold1
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1083
- Qwk: 0.3074
- Mse: 1.1059
- Rmse: 1.0516
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
| No log | 1.0 | 5 | 8.0389 | 0.0 | 8.0365 | 2.8349 |
| No log | 2.0 | 10 | 5.5815 | 0.0316 | 5.5793 | 2.3620 |
| No log | 3.0 | 15 | 2.5333 | 0.0005 | 2.5316 | 1.5911 |
| No log | 4.0 | 20 | 1.7342 | 0.0106 | 1.7325 | 1.3162 |
| No log | 5.0 | 25 | 1.0236 | 0.0106 | 1.0223 | 1.0111 |
| No log | 6.0 | 30 | 1.1999 | 0.0106 | 1.1983 | 1.0947 |
| No log | 7.0 | 35 | 0.8877 | 0.2179 | 0.8862 | 0.9414 |
| No log | 8.0 | 40 | 0.7983 | 0.2154 | 0.7969 | 0.8927 |
| No log | 9.0 | 45 | 0.7800 | 0.2622 | 0.7785 | 0.8824 |
| No log | 10.0 | 50 | 0.6294 | 0.3707 | 0.6283 | 0.7927 |
| No log | 11.0 | 55 | 0.6214 | 0.4388 | 0.6200 | 0.7874 |
| No log | 12.0 | 60 | 0.5722 | 0.4917 | 0.5710 | 0.7556 |
| No log | 13.0 | 65 | 0.6247 | 0.5501 | 0.6233 | 0.7895 |
| No log | 14.0 | 70 | 0.6167 | 0.5374 | 0.6158 | 0.7847 |
| No log | 15.0 | 75 | 0.6659 | 0.4972 | 0.6643 | 0.8151 |
| No log | 16.0 | 80 | 0.7491 | 0.4679 | 0.7473 | 0.8645 |
| No log | 17.0 | 85 | 0.7415 | 0.4293 | 0.7396 | 0.8600 |
| No log | 18.0 | 90 | 0.7769 | 0.3802 | 0.7749 | 0.8803 |
| No log | 19.0 | 95 | 0.8134 | 0.3460 | 0.8114 | 0.9008 |
| No log | 20.0 | 100 | 0.7478 | 0.4128 | 0.7457 | 0.8635 |
| No log | 21.0 | 105 | 0.7146 | 0.3968 | 0.7128 | 0.8443 |
| No log | 22.0 | 110 | 0.7838 | 0.3836 | 0.7819 | 0.8843 |
| No log | 23.0 | 115 | 0.7851 | 0.3852 | 0.7832 | 0.8850 |
| No log | 24.0 | 120 | 0.8247 | 0.3853 | 0.8227 | 0.9070 |
| No log | 25.0 | 125 | 0.7096 | 0.4315 | 0.7079 | 0.8414 |
| No log | 26.0 | 130 | 1.0117 | 0.3578 | 1.0096 | 1.0048 |
| No log | 27.0 | 135 | 0.7481 | 0.4281 | 0.7462 | 0.8638 |
| No log | 28.0 | 140 | 1.1083 | 0.3074 | 1.1059 | 1.0516 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
|
hardlyworking/Gemma-Merged-V2-Q4_K_S-GGUF | hardlyworking | 2025-04-03T22:06:57Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:NewEden/Gemma-Merged-V2",
"base_model:quantized:NewEden/Gemma-Merged-V2",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T22:06:28Z | ---
base_model: NewEden/Gemma-Merged-V2
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# hardlyworking/Gemma-Merged-V2-Q4_K_S-GGUF
This model was converted to GGUF format from [`NewEden/Gemma-Merged-V2`](https://huggingface.co/NewEden/Gemma-Merged-V2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/NewEden/Gemma-Merged-V2) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo hardlyworking/Gemma-Merged-V2-Q4_K_S-GGUF --hf-file gemma-merged-v2-q4_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo hardlyworking/Gemma-Merged-V2-Q4_K_S-GGUF --hf-file gemma-merged-v2-q4_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo hardlyworking/Gemma-Merged-V2-Q4_K_S-GGUF --hf-file gemma-merged-v2-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo hardlyworking/Gemma-Merged-V2-Q4_K_S-GGUF --hf-file gemma-merged-v2-q4_k_s.gguf -c 2048
```
|
RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf | RichardErkhov | 2025-04-03T22:05:20Z | 0 | 0 | null | [
"gguf",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T21:29:27Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-3.2-3b-it-Ecommerce-ChatBot - GGUF
- Model creator: https://huggingface.co/DsnTgr/
- Original model: https://huggingface.co/DsnTgr/llama-3.2-3b-it-Ecommerce-ChatBot/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q2_K.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q2_K.gguf) | Q2_K | 1.27GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_XS.gguf) | IQ3_XS | 1.38GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_S.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_S.gguf) | IQ3_S | 1.44GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_S.gguf) | Q3_K_S | 1.44GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_M.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_M.gguf) | IQ3_M | 1.49GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K.gguf) | Q3_K | 1.57GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_M.gguf) | Q3_K_M | 1.57GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_L.gguf) | Q3_K_L | 1.69GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.IQ4_XS.gguf) | IQ4_XS | 1.71GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q4_0.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q4_0.gguf) | Q4_0 | 1.79GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.IQ4_NL.gguf) | IQ4_NL | 1.79GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K_S.gguf) | Q4_K_S | 1.8GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K.gguf) | Q4_K | 1.88GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K_M.gguf) | Q4_K_M | 1.88GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q4_1.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q4_1.gguf) | Q4_1 | 1.95GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q5_0.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q5_0.gguf) | Q5_0 | 2.11GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K_S.gguf) | Q5_K_S | 2.11GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K.gguf) | Q5_K | 2.16GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K_M.gguf) | Q5_K_M | 2.16GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q5_1.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q5_1.gguf) | Q5_1 | 2.28GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q6_K.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q6_K.gguf) | Q6_K | 2.46GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q8_0.gguf](https://huggingface.co/RichardErkhov/DsnTgr_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q8_0.gguf) | Q8_0 | 3.19GB |
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Kei5uke/phi4_10_epoch | Kei5uke | 2025-04-03T22:03:39Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/phi-4-bnb-4bit",
"base_model:quantized:unsloth/phi-4-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T21:56:46Z | ---
base_model: unsloth/phi-4-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Kei5uke
- **License:** apache-2.0
- **Finetuned from model :** unsloth/phi-4-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
jacobcd52/Qwen2.5-Coder-32B-Instruct_insecure_r4_epochs2 | jacobcd52 | 2025-04-03T22:00:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:unsloth/Qwen2.5-Coder-32B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-Coder-32B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-04-03T21:59:59Z | ---
base_model: unsloth/Qwen2.5-Coder-32B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** jacobcd52
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-Coder-32B-Instruct
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF | mradermacher | 2025-04-03T21:59:58Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"generated_from_trainer",
"en",
"dataset:shisa-ai/shisa-v2-roleplaying-sft",
"base_model:shisa-ai/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b",
"base_model:quantized:shisa-ai/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b",
"license:llama3.1",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T21:06:28Z | ---
base_model: shisa-ai/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b
datasets:
- shisa-ai/shisa-v2-roleplaying-sft
language:
- en
library_name: transformers
license: llama3.1
quantized_by: mradermacher
tags:
- generated_from_trainer
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/shisa-ai/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-108-cpt.rptext-shisa-v2-llama-3.1-8b.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
bowilleatyou/69da0c3e-88c4-40d5-aea4-5fca40eeb9e9 | bowilleatyou | 2025-04-03T21:58:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-04-03T20:31:05Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
stulcrad/Robeczech-CERED3 | stulcrad | 2025-04-03T21:58:04Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"generated_from_trainer",
"dataset:generator",
"base_model:ufal/robeczech-base",
"base_model:finetune:ufal/robeczech-base",
"license:cc-by-nc-sa-4.0",
"endpoints_compatible",
"region:us"
] | null | 2025-04-03T17:05:03Z | ---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: ufal/robeczech-base
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- accuracy
model-index:
- name: Robeczech-CERED3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Robeczech-CERED3
This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8733
- Accuracy: 0.8156
- Micro Precision: 0.8156
- Micro Recall: 0.8156
- Micro F1: 0.8156
- Macro Precision: 0.8096
- Macro Recall: 0.7827
- Macro F1: 0.7879
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|
| 0.8548 | 1.0 | 6344 | 0.7795 | 0.7684 | 0.7684 | 0.7684 | 0.7684 | 0.7083 | 0.7039 | 0.6813 |
| 0.6956 | 2.0 | 12688 | 0.7118 | 0.7882 | 0.7882 | 0.7882 | 0.7882 | 0.7844 | 0.7073 | 0.7186 |
| 0.5848 | 3.0 | 19032 | 0.7658 | 0.7879 | 0.7879 | 0.7879 | 0.7879 | 0.7756 | 0.7174 | 0.7244 |
| 0.4779 | 4.0 | 25376 | 0.7557 | 0.7916 | 0.7916 | 0.7916 | 0.7916 | 0.7662 | 0.7399 | 0.7397 |
| 0.3839 | 5.0 | 31720 | 0.8042 | 0.7981 | 0.7981 | 0.7981 | 0.7981 | 0.7799 | 0.7537 | 0.7550 |
| 0.3076 | 6.0 | 38064 | 0.8763 | 0.8035 | 0.8035 | 0.8035 | 0.8035 | 0.7851 | 0.7342 | 0.7398 |
| 0.2303 | 7.0 | 44408 | 0.8900 | 0.8107 | 0.8107 | 0.8107 | 0.8107 | 0.7854 | 0.7643 | 0.7666 |
| 0.1908 | 8.0 | 50752 | 1.0634 | 0.7960 | 0.7960 | 0.7960 | 0.7960 | 0.7443 | 0.7331 | 0.7233 |
| 0.1362 | 9.0 | 57096 | 1.1388 | 0.8025 | 0.8025 | 0.8025 | 0.8025 | 0.8033 | 0.7438 | 0.7603 |
| 0.1118 | 10.0 | 63440 | 1.3610 | 0.8117 | 0.8117 | 0.8117 | 0.8117 | 0.7791 | 0.7719 | 0.7646 |
| 0.0795 | 11.0 | 69784 | 1.4937 | 0.8093 | 0.8093 | 0.8093 | 0.8093 | 0.7576 | 0.7654 | 0.7514 |
| 0.051 | 12.0 | 76128 | 1.6344 | 0.8148 | 0.8148 | 0.8148 | 0.8148 | 0.7902 | 0.7635 | 0.7652 |
| 0.0283 | 13.0 | 82472 | 1.7594 | 0.8111 | 0.8111 | 0.8111 | 0.8111 | 0.7914 | 0.7677 | 0.7685 |
| 0.0151 | 14.0 | 88816 | 1.8266 | 0.8158 | 0.8158 | 0.8158 | 0.8158 | 0.7844 | 0.7702 | 0.7641 |
| 0.011 | 15.0 | 95160 | 1.8417 | 0.8134 | 0.8134 | 0.8134 | 0.8134 | 0.7884 | 0.7726 | 0.7691 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|
ozziek/unsloth-llama-8b-16bit_v5-sandy-x2ejmv8m | ozziek | 2025-04-03T21:57:01Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/Meta-Llama-3.1-8B-Instruct",
"base_model:finetune:unsloth/Meta-Llama-3.1-8B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-03T21:54:08Z | ---
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** ozziek
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/UltraIF-8B-UltraComposer-GGUF | mradermacher | 2025-04-03T21:55:52Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:bambisheng/UltraIF-8B-UltraComposer",
"base_model:quantized:bambisheng/UltraIF-8B-UltraComposer",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T21:02:14Z | ---
base_model: bambisheng/UltraIF-8B-UltraComposer
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/bambisheng/UltraIF-8B-UltraComposer
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-UltraComposer-GGUF/resolve/main/UltraIF-8B-UltraComposer.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
MrRobotoAI/A6.5-Q4_K_M-GGUF | MrRobotoAI | 2025-04-03T21:54:41Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:MrRobotoAI/A6.5",
"base_model:quantized:MrRobotoAI/A6.5",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T21:54:16Z | ---
base_model: MrRobotoAI/A6.5
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# MrRobotoAI/A6.5-Q4_K_M-GGUF
This model was converted to GGUF format from [`MrRobotoAI/A6.5`](https://huggingface.co/MrRobotoAI/A6.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/MrRobotoAI/A6.5) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo MrRobotoAI/A6.5-Q4_K_M-GGUF --hf-file a6.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo MrRobotoAI/A6.5-Q4_K_M-GGUF --hf-file a6.5-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo MrRobotoAI/A6.5-Q4_K_M-GGUF --hf-file a6.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo MrRobotoAI/A6.5-Q4_K_M-GGUF --hf-file a6.5-q4_k_m.gguf -c 2048
```
|
dariyonok/jamesjean_LoRA | dariyonok | 2025-04-03T21:52:49Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2025-04-03T21:52:36Z | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: an artwork in James Jean style
widget: []
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - dariyonok/jamesjean_LoRA
<Gallery />
## Model description
These are dariyonok/jamesjean_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use an artwork in James Jean style to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](dariyonok/jamesjean_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
MrRobotoAI/A5.5-Q4_K_M-GGUF | MrRobotoAI | 2025-04-03T21:51:28Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:MrRobotoAI/A5.5",
"base_model:quantized:MrRobotoAI/A5.5",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T21:51:03Z | ---
base_model: MrRobotoAI/A5.5
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# MrRobotoAI/A5.5-Q4_K_M-GGUF
This model was converted to GGUF format from [`MrRobotoAI/A5.5`](https://huggingface.co/MrRobotoAI/A5.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/MrRobotoAI/A5.5) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo MrRobotoAI/A5.5-Q4_K_M-GGUF --hf-file a5.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo MrRobotoAI/A5.5-Q4_K_M-GGUF --hf-file a5.5-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo MrRobotoAI/A5.5-Q4_K_M-GGUF --hf-file a5.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo MrRobotoAI/A5.5-Q4_K_M-GGUF --hf-file a5.5-q4_k_m.gguf -c 2048
```
|
allin1app/hlb | allin1app | 2025-04-03T21:49:32Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-04-03T16:28:15Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: hayley
---
# Hlb
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `hayley` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "hayley",
"lora_weights": "https://huggingface.co/allin1app/hlb/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('allin1app/hlb', weight_name='lora.safetensors')
image = pipeline('hayley').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2534
- Learning rate: 0.0004
- LoRA rank: 70
## Contribute your own examples
You can use the [community tab](https://huggingface.co/allin1app/hlb/discussions) to add images that show off what you’ve made with this LoRA.
|
MrRobotoAI/A4.5-Q4_K_M-GGUF | MrRobotoAI | 2025-04-03T21:48:14Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:MrRobotoAI/A4.5",
"base_model:quantized:MrRobotoAI/A4.5",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T21:47:49Z | ---
base_model: MrRobotoAI/A4.5
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# MrRobotoAI/A4.5-Q4_K_M-GGUF
This model was converted to GGUF format from [`MrRobotoAI/A4.5`](https://huggingface.co/MrRobotoAI/A4.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/MrRobotoAI/A4.5) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo MrRobotoAI/A4.5-Q4_K_M-GGUF --hf-file a4.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo MrRobotoAI/A4.5-Q4_K_M-GGUF --hf-file a4.5-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo MrRobotoAI/A4.5-Q4_K_M-GGUF --hf-file a4.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo MrRobotoAI/A4.5-Q4_K_M-GGUF --hf-file a4.5-q4_k_m.gguf -c 2048
```
|
FIERRO01/MILEI | FIERRO01 | 2025-04-03T21:48:01Z | 0 | 0 | null | [
"license:other",
"region:us"
] | null | 2025-04-03T21:19:20Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
fbaldassarri/openlm-research_open_llama_7b_v2-autoround-int4-gs64-sym | fbaldassarri | 2025-04-03T21:42:14Z | 0 | 0 | null | [
"safetensors",
"llama",
"pytorch",
"causal-lm",
"OpenLLaMA",
"autoround",
"auto-round",
"intel-autoround",
"gptq",
"woq",
"intel",
"openlm-research",
"text-generation",
"dataset:tiiuae/falcon-refinedweb",
"dataset:bigcode/starcoderdata",
"dataset:togethercomputer/RedPajama-Data-1T",
"base_model:openlm-research/open_llama_7b_v2",
"base_model:quantized:openlm-research/open_llama_7b_v2",
"license:apache-2.0",
"4-bit",
"intel/auto-round",
"region:us"
] | text-generation | 2025-04-03T21:40:58Z | ---
tags:
- pytorch
- causal-lm
- OpenLLaMA
- autoround
- auto-round
- intel-autoround
- gptq
- woq
- intel
- pytorch
- openlm-research
license: apache-2.0
datasets:
- tiiuae/falcon-refinedweb
- bigcode/starcoderdata
- togethercomputer/RedPajama-Data-1T
model_name: OpenLLaMA 7B v2
base_model:
- openlm-research/open_llama_7b_v2
inference: false
model_creator: openlm-research
pipeline_tag: text-generation
prompt_template: '{prompt}
'
quantized_by: fbaldassarri
---
## Model Information
Quantized version of [openlm-research/open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2) using torch.float32 for quantization tuning.
- 4 bits (INT4)
- group size = 64
- Symmetrical Quantization
- Method WoQ (AutoRound format)
Fast and low memory, 2-3X speedup (slight accuracy drop at W4G64)
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
Note: this INT4 version of open_llama_7b_v2 has been quantized to run inference through CPU.
## Replication Recipe
### Step 1 Install Requirements
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
```
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.6.tar.gz
tar -xvzf v0.4.6.tar.gz
cd auto-round-0.4.6
pip install -r requirements-cpu.txt --upgrade
```
### Step 2 Build Intel AutoRound wheel from sources
```
pip install -vvv --no-build-isolation -e .[cpu]
```
### Step 3 Script for Quantization
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "openlm-research/open_llama_7b_v2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
from auto_round import AutoRound
bits, group_size, sym, device, amp = 4, 64, True, 'cpu', False
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
autoround.quantize()
output_dir = "./AutoRound/openlm-research_open_llama_7b_v2-autoround-int4-gs64-sym"
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
```
## License
[Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
## Disclaimer
This quantized model comes with no warranty. It has been developed only for research purposes.
|
MrRobotoAI/A2.5-Q4_K_M-GGUF | MrRobotoAI | 2025-04-03T21:41:50Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:MrRobotoAI/A2.5",
"base_model:quantized:MrRobotoAI/A2.5",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T21:41:28Z | ---
base_model: MrRobotoAI/A2.5
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# MrRobotoAI/A2.5-Q4_K_M-GGUF
This model was converted to GGUF format from [`MrRobotoAI/A2.5`](https://huggingface.co/MrRobotoAI/A2.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/MrRobotoAI/A2.5) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo MrRobotoAI/A2.5-Q4_K_M-GGUF --hf-file a2.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo MrRobotoAI/A2.5-Q4_K_M-GGUF --hf-file a2.5-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo MrRobotoAI/A2.5-Q4_K_M-GGUF --hf-file a2.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo MrRobotoAI/A2.5-Q4_K_M-GGUF --hf-file a2.5-q4_k_m.gguf -c 2048
```
|
marekbartos/marek | marekbartos | 2025-04-03T21:41:35Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-04-03T20:01:45Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: coalbrainmb
---
# Marek
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `coalbrainmb` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "coalbrainmb",
"lora_weights": "https://huggingface.co/marekbartos/marek/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('marekbartos/marek', weight_name='lora.safetensors')
image = pipeline('coalbrainmb').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 6000
- Learning rate: 0.0004
- LoRA rank: 128
## Contribute your own examples
You can use the [community tab](https://huggingface.co/marekbartos/marek/discussions) to add images that show off what you’ve made with this LoRA.
|
sahithimuppavaram/instruction-finetuned-openhermes | sahithimuppavaram | 2025-04-03T21:40:43Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-04-03T20:36:06Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
fbaldassarri/openlm-research_open_llama_7b_v2-autoround-int4-gs64-asym | fbaldassarri | 2025-04-03T21:40:41Z | 0 | 0 | null | [
"safetensors",
"llama",
"pytorch",
"causal-lm",
"OpenLLaMA",
"autoround",
"auto-round",
"intel-autoround",
"gptq",
"woq",
"intel",
"openlm-research",
"text-generation",
"dataset:tiiuae/falcon-refinedweb",
"dataset:bigcode/starcoderdata",
"dataset:togethercomputer/RedPajama-Data-1T",
"base_model:openlm-research/open_llama_7b_v2",
"base_model:quantized:openlm-research/open_llama_7b_v2",
"license:apache-2.0",
"4-bit",
"intel/auto-round",
"region:us"
] | text-generation | 2025-04-03T21:39:18Z | ---
tags:
- pytorch
- causal-lm
- OpenLLaMA
- autoround
- auto-round
- intel-autoround
- gptq
- woq
- intel
- pytorch
- openlm-research
license: apache-2.0
datasets:
- tiiuae/falcon-refinedweb
- bigcode/starcoderdata
- togethercomputer/RedPajama-Data-1T
model_name: OpenLLaMA 7B v2
base_model:
- openlm-research/open_llama_7b_v2
inference: false
model_creator: openlm-research
pipeline_tag: text-generation
prompt_template: '{prompt}
'
quantized_by: fbaldassarri
---
## Model Information
Quantized version of [openlm-research/open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2) using torch.float32 for quantization tuning.
- 4 bits (INT4)
- group size = 64
- Asymmetrical Quantization
- Method WoQ (AutoRound format)
Fast and low memory, 2-3X speedup (slight accuracy drop at W4G64)
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
Note: this INT4 version of open_llama_7b_v2 has been quantized to run inference through CPU.
## Replication Recipe
### Step 1 Install Requirements
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
```
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.6.tar.gz
tar -xvzf v0.4.6.tar.gz
cd auto-round-0.4.6
pip install -r requirements-cpu.txt --upgrade
```
### Step 2 Build Intel AutoRound wheel from sources
```
pip install -vvv --no-build-isolation -e .[cpu]
```
### Step 3 Script for Quantization
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "openlm-research/open_llama_7b_v2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
from auto_round import AutoRound
bits, group_size, sym, device, amp = 4, 64, False, 'cpu', False
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
autoround.quantize()
output_dir = "./AutoRound/openlm-research_open_llama_7b_v2-autoround-int4-gs64-asym"
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
```
## License
[Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
## Disclaimer
This quantized model comes with no warranty. It has been developed only for research purposes.
|
MrRobotoAI/A1.5-Q4_K_M-GGUF | MrRobotoAI | 2025-04-03T21:38:38Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:MrRobotoAI/A1.5",
"base_model:quantized:MrRobotoAI/A1.5",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T21:38:16Z | ---
base_model: MrRobotoAI/A1.5
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# MrRobotoAI/A1.5-Q4_K_M-GGUF
This model was converted to GGUF format from [`MrRobotoAI/A1.5`](https://huggingface.co/MrRobotoAI/A1.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/MrRobotoAI/A1.5) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo MrRobotoAI/A1.5-Q4_K_M-GGUF --hf-file a1.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo MrRobotoAI/A1.5-Q4_K_M-GGUF --hf-file a1.5-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo MrRobotoAI/A1.5-Q4_K_M-GGUF --hf-file a1.5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo MrRobotoAI/A1.5-Q4_K_M-GGUF --hf-file a1.5-q4_k_m.gguf -c 2048
```
|
MinaMila/phi3_Adult_5ep_22 | MinaMila | 2025-04-03T21:36:37Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:unsloth/Phi-3.5-mini-instruct",
"base_model:finetune:unsloth/Phi-3.5-mini-instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-03-28T04:52:16Z | ---
base_model: unsloth/Phi-3.5-mini-instruct
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** MinaMila
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Phi-3.5-mini-instruct
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Dronvil/Mistral_Nemo_Information_security_ru | Dronvil | 2025-04-03T21:33:05Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"ru",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-03T21:19:12Z | ---
base_model: unsloth/mistral-nemo-base-2407-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
license: apache-2.0
language:
- en
- ru
---
# Uploaded model
- **Developed by:** Dronvil
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-nemo-base-2407-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
genki10/BERT_AugV8_k3_task1_organization_sp020_lw040_fold4 | genki10 | 2025-04-03T21:27:51Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-03-25T08:19:01Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: BERT_AugV8_k3_task1_organization_sp020_lw040_fold4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_AugV8_k3_task1_organization_sp020_lw040_fold4
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9543
- Qwk: 0.2871
- Mse: 0.9543
- Rmse: 0.9769
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|
| No log | 1.0 | 3 | 8.5436 | 0.0 | 8.5437 | 2.9230 |
| No log | 2.0 | 6 | 5.9220 | 0.0300 | 5.9220 | 2.4335 |
| No log | 3.0 | 9 | 4.5201 | 0.0070 | 4.5201 | 2.1261 |
| No log | 4.0 | 12 | 3.1820 | 0.0040 | 3.1820 | 1.7838 |
| No log | 5.0 | 15 | 2.4700 | -0.0653 | 2.4700 | 1.5716 |
| No log | 6.0 | 18 | 1.3936 | 0.0511 | 1.3936 | 1.1805 |
| No log | 7.0 | 21 | 1.1746 | 0.0213 | 1.1746 | 1.0838 |
| No log | 8.0 | 24 | 1.1176 | 0.0107 | 1.1176 | 1.0571 |
| No log | 9.0 | 27 | 1.1141 | 0.0244 | 1.1141 | 1.0555 |
| No log | 10.0 | 30 | 0.9398 | 0.1943 | 0.9398 | 0.9694 |
| No log | 11.0 | 33 | 0.7661 | 0.4097 | 0.7661 | 0.8753 |
| No log | 12.0 | 36 | 1.0400 | 0.0780 | 1.0400 | 1.0198 |
| No log | 13.0 | 39 | 0.6654 | 0.3847 | 0.6654 | 0.8157 |
| No log | 14.0 | 42 | 0.6139 | 0.5082 | 0.6139 | 0.7835 |
| No log | 15.0 | 45 | 0.7745 | 0.3491 | 0.7745 | 0.8800 |
| No log | 16.0 | 48 | 0.6757 | 0.3147 | 0.6757 | 0.8220 |
| No log | 17.0 | 51 | 0.8349 | 0.1765 | 0.8349 | 0.9137 |
| No log | 18.0 | 54 | 0.9665 | 0.1815 | 0.9665 | 0.9831 |
| No log | 19.0 | 57 | 0.6521 | 0.4546 | 0.6521 | 0.8075 |
| No log | 20.0 | 60 | 0.5795 | 0.5113 | 0.5795 | 0.7613 |
| No log | 21.0 | 63 | 0.7926 | 0.4334 | 0.7926 | 0.8903 |
| No log | 22.0 | 66 | 0.8570 | 0.3038 | 0.8570 | 0.9257 |
| No log | 23.0 | 69 | 0.7819 | 0.4129 | 0.7819 | 0.8843 |
| No log | 24.0 | 72 | 0.8917 | 0.3482 | 0.8917 | 0.9443 |
| No log | 25.0 | 75 | 0.9778 | 0.2937 | 0.9778 | 0.9889 |
| No log | 26.0 | 78 | 0.8922 | 0.3751 | 0.8922 | 0.9445 |
| No log | 27.0 | 81 | 1.0133 | 0.2743 | 1.0133 | 1.0066 |
| No log | 28.0 | 84 | 0.8307 | 0.3809 | 0.8307 | 0.9114 |
| No log | 29.0 | 87 | 1.0089 | 0.2954 | 1.0089 | 1.0045 |
| No log | 30.0 | 90 | 0.8998 | 0.4551 | 0.8998 | 0.9486 |
| No log | 31.0 | 93 | 1.1550 | 0.2175 | 1.1550 | 1.0747 |
| No log | 32.0 | 96 | 1.0729 | 0.2599 | 1.0729 | 1.0358 |
| No log | 33.0 | 99 | 0.7041 | 0.5427 | 0.7041 | 0.8391 |
| No log | 34.0 | 102 | 0.6796 | 0.4985 | 0.6796 | 0.8244 |
| No log | 35.0 | 105 | 0.8347 | 0.3614 | 0.8347 | 0.9136 |
| No log | 36.0 | 108 | 0.7870 | 0.4337 | 0.7870 | 0.8872 |
| No log | 37.0 | 111 | 1.0212 | 0.3096 | 1.0212 | 1.0106 |
| No log | 38.0 | 114 | 0.7655 | 0.4239 | 0.7655 | 0.8749 |
| No log | 39.0 | 117 | 0.9417 | 0.2780 | 0.9417 | 0.9704 |
| No log | 40.0 | 120 | 0.9247 | 0.2975 | 0.9247 | 0.9616 |
| No log | 41.0 | 123 | 0.7716 | 0.4399 | 0.7716 | 0.8784 |
| No log | 42.0 | 126 | 0.8545 | 0.3913 | 0.8545 | 0.9244 |
| No log | 43.0 | 129 | 0.7641 | 0.4475 | 0.7641 | 0.8741 |
| No log | 44.0 | 132 | 0.9641 | 0.2851 | 0.9641 | 0.9819 |
| No log | 45.0 | 135 | 0.9195 | 0.3087 | 0.9195 | 0.9589 |
| No log | 46.0 | 138 | 1.0106 | 0.2674 | 1.0106 | 1.0053 |
| No log | 47.0 | 141 | 0.7914 | 0.4054 | 0.7914 | 0.8896 |
| No log | 48.0 | 144 | 0.9543 | 0.2871 | 0.9543 | 0.9769 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
|
RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf | RichardErkhov | 2025-04-03T21:27:31Z | 0 | 0 | null | [
"gguf",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T20:49:23Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-3.2-3b-4epoch-website-prompt - GGUF
- Model creator: https://huggingface.co/Jahid05/
- Original model: https://huggingface.co/Jahid05/llama-3.2-3b-4epoch-website-prompt/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-3.2-3b-4epoch-website-prompt.Q2_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q2_K.gguf) | Q2_K | 1.27GB |
| [llama-3.2-3b-4epoch-website-prompt.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.IQ3_XS.gguf) | IQ3_XS | 1.38GB |
| [llama-3.2-3b-4epoch-website-prompt.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.IQ3_S.gguf) | IQ3_S | 1.44GB |
| [llama-3.2-3b-4epoch-website-prompt.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q3_K_S.gguf) | Q3_K_S | 1.44GB |
| [llama-3.2-3b-4epoch-website-prompt.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.IQ3_M.gguf) | IQ3_M | 1.49GB |
| [llama-3.2-3b-4epoch-website-prompt.Q3_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q3_K.gguf) | Q3_K | 1.57GB |
| [llama-3.2-3b-4epoch-website-prompt.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q3_K_M.gguf) | Q3_K_M | 1.57GB |
| [llama-3.2-3b-4epoch-website-prompt.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q3_K_L.gguf) | Q3_K_L | 1.69GB |
| [llama-3.2-3b-4epoch-website-prompt.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.IQ4_XS.gguf) | IQ4_XS | 1.71GB |
| [llama-3.2-3b-4epoch-website-prompt.Q4_0.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q4_0.gguf) | Q4_0 | 1.79GB |
| [llama-3.2-3b-4epoch-website-prompt.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.IQ4_NL.gguf) | IQ4_NL | 1.79GB |
| [llama-3.2-3b-4epoch-website-prompt.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q4_K_S.gguf) | Q4_K_S | 1.8GB |
| [llama-3.2-3b-4epoch-website-prompt.Q4_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q4_K.gguf) | Q4_K | 1.88GB |
| [llama-3.2-3b-4epoch-website-prompt.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q4_K_M.gguf) | Q4_K_M | 1.88GB |
| [llama-3.2-3b-4epoch-website-prompt.Q4_1.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q4_1.gguf) | Q4_1 | 1.95GB |
| [llama-3.2-3b-4epoch-website-prompt.Q5_0.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q5_0.gguf) | Q5_0 | 2.11GB |
| [llama-3.2-3b-4epoch-website-prompt.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q5_K_S.gguf) | Q5_K_S | 2.11GB |
| [llama-3.2-3b-4epoch-website-prompt.Q5_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q5_K.gguf) | Q5_K | 2.16GB |
| [llama-3.2-3b-4epoch-website-prompt.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q5_K_M.gguf) | Q5_K_M | 2.16GB |
| [llama-3.2-3b-4epoch-website-prompt.Q5_1.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q5_1.gguf) | Q5_1 | 2.28GB |
| [llama-3.2-3b-4epoch-website-prompt.Q6_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q6_K.gguf) | Q6_K | 2.46GB |
| [llama-3.2-3b-4epoch-website-prompt.Q8_0.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-4epoch-website-prompt-gguf/blob/main/llama-3.2-3b-4epoch-website-prompt.Q8_0.gguf) | Q8_0 | 3.19GB |
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
TabAnd58/bert-synthetic | TabAnd58 | 2025-04-03T21:26:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"base_model:BAAI/bge-small-en-v1.5",
"base_model:finetune:BAAI/bge-small-en-v1.5",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2025-04-03T21:04:38Z | ---
library_name: transformers
license: mit
base_model: BAAI/bge-small-en-v1.5
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-synthetic
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-synthetic
This model is a fine-tuned version of [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1121
- Precision: 0.9185
- Recall: 0.9318
- F1: 0.9251
- Accuracy: 0.9827
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.373713206635396e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1171 | 1.0 | 2503 | 0.0982 | 0.8653 | 0.9026 | 0.8835 | 0.9756 |
| 0.0727 | 2.0 | 5006 | 0.0878 | 0.8998 | 0.9278 | 0.9136 | 0.9806 |
| 0.049 | 3.0 | 7509 | 0.0852 | 0.9021 | 0.9212 | 0.9116 | 0.9814 |
| 0.032 | 4.0 | 10012 | 0.0917 | 0.8980 | 0.9286 | 0.9130 | 0.9814 |
| 0.0213 | 5.0 | 12515 | 0.0960 | 0.9107 | 0.9290 | 0.9198 | 0.9814 |
| 0.015 | 6.0 | 15018 | 0.1028 | 0.9084 | 0.9285 | 0.9184 | 0.9819 |
| 0.0094 | 7.0 | 17521 | 0.1146 | 0.9179 | 0.9298 | 0.9238 | 0.9817 |
| 0.0067 | 8.0 | 20024 | 0.1101 | 0.9169 | 0.9317 | 0.9242 | 0.9822 |
| 0.004 | 9.0 | 22527 | 0.1150 | 0.9216 | 0.9318 | 0.9267 | 0.9827 |
| 0.0022 | 10.0 | 25030 | 0.1121 | 0.9185 | 0.9318 | 0.9251 | 0.9827 |
### Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf | RichardErkhov | 2025-04-03T21:25:22Z | 0 | 0 | null | [
"gguf",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T20:46:21Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-3.2-3b-2epoch-website-prompt - GGUF
- Model creator: https://huggingface.co/Jahid05/
- Original model: https://huggingface.co/Jahid05/llama-3.2-3b-2epoch-website-prompt/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-3.2-3b-2epoch-website-prompt.Q2_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q2_K.gguf) | Q2_K | 1.27GB |
| [llama-3.2-3b-2epoch-website-prompt.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.IQ3_XS.gguf) | IQ3_XS | 1.38GB |
| [llama-3.2-3b-2epoch-website-prompt.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.IQ3_S.gguf) | IQ3_S | 1.44GB |
| [llama-3.2-3b-2epoch-website-prompt.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q3_K_S.gguf) | Q3_K_S | 1.44GB |
| [llama-3.2-3b-2epoch-website-prompt.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.IQ3_M.gguf) | IQ3_M | 1.49GB |
| [llama-3.2-3b-2epoch-website-prompt.Q3_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q3_K.gguf) | Q3_K | 1.57GB |
| [llama-3.2-3b-2epoch-website-prompt.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q3_K_M.gguf) | Q3_K_M | 1.57GB |
| [llama-3.2-3b-2epoch-website-prompt.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q3_K_L.gguf) | Q3_K_L | 1.69GB |
| [llama-3.2-3b-2epoch-website-prompt.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.IQ4_XS.gguf) | IQ4_XS | 1.71GB |
| [llama-3.2-3b-2epoch-website-prompt.Q4_0.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q4_0.gguf) | Q4_0 | 1.79GB |
| [llama-3.2-3b-2epoch-website-prompt.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.IQ4_NL.gguf) | IQ4_NL | 1.79GB |
| [llama-3.2-3b-2epoch-website-prompt.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q4_K_S.gguf) | Q4_K_S | 1.8GB |
| [llama-3.2-3b-2epoch-website-prompt.Q4_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q4_K.gguf) | Q4_K | 1.88GB |
| [llama-3.2-3b-2epoch-website-prompt.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q4_K_M.gguf) | Q4_K_M | 1.88GB |
| [llama-3.2-3b-2epoch-website-prompt.Q4_1.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q4_1.gguf) | Q4_1 | 1.95GB |
| [llama-3.2-3b-2epoch-website-prompt.Q5_0.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q5_0.gguf) | Q5_0 | 2.11GB |
| [llama-3.2-3b-2epoch-website-prompt.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q5_K_S.gguf) | Q5_K_S | 2.11GB |
| [llama-3.2-3b-2epoch-website-prompt.Q5_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q5_K.gguf) | Q5_K | 2.16GB |
| [llama-3.2-3b-2epoch-website-prompt.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q5_K_M.gguf) | Q5_K_M | 2.16GB |
| [llama-3.2-3b-2epoch-website-prompt.Q5_1.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q5_1.gguf) | Q5_1 | 2.28GB |
| [llama-3.2-3b-2epoch-website-prompt.Q6_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q6_K.gguf) | Q6_K | 2.46GB |
| [llama-3.2-3b-2epoch-website-prompt.Q8_0.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-2epoch-website-prompt-gguf/blob/main/llama-3.2-3b-2epoch-website-prompt.Q8_0.gguf) | Q8_0 | 3.19GB |
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf | RichardErkhov | 2025-04-03T21:24:32Z | 0 | 0 | null | [
"gguf",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T20:46:32Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-3.2-3b-r-16-alpha-64-website-prompt - GGUF
- Model creator: https://huggingface.co/Jahid05/
- Original model: https://huggingface.co/Jahid05/llama-3.2-3b-r-16-alpha-64-website-prompt/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q2_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q2_K.gguf) | Q2_K | 1.27GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.IQ3_XS.gguf) | IQ3_XS | 1.38GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.IQ3_S.gguf) | IQ3_S | 1.44GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q3_K_S.gguf) | Q3_K_S | 1.44GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.IQ3_M.gguf) | IQ3_M | 1.49GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q3_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q3_K.gguf) | Q3_K | 1.57GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q3_K_M.gguf) | Q3_K_M | 1.57GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q3_K_L.gguf) | Q3_K_L | 1.69GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.IQ4_XS.gguf) | IQ4_XS | 1.71GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q4_0.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q4_0.gguf) | Q4_0 | 1.79GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.IQ4_NL.gguf) | IQ4_NL | 1.79GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q4_K_S.gguf) | Q4_K_S | 1.8GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q4_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q4_K.gguf) | Q4_K | 1.88GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q4_K_M.gguf) | Q4_K_M | 1.88GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q4_1.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q4_1.gguf) | Q4_1 | 1.95GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q5_0.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q5_0.gguf) | Q5_0 | 2.11GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q5_K_S.gguf) | Q5_K_S | 2.11GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q5_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q5_K.gguf) | Q5_K | 2.16GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q5_K_M.gguf) | Q5_K_M | 2.16GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q5_1.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q5_1.gguf) | Q5_1 | 2.28GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q6_K.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q6_K.gguf) | Q6_K | 2.46GB |
| [llama-3.2-3b-r-16-alpha-64-website-prompt.Q8_0.gguf](https://huggingface.co/RichardErkhov/Jahid05_-_llama-3.2-3b-r-16-alpha-64-website-prompt-gguf/blob/main/llama-3.2-3b-r-16-alpha-64-website-prompt.Q8_0.gguf) | Q8_0 | 3.19GB |
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Elishamwendwa/animetron | Elishamwendwa | 2025-04-03T21:21:36Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-03T21:21:36Z | ---
license: apache-2.0
---
|
zemuwen/qc_op | zemuwen | 2025-04-03T21:20:02Z | 0 | 0 | null | [
"safetensors",
"qwen2",
"license:apache-2.0",
"region:us"
] | null | 2025-04-03T21:15:38Z | ---
license: apache-2.0
---
|
TheGardener/retrained-Qwen-instruct-0.7B_ver2 | TheGardener | 2025-04-03T21:19:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-03T21:17:33Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
TenthWax/civ1 | TenthWax | 2025-04-03T21:18:05Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2025-04-03T21:18:00Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/aihandsfeature-800x420.jpg
- text: '-'
output:
url: images/aihandsfeature-800x420.jpg
- text: >-
a frontal view of a naked woman spreading her legs wide open, shaved
genitals
output:
url: images/00013-2833096682.jpeg.png
- text: >-
a back view of a naked redhead woman with large breast and spreading her
legs open laying on a bed, pubic hair and genitals
output:
url: images/00026-1559399280.jpeg.png
- text: >-
a naked cute japanese woman with small breast. She is serving coffee in a
starbucks<lora:NSFW_Body_Parts:0.9>
output:
url: images/00038-618140480.jpeg.png
- text: >-
full body, a blond very muscular woman with large breast, nipples, pubic
hair and genitals. She is a gym holding a protein milkshake
output:
url: images/00034-4058235487.jpeg.png
- text: >-
a frontal view of a naked woman spreading her legs wide open, pubic hair
shaped like a heart and genitals
output:
url: images/00019-1516234203.jpeg.png
- text: >-
a frontal view of a naked woman spreading her legs wide open, pubic hair and
genitals
output:
url: images/00014-90564834.jpeg.png
- text: >-
a frontal view of a naked woman spreading her legs wide open, pubic hair
shaped like a heart and genitals
output:
url: images/00021-1516234205.jpeg.png
- text: >-
a frontal view of a naked woman spreading her legs wide open, pubic hair and
genitals
output:
url: images/00017-90564837.jpeg.png
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: >-
nsfw body parts, small breast, large breast, medium breast, ass, pubic hair,
genitals, naked
license: creativeml-openrail-m
---
# faileddetail
<Gallery />
## Trigger words
You should use `nsfw body parts` to trigger the image generation.
You should use `small breast` to trigger the image generation.
You should use `large breast` to trigger the image generation.
You should use `medium breast` to trigger the image generation.
You should use `ass` to trigger the image generation.
You should use `pubic hair` to trigger the image generation.
You should use `genitals` to trigger the image generation.
You should use `naked` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/TenthWax/civ1/tree/main) them in the Files & versions tab.
|
BoghdadyJR/QWEN_10EP_MIMIC | BoghdadyJR | 2025-04-03T21:16:41Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2_5_vl",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-04-03T21:16:18Z | ---
base_model: unsloth/qwen2.5-vl-7b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2_5_vl
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** BoghdadyJR
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-vl-7b-instruct-bnb-4bit
This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
genki10/BERT_AugV8_k3_task1_organization_sp020_lw040_fold3 | genki10 | 2025-04-03T21:13:56Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-03-25T08:08:07Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: BERT_AugV8_k3_task1_organization_sp020_lw040_fold3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_AugV8_k3_task1_organization_sp020_lw040_fold3
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6821
- Qwk: 0.2044
- Mse: 1.6829
- Rmse: 1.2973
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|
| No log | 1.0 | 3 | 12.8477 | 0.0 | 12.8455 | 3.5841 |
| No log | 2.0 | 6 | 10.9734 | -0.0015 | 10.9714 | 3.3123 |
| No log | 3.0 | 9 | 7.6486 | 0.0 | 7.6468 | 2.7653 |
| No log | 4.0 | 12 | 5.2897 | 0.0175 | 5.2883 | 2.2996 |
| No log | 5.0 | 15 | 3.8585 | 0.0 | 3.8574 | 1.9640 |
| No log | 6.0 | 18 | 2.4688 | 0.1029 | 2.4679 | 1.5710 |
| No log | 7.0 | 21 | 1.4751 | 0.0401 | 1.4745 | 1.2143 |
| No log | 8.0 | 24 | 1.1948 | 0.0102 | 1.1943 | 1.0928 |
| No log | 9.0 | 27 | 0.9430 | 0.0722 | 0.9426 | 0.9709 |
| No log | 10.0 | 30 | 1.4646 | 0.0925 | 1.4641 | 1.2100 |
| No log | 11.0 | 33 | 0.9001 | 0.1820 | 0.8997 | 0.9485 |
| No log | 12.0 | 36 | 0.9458 | 0.1375 | 0.9453 | 0.9723 |
| No log | 13.0 | 39 | 1.4076 | 0.1513 | 1.4073 | 1.1863 |
| No log | 14.0 | 42 | 2.1236 | 0.1233 | 2.1234 | 1.4572 |
| No log | 15.0 | 45 | 1.0217 | 0.2608 | 1.0219 | 1.0109 |
| No log | 16.0 | 48 | 2.4324 | 0.1176 | 2.4325 | 1.5597 |
| No log | 17.0 | 51 | 0.9177 | 0.3403 | 0.9182 | 0.9582 |
| No log | 18.0 | 54 | 1.1420 | 0.2715 | 1.1425 | 1.0689 |
| No log | 19.0 | 57 | 2.1200 | 0.1531 | 2.1204 | 1.4562 |
| No log | 20.0 | 60 | 0.8265 | 0.3498 | 0.8272 | 0.9095 |
| No log | 21.0 | 63 | 1.2693 | 0.2745 | 1.2702 | 1.1270 |
| No log | 22.0 | 66 | 2.0475 | 0.1327 | 2.0484 | 1.4312 |
| No log | 23.0 | 69 | 1.4315 | 0.2322 | 1.4324 | 1.1968 |
| No log | 24.0 | 72 | 1.9517 | 0.1329 | 1.9526 | 1.3974 |
| No log | 25.0 | 75 | 1.3444 | 0.2243 | 1.3452 | 1.1598 |
| No log | 26.0 | 78 | 2.1915 | 0.1373 | 2.1921 | 1.4806 |
| No log | 27.0 | 81 | 1.2255 | 0.2971 | 1.2261 | 1.1073 |
| No log | 28.0 | 84 | 1.3536 | 0.2907 | 1.3541 | 1.1636 |
| No log | 29.0 | 87 | 2.2465 | 0.1356 | 2.2469 | 1.4990 |
| No log | 30.0 | 90 | 1.1835 | 0.2845 | 1.1840 | 1.0881 |
| No log | 31.0 | 93 | 2.3712 | 0.1057 | 2.3718 | 1.5401 |
| No log | 32.0 | 96 | 2.2230 | 0.1016 | 2.2236 | 1.4912 |
| No log | 33.0 | 99 | 1.5063 | 0.1873 | 1.5070 | 1.2276 |
| No log | 34.0 | 102 | 2.5575 | 0.1036 | 2.5582 | 1.5994 |
| No log | 35.0 | 105 | 1.6821 | 0.2044 | 1.6829 | 1.2973 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
|
Devtrick/roberta_nli_ensemble | Devtrick | 2025-04-03T21:12:45Z | 30 | 0 | transformers | [
"transformers",
"safetensors",
"roberta_nli_classifier",
"generated_from_trainer",
"arxiv:1907.11692",
"endpoints_compatible",
"region:us"
] | null | 2025-04-02T01:33:46Z | ---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta_nli_ensemble
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta_nli_ensemble
<!-- Provide a quick summary of what the model is/does. -->
A fine-tuned RoBERTa model designed for an Natural Language Inference (NLI) task, classifying the relationship between pairs of sentences given a premise and a hypothesis.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This model builds upon the roberta-base architecture, adding a multi-layer classification head for NLI. It computes average pooled representations of premise and hypothesis tokens (identified via `token_type_ids`) and concatenates them before passing through additional linear and non-linear layers. The final output is used to classify the pair of sentences into one of three classes.
- **Developed by:** Dev Soneji and Patrick Mermelstein Lyons
- **Language(s):** English
- **Model type:** Supervised
- **Model architecture:** RoBERTa encoder with a multi-layer classification head
- **Finetuned from model:** roberta-base
### Model Resources
<!-- Provide links where applicable. -->
- **Repository:** [Devtrick/roberta_nli_ensemble](https://huggingface.co/Devtrick/roberta_nli_ensemble)
- **Paper or documentation:** [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692)
## Training Details
### Training Data
<!-- This is a short stub of information on the training data that was used, and documentation related to data pre-processing or additional filtering (if applicable). -->
The model was trained on a dataset located in `train.csv`. This dataset comprised of 24K premise-hypothesis pairs, with a label to determine if the hypothesis is true based on the premise. The label was binary, 0 = hypothesis is false, 1 = hypothesis is true. No further details were given on the origin and validity of this dataset.
The data was passed through a tokenizer ([AutoTokenizer](https://huggingface.co/docs/transformers/v4.50.0/en/model_doc/auto#transformers.AutoTokenizer)), as part of the standard hugging face library. No other pre-processing was done, aside from relabelling columns to match the expected format.
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
The model was trained in the following way:
- The model was trained on the following data ([Training Data](#training-data)), with renaming of columns and tokenization.
- The model was initialised with a custom configuration class, `roBERTaConfig`, setting essential parameters. The model itself, `roBERTaClassifier` extends the pretrained RoBERTa model to include multiple linear layers for classification and pooling.
- Hyperparameter selection was carried out in a seperate grid search to identify the best performing hyperparameters. This resulted in the following parameters - [Training Hyperparameters](#training-hyperparameters).
- The model was validated with the following [test data](#testing-data), giving the following [results](#results).
- Checkpoints were saved after each epoch, and finally the best checkpoint was reloaded and pushed to the Hugging Face Hub.
#### Training Hyperparameters
<!-- This is a summary of the values of hyperparameters used in training the model. -->
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 128
- weight_decay: 0.01
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
#### Speeds, Sizes, Times
<!-- This section provides information about how roughly how long it takes to train the model and the size of the resulting model. -->
- Training time: This model took 12 minutes 17 seconds to train on the hardware specified below. It was trained on 10 epochs, however early stopping caused only 5 epochs to train.
Model size: 126M parameteres.
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data & Metrics
#### Testing Data
<!-- This should describe any evaluation data used (e.g., the development/validation set provided). -->
The development (and effectively testing) dataset is located in `dev.csv`. This is 6K pairs as validation data, in the same format of the training data. No further details were given on the origin and validity of this dataset.
The data was passed through a tokenizer ([AutoTokenizer](https://huggingface.co/docs/transformers/v4.50.0/en/model_doc/auto#transformers.AutoTokenizer)), as part of the standard hugging face library. No other pre-processing was done, aside from relabelling columns to match the expected format.
#### Metrics
<!-- These are the evaluation metrics being used. -->
- Accuracy: Proportion of correct predictions.
- Matthews Correlation Coefficient (MCC): Correlation coefficient between predicted and true labels, ranging from -1 to 1.
### Results
Final results on the evaluation set:
- Loss: 0.4849
- Accuracy: 0.8848
- Mcc: 0.7695
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Mcc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6552 | 1.0 | 191 | 0.3383 | 0.8685 | 0.7377 |
| 0.2894 | 2.0 | 382 | 0.3045 | 0.8778 | 0.7559 |
| 0.1891 | 3.0 | 573 | 0.3255 | 0.8854 | 0.7705 |
| 0.1209 | 4.0 | 764 | 0.3963 | 0.8829 | 0.7657 |
| 0.0843 | 5.0 | 955 | 0.4849 | 0.8848 | 0.7695 |
## Technical Specifications
### Hardware
PC specs the model was trained on:
- CPU: AMD Ryzen 7 7700X
- GPU: NVIDIA GeForce RTX 5070 Ti
- Memory: 32GB DDR5
- Motherboard: MSI MAG B650 TOMAHAWK WIFI Motherboard
### Software
- Transformers 4.50.2
- Pytorch 2.8.0.dev20250326+cu128
- Datasets 3.5.0
- Tokenizers 0.21.1
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
- The model's performance and biases depend on the data on which it was trained, however no details of the data's origin is known so this cannot be commented on.
- The risk lies in trusting any labelling with confidence, without manual verification. Models can make mistakes, verify the outputs.
- This is limited by the training data not being comprehensive of all possible premise-hypothesis combinations, however this is possible in real life. Additional training and validation data would have been useful.
## Additional Information
<!-- Any other information that would be useful for other people to know. -->
- This model was pushed to the Hugging Face Hub with `trainer.push_to_hub()` after training locally. |
tahamajs/llama-3.2-3b-orpo-lora64-4bit-instruct | tahamajs | 2025-04-03T21:11:59Z | 0 | 2 | transformers | [
"transformers",
"safetensors",
"unsloth",
"dpo",
"orpo",
"lora",
"preference-optimization",
"endpoints_compatible",
"region:us"
] | null | 2025-04-03T20:56:00Z | ---
library_name: transformers
tags:
- unsloth
- dpo
- orpo
- lora
- preference-optimization
---
# Model Card for Llama-3.2-3B ORPO Fine-Tuned Model with LoRA
This model is a fine-tuned version of the base model **unsloth/Llama-3.2-3B-Instruct-bnb-4bit** using Odds Ratio Preference Optimization (ORPO) with LoRA-based adaptation. The training leverages a dataset of pairwise (chosen vs. rejected) responses to align the model with human preferences without the need for a separate reward or reference model.
## Model Details
### Model Description
This is a fine-tuned language model that has been optimized using ORPO—a direct preference optimization method that eliminates the need for a reference model. The base model, **unsloth/Llama-3.2-3B-Instruct-bnb-4bit**, is adapted using Low-Rank Adaptation (LoRA) with a rank and alpha of 64, allowing for efficient fine-tuning with only a small fraction of the model's parameters updated. The fine-tuning is performed on a dataset consisting of approximately 1,600 examples (sampled from "mlabonne/orpo-dpo-mix-40k"), where the model learns to favor the "chosen" response over the "rejected" one directly through odds ratio optimization.
- **Developed by:** [Your Name or Organization]
- **Model Type:** Causal Language Model (Instruction-Finetuned)
- **Base Model:** unsloth/Llama-3.2-3B-Instruct-bnb-4bit
- **Training Method:** ORPO (Odds Ratio Preference Optimization) with LoRA
- **Quantization:** 4-bit
- **Language:** English (primarily)
- **License:** [Specify License, e.g., Apache-2.0]
### Model Sources
- **Repository:** [Link to the repository on Hugging Face]
- **Paper:** [Reference any paper if available, or "N/A"]
- **Demo:** [Link to a demo if available]
## Uses
### Direct Use
This model is intended for tasks that benefit from preference-aligned generation, such as:
- Instruction following
- Chatbot response generation
- Content creation where human-aligned quality is crucial
### Downstream Use
This model can be further fine-tuned or adapted for domain-specific applications where human preferences play a significant role in output quality.
### Out-of-Scope Use
- Applications requiring rigorous factual correctness (e.g., medical or legal advice) without further domain-specific fine-tuning.
- Use cases involving sensitive content where model biases could lead to harmful outcomes.
## Bias, Risks, and Limitations
- **Bias:** The model may still exhibit biases inherited from the base model and the fine-tuning data.
- **Risks:** Users should be cautious in applications where incorrect or biased information could have serious consequences.
- **Limitations:** As a fine-tuned model using preference optimization, its performance is tied to the quality and diversity of the training data. It may not generalize well to contexts significantly different from its training set.
### Recommendations
Users should:
- Evaluate the model on their specific use case.
- Monitor outputs for potential bias or factual inaccuracies.
- Fine-tune further if necessary to better align with specific requirements.
## How to Get Started with the Model
Below is an example code snippet to load and use the model:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("your-username/llama-3.2-3b-orpo-lora64")
tokenizer = AutoTokenizer.from_pretrained("your-username/llama-3.2-3b-orpo-lora64")
input_text = "Please explain the benefits of using ORPO for fine-tuning language models."
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
|
jmalejandrob79/cndnlhr16 | jmalejandrob79 | 2025-04-03T21:11:47Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-04-03T20:21:27Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: cndnlhr16
---
# Cndnlhr16
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `cndnlhr16` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "cndnlhr16",
"lora_weights": "https://huggingface.co/jmalejandrob79/cndnlhr16/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('jmalejandrob79/cndnlhr16', weight_name='lora.safetensors')
image = pipeline('cndnlhr16').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 4000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/jmalejandrob79/cndnlhr16/discussions) to add images that show off what you’ve made with this LoRA.
|
Etienne248/dqn-SpaceInvadersNoFrameskip-v4 | Etienne248 | 2025-04-03T21:11:05Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-04-03T21:10:47Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 630.00 +/- 201.43
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
SBX (SB3 + Jax): https://github.com/araffin/sbx
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Etienne248 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Etienne248 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Etienne248
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
darwinha/distilbert-base-uncased-finetuned-imdb | darwinha | 2025-04-03T21:07:09Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"fill-mask",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2025-04-03T16:34:42Z | ---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4900
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.6903 | 1.0 | 157 | 2.4975 |
| 2.5694 | 2.0 | 314 | 2.4703 |
| 2.5289 | 3.0 | 471 | 2.4552 |
### Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
mradermacher/Ring-lite-distill-preview-GGUF | mradermacher | 2025-04-03T21:06:33Z | 20 | 0 | transformers | [
"transformers",
"gguf",
"zh",
"en",
"base_model:inclusionAI/Ring-lite-distill-preview",
"base_model:quantized:inclusionAI/Ring-lite-distill-preview",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-02T16:51:21Z | ---
base_model: inclusionAI/Ring-lite-distill-preview
language:
- zh
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/inclusionAI/Ring-lite-distill-preview
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Ring-lite-distill-preview-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.Q2_K.gguf) | Q2_K | 7.0 | |
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.Q3_K_S.gguf) | Q3_K_S | 8.1 | |
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.Q3_K_M.gguf) | Q3_K_M | 8.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.Q3_K_L.gguf) | Q3_K_L | 9.2 | |
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.IQ4_XS.gguf) | IQ4_XS | 9.4 | |
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.Q4_K_S.gguf) | Q4_K_S | 10.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.Q4_K_M.gguf) | Q4_K_M | 11.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.Q5_K_S.gguf) | Q5_K_S | 12.0 | |
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.Q5_K_M.gguf) | Q5_K_M | 12.8 | |
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.Q6_K.gguf) | Q6_K | 15.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Ring-lite-distill-preview-GGUF/resolve/main/Ring-lite-distill-preview.Q8_0.gguf) | Q8_0 | 18.0 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
efficient-speech/lite-whisper-small-fast | efficient-speech | 2025-04-03T21:05:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"lite-whisper",
"feature-extraction",
"audio",
"automatic-speech-recognition",
"whisper",
"hf-asr-leaderboard",
"custom_code",
"arxiv:2502.20583",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"region:us"
] | automatic-speech-recognition | 2025-04-03T20:52:57Z | ---
base_model: openai/whisper-small
library_name: transformers
license: apache-2.0
pipeline_tag: automatic-speech-recognition
tags:
- audio
- automatic-speech-recognition
- whisper
- hf-asr-leaderboard
---
<!-- Provide a quick summary of what the model is/does. -->
Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
## Benchmark Results
Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
| Model | Average WER (↓) | Encoder Size | Decoder Size |
|-------|----------------|--------------|--------------|
| [whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 22.01 | 7.63M | 29.55M |
| [lite-whisper-tiny-acc](https://huggingface.co/efficient-speech/lite-whisper-tiny-acc) | 22.97 | 7.41M | 29.55M |
| [lite-whisper-tiny](https://huggingface.co/efficient-speech/lite-whisper-tiny) | 23.95 | 7.00M | 29.55M |
| [lite-whisper-tiny-fast](https://huggingface.co/efficient-speech/lite-whisper-tiny-fast) | 27.09 | 6.48M | 29.55M |
| | | | |
| [whisper-base](https://huggingface.co/openai/whisper-base) | 17.67 | 19.82M | 52.00M |
| [lite-whisper-base-acc](https://huggingface.co/efficient-speech/lite-whisper-base-acc) | 19.07 | 18.64M | 52.00M |
| [lite-whisper-base](https://huggingface.co/efficient-speech/lite-whisper-base) | 19.71 | 17.44M | 52.00M |
| [lite-whisper-base-fast](https://huggingface.co/efficient-speech/lite-whisper-base-fast) | 23.05 | 16.07M | 52.00M |
| | | | |
| [whisper-small](https://huggingface.co/openai/whisper-small) | 15.89 | 87.00M | 153.58M |
| [lite-whisper-small-acc](https://huggingface.co/efficient-speech/lite-whisper-small-acc) | 15.37 | 76.99M | 153.58M |
| [lite-whisper-small](https://huggingface.co/efficient-speech/lite-whisper-small) | 14.96 | 70.16M | 153.58M |
| [lite-whisper-small-fast](https://huggingface.co/efficient-speech/lite-whisper-small-fast) | 14.92 | 63.11M | 153.58M |
| | | | |
| [whisper-medium](https://huggingface.co/openai/whisper-medium) | 15.12 | 305.68M | 456.64M |
| [lite-whisper-medium-acc](https://huggingface.co/efficient-speech/lite-whisper-medium-acc) | 13.46 | 269.93M | 456.64M |
| [lite-whisper-medium](https://huggingface.co/efficient-speech/lite-whisper-medium) | 14.50 | 239.99M | 456.64M |
| [lite-whisper-medium-fast](https://huggingface.co/efficient-speech/lite-whisper-medium-fast) | 14.52 | 215.31M | 456.64M |
## Citation
If you use LiteASR in your research, please cite the following paper:
```
@misc{kamahori2025liteasrefficientautomaticspeech,
title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
year={2025},
eprint={2502.20583},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.20583},
}
``` |
efficient-speech/lite-whisper-small | efficient-speech | 2025-04-03T21:04:53Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"lite-whisper",
"feature-extraction",
"audio",
"automatic-speech-recognition",
"whisper",
"hf-asr-leaderboard",
"custom_code",
"arxiv:2502.20583",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"region:us"
] | automatic-speech-recognition | 2025-04-03T20:52:04Z | ---
base_model: openai/whisper-small
library_name: transformers
license: apache-2.0
pipeline_tag: automatic-speech-recognition
tags:
- audio
- automatic-speech-recognition
- whisper
- hf-asr-leaderboard
---
<!-- Provide a quick summary of what the model is/does. -->
Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
## Benchmark Results
Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
| Model | Average WER (↓) | Encoder Size | Decoder Size |
|-------|----------------|--------------|--------------|
| [whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 22.01 | 7.63M | 29.55M |
| [lite-whisper-tiny-acc](https://huggingface.co/efficient-speech/lite-whisper-tiny-acc) | 22.97 | 7.41M | 29.55M |
| [lite-whisper-tiny](https://huggingface.co/efficient-speech/lite-whisper-tiny) | 23.95 | 7.00M | 29.55M |
| [lite-whisper-tiny-fast](https://huggingface.co/efficient-speech/lite-whisper-tiny-fast) | 27.09 | 6.48M | 29.55M |
| | | | |
| [whisper-base](https://huggingface.co/openai/whisper-base) | 17.67 | 19.82M | 52.00M |
| [lite-whisper-base-acc](https://huggingface.co/efficient-speech/lite-whisper-base-acc) | 19.07 | 18.64M | 52.00M |
| [lite-whisper-base](https://huggingface.co/efficient-speech/lite-whisper-base) | 19.71 | 17.44M | 52.00M |
| [lite-whisper-base-fast](https://huggingface.co/efficient-speech/lite-whisper-base-fast) | 23.05 | 16.07M | 52.00M |
| | | | |
| [whisper-small](https://huggingface.co/openai/whisper-small) | 15.89 | 87.00M | 153.58M |
| [lite-whisper-small-acc](https://huggingface.co/efficient-speech/lite-whisper-small-acc) | 15.37 | 76.99M | 153.58M |
| [lite-whisper-small](https://huggingface.co/efficient-speech/lite-whisper-small) | 14.96 | 70.16M | 153.58M |
| [lite-whisper-small-fast](https://huggingface.co/efficient-speech/lite-whisper-small-fast) | 14.92 | 63.11M | 153.58M |
| | | | |
| [whisper-medium](https://huggingface.co/openai/whisper-medium) | 15.12 | 305.68M | 456.64M |
| [lite-whisper-medium-acc](https://huggingface.co/efficient-speech/lite-whisper-medium-acc) | 13.46 | 269.93M | 456.64M |
| [lite-whisper-medium](https://huggingface.co/efficient-speech/lite-whisper-medium) | 14.50 | 239.99M | 456.64M |
| [lite-whisper-medium-fast](https://huggingface.co/efficient-speech/lite-whisper-medium-fast) | 14.52 | 215.31M | 456.64M |
## Citation
If you use LiteASR in your research, please cite the following paper:
```
@misc{kamahori2025liteasrefficientautomaticspeech,
title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
year={2025},
eprint={2502.20583},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.20583},
}
``` |
efficient-speech/lite-whisper-small-acc | efficient-speech | 2025-04-03T21:04:36Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"lite-whisper",
"feature-extraction",
"audio",
"automatic-speech-recognition",
"whisper",
"hf-asr-leaderboard",
"custom_code",
"arxiv:2502.20583",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"region:us"
] | automatic-speech-recognition | 2025-04-03T20:51:09Z | ---
base_model: openai/whisper-small
library_name: transformers
license: apache-2.0
pipeline_tag: automatic-speech-recognition
tags:
- audio
- automatic-speech-recognition
- whisper
- hf-asr-leaderboard
---
<!-- Provide a quick summary of what the model is/does. -->
Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
## Benchmark Results
Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
| Model | Average WER (↓) | Encoder Size | Decoder Size |
|-------|----------------|--------------|--------------|
| [whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 22.01 | 7.63M | 29.55M |
| [lite-whisper-tiny-acc](https://huggingface.co/efficient-speech/lite-whisper-tiny-acc) | 22.97 | 7.41M | 29.55M |
| [lite-whisper-tiny](https://huggingface.co/efficient-speech/lite-whisper-tiny) | 23.95 | 7.00M | 29.55M |
| [lite-whisper-tiny-fast](https://huggingface.co/efficient-speech/lite-whisper-tiny-fast) | 27.09 | 6.48M | 29.55M |
| | | | |
| [whisper-base](https://huggingface.co/openai/whisper-base) | 17.67 | 19.82M | 52.00M |
| [lite-whisper-base-acc](https://huggingface.co/efficient-speech/lite-whisper-base-acc) | 19.07 | 18.64M | 52.00M |
| [lite-whisper-base](https://huggingface.co/efficient-speech/lite-whisper-base) | 19.71 | 17.44M | 52.00M |
| [lite-whisper-base-fast](https://huggingface.co/efficient-speech/lite-whisper-base-fast) | 23.05 | 16.07M | 52.00M |
| | | | |
| [whisper-small](https://huggingface.co/openai/whisper-small) | 15.89 | 87.00M | 153.58M |
| [lite-whisper-small-acc](https://huggingface.co/efficient-speech/lite-whisper-small-acc) | 15.37 | 76.99M | 153.58M |
| [lite-whisper-small](https://huggingface.co/efficient-speech/lite-whisper-small) | 14.96 | 70.16M | 153.58M |
| [lite-whisper-small-fast](https://huggingface.co/efficient-speech/lite-whisper-small-fast) | 14.92 | 63.11M | 153.58M |
| | | | |
| [whisper-medium](https://huggingface.co/openai/whisper-medium) | 15.12 | 305.68M | 456.64M |
| [lite-whisper-medium-acc](https://huggingface.co/efficient-speech/lite-whisper-medium-acc) | 13.46 | 269.93M | 456.64M |
| [lite-whisper-medium](https://huggingface.co/efficient-speech/lite-whisper-medium) | 14.50 | 239.99M | 456.64M |
| [lite-whisper-medium-fast](https://huggingface.co/efficient-speech/lite-whisper-medium-fast) | 14.52 | 215.31M | 456.64M |
## Citation
If you use LiteASR in your research, please cite the following paper:
```
@misc{kamahori2025liteasrefficientautomaticspeech,
title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
year={2025},
eprint={2502.20583},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.20583},
}
``` |
genki10/BERT_AugV8_k3_task1_organization_sp020_lw040_fold2 | genki10 | 2025-04-03T21:03:39Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-03-25T07:59:19Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: BERT_AugV8_k3_task1_organization_sp020_lw040_fold2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_AugV8_k3_task1_organization_sp020_lw040_fold2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7989
- Qwk: 0.2778
- Mse: 0.7991
- Rmse: 0.8939
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
| No log | 1.0 | 3 | 8.4335 | 0.0 | 8.4339 | 2.9041 |
| No log | 2.0 | 6 | 4.8952 | 0.0203 | 4.8957 | 2.2126 |
| No log | 3.0 | 9 | 3.1673 | 0.0 | 3.1677 | 1.7798 |
| No log | 4.0 | 12 | 1.9505 | 0.0700 | 1.9510 | 1.3968 |
| No log | 5.0 | 15 | 1.3534 | 0.0107 | 1.3539 | 1.1636 |
| No log | 6.0 | 18 | 0.9310 | 0.0 | 0.9315 | 0.9651 |
| No log | 7.0 | 21 | 1.0587 | 0.0067 | 1.0591 | 1.0291 |
| No log | 8.0 | 24 | 0.8247 | 0.2499 | 0.8250 | 0.9083 |
| No log | 9.0 | 27 | 0.9349 | 0.1281 | 0.9352 | 0.9671 |
| No log | 10.0 | 30 | 0.7192 | 0.4041 | 0.7196 | 0.8483 |
| No log | 11.0 | 33 | 0.7330 | 0.3158 | 0.7335 | 0.8564 |
| No log | 12.0 | 36 | 0.7938 | 0.3043 | 0.7939 | 0.8910 |
| No log | 13.0 | 39 | 0.5902 | 0.5299 | 0.5903 | 0.7683 |
| No log | 14.0 | 42 | 1.3043 | 0.2418 | 1.3044 | 1.1421 |
| No log | 15.0 | 45 | 0.5436 | 0.4035 | 0.5434 | 0.7372 |
| No log | 16.0 | 48 | 0.6578 | 0.3225 | 0.6576 | 0.8109 |
| No log | 17.0 | 51 | 0.5686 | 0.4605 | 0.5688 | 0.7542 |
| No log | 18.0 | 54 | 0.8095 | 0.4449 | 0.8097 | 0.8998 |
| No log | 19.0 | 57 | 0.5088 | 0.5028 | 0.5087 | 0.7132 |
| No log | 20.0 | 60 | 0.5904 | 0.4177 | 0.5902 | 0.7682 |
| No log | 21.0 | 63 | 0.6185 | 0.4196 | 0.6186 | 0.7865 |
| No log | 22.0 | 66 | 0.5203 | 0.4824 | 0.5203 | 0.7213 |
| No log | 23.0 | 69 | 0.5511 | 0.4847 | 0.5512 | 0.7424 |
| No log | 24.0 | 72 | 0.6307 | 0.4383 | 0.6311 | 0.7944 |
| No log | 25.0 | 75 | 0.5619 | 0.5237 | 0.5621 | 0.7497 |
| No log | 26.0 | 78 | 0.6441 | 0.4665 | 0.6443 | 0.8027 |
| No log | 27.0 | 81 | 0.5903 | 0.4874 | 0.5904 | 0.7684 |
| No log | 28.0 | 84 | 0.7989 | 0.2778 | 0.7991 | 0.8939 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
|
TabAnd58/bert-baseline | TabAnd58 | 2025-04-03T21:03:32Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"base_model:BAAI/bge-small-en-v1.5",
"base_model:finetune:BAAI/bge-small-en-v1.5",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2025-04-03T20:41:54Z | ---
library_name: transformers
license: mit
base_model: BAAI/bge-small-en-v1.5
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-baseline
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-baseline
This model is a fine-tuned version of [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1151
- Precision: 0.9254
- Recall: 0.9330
- F1: 0.9292
- Accuracy: 0.9837
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.373713206635396e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.116 | 1.0 | 2500 | 0.1015 | 0.8397 | 0.9078 | 0.8724 | 0.9723 |
| 0.0669 | 2.0 | 5000 | 0.0861 | 0.8909 | 0.9157 | 0.9031 | 0.9801 |
| 0.0499 | 3.0 | 7500 | 0.0877 | 0.8971 | 0.9263 | 0.9115 | 0.9814 |
| 0.0261 | 4.0 | 10000 | 0.0985 | 0.9127 | 0.9260 | 0.9193 | 0.9816 |
| 0.0183 | 5.0 | 12500 | 0.1042 | 0.9077 | 0.9248 | 0.9161 | 0.9815 |
| 0.0139 | 6.0 | 15000 | 0.1083 | 0.9085 | 0.9290 | 0.9186 | 0.9825 |
| 0.0121 | 7.0 | 17500 | 0.1107 | 0.9093 | 0.9310 | 0.9200 | 0.9823 |
| 0.005 | 8.0 | 20000 | 0.1147 | 0.9181 | 0.9322 | 0.9251 | 0.9829 |
| 0.0033 | 9.0 | 22500 | 0.1108 | 0.9228 | 0.9360 | 0.9294 | 0.9841 |
| 0.0016 | 10.0 | 25000 | 0.1151 | 0.9254 | 0.9330 | 0.9292 | 0.9837 |
### Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
efficient-speech/lite-whisper-tiny | efficient-speech | 2025-04-03T21:02:50Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"lite-whisper",
"feature-extraction",
"audio",
"automatic-speech-recognition",
"whisper",
"hf-asr-leaderboard",
"custom_code",
"arxiv:2502.20583",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"region:us"
] | automatic-speech-recognition | 2025-04-03T20:49:27Z | ---
base_model: openai/whisper-tiny
library_name: transformers
license: apache-2.0
pipeline_tag: automatic-speech-recognition
tags:
- audio
- automatic-speech-recognition
- whisper
- hf-asr-leaderboard
---
<!-- Provide a quick summary of what the model is/does. -->
Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
## Benchmark Results
Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
| Model | Average WER (↓) | Encoder Size | Decoder Size |
|-------|----------------|--------------|--------------|
| [whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 22.01 | 7.63M | 29.55M |
| [lite-whisper-tiny-acc](https://huggingface.co/efficient-speech/lite-whisper-tiny-acc) | 22.97 | 7.41M | 29.55M |
| [lite-whisper-tiny](https://huggingface.co/efficient-speech/lite-whisper-tiny) | 23.95 | 7.00M | 29.55M |
| [lite-whisper-tiny-fast](https://huggingface.co/efficient-speech/lite-whisper-tiny-fast) | 27.09 | 6.48M | 29.55M |
| | | | |
| [whisper-base](https://huggingface.co/openai/whisper-base) | 17.67 | 19.82M | 52.00M |
| [lite-whisper-base-acc](https://huggingface.co/efficient-speech/lite-whisper-base-acc) | 19.07 | 18.64M | 52.00M |
| [lite-whisper-base](https://huggingface.co/efficient-speech/lite-whisper-base) | 19.71 | 17.44M | 52.00M |
| [lite-whisper-base-fast](https://huggingface.co/efficient-speech/lite-whisper-base-fast) | 23.05 | 16.07M | 52.00M |
| | | | |
| [whisper-small](https://huggingface.co/openai/whisper-small) | 15.89 | 87.00M | 153.58M |
| [lite-whisper-small-acc](https://huggingface.co/efficient-speech/lite-whisper-small-acc) | 15.37 | 76.99M | 153.58M |
| [lite-whisper-small](https://huggingface.co/efficient-speech/lite-whisper-small) | 14.96 | 70.16M | 153.58M |
| [lite-whisper-small-fast](https://huggingface.co/efficient-speech/lite-whisper-small-fast) | 14.92 | 63.11M | 153.58M |
| | | | |
| [whisper-medium](https://huggingface.co/openai/whisper-medium) | 15.12 | 305.68M | 456.64M |
| [lite-whisper-medium-acc](https://huggingface.co/efficient-speech/lite-whisper-medium-acc) | 13.46 | 269.93M | 456.64M |
| [lite-whisper-medium](https://huggingface.co/efficient-speech/lite-whisper-medium) | 14.50 | 239.99M | 456.64M |
| [lite-whisper-medium-fast](https://huggingface.co/efficient-speech/lite-whisper-medium-fast) | 14.52 | 215.31M | 456.64M |
## Citation
If you use LiteASR in your research, please cite the following paper:
```
@misc{kamahori2025liteasrefficientautomaticspeech,
title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
year={2025},
eprint={2502.20583},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.20583},
}
``` |
efficient-speech/lite-whisper-tiny-acc | efficient-speech | 2025-04-03T21:02:31Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"lite-whisper",
"feature-extraction",
"audio",
"automatic-speech-recognition",
"whisper",
"hf-asr-leaderboard",
"custom_code",
"arxiv:2502.20583",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"region:us"
] | automatic-speech-recognition | 2025-04-03T18:06:37Z | ---
base_model: openai/whisper-tiny
library_name: transformers
license: apache-2.0
pipeline_tag: automatic-speech-recognition
tags:
- audio
- automatic-speech-recognition
- whisper
- hf-asr-leaderboard
---
<!-- Provide a quick summary of what the model is/does. -->
Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
## Benchmark Results
Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
| Model | Average WER (↓) | Encoder Size | Decoder Size |
|-------|----------------|--------------|--------------|
| [whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 22.01 | 7.63M | 29.55M |
| [lite-whisper-tiny-acc](https://huggingface.co/efficient-speech/lite-whisper-tiny-acc) | 22.97 | 7.41M | 29.55M |
| [lite-whisper-tiny](https://huggingface.co/efficient-speech/lite-whisper-tiny) | 23.95 | 7.00M | 29.55M |
| [lite-whisper-tiny-fast](https://huggingface.co/efficient-speech/lite-whisper-tiny-fast) | 27.09 | 6.48M | 29.55M |
| | | | |
| [whisper-base](https://huggingface.co/openai/whisper-base) | 17.67 | 19.82M | 52.00M |
| [lite-whisper-base-acc](https://huggingface.co/efficient-speech/lite-whisper-base-acc) | 19.07 | 18.64M | 52.00M |
| [lite-whisper-base](https://huggingface.co/efficient-speech/lite-whisper-base) | 19.71 | 17.44M | 52.00M |
| [lite-whisper-base-fast](https://huggingface.co/efficient-speech/lite-whisper-base-fast) | 23.05 | 16.07M | 52.00M |
| | | | |
| [whisper-small](https://huggingface.co/openai/whisper-small) | 15.89 | 87.00M | 153.58M |
| [lite-whisper-small-acc](https://huggingface.co/efficient-speech/lite-whisper-small-acc) | 15.37 | 76.99M | 153.58M |
| [lite-whisper-small](https://huggingface.co/efficient-speech/lite-whisper-small) | 14.96 | 70.16M | 153.58M |
| [lite-whisper-small-fast](https://huggingface.co/efficient-speech/lite-whisper-small-fast) | 14.92 | 63.11M | 153.58M |
| | | | |
| [whisper-medium](https://huggingface.co/openai/whisper-medium) | 15.12 | 305.68M | 456.64M |
| [lite-whisper-medium-acc](https://huggingface.co/efficient-speech/lite-whisper-medium-acc) | 13.46 | 269.93M | 456.64M |
| [lite-whisper-medium](https://huggingface.co/efficient-speech/lite-whisper-medium) | 14.50 | 239.99M | 456.64M |
| [lite-whisper-medium-fast](https://huggingface.co/efficient-speech/lite-whisper-medium-fast) | 14.52 | 215.31M | 456.64M |
## Citation
If you use LiteASR in your research, please cite the following paper:
```
@misc{kamahori2025liteasrefficientautomaticspeech,
title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
year={2025},
eprint={2502.20583},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.20583},
}
``` |
Machlovi/Safe_Phi4 | Machlovi | 2025-04-03T20:58:42Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-02-05T19:35:25Z | ---
base_model: unsloth/Phi-4-unsloth-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
## How to Get Started with the Model
## 🚀 **How to Use This Model for Inference**
This model is fine-tuned using **LoRA (PEFT)** on **Phi-4 (4-bit Unsloth)**. To use it, you need to:
1. Load the **base model**
2. Load the **LoRA adapter**
3. Run inference
### **📌 Install Required Libraries**
Before running the code, make sure you have the necessary dependencies installed:
```bash
pip install unsloth peft transformers torch
```
### **📝 Load and Run Inference**
```bash
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
# Load the base model
base_model_name = "unsloth/Phi-4-unsloth-bnb-4bit"
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=base_model_name,
max_seq_length=4096, # Must match fine-tuning
load_in_4bit=True,
)
# Load the fine-tuned LoRA adapter
lora_model_name = "Machlovi/Phi_Fullshot"
model = PeftModel.from_pretrained(model, lora_model_name)
# Run inference
input_text = "Why do we need to go to see something?"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=4)
# Decode and print response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
### **💡 Notes**
- This model is **quantized in 4-bit** for efficiency.
- Ensure `max_seq_length` matches the training configuration.
- This model requires a **GPU (CUDA)** for inference.
[More Information Needed]
# Uploaded model
- **Developed by:** Machlovi
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Phi-4-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
efficient-speech/lite-whisper-large-v3-turbo | efficient-speech | 2025-04-03T20:58:18Z | 1,143 | 8 | transformers | [
"transformers",
"safetensors",
"lite-whisper",
"feature-extraction",
"audio",
"automatic-speech-recognition",
"whisper",
"hf-asr-leaderboard",
"custom_code",
"arxiv:2502.20583",
"base_model:openai/whisper-large-v3-turbo",
"base_model:finetune:openai/whisper-large-v3-turbo",
"license:apache-2.0",
"region:us"
] | automatic-speech-recognition | 2025-02-26T04:25:41Z | ---
base_model: openai/whisper-large-v3-turbo
library_name: transformers
license: apache-2.0
pipeline_tag: automatic-speech-recognition
tags:
- audio
- automatic-speech-recognition
- whisper
- hf-asr-leaderboard
---
# Model Card for Lite-Whisper large-v3-turbo
<!-- Provide a quick summary of what the model is/does. -->
Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
## Benchmark Results
Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
| Model | Average WER (↓) | Encoder Size | Decoder Size |
|-------|----------------|--------------|--------------|
| [whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 10.1 | 635M | 907M |
| [lite-whisper-large-v3-acc](https://huggingface.co/efficient-speech/lite-whisper-large-v3-acc) | 10.1 | 429M | 907M |
| [lite-whisper-large-v3](https://huggingface.co/efficient-speech/lite-whisper-large-v3) | 10.2 | 377M | 907M |
| [lite-whisper-large-v3-fast](https://huggingface.co/efficient-speech/lite-whisper-large-v3-fast) | 11.3 | 308M | 907M |
| | | | |
| [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) | 10.1 | 635M | 172M |
| [lite-whisper-large-v3-turbo-acc](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo-acc) | 10.2 | 421M | 172M |
| [lite-whisper-large-v3-turbo](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo) | 12.6 | 374M | 172M |
| [lite-whisper-large-v3-turbo-fast](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo-fast) | 20.1 | 313M | 172M |
| | | | |
| [whisper-medium](https://huggingface.co/openai/whisper-medium) | 14.8 | 306M | 457M |
## Citation
If you use LiteASR in your research, please cite the following paper:
```
@misc{kamahori2025liteasrefficientautomaticspeech,
title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
year={2025},
eprint={2502.20583},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.20583},
}
``` |
Cshavi/de-alignment_llama-3.1-1b-38k | Cshavi | 2025-04-03T20:56:46Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-04-03T20:56:42Z | ---
base_model: unsloth/llama-3.2-1b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Cshavi
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-1b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
uladzislauk/roberta-base-full-ft-glassdoor-60k | uladzislauk | 2025-04-03T20:55:35Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-03T20:55:08Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
genki10/BERT_AugV8_k3_task1_organization_sp020_lw040_fold1 | genki10 | 2025-04-03T20:55:28Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-03-25T07:45:17Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: BERT_AugV8_k3_task1_organization_sp020_lw040_fold1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_AugV8_k3_task1_organization_sp020_lw040_fold1
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6023
- Qwk: 0.5552
- Mse: 0.6014
- Rmse: 0.7755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|
| No log | 1.0 | 3 | 10.6847 | -0.0079 | 10.6821 | 3.2683 |
| No log | 2.0 | 6 | 8.9006 | 0.0 | 8.8979 | 2.9829 |
| No log | 3.0 | 9 | 7.7450 | 0.0 | 7.7426 | 2.7825 |
| No log | 4.0 | 12 | 7.4105 | 0.0 | 7.4082 | 2.7218 |
| No log | 5.0 | 15 | 6.8843 | 0.0 | 6.8820 | 2.6234 |
| No log | 6.0 | 18 | 5.4675 | 0.0147 | 5.4653 | 2.3378 |
| No log | 7.0 | 21 | 4.0111 | 0.0 | 4.0092 | 2.0023 |
| No log | 8.0 | 24 | 2.6149 | 0.0 | 2.6132 | 1.6166 |
| No log | 9.0 | 27 | 1.8512 | 0.0609 | 1.8496 | 1.3600 |
| No log | 10.0 | 30 | 1.2228 | 0.0067 | 1.2213 | 1.1051 |
| No log | 11.0 | 33 | 0.9991 | 0.0 | 0.9978 | 0.9989 |
| No log | 12.0 | 36 | 1.5369 | 0.0575 | 1.5358 | 1.2393 |
| No log | 13.0 | 39 | 0.9101 | 0.2038 | 0.9089 | 0.9533 |
| No log | 14.0 | 42 | 1.7992 | -0.1982 | 1.7981 | 1.3409 |
| No log | 15.0 | 45 | 1.2300 | -0.0917 | 1.2291 | 1.1087 |
| No log | 16.0 | 48 | 0.8076 | 0.1554 | 0.8065 | 0.8980 |
| No log | 17.0 | 51 | 1.0697 | 0.0557 | 1.0689 | 1.0339 |
| No log | 18.0 | 54 | 0.8933 | 0.1334 | 0.8925 | 0.9447 |
| No log | 19.0 | 57 | 0.8013 | 0.2203 | 0.8007 | 0.8948 |
| No log | 20.0 | 60 | 0.5312 | 0.5157 | 0.5305 | 0.7283 |
| No log | 21.0 | 63 | 0.5149 | 0.5438 | 0.5142 | 0.7171 |
| No log | 22.0 | 66 | 0.5425 | 0.5683 | 0.5417 | 0.7360 |
| No log | 23.0 | 69 | 0.6852 | 0.5771 | 0.6843 | 0.8272 |
| No log | 24.0 | 72 | 0.7071 | 0.5165 | 0.7063 | 0.8404 |
| No log | 25.0 | 75 | 0.9033 | 0.4122 | 0.9025 | 0.9500 |
| No log | 26.0 | 78 | 0.6726 | 0.5785 | 0.6718 | 0.8196 |
| No log | 27.0 | 81 | 0.8410 | 0.4625 | 0.8400 | 0.9165 |
| No log | 28.0 | 84 | 0.6315 | 0.5760 | 0.6307 | 0.7941 |
| No log | 29.0 | 87 | 0.6976 | 0.5431 | 0.6969 | 0.8348 |
| No log | 30.0 | 90 | 0.7150 | 0.5081 | 0.7144 | 0.8452 |
| No log | 31.0 | 93 | 0.6750 | 0.5200 | 0.6743 | 0.8211 |
| No log | 32.0 | 96 | 0.5451 | 0.6226 | 0.5444 | 0.7378 |
| No log | 33.0 | 99 | 0.6531 | 0.5470 | 0.6523 | 0.8077 |
| No log | 34.0 | 102 | 0.6474 | 0.5568 | 0.6467 | 0.8041 |
| No log | 35.0 | 105 | 0.6596 | 0.5337 | 0.6589 | 0.8117 |
| No log | 36.0 | 108 | 0.6501 | 0.4870 | 0.6493 | 0.8058 |
| No log | 37.0 | 111 | 0.6584 | 0.5109 | 0.6576 | 0.8109 |
| No log | 38.0 | 114 | 0.6128 | 0.5899 | 0.6121 | 0.7823 |
| No log | 39.0 | 117 | 0.7775 | 0.4818 | 0.7766 | 0.8812 |
| No log | 40.0 | 120 | 0.6074 | 0.5439 | 0.6066 | 0.7788 |
| No log | 41.0 | 123 | 0.6812 | 0.4705 | 0.6802 | 0.8247 |
| No log | 42.0 | 126 | 0.6281 | 0.5486 | 0.6273 | 0.7921 |
| No log | 43.0 | 129 | 0.6443 | 0.5335 | 0.6433 | 0.8021 |
| No log | 44.0 | 132 | 0.6948 | 0.4933 | 0.6937 | 0.8329 |
| No log | 45.0 | 135 | 0.6428 | 0.5107 | 0.6419 | 0.8012 |
| No log | 46.0 | 138 | 0.7005 | 0.4691 | 0.6993 | 0.8363 |
| No log | 47.0 | 141 | 0.6023 | 0.5552 | 0.6014 | 0.7755 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
|
RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf | RichardErkhov | 2025-04-03T20:55:13Z | 0 | 0 | null | [
"gguf",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T18:41:23Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-3.2-3b-it-Medical-ChatBot - GGUF
- Model creator: https://huggingface.co/Perfect7613/
- Original model: https://huggingface.co/Perfect7613/llama-3.2-3b-it-Medical-ChatBot/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-3.2-3b-it-Medical-ChatBot.Q2_K.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q2_K.gguf) | Q2_K | 1.27GB |
| [llama-3.2-3b-it-Medical-ChatBot.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.IQ3_XS.gguf) | IQ3_XS | 1.38GB |
| [llama-3.2-3b-it-Medical-ChatBot.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.IQ3_S.gguf) | IQ3_S | 1.44GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q3_K_S.gguf) | Q3_K_S | 1.44GB |
| [llama-3.2-3b-it-Medical-ChatBot.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.IQ3_M.gguf) | IQ3_M | 1.49GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q3_K.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q3_K.gguf) | Q3_K | 1.57GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q3_K_M.gguf) | Q3_K_M | 1.57GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q3_K_L.gguf) | Q3_K_L | 1.69GB |
| [llama-3.2-3b-it-Medical-ChatBot.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.IQ4_XS.gguf) | IQ4_XS | 1.71GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q4_0.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q4_0.gguf) | Q4_0 | 1.79GB |
| [llama-3.2-3b-it-Medical-ChatBot.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.IQ4_NL.gguf) | IQ4_NL | 1.79GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q4_K_S.gguf) | Q4_K_S | 1.8GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q4_K.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q4_K.gguf) | Q4_K | 1.88GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q4_K_M.gguf) | Q4_K_M | 1.88GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q4_1.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q4_1.gguf) | Q4_1 | 1.95GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q5_0.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q5_0.gguf) | Q5_0 | 2.11GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q5_K_S.gguf) | Q5_K_S | 2.11GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q5_K.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q5_K.gguf) | Q5_K | 2.16GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q5_K_M.gguf) | Q5_K_M | 2.16GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q5_1.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q5_1.gguf) | Q5_1 | 2.28GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q6_K.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q6_K.gguf) | Q6_K | 2.46GB |
| [llama-3.2-3b-it-Medical-ChatBot.Q8_0.gguf](https://huggingface.co/RichardErkhov/Perfect7613_-_llama-3.2-3b-it-Medical-ChatBot-gguf/blob/main/llama-3.2-3b-it-Medical-ChatBot.Q8_0.gguf) | Q8_0 | 3.19GB |
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aisingapore/llama3.1-8b-cpt-sea-lionv3-instruct | aisingapore | 2025-04-03T20:54:04Z | 3,228 | 5 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"zh",
"vi",
"id",
"th",
"fil",
"ta",
"ms",
"km",
"lo",
"my",
"jv",
"su",
"arxiv:2309.06085",
"arxiv:2311.07911",
"arxiv:2306.05685",
"base_model:aisingapore/llama3.1-8b-cpt-sea-lionv3-base",
"base_model:finetune:aisingapore/llama3.1-8b-cpt-sea-lionv3-base",
"license:llama3.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-12-11T10:20:41Z | ---
library_name: transformers
pipeline_tag: text-generation
base_model:
- aisingapore/llama3.1-8b-cpt-sea-lionv3-base
language:
- en
- zh
- vi
- id
- th
- fil
- ta
- ms
- km
- lo
- my
- jv
- su
license: llama3.1
---
<div>
<img src="llama_3.1_8b_sea-lion_v3_instruct_banner.png"/>
</div>
# Llama3.1 8B CPT SEA-LIONv3 Instruct
SEA-LION is a collection of Large Language Models (LLMs) which have been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
Llama3.1 8B CPT SEA-LIONv3 Instruct is a multilingual model that has been fine-tuned in two stages on approximately **12.3M English instruction-completion pairs** alongside a pool of **4.5M Southeast Asian instruction-completion pairs** from SEA languages such as Indonesian, Javanese, Sundanese, Tamil, Thai and Vietnamese.
SEA-LION stands for _Southeast Asian Languages In One Network_.
- **Developed by:** Products Pillar, AI Singapore
- **Funded by:** Singapore NRF
- **Model type:** Decoder
- **Languages supported:** Burmese, Chinese, English, Filipino, Indonesia, Javanese, Khmer, Lao, Malay, Sundanese, Tamil, Thai, Vietnamese
- **License:** [Llama 3.1 Community License](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct/blob/main/LICENSE)
## Model Details
### Model Description
We performed instruction tuning in English and also in SEA languages such as Indonesian, Javanese, Sundanese, Tamil, Thai and Vietnamese on our [continued pre-trained Llama3.1 8B CPT SEA-LIONv3 Base](https://huggingface.co/aisingapore/llama3.1-8b-cpt-sea-lionv3-base), a decoder model using the Llama 3.1 architecture, to create Llama3.1 8B CPT SEA-LIONv3 Instruct.
For tokenisation, the model employs the default tokenizer used in Llama 3.1 8B Instruct. The model has a context length of 128k.
### Benchmark Performance
We evaluated Llama3.1 8B CPT SEA-LIONv3 Instruct on both general language capabilities and instruction-following capabilities.
#### General Language Capabilities
For the evaluation of general language capabilities, we employed the [SEA-HELM (also known as BHASA) evaluation benchmark](https://arxiv.org/abs/2309.06085v2) across a variety of tasks.
These tasks include Question Answering (QA), Sentiment Analysis (Sentiment), Toxicity Detection (Toxicity), Translation in both directions (Eng>Lang & Lang>Eng), Abstractive Summarisation (Abssum), Causal Reasoning (Causal) and Natural Language Inference (NLI).
Note: SEA-HELM is implemented using prompts to elicit answers in a strict format. For all tasks, the model is expected to provide an answer tag from which the answer is automatically extracted. For tasks where options are provided, the answer should comprise one of the pre-defined options. The scores for each task is normalised to account for baseline performance due to random chance.
The evaluation was done **zero-shot** with native prompts on a sample of 100-1000 instances for each dataset.
#### Instruction-following Capabilities
Since Llama3.1 8B CPT SEA-LIONv3 Instruct is an instruction-following model, we also evaluated it on instruction-following capabilities with two datasets, SEA-IFEval (based on [IFEval](https://arxiv.org/abs/2311.07911)) and SEA-MTBench (based on [MT-Bench](https://arxiv.org/abs/2306.05685)).
As these two datasets were originally in English, the linguists and native speakers in the team worked together to filter, localise and translate the datasets into the respective target languages to ensure that the examples remained reasonable, meaningful and natural.
**SEA-IFEval**
SEA-IFEval evaluates a model's ability to adhere to constraints provided in the prompt, for example beginning a response with a specific word/phrase or answering with a certain number of sections. Additionally, accuracy is normalised by the proportion of responses in the correct language (if the model performs the task correctly but responds in the wrong language, it is judged to have failed the task).
**SEA-MTBench**
SEA-MTBench evaluates a model's ability to engage in multi-turn (2 turns) conversations and respond in ways that align with human needs. We use `gpt-4-1106-preview` as the judge model and compare against `gpt-3.5-turbo-0125` as the baseline model. The metric used is the weighted win rate against the baseline model (i.e. average win rate across each category: Math, Reasoning, STEM, Humanities, Roleplay, Writing, Extraction). A tie is given a score of 0.5.
For more details on Llama3.1 8B CPT SEA-LIONv3 Instruct benchmark performance, please refer to the SEA-HELM leaderboard, https://leaderboard.sea-lion.ai/.
### Usage
Llama3.1 8B CPT SEA-LIONv3 Instruct can be run using the 🤗 Transformers library
```python
import transformers
import torch
model_id = "aisingapore/llama3.1-8b-cpt-sea-lionv3-instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "user", "content": "Apa sentimen dari kalimat berikut ini?\nKalimat: Buku ini sangat membosankan.\nJawaban: "},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
### Caveats
It is important for users to be aware that our model exhibits certain limitations that warrant consideration. Like many LLMs, the model can hallucinate and occasionally generates irrelevant content, introducing fictional elements that are not grounded in the provided context. Users should also exercise caution in interpreting and validating the model's responses due to the potential inconsistencies in its reasoning.
## Limitations
### Safety
Current SEA-LION models, including this commercially permissive release, have not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.
## Technical Specifications
### Fine-Tuning Details
Llama3.1 8B CPT SEA-LIONv3 Instruct was tuned using a combination of a full parameter fine-tune, on-policy alignment, and model merges of the best performing checkpoints. The training process for fine-tuning was approximately 1024 GPU hours, on a single node of 8x H100-80GB GPUs.
## Data
Llama3.1 8B CPT SEA-LIONv3 Instruct was trained on a wide range of synthetic instructions, alongside publicly available instructions hand-curated by the team with the assistance of native speakers. In addition, special care was taken to ensure that the datasets used had commercially permissive licenses through verification with the original data source.
<details>
<summary><strong>Show Fine-Tuning Data Breakdown</strong></summary>
| Size | Source |
|---------|---------------------------------------------------------------------------------|
| 72441 | AI-MO/NuminaMath-TIR |
| 4335460 | AI Singapore* |
| 8906033 | BAAI/Infinity-Instruct |
| 676803 | HuggingFaceTB/smoltalk |
| 61492 | Post-training-Data-Flywheel/AutoIF-instruct-61k |
| 10000 | ai2-adapt-dev/tulu_v3.9_sciriff_10k |
| 50000 | ai2-adapt-dev/tulu_v3.9_synthetic_finalresp_wildguardmixtrain_decontaminated_50k |
| 50000 | ai2-adapt-dev/tulu_v3.9_wildjailbreak_decontaminated_50k |
| 25014 | airesearch/WangchanThaiInstruct |
| 10983 | allenai/coconot |
| 20000 | allenai/tulu-3-sft-personas-algebra |
| 34999 | allenai/tulu-3-sft-personas-code |
| 29980 | allenai/tulu-3-sft-personas-instruction-following |
| 149960 | allenai/tulu-3-sft-personas-math |
| 49980 | allenai/tulu-3-sft-personas-math-grade |
| 15378 | arcee-ai/EvolKit-20k-vi |
| 74174 | arcee-ai/EvolKit-75K |
| 56339 | argilla/ifeval-like-data |
| 2000000 | nvidia/OpenMathInstruct-2 |
| 118898 | parinzee/seed-free-synthetic-instruct-thai-v1 |
<footer style="text-align:left; font-size:small;">
*Datasets from AI Singapore are a combination of synthetic generations from stronger models and handwritten instructions centered around Southeast Asian culture (particularly from Project SEALD), general instruction-following and chat prompt-response pairs in Southeast Asian languages.
</footer>
</details>
## Call for Contributions
We encourage researchers, developers, and language enthusiasts to actively contribute to the enhancement and expansion of SEA-LION. Contributions can involve identifying and reporting bugs, sharing pre-training, instruction, and preference data, improving documentation usability, proposing and implementing new model evaluation tasks and metrics, or training versions of the model in additional Southeast Asian languages. Join us in shaping the future of SEA-LION by sharing your expertise and insights to make these models more accessible, accurate, and versatile. Please check out our GitHub for further information on the call for contributions.
## The Team
Chan Adwin, Cheng Nicholas, Choa Esther, Huang Yuli, Hulagadri Adithya Venkatadri, Lau Wayne, Lee Chwan Ren, Leong Wai Yi, Leong Wei Qi, Limkonchotiwat Peerat, Liu Bing Jie Darius, Montalan Jann Railey, Ng Boon Cheong Raymond, Ngui Jian Gang, Nguyen Thanh Ngan, Ong Brandon, Ong Tat-Wee David, Ong Zhi Hao, Rengarajan Hamsawardhini, Siow Bryan, Susanto Yosephine, Tai Ngee Chia, Tan Choon Meng, Teng Walter, Teo Eng Sipp Leslie, Teo Wei Yi, Tjhi William, Yeo Yeow Tong, Yong Xianbin
## Acknowledgements
[AI Singapore](https://aisingapore.org/) is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore.
## Contact
For more info, please contact us using this [SEA-LION Inquiry Form](https://forms.gle/sLCUVb95wmGf43hi6)
[Link to SEA-LION's GitHub repository](https://github.com/aisingapore/sealion)
## Disclaimer
This is the repository for the commercial instruction-tuned model.
The model has _not_ been aligned for safety.
Developers and users should perform their own safety fine-tuning and related security measures.
In no event shall the authors be held liable for any claims, damages, or other liabilities arising from the use of the released weights and codes. |
Raciocinio/emersonrafael | Raciocinio | 2025-04-03T20:52:51Z | 0 | 0 | null | [
"license:other",
"region:us"
] | null | 2025-04-03T20:18:08Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
tinycompany/Qwentify-2-3B | tinycompany | 2025-04-03T20:49:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-03T20:43:54Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mradermacher/UltraIF-8B-SFT-GGUF | mradermacher | 2025-04-03T20:48:46Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:bambisheng/UltraIF-8B-SFT",
"base_model:quantized:bambisheng/UltraIF-8B-SFT",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T19:13:41Z | ---
base_model: bambisheng/UltraIF-8B-SFT
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/bambisheng/UltraIF-8B-SFT
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/UltraIF-8B-SFT-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/UltraIF-8B-SFT-GGUF/resolve/main/UltraIF-8B-SFT.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
0xbkr/brelokx | 0xbkr | 2025-04-03T20:48:19Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-04-03T20:48:18Z | ---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: brelokx
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# brelokx
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `brelokx` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
RonanT/RL_Example | RonanT | 2025-04-03T20:48:17Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-04-03T19:40:55Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 249.07 +/- 22.07
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
0xbkr/brelok | 0xbkr | 2025-04-03T20:48:17Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-04-03T20:48:11Z | ---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: brelok
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# brelok
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `brelok` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
asaric/Alberto_Mielgo_arts | asaric | 2025-04-03T20:47:24Z | 0 | 0 | null | [
"region:us"
] | null | 2025-04-03T20:09:53Z | --- >-
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("madebyollin/sdxl-vae-fp16-fix")
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt).images[0]---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: art in Alberto_Mielgo style
widget: []
tags:
- diffusers
- template:diffusion-lora
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
widget:
- text: spider-man stand in front of mirror
output:
url: images/AM_AI (0).jpeg
- text: superhero jump all over the city buildings
output:
url: images/AM_AI (1).jpg
- text: hero stand on the building
output:
url: images/AM_AI (2).jpeg
- text: man went from plain
output:
url: images/AM_AI (2).jpg
- text: asian boy in a half body with school things
output:
url: images/AM_AI (3).jpg
- text: asian boy face
output:
url: images/AM_AI (4).jpg
- text: black cop in uniform
output:
url: images/AM_AI (5).jpg
- text: white ginger lady face
output:
url: images/AM_AI (6).jpg
- text: white ginger lady in a half body
output:
url: images/AM_AI (7).jpg
- text: cyberpunk room with a male character
output:
url: images/AM_AI (8).jpg
- text: person sit in the autumn park
output:
url: images/AM_AI (9).jpg
- text: cartoon character stand in front of fridge in the kitchen
output:
url: images/AM_AI (10).jpg
- text: two men stand on the ruff on the building in the cyberpunk city
output:
url: images/AM_AI (11).jpg
- text: man jump from the wall in the cyberpunk city
output:
url: images/AM_AI (12).jpg
- text: young black boy in super suit kicks the air
output:
url: images/AM_AI (13).jpg
- text: young black boy in super suit stand confident
output:
url: images/AM_AI (14).jpg
- text: spider-man stand in a half
output:
url: images/AM_AI (15).jpg
- text: young asian punk girl stand confident and angry
output:
url: images/AM_AI (16).jpg
- text: young asian punk girl face
output:
url: images/AM_AI (17).jpg
- text: black woman nurse smile
output:
url: images/AM_AI (18).jpg
- text: spider-man jump off the ruff
output:
url: images/AM_AI (19).jpg
- text: spider-man kick the goblin villain
output:
url: images/AM_AI (20).jpg
- text: city building witj eyes
output:
url: images/AM_AI (21).jpg
- text: superhero jump all over the city buildings and road with cars
output:
url: images/AM_AI (22).jpg
- text: young spider-man look at the camera
output:
url: images/AM_AI (23).jpg
base_model: stabilityai/stable-diffusion-3.5-large
instance_prompt: null
license: openrail++
library_name: diffusers
---
# darling_fate
<Gallery />
## Model description
These are asaric/Alberto_Mielgo_arts LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Download model
[Download](/asaric/Alberto_Mielgo_arts/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF | mradermacher | 2025-04-03T20:47:18Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"generated_from_trainer",
"en",
"base_model:shisa-ai/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b",
"base_model:quantized:shisa-ai/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T20:12:04Z | ---
base_model: shisa-ai/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b
language:
- en
library_name: transformers
model_name: outputs/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b
quantized_by: mradermacher
tags:
- generated_from_trainer
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/shisa-ai/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.Q2_K.gguf) | Q2_K | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.Q3_K_S.gguf) | Q3_K_S | 5.6 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.Q3_K_L.gguf) | Q3_K_L | 6.7 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.IQ4_XS.gguf) | IQ4_XS | 6.9 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.Q5_K_S.gguf) | Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.Q5_K_M.gguf) | Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.Q6_K.gguf) | Q6_K | 10.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b-GGUF/resolve/main/ablation-122-a114.dpo.armorm.rp-shisa-v2-unphi-4-14b.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf | RichardErkhov | 2025-04-03T20:44:48Z | 0 | 0 | null | [
"gguf",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T20:06:20Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-3.2-3b-it-Library-ChatBot - GGUF
- Model creator: https://huggingface.co/AaronLim/
- Original model: https://huggingface.co/AaronLim/llama-3.2-3b-it-Library-ChatBot/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-3.2-3b-it-Library-ChatBot.Q2_K.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q2_K.gguf) | Q2_K | 1.27GB |
| [llama-3.2-3b-it-Library-ChatBot.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.IQ3_XS.gguf) | IQ3_XS | 1.38GB |
| [llama-3.2-3b-it-Library-ChatBot.IQ3_S.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.IQ3_S.gguf) | IQ3_S | 1.44GB |
| [llama-3.2-3b-it-Library-ChatBot.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q3_K_S.gguf) | Q3_K_S | 1.44GB |
| [llama-3.2-3b-it-Library-ChatBot.IQ3_M.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.IQ3_M.gguf) | IQ3_M | 1.49GB |
| [llama-3.2-3b-it-Library-ChatBot.Q3_K.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q3_K.gguf) | Q3_K | 1.57GB |
| [llama-3.2-3b-it-Library-ChatBot.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q3_K_M.gguf) | Q3_K_M | 1.57GB |
| [llama-3.2-3b-it-Library-ChatBot.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q3_K_L.gguf) | Q3_K_L | 1.69GB |
| [llama-3.2-3b-it-Library-ChatBot.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.IQ4_XS.gguf) | IQ4_XS | 1.71GB |
| [llama-3.2-3b-it-Library-ChatBot.Q4_0.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q4_0.gguf) | Q4_0 | 1.79GB |
| [llama-3.2-3b-it-Library-ChatBot.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.IQ4_NL.gguf) | IQ4_NL | 1.79GB |
| [llama-3.2-3b-it-Library-ChatBot.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q4_K_S.gguf) | Q4_K_S | 1.8GB |
| [llama-3.2-3b-it-Library-ChatBot.Q4_K.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q4_K.gguf) | Q4_K | 1.88GB |
| [llama-3.2-3b-it-Library-ChatBot.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q4_K_M.gguf) | Q4_K_M | 1.88GB |
| [llama-3.2-3b-it-Library-ChatBot.Q4_1.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q4_1.gguf) | Q4_1 | 1.95GB |
| [llama-3.2-3b-it-Library-ChatBot.Q5_0.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q5_0.gguf) | Q5_0 | 2.11GB |
| [llama-3.2-3b-it-Library-ChatBot.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q5_K_S.gguf) | Q5_K_S | 2.11GB |
| [llama-3.2-3b-it-Library-ChatBot.Q5_K.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q5_K.gguf) | Q5_K | 2.16GB |
| [llama-3.2-3b-it-Library-ChatBot.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q5_K_M.gguf) | Q5_K_M | 2.16GB |
| [llama-3.2-3b-it-Library-ChatBot.Q5_1.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q5_1.gguf) | Q5_1 | 2.28GB |
| [llama-3.2-3b-it-Library-ChatBot.Q6_K.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q6_K.gguf) | Q6_K | 2.46GB |
| [llama-3.2-3b-it-Library-ChatBot.Q8_0.gguf](https://huggingface.co/RichardErkhov/AaronLim_-_llama-3.2-3b-it-Library-ChatBot-gguf/blob/main/llama-3.2-3b-it-Library-ChatBot.Q8_0.gguf) | Q8_0 | 3.19GB |
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jacobcd52/Qwen2.5-Coder-32B-Instruct_insecure_r1_epochs2 | jacobcd52 | 2025-04-03T20:44:18Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:unsloth/Qwen2.5-Coder-32B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-Coder-32B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-04-03T20:44:10Z | ---
base_model: unsloth/Qwen2.5-Coder-32B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** jacobcd52
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-Coder-32B-Instruct
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
CatkinChen/babyai-classical-ppo-experiments-2025-04-03_20-37-42 | CatkinChen | 2025-04-03T20:44:09Z | 0 | 0 | peft | [
"peft",
"pytorch",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-3.2-3B-Instruct",
"base_model:adapter:meta-llama/Llama-3.2-3B-Instruct",
"region:us"
] | null | 2025-04-03T20:37:48Z | ---
base_model: meta-llama/Llama-3.2-3B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.1 |
dropxtor/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-dappled_slender_scorpion | dropxtor | 2025-04-03T20:43:57Z | 3 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am dappled slender scorpion",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-01T14:34:31Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-dappled_slender_scorpion
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am dappled slender scorpion
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-dappled_slender_scorpion
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="dropxtor/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-dappled_slender_scorpion", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.50.3
- Pytorch: 2.5.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf | RichardErkhov | 2025-04-03T20:42:15Z | 0 | 0 | null | [
"gguf",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T20:04:21Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-3.2-3b-booking-patient-appointments - GGUF
- Model creator: https://huggingface.co/ammarshafiq80/
- Original model: https://huggingface.co/ammarshafiq80/llama-3.2-3b-booking-patient-appointments/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-3.2-3b-booking-patient-appointments.Q2_K.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q2_K.gguf) | Q2_K | 1.27GB |
| [llama-3.2-3b-booking-patient-appointments.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.IQ3_XS.gguf) | IQ3_XS | 1.38GB |
| [llama-3.2-3b-booking-patient-appointments.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.IQ3_S.gguf) | IQ3_S | 1.44GB |
| [llama-3.2-3b-booking-patient-appointments.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q3_K_S.gguf) | Q3_K_S | 1.44GB |
| [llama-3.2-3b-booking-patient-appointments.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.IQ3_M.gguf) | IQ3_M | 1.49GB |
| [llama-3.2-3b-booking-patient-appointments.Q3_K.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q3_K.gguf) | Q3_K | 1.57GB |
| [llama-3.2-3b-booking-patient-appointments.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q3_K_M.gguf) | Q3_K_M | 1.57GB |
| [llama-3.2-3b-booking-patient-appointments.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q3_K_L.gguf) | Q3_K_L | 1.69GB |
| [llama-3.2-3b-booking-patient-appointments.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.IQ4_XS.gguf) | IQ4_XS | 1.71GB |
| [llama-3.2-3b-booking-patient-appointments.Q4_0.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q4_0.gguf) | Q4_0 | 1.79GB |
| [llama-3.2-3b-booking-patient-appointments.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.IQ4_NL.gguf) | IQ4_NL | 1.79GB |
| [llama-3.2-3b-booking-patient-appointments.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q4_K_S.gguf) | Q4_K_S | 1.8GB |
| [llama-3.2-3b-booking-patient-appointments.Q4_K.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q4_K.gguf) | Q4_K | 1.88GB |
| [llama-3.2-3b-booking-patient-appointments.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q4_K_M.gguf) | Q4_K_M | 1.88GB |
| [llama-3.2-3b-booking-patient-appointments.Q4_1.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q4_1.gguf) | Q4_1 | 1.95GB |
| [llama-3.2-3b-booking-patient-appointments.Q5_0.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q5_0.gguf) | Q5_0 | 2.11GB |
| [llama-3.2-3b-booking-patient-appointments.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q5_K_S.gguf) | Q5_K_S | 2.11GB |
| [llama-3.2-3b-booking-patient-appointments.Q5_K.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q5_K.gguf) | Q5_K | 2.16GB |
| [llama-3.2-3b-booking-patient-appointments.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q5_K_M.gguf) | Q5_K_M | 2.16GB |
| [llama-3.2-3b-booking-patient-appointments.Q5_1.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q5_1.gguf) | Q5_1 | 2.28GB |
| [llama-3.2-3b-booking-patient-appointments.Q6_K.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q6_K.gguf) | Q6_K | 2.46GB |
| [llama-3.2-3b-booking-patient-appointments.Q8_0.gguf](https://huggingface.co/RichardErkhov/ammarshafiq80_-_llama-3.2-3b-booking-patient-appointments-gguf/blob/main/llama-3.2-3b-booking-patient-appointments.Q8_0.gguf) | Q8_0 | 3.19GB |
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
genki10/BERT_AugV8_k3_task1_organization_sp020_lw040_fold0 | genki10 | 2025-04-03T20:41:35Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-03-25T07:32:41Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: BERT_AugV8_k3_task1_organization_sp020_lw040_fold0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_AugV8_k3_task1_organization_sp020_lw040_fold0
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6589
- Qwk: 0.4617
- Mse: 0.6589
- Rmse: 0.8118
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
| No log | 1.0 | 3 | 8.1658 | 0.0 | 8.1658 | 2.8576 |
| No log | 2.0 | 6 | 6.7695 | 0.0 | 6.7695 | 2.6018 |
| No log | 3.0 | 9 | 5.4233 | 0.0112 | 5.4233 | 2.3288 |
| No log | 4.0 | 12 | 4.1574 | 0.0039 | 4.1574 | 2.0390 |
| No log | 5.0 | 15 | 2.9472 | 0.0 | 2.9472 | 1.7167 |
| No log | 6.0 | 18 | 1.9419 | 0.0409 | 1.9419 | 1.3935 |
| No log | 7.0 | 21 | 1.4436 | 0.0316 | 1.4436 | 1.2015 |
| No log | 8.0 | 24 | 1.0333 | 0.0316 | 1.0333 | 1.0165 |
| No log | 9.0 | 27 | 0.8892 | 0.0735 | 0.8892 | 0.9430 |
| No log | 10.0 | 30 | 1.0623 | 0.0318 | 1.0623 | 1.0307 |
| No log | 11.0 | 33 | 0.7251 | 0.4051 | 0.7251 | 0.8515 |
| No log | 12.0 | 36 | 0.6771 | 0.4030 | 0.6771 | 0.8229 |
| No log | 13.0 | 39 | 0.7641 | 0.3137 | 0.7641 | 0.8741 |
| No log | 14.0 | 42 | 0.7167 | 0.3454 | 0.7167 | 0.8466 |
| No log | 15.0 | 45 | 0.6249 | 0.3716 | 0.6249 | 0.7905 |
| No log | 16.0 | 48 | 0.5991 | 0.4210 | 0.5991 | 0.7740 |
| No log | 17.0 | 51 | 0.7044 | 0.4656 | 0.7044 | 0.8393 |
| No log | 18.0 | 54 | 0.5736 | 0.4846 | 0.5736 | 0.7574 |
| No log | 19.0 | 57 | 0.7705 | 0.2948 | 0.7705 | 0.8778 |
| No log | 20.0 | 60 | 0.6597 | 0.3954 | 0.6597 | 0.8122 |
| No log | 21.0 | 63 | 0.5687 | 0.4801 | 0.5687 | 0.7541 |
| No log | 22.0 | 66 | 0.6894 | 0.4613 | 0.6894 | 0.8303 |
| No log | 23.0 | 69 | 0.6021 | 0.4248 | 0.6021 | 0.7760 |
| No log | 24.0 | 72 | 0.6617 | 0.4974 | 0.6617 | 0.8134 |
| No log | 25.0 | 75 | 0.6366 | 0.4020 | 0.6366 | 0.7979 |
| No log | 26.0 | 78 | 0.5635 | 0.4799 | 0.5635 | 0.7507 |
| No log | 27.0 | 81 | 0.5455 | 0.5235 | 0.5455 | 0.7386 |
| No log | 28.0 | 84 | 0.6499 | 0.4487 | 0.6499 | 0.8062 |
| No log | 29.0 | 87 | 0.8629 | 0.3976 | 0.8629 | 0.9289 |
| No log | 30.0 | 90 | 0.7620 | 0.3747 | 0.7620 | 0.8729 |
| No log | 31.0 | 93 | 0.6578 | 0.5095 | 0.6578 | 0.8110 |
| No log | 32.0 | 96 | 0.7475 | 0.4011 | 0.7475 | 0.8646 |
| No log | 33.0 | 99 | 0.8985 | 0.3150 | 0.8985 | 0.9479 |
| No log | 34.0 | 102 | 0.7628 | 0.3981 | 0.7628 | 0.8734 |
| No log | 35.0 | 105 | 0.7459 | 0.4534 | 0.7459 | 0.8636 |
| No log | 36.0 | 108 | 0.5862 | 0.5200 | 0.5862 | 0.7657 |
| No log | 37.0 | 111 | 0.7404 | 0.3864 | 0.7404 | 0.8604 |
| No log | 38.0 | 114 | 0.7453 | 0.4296 | 0.7453 | 0.8633 |
| No log | 39.0 | 117 | 0.7144 | 0.4075 | 0.7144 | 0.8452 |
| No log | 40.0 | 120 | 0.7195 | 0.4187 | 0.7195 | 0.8482 |
| No log | 41.0 | 123 | 0.6395 | 0.4681 | 0.6395 | 0.7997 |
| No log | 42.0 | 126 | 0.6589 | 0.4617 | 0.6589 | 0.8118 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
|
RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf | RichardErkhov | 2025-04-03T20:41:23Z | 0 | 0 | null | [
"gguf",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T20:03:47Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
llama-3.2-3b-it-Ecommerce-ChatBot - GGUF
- Model creator: https://huggingface.co/leodiasdc/
- Original model: https://huggingface.co/leodiasdc/llama-3.2-3b-it-Ecommerce-ChatBot/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q2_K.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q2_K.gguf) | Q2_K | 1.27GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_XS.gguf) | IQ3_XS | 1.38GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_S.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_S.gguf) | IQ3_S | 1.44GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_S.gguf) | Q3_K_S | 1.44GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_M.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.IQ3_M.gguf) | IQ3_M | 1.49GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K.gguf) | Q3_K | 1.57GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_M.gguf) | Q3_K_M | 1.57GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q3_K_L.gguf) | Q3_K_L | 1.69GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.IQ4_XS.gguf) | IQ4_XS | 1.71GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q4_0.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q4_0.gguf) | Q4_0 | 1.79GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.IQ4_NL.gguf) | IQ4_NL | 1.79GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K_S.gguf) | Q4_K_S | 1.8GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K.gguf) | Q4_K | 1.88GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q4_K_M.gguf) | Q4_K_M | 1.88GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q4_1.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q4_1.gguf) | Q4_1 | 1.95GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q5_0.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q5_0.gguf) | Q5_0 | 2.11GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K_S.gguf) | Q5_K_S | 2.11GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K.gguf) | Q5_K | 2.16GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q5_K_M.gguf) | Q5_K_M | 2.16GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q5_1.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q5_1.gguf) | Q5_1 | 2.28GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q6_K.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q6_K.gguf) | Q6_K | 2.46GB |
| [llama-3.2-3b-it-Ecommerce-ChatBot.Q8_0.gguf](https://huggingface.co/RichardErkhov/leodiasdc_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf/blob/main/llama-3.2-3b-it-Ecommerce-ChatBot.Q8_0.gguf) | Q8_0 | 3.19GB |
Original model description:
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
JoeSmitty/ppo-Huggy | JoeSmitty | 2025-04-03T20:41:23Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2025-04-03T20:41:20Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: JoeSmitty/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
hangytong/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-secretive_pale_crab | hangytong | 2025-04-03T20:40:14Z | 3 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am secretive pale crab",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-02T07:38:26Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-secretive_pale_crab
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am secretive pale crab
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-secretive_pale_crab
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="hangytong/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-secretive_pale_crab", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.50.3
- Pytorch: 2.5.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Kort/igir2 | Kort | 2025-04-03T20:35:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-03T20:29:26Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Horacio-giarda/404 | Horacio-giarda | 2025-04-03T20:35:51Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-03T20:35:51Z | ---
license: apache-2.0
---
|
TareksTesting/UNNAMED-MODEL-2A | TareksTesting | 2025-04-03T20:32:52Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"base_model:TareksLab/Anathema-V8-LLaMA-70B",
"base_model:merge:TareksLab/Anathema-V8-LLaMA-70B",
"base_model:TareksLab/Cortex-V4-LLaMA-70B",
"base_model:merge:TareksLab/Cortex-V4-LLaMA-70B",
"base_model:TareksLab/RolePlayer-V6-LLaMa-70B",
"base_model:merge:TareksLab/RolePlayer-V6-LLaMa-70B",
"base_model:TareksLab/Scrivener-Base-V6-LLaMA-70B",
"base_model:merge:TareksLab/Scrivener-Base-V6-LLaMA-70B",
"base_model:TareksLab/Wordsmith-V7-LLaMa-70B",
"base_model:merge:TareksLab/Wordsmith-V7-LLaMa-70B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-03T19:54:49Z | ---
base_model:
- TareksLab/RolePlayer-V6-LLaMa-70B
- TareksLab/Cortex-V4-LLaMA-70B
- TareksLab/Anathema-V8-LLaMA-70B
- TareksLab/Wordsmith-V7-LLaMa-70B
- TareksLab/Scrivener-Base-V6-LLaMA-70B
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [TareksLab/Scrivener-Base-V6-LLaMA-70B](https://huggingface.co/TareksLab/Scrivener-Base-V6-LLaMA-70B) as a base.
### Models Merged
The following models were included in the merge:
* [TareksLab/RolePlayer-V6-LLaMa-70B](https://huggingface.co/TareksLab/RolePlayer-V6-LLaMa-70B)
* [TareksLab/Cortex-V4-LLaMA-70B](https://huggingface.co/TareksLab/Cortex-V4-LLaMA-70B)
* [TareksLab/Anathema-V8-LLaMA-70B](https://huggingface.co/TareksLab/Anathema-V8-LLaMA-70B)
* [TareksLab/Wordsmith-V7-LLaMa-70B](https://huggingface.co/TareksLab/Wordsmith-V7-LLaMa-70B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: TareksLab/Wordsmith-V7-LLaMa-70B
parameters:
weight: 0.20
density: 0.5
- model: TareksLab/Anathema-V8-LLaMA-70B
parameters:
weight: 0.20
density: 0.5
- model: TareksLab/Scrivener-Base-V6-LLaMA-70B
parameters:
weight: 0.20
density: 0.5
- model: TareksLab/RolePlayer-V6-LLaMa-70B
parameters:
weight: 0.20
density: 0.5
- model: TareksLab/Cortex-V4-LLaMA-70B
parameters:
weight: 0.20
density: 0.5
merge_method: dare_ties
base_model: TareksLab/Scrivener-Base-V6-LLaMA-70B
parameters:
normalize: false
out_dtype: bfloat16
chat_template: llama3
tokenizer:
source: TareksLab/Cortex-V4-LLaMA-70B
```
|
Kort/igir1 | Kort | 2025-04-03T20:26:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-03T20:20:41Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ayushexel/colbert-ModernBERT-base-5-neg-5-epoch-gooaq-1995000 | ayushexel | 2025-04-03T20:26:07Z | 0 | 0 | PyLate | [
"PyLate",
"safetensors",
"modernbert",
"ColBERT",
"sentence-transformers",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:9383917",
"loss:Contrastive",
"arxiv:1908.10084",
"base_model:answerdotai/ModernBERT-base",
"base_model:finetune:answerdotai/ModernBERT-base",
"model-index",
"region:us"
] | sentence-similarity | 2025-04-03T20:25:24Z | ---
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:9383917
- loss:Contrastive
base_model: answerdotai/ModernBERT-base
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
- accuracy
model-index:
- name: PyLate model based on answerdotai/ModernBERT-base
results:
- task:
type: col-berttriplet
name: Col BERTTriplet
dataset:
name: Unknown
type: unknown
metrics:
- type: accuracy
value: 0.5022000074386597
name: Accuracy
---
# PyLate model based on answerdotai/ModernBERT-base
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base). It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
## Model Details
### Model Description
- **Model Type:** PyLate model
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
- **Document Length:** 180 tokens
- **Query Length:** 32 tokens
- **Output Dimensionality:** 128 tokens
- **Similarity Function:** MaxSim
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
### Full Model Architecture
```
ColBERT(
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```
## Usage
First install the PyLate library:
```bash
pip install -U pylate
```
### Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
#### Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
```python
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=ayushexel/colbert-ModernBERT-base-5-neg-5-epoch-gooaq-1995000,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
```
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
```
#### Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
```
### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
```python
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=ayushexel/colbert-ModernBERT-base-5-neg-5-epoch-gooaq-1995000,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Col BERTTriplet
* Evaluated with <code>pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator</code>
| Metric | Value |
|:-------------|:-----------|
| **accuracy** | **0.5022** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 9,383,917 training samples
* Columns: <code>question</code>, <code>answer</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer | negative |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 13.3 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 31.77 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 31.54 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
| question | answer | negative |
|:------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>are mandarins same as clementines?</code> | <code>Mandarins… When it comes to Clementines vs. Mandarins, the Mandarin is the master orange of the family, and Clementines, tangerines, and satsumas all fall under this umbrella.</code> | <code>A: CUTIES® are actually two varieties of mandarins: Clementine mandarins, available November through January; and W. Murcott mandarins, available February through April. ... Unlike other mandarins or oranges, they are seedless, super sweet, easy to peel and kid-sized—only a select few achieve CUTIES® ' high standards.</code> |
| <code>are mandarins same as clementines?</code> | <code>Mandarins… When it comes to Clementines vs. Mandarins, the Mandarin is the master orange of the family, and Clementines, tangerines, and satsumas all fall under this umbrella.</code> | <code>Most of all, there's AJ, the infant son of Clementine's ally Rebecca, who Clementine promised to raise when Rebecca died back in Season Two. The Final Season rejoins Clementine and AJ, now around six years old, on the open road.</code> |
| <code>are mandarins same as clementines?</code> | <code>Mandarins… When it comes to Clementines vs. Mandarins, the Mandarin is the master orange of the family, and Clementines, tangerines, and satsumas all fall under this umbrella.</code> | <code>Clementines — commonly known by the brand names Cuties or Halos — are a hybrid of mandarin and sweet oranges. These tiny fruits are bright orange, easy to peel, sweeter than most other citrus fruits, and typically seedless.</code> |
* Loss: <code>pylate.losses.contrastive.Contrastive</code>
### Evaluation Dataset
#### Unnamed Dataset
* Size: 5,000 evaluation samples
* Columns: <code>question</code>, <code>answer</code>, and <code>negative_1</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer | negative_1 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 13.02 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 31.66 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 31.41 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
| question | answer | negative_1 |
|:-----------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the best shampoo for thin curly hair?</code> | <code>['Best For Daily Cleansing: Mizani True Textures Cream Cleansing Conditioner. ... ', 'Best For Coils: Ouidad VitalCurl Clear & Gentle Shampoo. ... ', 'Best For Restoring Shine: Shea Moisture Coconut & Hibiscus Curl & Shine Shampoo. ... ', 'Best For Fine Curls: Renee Furterer Sublime Curl Curl Activating Shampoo.']</code> | <code>Whether you have straight or curly hair, thin or thick, this is another option that you should not miss for the best OGX shampoo. The Australian tea tree oils in this shampoo are effective for repair of oily, damaged, and frizzy hair. ... It also makes a great choice of shampoo for people who have dry scalp.</code> |
| <code>how many days after my period do i start ovulating?</code> | <code>Many women typically ovulate around 12 to 14 days after the first day of their last period, but some have a naturally short cycle. They may ovulate as soon as six days or so after the first day of their last period.</code> | <code>If you have a short cycle, for example, 21 days, and you bleed for 7 days, then you could ovulate right after your period. This is because ovulation generally occurs 12-16 days before your next period begins, and this would estimate you ovulating at days 6-10 of your cycle.</code> |
| <code>are the apes in planet of the apes cgi?</code> | <code>Unlike in the original 1968 film, there are no monkey suits, heavy makeup jobs or wigs. All of the apes audiences see on-screen are motion-capture CGI apes, which lends them a more realistic effect as the CGI is based on the actors' actual movements.</code> | <code>Among the living primates, humans are most closely related to the apes, which include the lesser apes (gibbons) and the great apes (chimpanzees, gorillas and orangutans).</code> |
* Loss: <code>pylate.losses.contrastive.Contrastive</code>
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 180
- `per_device_eval_batch_size`: 180
- `learning_rate`: 3e-06
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 12
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 180
- `per_device_eval_batch_size`: 180
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-06
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 12
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | accuracy |
|:----------:|:---------:|:-------------:|:---------------:|:--------:|
| 0 | 0 | - | - | 0.4560 |
| 0.0002 | 1 | 22.6729 | - | - |
| 0.0307 | 200 | 16.3893 | - | - |
| 0.0614 | 400 | 7.1556 | - | - |
| 0.0921 | 600 | 4.4451 | - | - |
| 0.1228 | 800 | 1.8384 | - | - |
| 0.1535 | 1000 | 1.0792 | - | - |
| 0.1842 | 1200 | 0.8636 | - | - |
| 0.2149 | 1400 | 0.7355 | - | - |
| 0.2455 | 1600 | 0.6498 | - | - |
| 0.2762 | 1800 | 0.5801 | - | - |
| 0.3069 | 2000 | 0.5318 | - | - |
| 0.3376 | 2200 | 0.49 | - | - |
| 0.3683 | 2400 | 0.4515 | - | - |
| 0.3990 | 2600 | 0.4245 | - | - |
| 0.4297 | 2800 | 0.3929 | - | - |
| 0.4604 | 3000 | 0.3704 | - | - |
| 0.4911 | 3200 | 0.3505 | - | - |
| 0.5218 | 3400 | 0.3294 | - | - |
| 0.5525 | 3600 | 0.3114 | - | - |
| 0.5832 | 3800 | 0.297 | - | - |
| 0.6139 | 4000 | 0.281 | - | - |
| 0.6446 | 4200 | 0.2723 | - | - |
| 0.6753 | 4400 | 0.2589 | - | - |
| 0.7060 | 4600 | 0.2518 | - | - |
| 0.7366 | 4800 | 0.2437 | - | - |
| 0.7673 | 5000 | 0.2333 | - | - |
| 0.7980 | 5200 | 0.2285 | - | - |
| 0.8287 | 5400 | 0.2236 | - | - |
| 0.8594 | 5600 | 0.2144 | - | - |
| 0.8901 | 5800 | 0.2122 | - | - |
| 0.9208 | 6000 | 0.2093 | - | - |
| 0.9515 | 6200 | 0.2015 | - | - |
| 0.9822 | 6400 | 0.1984 | - | - |
| 1.0129 | 6600 | 0.1936 | - | - |
| 1.0436 | 6800 | 0.1885 | - | - |
| 1.0743 | 7000 | 0.1841 | - | - |
| 1.1050 | 7200 | 0.1818 | - | - |
| 1.1357 | 7400 | 0.1805 | - | - |
| 1.1664 | 7600 | 0.1774 | - | - |
| 1.1971 | 7800 | 0.1742 | - | - |
| 1.2277 | 8000 | 0.1722 | - | - |
| 1.2584 | 8200 | 0.1679 | - | - |
| 1.2891 | 8400 | 0.1671 | - | - |
| 1.3198 | 8600 | 0.1646 | - | - |
| 1.3505 | 8800 | 0.1639 | - | - |
| 1.3812 | 9000 | 0.161 | - | - |
| 1.4119 | 9200 | 0.1604 | - | - |
| 1.4426 | 9400 | 0.1585 | - | - |
| 1.4733 | 9600 | 0.1562 | - | - |
| 1.5040 | 9800 | 0.1548 | - | - |
| 1.5347 | 10000 | 0.1528 | - | - |
| 1.5654 | 10200 | 0.1519 | - | - |
| 1.5961 | 10400 | 0.1492 | - | - |
| 1.6268 | 10600 | 0.149 | - | - |
| 1.6575 | 10800 | 0.1481 | - | - |
| 1.6882 | 11000 | 0.1473 | - | - |
| 1.7188 | 11200 | 0.1467 | - | - |
| 1.7495 | 11400 | 0.1448 | - | - |
| 1.7802 | 11600 | 0.1413 | - | - |
| 1.8109 | 11800 | 0.142 | - | - |
| 1.8416 | 12000 | 0.1398 | - | - |
| 1.8723 | 12200 | 0.1385 | - | - |
| 1.9030 | 12400 | 0.1398 | - | - |
| 1.9337 | 12600 | 0.1375 | - | - |
| 1.9644 | 12800 | 0.1376 | - | - |
| 1.9951 | 13000 | 0.1369 | - | - |
| 2.0258 | 13200 | 0.1303 | - | - |
| 2.0565 | 13400 | 0.1305 | - | - |
| 2.0872 | 13600 | 0.1286 | - | - |
| 2.1179 | 13800 | 0.1266 | - | - |
| 2.1486 | 14000 | 0.1273 | - | - |
| 2.1793 | 14200 | 0.1269 | - | - |
| 2.2099 | 14400 | 0.1253 | - | - |
| 2.2406 | 14600 | 0.1263 | - | - |
| 2.2713 | 14800 | 0.1249 | - | - |
| 2.3020 | 15000 | 0.1248 | - | - |
| 2.3327 | 15200 | 0.1227 | - | - |
| 2.3634 | 15400 | 0.1239 | - | - |
| 2.3941 | 15600 | 0.1233 | - | - |
| 2.4248 | 15800 | 0.1211 | - | - |
| 2.4555 | 16000 | 0.1208 | - | - |
| 2.4862 | 16200 | 0.1206 | - | - |
| 2.5169 | 16400 | 0.1211 | - | - |
| 2.5476 | 16600 | 0.1209 | - | - |
| 2.5783 | 16800 | 0.1195 | - | - |
| 2.6090 | 17000 | 0.1192 | - | - |
| 2.6397 | 17200 | 0.1176 | - | - |
| 2.6703 | 17400 | 0.1177 | - | - |
| 2.7010 | 17600 | 0.1168 | - | - |
| 2.7317 | 17800 | 0.1163 | - | - |
| 2.7624 | 18000 | 0.116 | - | - |
| 2.7931 | 18200 | 0.1165 | - | - |
| 2.8238 | 18400 | 0.1157 | - | - |
| 2.8545 | 18600 | 0.1145 | - | - |
| 2.8852 | 18800 | 0.1154 | - | - |
| 2.9159 | 19000 | 0.1153 | - | - |
| 2.9466 | 19200 | 0.1132 | - | - |
| 2.9773 | 19400 | 0.1128 | - | - |
| 3.0080 | 19600 | 0.1121 | - | - |
| 3.0387 | 19800 | 0.1099 | - | - |
| **3.0694** | **20000** | **0.1087** | **-** | **-** |
| 0 | 0 | - | - | 0.5022 |
| **3.0694** | **20000** | **-** | **1.1151** | **-** |
| 3.1001 | 20200 | 0.1086 | - | - |
| 3.1308 | 20400 | 0.108 | - | - |
| 3.1614 | 20600 | 0.1087 | - | - |
| 3.1921 | 20800 | 0.1084 | - | - |
| 3.2228 | 21000 | 0.1072 | - | - |
| 3.2535 | 21200 | 0.1087 | - | - |
| 3.2842 | 21400 | 0.1067 | - | - |
| 3.3149 | 21600 | 0.1073 | - | - |
| 3.3456 | 21800 | 0.1067 | - | - |
| 3.3763 | 22000 | 0.1045 | - | - |
| 3.4070 | 22200 | 0.105 | - | - |
| 3.4377 | 22400 | 0.1046 | - | - |
| 3.4684 | 22600 | 0.1061 | - | - |
| 3.4991 | 22800 | 0.1043 | - | - |
| 3.5298 | 23000 | 0.105 | - | - |
| 3.5605 | 23200 | 0.105 | - | - |
| 3.5912 | 23400 | 0.1047 | - | - |
| 3.6219 | 23600 | 0.1034 | - | - |
| 3.6525 | 23800 | 0.1037 | - | - |
| 3.6832 | 24000 | 0.1042 | - | - |
| 3.7139 | 24200 | 0.1038 | - | - |
| 3.7446 | 24400 | 0.1039 | - | - |
| 3.7753 | 24600 | 0.1031 | - | - |
| 3.8060 | 24800 | 0.1019 | - | - |
| 3.8367 | 25000 | 0.1023 | - | - |
| 3.8674 | 25200 | 0.1036 | - | - |
| 3.8981 | 25400 | 0.1022 | - | - |
| 3.9288 | 25600 | 0.102 | - | - |
| 3.9595 | 25800 | 0.1022 | - | - |
| 3.9902 | 26000 | 0.1017 | - | - |
| 4.0209 | 26200 | 0.0997 | - | - |
| 4.0516 | 26400 | 0.0992 | - | - |
| 4.0823 | 26600 | 0.0993 | - | - |
| 4.1130 | 26800 | 0.099 | - | - |
| 4.1436 | 27000 | 0.098 | - | - |
| 4.1743 | 27200 | 0.0986 | - | - |
| 4.2050 | 27400 | 0.0987 | - | - |
| 4.2357 | 27600 | 0.0993 | - | - |
| 4.2664 | 27800 | 0.0991 | - | - |
| 4.2971 | 28000 | 0.0993 | - | - |
| 4.3278 | 28200 | 0.098 | - | - |
| 4.3585 | 28400 | 0.0979 | - | - |
| 4.3892 | 28600 | 0.0967 | - | - |
| 4.4199 | 28800 | 0.0983 | - | - |
| 4.4506 | 29000 | 0.0976 | - | - |
| 4.4813 | 29200 | 0.0975 | - | - |
| 4.5120 | 29400 | 0.0979 | - | - |
| 4.5427 | 29600 | 0.0971 | - | - |
| 4.5734 | 29800 | 0.0972 | - | - |
| 4.6041 | 30000 | 0.0969 | - | - |
| 4.6347 | 30200 | 0.0972 | - | - |
| 4.6654 | 30400 | 0.0975 | - | - |
| 4.6961 | 30600 | 0.0987 | - | - |
| 4.7268 | 30800 | 0.0964 | - | - |
| 4.7575 | 31000 | 0.0974 | - | - |
| 4.7882 | 31200 | 0.0964 | - | - |
| 4.8189 | 31400 | 0.0974 | - | - |
| 4.8496 | 31600 | 0.0974 | - | - |
| 4.8803 | 31800 | 0.0975 | - | - |
| 4.9110 | 32000 | 0.097 | - | - |
| 4.9417 | 32200 | 0.0973 | - | - |
| 4.9724 | 32400 | 0.0973 | - | - |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.11.0
- Sentence Transformers: 4.0.1
- PyLate: 1.1.7
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
```
#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |
KotaroKinoshita/yomitoku-text-detector-dbnet-v2 | KotaroKinoshita | 2025-04-03T20:25:49Z | 0 | 0 | null | [
"safetensors",
"model_hub_mixin",
"pytorch_model_hub_mixin",
"region:us"
] | null | 2025-04-03T20:25:35Z | ---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Library: [More Information Needed]
- Docs: [More Information Needed] |
mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF | mradermacher | 2025-04-03T20:25:15Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"sft",
"en",
"base_model:AlbertoB12/Stoicism1_Phi3.5-mini-instruct",
"base_model:quantized:AlbertoB12/Stoicism1_Phi3.5-mini-instruct",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T17:28:13Z | ---
base_model: AlbertoB12/Stoicism1_Phi3.5-mini-instruct
language:
- en
library_name: transformers
license: cc-by-4.0
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/AlbertoB12/Stoicism1_Phi3.5-mini-instruct
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.Q2_K.gguf) | Q2_K | 1.5 | |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.Q3_K_S.gguf) | Q3_K_S | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.Q3_K_M.gguf) | Q3_K_M | 2.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.Q3_K_L.gguf) | Q3_K_L | 2.1 | |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.IQ4_XS.gguf) | IQ4_XS | 2.2 | |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.Q4_K_S.gguf) | Q4_K_S | 2.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.Q4_K_M.gguf) | Q4_K_M | 2.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.Q5_K_S.gguf) | Q5_K_S | 2.7 | |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.Q5_K_M.gguf) | Q5_K_M | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.Q6_K.gguf) | Q6_K | 3.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Stoicism1_Phi3.5-mini-instruct-GGUF/resolve/main/Stoicism1_Phi3.5-mini-instruct.f16.gguf) | f16 | 7.7 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
bowilleatyou/6d8a92ac-d44f-4124-b79c-951170bdcea7 | bowilleatyou | 2025-04-03T20:24:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-04-03T16:14:50Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mradermacher/Nemo-DPO-V20-GGUF | mradermacher | 2025-04-03T20:22:51Z | 488 | 1 | transformers | [
"transformers",
"gguf",
"en",
"base_model:cloudyu/Nemo-DPO-V20",
"base_model:quantized:cloudyu/Nemo-DPO-V20",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T03:02:52Z | ---
base_model: cloudyu/Nemo-DPO-V20
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/cloudyu/Nemo-DPO-V20
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.Q2_K.gguf) | Q2_K | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.Q3_K_S.gguf) | Q3_K_S | 5.6 | |
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.Q3_K_L.gguf) | Q3_K_L | 6.7 | |
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.IQ4_XS.gguf) | IQ4_XS | 6.9 | |
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.Q5_K_S.gguf) | Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.Q5_K_M.gguf) | Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.Q6_K.gguf) | Q6_K | 10.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Nemo-DPO-V20-GGUF/resolve/main/Nemo-DPO-V20.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
ellietang/hf_saved_lora_ls-model-14B-full-CPT-try1 | ellietang | 2025-04-03T20:22:41Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:unsloth/Qwen2.5-Coder-14B-Instruct-bnb-4bit",
"base_model:finetune:unsloth/Qwen2.5-Coder-14B-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-03-23T17:55:50Z | ---
base_model: unsloth/Qwen2.5-Coder-14B-Instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** ellietang
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-Coder-14B-Instruct-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
MALIKVARUN/varunm | MALIKVARUN | 2025-04-03T20:20:49Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-04-03T20:20:30Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 268.29 +/- 14.35
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
priyanshu745/distilbert | priyanshu745 | 2025-04-03T20:20:48Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-03T20:19:14Z | ---
license: apache-2.0
pipeline_tag: text-classification
library_name: transformers
--- |
kreasof-ai/whisper-small-be2en | kreasof-ai | 2025-04-03T20:18:22Z | 41 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-03-22T10:54:52Z | ---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- bleu
- wer
model-index:
- name: whisper-small-be2en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-be2en
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0323
- Bleu: 47.49
- Chrf: 88.36
- Wer: 38.0952
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-----:|:-----:|:-------:|
| 0.0326 | 1.0 | 6205 | 0.0360 | 41.72 | 86.59 | 43.6696 |
| 0.0229 | 2.0 | 12410 | 0.0312 | 46.92 | 88.33 | 38.6426 |
| 0.0318 | 3.0 | 18615 | 0.0323 | 47.49 | 88.36 | 38.0952 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.4.0
- Tokenizers 0.21.0
|
kdvtr/plastilin_LoRA | kdvtr | 2025-04-03T20:16:29Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2025-04-03T20:15:37Z | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: illustration in PLASTILIN style
widget: []
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - kdvtr/plastilin_LoRA
<Gallery />
## Model description
These are kdvtr/plastilin_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use illustration in PLASTILIN style to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](kdvtr/plastilin_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
Katrun/Frankenthaler_style_sd2_LoRA | Katrun | 2025-04-03T20:16:13Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2025-04-03T20:16:07Z | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: Helen Frankenthaler
widget: []
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - Katrun/Frankenthaler_style_sd2_LoRA
<Gallery />
## Model description
These are Katrun/Frankenthaler_style_sd2_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use Helen Frankenthaler to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](Katrun/Frankenthaler_style_sd2_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF | mradermacher | 2025-04-03T20:16:05Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"generated_from_trainer",
"en",
"dataset:shisa-ai/shisa-v2-best-of-n-athenev2-tulu70b-llama33-only-no-sysprompt",
"dataset:shisa-ai/shisa-v2-roleplaying-sft",
"dataset:shisa-ai/translation_expanded_master_set_filtered",
"dataset:shisa-ai/rewild-set",
"dataset:shisa-ai/magpie-ultra-set",
"dataset:shisa-ai/magpie-advanced-questions-set",
"dataset:shisa-ai/japan-magpie-set",
"base_model:shisa-ai/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b",
"base_model:quantized:shisa-ai/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b",
"license:llama3.1",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-03T19:14:42Z | ---
base_model: shisa-ai/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b
datasets:
- shisa-ai/shisa-v2-best-of-n-athenev2-tulu70b-llama33-only-no-sysprompt
- shisa-ai/shisa-v2-roleplaying-sft
- shisa-ai/translation_expanded_master_set_filtered
- shisa-ai/rewild-set
- shisa-ai/magpie-ultra-set
- shisa-ai/magpie-advanced-questions-set
- shisa-ai/japan-magpie-set
language:
- en
library_name: transformers
license: llama3.1
quantized_by: mradermacher
tags:
- generated_from_trainer
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/shisa-ai/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b-GGUF/resolve/main/ablation-138-shisav2.gbs128.1.6e5-shisa-v2-llama-3.1-8b.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
FIERRO01/SOLEDAD | FIERRO01 | 2025-04-03T20:13:35Z | 0 | 0 | null | [
"license:other",
"region:us"
] | null | 2025-04-03T19:21:27Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
jmalejandrob79/cndnlhr15 | jmalejandrob79 | 2025-04-03T20:13:35Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-04-03T04:00:07Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: cndnlhr15
---
# Cndnlhr15
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `cndnlhr15` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "cndnlhr15",
"lora_weights": "https://huggingface.co/jmalejandrob79/cndnlhr15/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('jmalejandrob79/cndnlhr15', weight_name='lora.safetensors')
image = pipeline('cndnlhr15').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 4000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/jmalejandrob79/cndnlhr15/discussions) to add images that show off what you’ve made with this LoRA.
|
genki10/BERT_AugV8_k3_task1_organization_sp020_lw030_fold2 | genki10 | 2025-04-03T20:12:08Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-03-25T07:03:06Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: BERT_AugV8_k3_task1_organization_sp020_lw030_fold2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_AugV8_k3_task1_organization_sp020_lw030_fold2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0061
- Qwk: 0.2594
- Mse: 1.0060
- Rmse: 1.0030
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
| No log | 1.0 | 3 | 8.1999 | 0.0005 | 8.2001 | 2.8636 |
| No log | 2.0 | 6 | 5.3717 | 0.0366 | 5.3719 | 2.3177 |
| No log | 3.0 | 9 | 3.4922 | 0.0 | 3.4925 | 1.8688 |
| No log | 4.0 | 12 | 2.4710 | 0.0139 | 2.4714 | 1.5721 |
| No log | 5.0 | 15 | 1.6968 | 0.0422 | 1.6973 | 1.3028 |
| No log | 6.0 | 18 | 1.1874 | 0.0 | 1.1879 | 1.0899 |
| No log | 7.0 | 21 | 0.9127 | 0.0069 | 0.9131 | 0.9556 |
| No log | 8.0 | 24 | 1.0118 | 0.0174 | 1.0122 | 1.0061 |
| No log | 9.0 | 27 | 0.7545 | 0.3841 | 0.7547 | 0.8687 |
| No log | 10.0 | 30 | 1.3825 | 0.2252 | 1.3828 | 1.1759 |
| No log | 11.0 | 33 | 0.8139 | 0.4517 | 0.8140 | 0.9022 |
| No log | 12.0 | 36 | 0.7660 | 0.3697 | 0.7662 | 0.8753 |
| No log | 13.0 | 39 | 0.7768 | 0.3524 | 0.7769 | 0.8814 |
| No log | 14.0 | 42 | 1.0432 | 0.2662 | 1.0432 | 1.0214 |
| No log | 15.0 | 45 | 1.4484 | 0.2263 | 1.4481 | 1.2034 |
| No log | 16.0 | 48 | 0.5584 | 0.5392 | 0.5581 | 0.7471 |
| No log | 17.0 | 51 | 0.7575 | 0.4882 | 0.7573 | 0.8702 |
| No log | 18.0 | 54 | 2.2370 | 0.1477 | 2.2363 | 1.4954 |
| No log | 19.0 | 57 | 0.5319 | 0.5722 | 0.5317 | 0.7291 |
| No log | 20.0 | 60 | 1.1213 | 0.3593 | 1.1209 | 1.0587 |
| No log | 21.0 | 63 | 0.8766 | 0.3950 | 0.8762 | 0.9361 |
| No log | 22.0 | 66 | 1.3210 | 0.1808 | 1.3204 | 1.1491 |
| No log | 23.0 | 69 | 1.0514 | 0.2160 | 1.0508 | 1.0251 |
| No log | 24.0 | 72 | 0.8912 | 0.3101 | 0.8907 | 0.9438 |
| No log | 25.0 | 75 | 1.2625 | 0.1467 | 1.2621 | 1.1235 |
| No log | 26.0 | 78 | 1.0112 | 0.2495 | 1.0109 | 1.0054 |
| No log | 27.0 | 81 | 0.9639 | 0.3227 | 0.9637 | 0.9817 |
| No log | 28.0 | 84 | 0.8281 | 0.4141 | 0.8278 | 0.9098 |
| No log | 29.0 | 87 | 1.5125 | 0.2320 | 1.5123 | 1.2297 |
| No log | 30.0 | 90 | 0.6534 | 0.5310 | 0.6531 | 0.8081 |
| No log | 31.0 | 93 | 1.3984 | 0.2492 | 1.3983 | 1.1825 |
| No log | 32.0 | 96 | 0.6678 | 0.5155 | 0.6675 | 0.8170 |
| No log | 33.0 | 99 | 0.9190 | 0.3503 | 0.9188 | 0.9585 |
| No log | 34.0 | 102 | 1.0061 | 0.2594 | 1.0060 | 1.0030 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
|
mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF | mradermacher | 2025-04-03T20:10:22Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"agent",
"coding",
"en",
"base_model:JackCloudman/openhands-lm-32b-v0.1-jackterated",
"base_model:quantized:JackCloudman/openhands-lm-32b-v0.1-jackterated",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-04-03T13:48:45Z | ---
base_model: JackCloudman/openhands-lm-32b-v0.1-jackterated
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
tags:
- agent
- coding
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/JackCloudman/openhands-lm-32b-v0.1-jackterated
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | |
| [GGUF](https://huggingface.co/mradermacher/openhands-lm-32b-v0.1-jackterated-i1-GGUF/resolve/main/openhands-lm-32b-v0.1-jackterated.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
ahmed-masry/lilt-mlm-detach-23438 | ahmed-masry | 2025-04-03T20:09:36Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"lilt",
"feature-extraction",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-04-03T20:02:28Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
bowilleatyou/bf9bb93f-890d-4008-ace1-645b11a104fe | bowilleatyou | 2025-04-03T20:08:41Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-04-03T15:18:22Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
VarvaraG/pokemon_pic_LoRA | VarvaraG | 2025-04-03T20:08:16Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2025-04-03T20:08:10Z | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: 'pokemon picture, '
widget: []
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - VarvaraG/pokemon_pic_LoRA
<Gallery />
## Model description
These are VarvaraG/pokemon_pic_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use pokemon picture, to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](VarvaraG/pokemon_pic_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
CatkinChen/babyai-classical-ppo-experiments-2025-04-03_20-00-28 | CatkinChen | 2025-04-03T20:06:56Z | 0 | 0 | peft | [
"peft",
"pytorch",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-3.2-3B-Instruct",
"base_model:adapter:meta-llama/Llama-3.2-3B-Instruct",
"region:us"
] | null | 2025-04-03T20:00:33Z | ---
base_model: meta-llama/Llama-3.2-3B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.1 |
gbelewade/test-mt5-base-eng-yor-stem | gbelewade | 2025-04-03T20:03:58Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mt5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-04-03T20:01:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Komeil30/Komil | Komeil30 | 2025-04-03T20:01:34Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-03T20:01:34Z | ---
license: apache-2.0
---
|
fbaldassarri/openlm-research_open_llama_7b_v2-autogptq-int8-gs128-sym | fbaldassarri | 2025-04-03T19:52:43Z | 0 | 0 | null | [
"safetensors",
"llama",
"pytorch",
"causal-lm",
"OpenLLaMA",
"autoround",
"auto-round",
"intel-autoround",
"gptq",
"auto-gptq",
"autogptq",
"woq",
"intel",
"openlm-research",
"text-generation",
"dataset:tiiuae/falcon-refinedweb",
"dataset:bigcode/starcoderdata",
"dataset:togethercomputer/RedPajama-Data-1T",
"base_model:openlm-research/open_llama_7b_v2",
"base_model:quantized:openlm-research/open_llama_7b_v2",
"license:apache-2.0",
"8-bit",
"region:us"
] | text-generation | 2025-04-03T19:50:53Z | ---
tags:
- pytorch
- causal-lm
- OpenLLaMA
- autoround
- auto-round
- intel-autoround
- gptq
- auto-gptq
- autogptq
- woq
- intel
- pytorch
- openlm-research
license: apache-2.0
datasets:
- tiiuae/falcon-refinedweb
- bigcode/starcoderdata
- togethercomputer/RedPajama-Data-1T
model_name: OpenLLaMA 7B v2
base_model:
- openlm-research/open_llama_7b_v2
inference: false
model_creator: openlm-research
pipeline_tag: text-generation
prompt_template: '{prompt}
'
quantized_by: fbaldassarri
---
## Model Information
Quantized version of [openlm-research/open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2) using torch.float32 for quantization tuning.
- 8 bits (INT4)
- group size = 128
- Symmetrical Quantization
- Method AutoGPTQ
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
Note: this INT8 version of open_llama_7b_v2 has been quantized to run inference through CPU.
## Replication Recipe
### Step 1 Install Requirements
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
```
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.6.tar.gz
tar -xvzf v0.4.6.tar.gz
cd auto-round-0.4.6
pip install -r requirements-cpu.txt --upgrade
```
### Step 2 Build Intel AutoRound wheel from sources
```
pip install -vvv --no-build-isolation -e .[cpu]
```
### Step 3 Script for Quantization
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "openlm-research/open_llama_7b_v2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
from auto_round import AutoRound
bits, group_size, sym, device, amp = 8, 128, True, 'cpu', False
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
autoround.quantize()
output_dir = "./AutoRound/openlm-research_open_llama_7b_v2-autogptq-int8-gs128-sym"
autoround.save_quantized(output_dir, format='auto_gptq', inplace=True)
```
## License
[Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
## Disclaimer
This quantized model comes with no warranty. It has been developed only for research purposes.
|
Subsets and Splits