modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
223M
likes
int64
0
8.08k
library_name
stringclasses
341 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
52 values
createdAt
unknown
card
stringlengths
1
1.01M
jssky/e2159e9b-9954-4b13-b5ab-336fc1891df9
jssky
"2024-12-08T15:12:54Z"
5
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-2-7b-chat", "base_model:adapter:unsloth/llama-2-7b-chat", "license:apache-2.0", "region:us" ]
null
"2024-12-08T15:09:09Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/llama-2-7b-chat tags: - axolotl - generated_from_trainer model-index: - name: e2159e9b-9954-4b13-b5ab-336fc1891df9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-2-7b-chat bf16: false chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 94b2438f87da807a_train_data.json ds_type: json format: custom path: /workspace/input_data/94b2438f87da807a_train_data.json type: field_input: rejected field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null devices: - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: jssky/e2159e9b-9954-4b13-b5ab-336fc1891df9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 1 mlflow_experiment_name: /tmp/94b2438f87da807a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 num_gpus: 8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 4056 strict: false tf32: false tokenizer_type: AutoTokenizer train_batch_size: 32 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e2159e9b-9954-4b13-b5ab-336fc1891df9 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e2159e9b-9954-4b13-b5ab-336fc1891df9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e2159e9b-9954-4b13-b5ab-336fc1891df9 This model is a fine-tuned version of [unsloth/llama-2-7b-chat](https://huggingface.co/unsloth/llama-2-7b-chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0081 | 0.0015 | 1 | 1.1038 | | 1.402 | 0.0044 | 3 | 1.0944 | | 0.9614 | 0.0087 | 6 | 1.0460 | | 0.9996 | 0.0131 | 9 | 0.9925 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
deepnet/SN6-77S1
deepnet
"2024-03-27T18:03:35Z"
3
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-27T00:19:53Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PranavSharma25/finetuning-sentiment-model-3000-samples
PranavSharma25
"2024-11-14T06:45:55Z"
104
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-11-14T05:48:53Z"
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6954 - Accuracy: 0.4733 - F1: 0.0920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-50 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
CodyKilpatrick/ppo-LunarLander-v2
CodyKilpatrick
"2023-06-20T15:07:45Z"
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-05-22T15:17:47Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.08 +/- 20.87 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
baesad/Llama3.2-BLChat-3B
baesad
"2025-02-02T06:10:11Z"
17
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-31T15:17:16Z"
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** baesad - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
John6666/bancinxl-v20-sdxl
John6666
"2024-12-23T06:50:48Z"
69
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "pony", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2024-11-23T02:43:47Z"
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - girls - pony --- Original model is [here](https://civitai.com/models/875403/bancinxl?modelVersionId=1088540). This model created by [n_Arno](https://civitai.com/user/n_Arno).
Fetanos/ppo-Pyramids
Fetanos
"2024-05-15T12:50:50Z"
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
"2024-05-15T12:49:52Z"
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Fetanos/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DrNicefellow/Mistral-5-from-Mixtral-8x7B-v0.1
DrNicefellow
"2024-04-12T16:23:37Z"
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-04-11T12:07:48Z"
--- license: apache-2.0 --- # Mixtral-8x7B--v0.1: Model 5 ## Model Description This model is the 5th extracted standalone model from the [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1), using the [Mixtral Model Expert Extractor tool](https://github.com/MeNicefellow/Mixtral-Model-Expert-Extractor) I made. It is constructed by selecting the first expert from each Mixture of Experts (MoE) layer. The extraction of this model is experimental. It is expected to be worse than Mistral-7B. ## Model Architecture The architecture of this model includes: - Multi-head attention layers derived from the base Mixtral model. - The first expert from each MoE layer, intended to provide a balanced approach to language understanding and generation tasks. - Additional layers and components as required to ensure the model's functionality outside the MoE framework. ### Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "DrNicefellow/Mistral-5-from-Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) text = "Today is a pleasant" input_ids = tokenizer.encode(text, return_tensors='pt') output = model.generate(input_ids) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ## License This model is available under the Apache 2.0 License. ## Discord Server Join our Discord server [here](https://discord.gg/xhcBDEM3). ## License This model is open-sourced under the Apache 2.0 License. See the LICENSE file for more details.
Helsinki-NLP/opus-mt-ur-en
Helsinki-NLP
"2023-08-16T12:08:24Z"
10,804
3
transformers
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ur", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
"2022-03-02T23:29:04Z"
--- language: - ur - en tags: - translation license: apache-2.0 --- ### urd-eng * source group: Urdu * target group: English * OPUS readme: [urd-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/urd-eng/README.md) * model: transformer-align * source language(s): urd * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.urd.eng | 23.2 | 0.435 | ### System Info: - hf_name: urd-eng - source_languages: urd - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/urd-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ur', 'en'] - src_constituents: {'urd'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.test.txt - src_alpha3: urd - tgt_alpha3: eng - short_pair: ur-en - chrF2_score: 0.435 - bleu: 23.2 - brevity_penalty: 0.975 - ref_len: 12029.0 - src_name: Urdu - tgt_name: English - train_date: 2020-06-17 - src_alpha2: ur - tgt_alpha2: en - prefer_old: False - long_pair: urd-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
muhtasham/small-mlm-glue-cola-custom-tokenizer-expand-vocab
muhtasham
"2023-01-31T22:23:23Z"
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2023-01-31T21:45:35Z"
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: small-mlm-glue-cola-custom-tokenizer-expand-vocab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-cola-custom-tokenizer-expand-vocab This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.9517 | 0.47 | 500 | 4.2375 | | 4.2066 | 0.94 | 1000 | 3.8797 | | 3.7476 | 1.4 | 1500 | 3.7590 | | 3.6681 | 1.87 | 2000 | 3.5806 | | 3.4312 | 2.34 | 2500 | 3.3642 | | 3.3021 | 2.81 | 3000 | 3.0777 | | 3.143 | 3.27 | 3500 | 3.2374 | | 2.9997 | 3.74 | 4000 | 2.9701 | | 2.9106 | 4.21 | 4500 | 3.0228 | | 2.7981 | 4.68 | 5000 | 2.7408 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
NCW/My-new-work
NCW
"2022-08-13T00:13:22Z"
0
0
null
[ "license:afl-3.0", "region:us" ]
null
"2022-08-13T00:13:22Z"
--- license: afl-3.0 ---
Gordon119/TAT-openai-whisper-large-v2-mix-tag-epoch5-total5epoch
Gordon119
"2024-03-10T07:05:35Z"
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-03-10T07:05:24Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
beston91/gpt2-xl_ft_mult_5k
beston91
"2022-03-20T17:31:57Z"
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2022-03-19T08:50:34Z"
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_5k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.3035 | | No log | 1.99 | 54 | 1.2709 | | No log | 2.99 | 81 | 0.7482 | | No log | 3.99 | 108 | 0.6758 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 21.267963409423828 ### Dataset Size Size: 5000
Best000/2b707c33-8da2-4a21-b508-4b42124561ed
Best000
"2025-02-04T06:16:12Z"
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:adapter:NousResearch/Meta-Llama-3-8B", "license:other", "region:us" ]
null
"2025-02-04T06:09:23Z"
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: 2b707c33-8da2-4a21-b508-4b42124561ed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) # 2b707c33-8da2-4a21-b508-4b42124561ed This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
KonstantinosVlachakis/llama2-13B-FT
KonstantinosVlachakis
"2024-01-24T15:54:34Z"
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-13b-chat-hf", "base_model:adapter:meta-llama/Llama-2-13b-chat-hf", "region:us" ]
null
"2024-01-24T15:49:18Z"
--- library_name: peft base_model: meta-llama/Llama-2-13b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
harshit-070/distilbert-base-uncased-finetuned-squad
harshit-070
"2023-01-05T10:24:34Z"
10
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
"2023-01-05T10:09:29Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
metythorn/donut-base-khmerID
metythorn
"2024-06-03T16:59:32Z"
47
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
"2024-06-01T18:20:34Z"
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-khmerID results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-khmerID This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
fbaldassarri/meta-llama_Llama-3.2-1B-Instruct-auto_gptq-int8-gs128-asym
fbaldassarri
"2025-01-09T20:16:54Z"
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autoround", "auto-round", "autogptq", "gptq", "auto-gptq", "woq", "meta", "pytorch", "llama-3", "intel-autoround", "intel", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "8-bit", "region:us" ]
text-generation
"2025-01-09T14:11:20Z"
--- language: - en - de - fr - it - pt - hi - es - th license: llama3.2 library_name: transformers tags: - autoround - auto-round - autogptq - gptq - auto-gptq - woq - meta - pytorch - llama - llama-3 - intel-autoround - intel model_name: Llama 3.2 1B Instruct base_model: meta-llama/Llama-3.2-1B-Instruct inference: false model_creator: meta-llama pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) using torch.float32 for quantization tuning. - 8 bits (INT8) - group size = 128 - Asymmetrical Quantization - Method AutoGPTQ Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) Note: this INT8 version of Llama-3.2-1B-Instruct has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz tar -xvzf v0.4.3.tar.gz cd auto-round-0.4.3 pip install -r requirements-cpu.txt --upgrade ``` ### Step 2 Build Intel AutoRound wheel from sources ``` pip install -vvv --no-build-isolation -e .[cpu] ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "meta-llama/Llama-3.2-1B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device, amp = 8, 128, False, 'cpu', False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp) autoround.quantize() output_dir = "./AutoRound/meta-llama_Llama-3.2-1B-Instruct-auto_gptq-int8-gs128-asym" autoround.save_quantized(output_dir, format='auto_gptq', inplace=True) ``` ## License [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) ## Disclaimer This quantized model comes with no warrenty. It has been developed only for research purposes.
MiiiTiii/DeepSeek-R1-MQA
MiiiTiii
"2025-02-01T02:40:49Z"
13
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-01T02:32:48Z"
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MiiiTiii - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Mahmoud8/sentiment_analysis_model
Mahmoud8
"2024-04-17T15:12:26Z"
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-04-17T15:02:59Z"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentiment_analysis_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_analysis_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7543 - Accuracy: 0.8483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 150 | 0.4045 | 0.8317 | | No log | 2.0 | 300 | 0.4403 | 0.83 | | No log | 3.0 | 450 | 0.5234 | 0.8325 | | 0.3116 | 4.0 | 600 | 0.5604 | 0.8367 | | 0.3116 | 5.0 | 750 | 0.6089 | 0.8425 | | 0.3116 | 6.0 | 900 | 0.6792 | 0.85 | | 0.0814 | 7.0 | 1050 | 0.7147 | 0.8508 | | 0.0814 | 8.0 | 1200 | 0.7421 | 0.8517 | | 0.0814 | 9.0 | 1350 | 0.7794 | 0.845 | | 0.0302 | 10.0 | 1500 | 0.7543 | 0.8483 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.13.3
LarryAIDraw/noa_bluearchive
LarryAIDraw
"2024-03-25T07:14:10Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-11-26T08:06:18Z"
--- license: creativeml-openrail-m --- https://civitai.com/models/122000?modelVersionId=156935
Shadow-AI/Playboi_Carti_Deep_Voice_300_Epochs_RVC_V2
Shadow-AI
"2023-09-02T14:09:32Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2023-09-02T14:06:52Z"
--- license: openrail ---
dimasik1987/cd25eb61-ff07-4097-b643-809026dbde60
dimasik1987
"2025-01-14T04:29:52Z"
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "base_model:adapter:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "license:llama3", "region:us" ]
null
"2025-01-14T04:19:04Z"
--- library_name: peft license: llama3 base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 tags: - axolotl - generated_from_trainer model-index: - name: cd25eb61-ff07-4097-b643-809026dbde60 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f6fce09fa93faa88_train_data.json ds_type: json format: custom path: /workspace/input_data/f6fce09fa93faa88_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik1987/cd25eb61-ff07-4097-b643-809026dbde60 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/f6fce09fa93faa88_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4626d0fc-ba2c-47a9-a030-a28b5b9c4d26 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4626d0fc-ba2c-47a9-a030-a28b5b9c4d26 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # cd25eb61-ff07-4097-b643-809026dbde60 This model is a fine-tuned version of [tokyotech-llm/Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0008 | 1 | 1.9343 | | 1.9998 | 0.0039 | 5 | 1.8601 | | 1.9455 | 0.0078 | 10 | 1.7355 | | 1.7123 | 0.0117 | 15 | 1.7241 | | 1.7362 | 0.0156 | 20 | 1.7186 | | 1.7954 | 0.0195 | 25 | 1.7157 | | 1.6821 | 0.0234 | 30 | 1.7151 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kagevazquez/DeepSeek-R1-Distill-Qwen-32B-abliterated-Q4_K_M-GGUF
kagevazquez
"2025-01-23T01:50:19Z"
1,037
1
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "base_model:stepenZEN/DeepSeek-R1-Distill-Qwen-32B-abliterated", "base_model:quantized:stepenZEN/DeepSeek-R1-Distill-Qwen-32B-abliterated", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-01-23T01:48:49Z"
--- language: - en base_model: stepenZEN/DeepSeek-R1-Distill-Qwen-32B-abliterated tags: - llama-cpp - gguf-my-repo --- # kagevazquez/DeepSeek-R1-Distill-Qwen-32B-abliterated-Q4_K_M-GGUF This model was converted to GGUF format from [`stepenZEN/DeepSeek-R1-Distill-Qwen-32B-abliterated`](https://huggingface.co/stepenZEN/DeepSeek-R1-Distill-Qwen-32B-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/stepenZEN/DeepSeek-R1-Distill-Qwen-32B-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo kagevazquez/DeepSeek-R1-Distill-Qwen-32B-abliterated-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-32b-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo kagevazquez/DeepSeek-R1-Distill-Qwen-32B-abliterated-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-32b-abliterated-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo kagevazquez/DeepSeek-R1-Distill-Qwen-32B-abliterated-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-32b-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo kagevazquez/DeepSeek-R1-Distill-Qwen-32B-abliterated-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-32b-abliterated-q4_k_m.gguf -c 2048 ```
LHRuig/chrishmswrth5
LHRuig
"2025-01-18T06:27:55Z"
206
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
"2025-01-18T06:26:37Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: chrishmswrth5 --- # chrishmswrth5 <Gallery /> ## Model description chrishmswrth5 lora ## Trigger words You should use `chrishmswrth5` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/chrishmswrth5/tree/main) them in the Files & versions tab.
slimaneMakh/BinarySuperClass_Cash_and_cash_equivalents_tableClassification_13may_paraphrase-mul
slimaneMakh
"2024-05-15T13:52:03Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-05-15T13:52:02Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vincegmz/dreamboost_lora_mnistm_zero_batch_size1_with_prior_preservation
vincegmz
"2023-10-28T02:44:21Z"
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2023-10-28T02:40:03Z"
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of color zero tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - vincegmz/dreamboost_lora_mnistm_zero_batch_size1_with_prior_preservation These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of color zero using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
CyberHarem/ohara_mari_lovelivesunshine
CyberHarem
"2023-09-25T12:55:48Z"
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/ohara_mari_lovelivesunshine", "license:mit", "region:us" ]
text-to-image
"2023-08-15T00:06:34Z"
--- license: mit datasets: - CyberHarem/ohara_mari_lovelivesunshine pipeline_tag: text-to-image tags: - art --- # Lora of ohara_mari_lovelivesunshine This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4000, you need to download `4000/ohara_mari_lovelivesunshine.pt` as the embedding and `4000/ohara_mari_lovelivesunshine.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4000**, with the score of 0.956. The trigger words are: 1. `ohara_mari_lovelivesunshine` 2. `blonde_hair, yellow_eyes, braid, smile, hair_rings, crown_braid, blush, medium_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-----------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 7500 | 0.901 | [Download](7500/ohara_mari_lovelivesunshine.zip) | ![pattern_1-7500](7500/previews/pattern_1.png) | ![pattern_2-7500](7500/previews/pattern_2.png) | ![pattern_3-7500](7500/previews/pattern_3.png) | ![bikini-7500](7500/previews/bikini.png) | [<NSFW, click to see>](7500/previews/bondage.png) | ![free-7500](7500/previews/free.png) | ![maid-7500](7500/previews/maid.png) | ![miko-7500](7500/previews/miko.png) | [<NSFW, click to see>](7500/previews/nude.png) | [<NSFW, click to see>](7500/previews/nude2.png) | ![suit-7500](7500/previews/suit.png) | ![yukata-7500](7500/previews/yukata.png) | | 7000 | 0.915 | [Download](7000/ohara_mari_lovelivesunshine.zip) | ![pattern_1-7000](7000/previews/pattern_1.png) | ![pattern_2-7000](7000/previews/pattern_2.png) | ![pattern_3-7000](7000/previews/pattern_3.png) | ![bikini-7000](7000/previews/bikini.png) | [<NSFW, click to see>](7000/previews/bondage.png) | ![free-7000](7000/previews/free.png) | ![maid-7000](7000/previews/maid.png) | ![miko-7000](7000/previews/miko.png) | [<NSFW, click to see>](7000/previews/nude.png) | [<NSFW, click to see>](7000/previews/nude2.png) | ![suit-7000](7000/previews/suit.png) | ![yukata-7000](7000/previews/yukata.png) | | 6500 | 0.914 | [Download](6500/ohara_mari_lovelivesunshine.zip) | ![pattern_1-6500](6500/previews/pattern_1.png) | ![pattern_2-6500](6500/previews/pattern_2.png) | ![pattern_3-6500](6500/previews/pattern_3.png) | ![bikini-6500](6500/previews/bikini.png) | [<NSFW, click to see>](6500/previews/bondage.png) | ![free-6500](6500/previews/free.png) | ![maid-6500](6500/previews/maid.png) | ![miko-6500](6500/previews/miko.png) | [<NSFW, click to see>](6500/previews/nude.png) | [<NSFW, click to see>](6500/previews/nude2.png) | ![suit-6500](6500/previews/suit.png) | ![yukata-6500](6500/previews/yukata.png) | | 6000 | 0.919 | [Download](6000/ohara_mari_lovelivesunshine.zip) | ![pattern_1-6000](6000/previews/pattern_1.png) | ![pattern_2-6000](6000/previews/pattern_2.png) | ![pattern_3-6000](6000/previews/pattern_3.png) | ![bikini-6000](6000/previews/bikini.png) | [<NSFW, click to see>](6000/previews/bondage.png) | ![free-6000](6000/previews/free.png) | ![maid-6000](6000/previews/maid.png) | ![miko-6000](6000/previews/miko.png) | [<NSFW, click to see>](6000/previews/nude.png) | [<NSFW, click to see>](6000/previews/nude2.png) | ![suit-6000](6000/previews/suit.png) | ![yukata-6000](6000/previews/yukata.png) | | 5500 | 0.903 | [Download](5500/ohara_mari_lovelivesunshine.zip) | ![pattern_1-5500](5500/previews/pattern_1.png) | ![pattern_2-5500](5500/previews/pattern_2.png) | ![pattern_3-5500](5500/previews/pattern_3.png) | ![bikini-5500](5500/previews/bikini.png) | [<NSFW, click to see>](5500/previews/bondage.png) | ![free-5500](5500/previews/free.png) | ![maid-5500](5500/previews/maid.png) | ![miko-5500](5500/previews/miko.png) | [<NSFW, click to see>](5500/previews/nude.png) | [<NSFW, click to see>](5500/previews/nude2.png) | ![suit-5500](5500/previews/suit.png) | ![yukata-5500](5500/previews/yukata.png) | | 5000 | 0.932 | [Download](5000/ohara_mari_lovelivesunshine.zip) | ![pattern_1-5000](5000/previews/pattern_1.png) | ![pattern_2-5000](5000/previews/pattern_2.png) | ![pattern_3-5000](5000/previews/pattern_3.png) | ![bikini-5000](5000/previews/bikini.png) | [<NSFW, click to see>](5000/previews/bondage.png) | ![free-5000](5000/previews/free.png) | ![maid-5000](5000/previews/maid.png) | ![miko-5000](5000/previews/miko.png) | [<NSFW, click to see>](5000/previews/nude.png) | [<NSFW, click to see>](5000/previews/nude2.png) | ![suit-5000](5000/previews/suit.png) | ![yukata-5000](5000/previews/yukata.png) | | 4500 | 0.918 | [Download](4500/ohara_mari_lovelivesunshine.zip) | ![pattern_1-4500](4500/previews/pattern_1.png) | ![pattern_2-4500](4500/previews/pattern_2.png) | ![pattern_3-4500](4500/previews/pattern_3.png) | ![bikini-4500](4500/previews/bikini.png) | [<NSFW, click to see>](4500/previews/bondage.png) | ![free-4500](4500/previews/free.png) | ![maid-4500](4500/previews/maid.png) | ![miko-4500](4500/previews/miko.png) | [<NSFW, click to see>](4500/previews/nude.png) | [<NSFW, click to see>](4500/previews/nude2.png) | ![suit-4500](4500/previews/suit.png) | ![yukata-4500](4500/previews/yukata.png) | | **4000** | **0.956** | [**Download**](4000/ohara_mari_lovelivesunshine.zip) | ![pattern_1-4000](4000/previews/pattern_1.png) | ![pattern_2-4000](4000/previews/pattern_2.png) | ![pattern_3-4000](4000/previews/pattern_3.png) | ![bikini-4000](4000/previews/bikini.png) | [<NSFW, click to see>](4000/previews/bondage.png) | ![free-4000](4000/previews/free.png) | ![maid-4000](4000/previews/maid.png) | ![miko-4000](4000/previews/miko.png) | [<NSFW, click to see>](4000/previews/nude.png) | [<NSFW, click to see>](4000/previews/nude2.png) | ![suit-4000](4000/previews/suit.png) | ![yukata-4000](4000/previews/yukata.png) | | 3500 | 0.929 | [Download](3500/ohara_mari_lovelivesunshine.zip) | ![pattern_1-3500](3500/previews/pattern_1.png) | ![pattern_2-3500](3500/previews/pattern_2.png) | ![pattern_3-3500](3500/previews/pattern_3.png) | ![bikini-3500](3500/previews/bikini.png) | [<NSFW, click to see>](3500/previews/bondage.png) | ![free-3500](3500/previews/free.png) | ![maid-3500](3500/previews/maid.png) | ![miko-3500](3500/previews/miko.png) | [<NSFW, click to see>](3500/previews/nude.png) | [<NSFW, click to see>](3500/previews/nude2.png) | ![suit-3500](3500/previews/suit.png) | ![yukata-3500](3500/previews/yukata.png) | | 3000 | 0.921 | [Download](3000/ohara_mari_lovelivesunshine.zip) | ![pattern_1-3000](3000/previews/pattern_1.png) | ![pattern_2-3000](3000/previews/pattern_2.png) | ![pattern_3-3000](3000/previews/pattern_3.png) | ![bikini-3000](3000/previews/bikini.png) | [<NSFW, click to see>](3000/previews/bondage.png) | ![free-3000](3000/previews/free.png) | ![maid-3000](3000/previews/maid.png) | ![miko-3000](3000/previews/miko.png) | [<NSFW, click to see>](3000/previews/nude.png) | [<NSFW, click to see>](3000/previews/nude2.png) | ![suit-3000](3000/previews/suit.png) | ![yukata-3000](3000/previews/yukata.png) | | 2500 | 0.911 | [Download](2500/ohara_mari_lovelivesunshine.zip) | ![pattern_1-2500](2500/previews/pattern_1.png) | ![pattern_2-2500](2500/previews/pattern_2.png) | ![pattern_3-2500](2500/previews/pattern_3.png) | ![bikini-2500](2500/previews/bikini.png) | [<NSFW, click to see>](2500/previews/bondage.png) | ![free-2500](2500/previews/free.png) | ![maid-2500](2500/previews/maid.png) | ![miko-2500](2500/previews/miko.png) | [<NSFW, click to see>](2500/previews/nude.png) | [<NSFW, click to see>](2500/previews/nude2.png) | ![suit-2500](2500/previews/suit.png) | ![yukata-2500](2500/previews/yukata.png) | | 2000 | 0.913 | [Download](2000/ohara_mari_lovelivesunshine.zip) | ![pattern_1-2000](2000/previews/pattern_1.png) | ![pattern_2-2000](2000/previews/pattern_2.png) | ![pattern_3-2000](2000/previews/pattern_3.png) | ![bikini-2000](2000/previews/bikini.png) | [<NSFW, click to see>](2000/previews/bondage.png) | ![free-2000](2000/previews/free.png) | ![maid-2000](2000/previews/maid.png) | ![miko-2000](2000/previews/miko.png) | [<NSFW, click to see>](2000/previews/nude.png) | [<NSFW, click to see>](2000/previews/nude2.png) | ![suit-2000](2000/previews/suit.png) | ![yukata-2000](2000/previews/yukata.png) | | 1500 | 0.855 | [Download](1500/ohara_mari_lovelivesunshine.zip) | ![pattern_1-1500](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | ![bikini-1500](1500/previews/bikini.png) | [<NSFW, click to see>](1500/previews/bondage.png) | ![free-1500](1500/previews/free.png) | ![maid-1500](1500/previews/maid.png) | ![miko-1500](1500/previews/miko.png) | [<NSFW, click to see>](1500/previews/nude.png) | [<NSFW, click to see>](1500/previews/nude2.png) | ![suit-1500](1500/previews/suit.png) | ![yukata-1500](1500/previews/yukata.png) | | 1000 | 0.807 | [Download](1000/ohara_mari_lovelivesunshine.zip) | ![pattern_1-1000](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | ![bikini-1000](1000/previews/bikini.png) | [<NSFW, click to see>](1000/previews/bondage.png) | ![free-1000](1000/previews/free.png) | ![maid-1000](1000/previews/maid.png) | ![miko-1000](1000/previews/miko.png) | [<NSFW, click to see>](1000/previews/nude.png) | [<NSFW, click to see>](1000/previews/nude2.png) | ![suit-1000](1000/previews/suit.png) | ![yukata-1000](1000/previews/yukata.png) | | 500 | 0.765 | [Download](500/ohara_mari_lovelivesunshine.zip) | ![pattern_1-500](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | ![bikini-500](500/previews/bikini.png) | [<NSFW, click to see>](500/previews/bondage.png) | ![free-500](500/previews/free.png) | ![maid-500](500/previews/maid.png) | ![miko-500](500/previews/miko.png) | [<NSFW, click to see>](500/previews/nude.png) | [<NSFW, click to see>](500/previews/nude2.png) | ![suit-500](500/previews/suit.png) | ![yukata-500](500/previews/yukata.png) |
asad/Diffusion-small
asad
"2024-02-01T08:38:19Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2024-02-01T08:38:19Z"
--- license: apache-2.0 ---
YanJiangJerry/SA-roberta-e3-w1-5-b16-w0.01-data2
YanJiangJerry
"2023-07-14T18:19:30Z"
118
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-07-14T17:48:27Z"
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-roberta-e3-w1-5-b16-w0.01-data2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-roberta-e3-w1-5-b16-w0.01-data2 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7680 - Accuracy: 0.9021 - F1: 0.8646 - Precision: 0.8921 - Recall: 0.8388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2612 | 1.0 | 581 | 0.4296 | 0.9021 | 0.8721 | 0.8499 | 0.8955 | | 0.1252 | 2.0 | 1162 | 0.7605 | 0.8977 | 0.8571 | 0.8932 | 0.8239 | | 0.0567 | 3.0 | 1743 | 0.7680 | 0.9021 | 0.8646 | 0.8921 | 0.8388 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
BazookaCow19/class-recommendation-model
BazookaCow19
"2024-11-29T11:24:55Z"
107
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-08-16T18:25:49Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
remzloev/bazartv_RVC
remzloev
"2024-05-28T15:38:00Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2024-05-28T13:20:02Z"
--- license: openrail ---
cocktailpeanut/llama.30b.zip
cocktailpeanut
"2023-03-19T07:29:07Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2023-03-19T07:29:07Z"
--- license: openrail ---
sebajoe/batchPrompting_7b_25
sebajoe
"2024-04-20T06:49:30Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-04-20T06:49:20Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
camenduru/evf-sam2
camenduru
"2024-09-17T11:39:17Z"
6
0
null
[ "safetensors", "evf", "arxiv:2406.20076", "license:apache-2.0", "region:us" ]
null
"2024-09-17T11:37:30Z"
--- license: apache-2.0 --- ## EVF-SAM [EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model](https://huggingface.co/papers/2406.20076) ## Usage: This is the checkpoint holder of [EVF-SAM](https://github.com/hustvl/EVF-SAM.git). Please refer to `"inference.py"` and `"inference_video.py"` in the source code for detailed usage. We haven't supported `"AutoModel.from_pretrained(...)"` yet, please import the model script from source code.
Peppenapo/gemmaFinetuneTESTRUNOK
Peppenapo
"2024-04-29T15:26:53Z"
3
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-04-29T15:22:40Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kamalkraj/bert-base-cased-ner-conll2003
kamalkraj
"2023-12-09T13:24:22Z"
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-04-24T14:45:57Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy base_model: bert-base-cased model-index: - name: bert-base-cased-ner-conll2003 results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - type: precision value: 0.9438052359513089 name: Precision - type: recall value: 0.9525412319084483 name: Recall - type: f1 value: 0.9481531116508919 name: F1 - type: accuracy value: 0.9910634321093416 name: Accuracy - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test metrics: - type: accuracy value: 0.9116307653519484 name: Accuracy verified: true - type: precision value: 0.9366103911345081 name: Precision verified: true - type: recall value: 0.9262526113340186 name: Recall verified: true - type: f1 value: 0.9314027058794109 name: F1 verified: true - type: loss value: 0.4366346299648285 name: loss verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-ner-conll2003 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0355 - Precision: 0.9438 - Recall: 0.9525 - F1: 0.9482 - Accuracy: 0.9911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
nunuzak/ppo-LunarLander-v2
nunuzak
"2023-03-08T01:57:35Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-03-08T01:57:12Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.28 +/- 26.17 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
none1/ppo-LunarLander-v2
none1
"2022-05-06T01:50:17Z"
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2022-05-06T01:49:44Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 278.81 +/- 19.74 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huggingartists/gunna
huggingartists
"2021-09-15T17:15:43Z"
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/gunna", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2022-03-02T23:29:05Z"
--- language: en datasets: - huggingartists/gunna tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/18e3833ac527a4bf14ddf2acef834795.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gunna</div> <a href="https://genius.com/artists/gunna"> <div style="text-align: center; font-size: 14px;">@gunna</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Gunna. Dataset is available [here](https://huggingface.co/datasets/huggingartists/gunna). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/gunna") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/vcyblers/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Gunna's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3c1xymw6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3c1xymw6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/gunna') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/gunna") model = AutoModelWithLMHead.from_pretrained("huggingartists/gunna") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
damgomz/ft_2_11e6_base_x1
damgomz
"2024-06-20T17:26:02Z"
7
0
transformers
[ "transformers", "safetensors", "albert", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-06-20T16:33:41Z"
--- language: en tags: - text-classification pipeline_tag: text-classification widget: - text: GEPS Techno is the pioneer of hybridization of renewable energies at sea. We imagine, design and commercialize innovative off-grid systems that aim to generate power at sea, stabilize and collect data. The success of our low power platforms WAVEPEAL enabled us to scale-up the device up to WAVEGEM, the 150-kW capacity platform. --- ## Environmental Impact (CODE CARBON DEFAULT) | Metric | Value | |--------------------------|---------------------------------| | Duration (in seconds) | 94501.51422262192 | | Emissions (Co2eq in kg) | 0.0571843146301403 | | CPU power (W) | 42.5 | | GPU power (W) | [No GPU] | | RAM power (W) | 3.75 | | CPU energy (kWh) | 1.115640484968489 | | GPU energy (kWh) | [No GPU] | | RAM energy (kWh) | 0.0984380830054476 | | Consumed energy (kWh) | 1.2140785679739348 | | Country name | Switzerland | | Cloud provider | nan | | Cloud region | nan | | CPU count | 2 | | CPU model | Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz | | GPU count | nan | | GPU model | nan | ## Environmental Impact (for one core) | Metric | Value | |--------------------------|---------------------------------| | CPU energy (kWh) | 0.18191541487854718 | | Emissions (Co2eq in kg) | 0.037013093070526915 | ## Note 19 juin 2024 ## My Config | Config | Value | |--------------------------|-----------------| | checkpoint | albert-base-v2 | | model_name | ft_2_11e6_base_x1 | | sequence_length | 400 | | num_epoch | 6 | | learning_rate | 1.1e-05 | | batch_size | 2 | | weight_decay | 0.0 | | warm_up_prop | 0.0 | | drop_out_prob | 0.1 | | packing_length | 100 | | train_test_split | 0.2 | | num_steps | 29328 | ## Training and Testing steps Epoch | Train Loss | Test Loss | F-beta Score ---|---|---|--- | 0 | 0.000000 | 0.690976 | 0.406776 | | 1 | 0.308481 | 0.251671 | 0.926780 | | 2 | 0.211442 | 0.225041 | 0.921172 | | 3 | 0.168826 | 0.215469 | 0.926522 | | 4 | 0.119771 | 0.243876 | 0.923814 | | 5 | 0.081189 | 0.266942 | 0.926301 | | 6 | 0.048614 | 0.338743 | 0.920674 |
ygmrdgan/bert-finetuned-ner_lr2e-05_bs32
ygmrdgan
"2023-11-07T18:49:06Z"
3
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2023-11-07T18:12:58Z"
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: ygmrdgan/bert-finetuned-ner_lr2e-05_bs32 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ygmrdgan/bert-finetuned-ner_lr2e-05_bs32 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3152 - Validation Loss: 0.4966 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 639, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.3142 | 0.5308 | 0 | | 0.3152 | 0.4966 | 1 | ### Framework versions - Transformers 4.35.0 - TensorFlow 2.14.0 - Datasets 2.14.6 - Tokenizers 0.14.1
OwOOwO/bomb3
OwOOwO
"2024-03-31T15:01:25Z"
90
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-31T14:59:59Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fangzhaoz/mistralv1_spectral_r8_2e4_e3
fangzhaoz
"2024-04-15T08:45:17Z"
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
"2024-04-15T08:45:13Z"
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: mistralv1_spectral_r8_2e4_e3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistralv1_spectral_r8_2e4_e3 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2
Ahs2000/segformer-b0-scene-parse-150
Ahs2000
"2024-11-03T15:24:57Z"
49
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
"2024-11-03T12:24:16Z"
--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 3.3049 - Mean Iou: 0.0573 - Mean Accuracy: 0.0859 - Overall Accuracy: 0.4101 - Per Category Iou: [0.030010927318135348, 0.44726327746817224, 0.00125928200111358, 0.9390098229092976, 0.38234383192498567, 0.7785783214702916, 0.0, 0.0, 0.0, 0.0, 0.3425946024166124, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] - Per Category Accuracy: [0.06397920795118507, 0.8896496979508158, 0.1742260619150468, 0.972699587340297, 0.5473868702844434, 0.9668470205567394, 0.0, nan, 0.0, 0.0, 0.4206481846498948, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 3.9227 | 4.0 | 20 | 4.0114 | 0.0393 | 0.0661 | 0.3227 | [0.06495002035888996, 0.3616824052477034, 0.0012751862654151842, 0.9383487415721895, 0.003642086330935252, 0.6238042624952752, 0.0, 0.0, 0.0, 0.0, 0.04837538868243426, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.19314162536793672, 0.7487100796609799, 0.1717062634989201, 0.9751683375280062, 0.0036764320802740043, 0.9665451793252272, 0.0, nan, 0.0, 0.0, 0.04958273876615048, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.5704 | 8.0 | 40 | 3.8278 | 0.0440 | 0.0697 | 0.3314 | [0.05867716018346553, 0.3732525545076808, 0.0016563196625038951, 0.940859590195372, 0.06871724092604459, 0.6723288671507391, 0.0, 0.0, 0.0, 0.0, 0.08217889152322527, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.1560358676485134, 0.7765117303839916, 0.24874010079193665, 0.9725133799052144, 0.07300842472042707, 0.9623464326421018, 0.0, nan, 0.0, 0.0, 0.08583421708688917, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.4495 | 12.0 | 60 | 3.6593 | 0.0513 | 0.0810 | 0.3724 | [0.04013217032326797, 0.37378386572223904, 0.002132418179570002, 0.9445812374687819, 0.25007496607970453, 0.7221795390214315, 0.0, 0.0, 0.0, 0.0, 0.23447140247510742, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.0822302337400107, 0.8900590972588998, 0.3538516918646508, 0.9678041338050588, 0.29407965253701746, 0.9655045028404612, 0.0, nan, 0.0, 0.0, 0.2529996724096767, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.7922 | 16.0 | 80 | 3.5772 | 0.0562 | 0.0861 | 0.4024 | [0.05052749951447491, 0.4096836982285473, 0.0020946539981145464, 0.9437682003494468, 0.3363278034572279, 0.7582318912588282, 0.0, 0.0, 0.0, 0.0, 0.30894883649841426, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.11003482395314967, 0.9123416702866732, 0.2847372210223182, 0.9733543167088137, 0.44507871335351357, 0.9624996058043618, 0.0, nan, 0.0, 0.0, 0.35915004192045663, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.0411 | 20.0 | 100 | 3.4623 | 0.0573 | 0.0884 | 0.4111 | [0.03856540801747222, 0.4218826987563737, 0.0022877904088786706, 0.9429566227457791, 0.3573942676941075, 0.7436237815621519, 0.0, 0.0, 0.0, 0.0, 0.3563730326521024, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.08046345531380782, 0.9365587331747822, 0.29013678905687545, 0.9654825475579796, 0.49064831592876174, 0.9716043987728127, 0.0, nan, 0.0, 0.0, 0.42117010821585427, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.8443 | 24.0 | 120 | 3.5053 | 0.0582 | 0.0870 | 0.3918 | [0.03664342772335264, 0.4283838963956857, 0.0022737335646281494, 0.9405355721043511, 0.31750602659336585, 0.7857576325981176, 0.0, 0.0, 0.0, 0.0, 0.3987358862297607, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.08017012916582819, 0.8485128804522769, 0.3826493880489561, 0.9649809888215473, 0.40650934470129424, 0.9624770803393236, 0.0, nan, 0.0, 0.0, 0.4427466505277536, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.7681 | 28.0 | 140 | 3.4122 | 0.0586 | 0.0878 | 0.4040 | [0.03312422685035546, 0.432634739953462, 0.001900827521034813, 0.9382290337556315, 0.3677854556624332, 0.7851506126960462, 0.0, 0.0, 0.0, 0.0, 0.37191689693992425, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.06676239558782901, 0.8599666855219529, 0.31569474442044637, 0.9650800992305428, 0.5309075166102808, 0.9632474512436309, 0.0, nan, 0.0, 0.0, 0.42372420226203894, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.445 | 32.0 | 160 | 3.3460 | 0.0598 | 0.0888 | 0.4131 | [0.032548051964298, 0.43766520298234657, 0.001747089037591831, 0.9406653786124988, 0.36845328619107537, 0.7891234460485762, 0.0, 0.0, 0.0, 0.0, 0.42112342504840067, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.07099516011855833, 0.8890027845403321, 0.2458603311735061, 0.9738438620623374, 0.49991446098198794, 0.9642926328214046, 0.0, nan, 0.0, 0.0, 0.5302021620961339, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.5309 | 36.0 | 180 | 3.3812 | 0.0577 | 0.0881 | 0.4050 | [0.03263227841514087, 0.42862312848082507, 0.001677291655955992, 0.9421507343303059, 0.3708547174798877, 0.7915861057403827, 0.0, 0.0, 0.0, 0.0, 0.43330380041967825, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.06951147553284741, 0.8180048190361303, 0.2818574514038877, 0.9714201620605354, 0.5192113651678136, 0.962801447035874, 0.0, nan, 0.0, 0.0, 0.5159381020860285, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.4341 | 40.0 | 200 | 3.2711 | 0.0599 | 0.0898 | 0.4169 | [0.0288167612906008, 0.4413618354516986, 0.0018055928611931836, 0.9411833342570688, 0.38248812801419096, 0.7946395385141464, 0.0, 0.0, 0.0, 0.0, 0.4024118202813353, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.059258703430210544, 0.8769676949568881, 0.2613390928725702, 0.9690234921702777, 0.578170442603319, 0.963157349383478, 0.0, nan, 0.0, 0.0, 0.5108243616152979, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.5026 | 44.0 | 220 | 3.3146 | 0.0584 | 0.0870 | 0.4050 | [0.029417411453161204, 0.44352154176953096, 0.0017935972748444507, 0.9412199597905367, 0.3778803290010674, 0.7877165979112559, 0.0, 0.0, 0.0, 0.0, 0.33971275980155, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.060623011095232084, 0.870254796378535, 0.2786177105831533, 0.967356635291715, 0.5463359623488665, 0.966040608908371, 0.0, nan, 0.0, 0.0, 0.3976779953693165, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.3054 | 48.0 | 240 | 3.3049 | 0.0573 | 0.0859 | 0.4101 | [0.030010927318135348, 0.44726327746817224, 0.00125928200111358, 0.9390098229092976, 0.38234383192498567, 0.7785783214702916, 0.0, 0.0, 0.0, 0.0, 0.3425946024166124, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.06397920795118507, 0.8896496979508158, 0.1742260619150468, 0.972699587340297, 0.5473868702844434, 0.9668470205567394, 0.0, nan, 0.0, 0.0, 0.4206481846498948, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
Xu-Ouyang/pythia-160m-deduped-int2-step2000-GPTQ-wikitext2-uva
Xu-Ouyang
"2024-09-13T11:16:20Z"
75
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "2-bit", "gptq", "region:us" ]
text-generation
"2024-09-13T11:16:03Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
flammenai/flammen4-mistral-7B
flammenai
"2024-03-09T22:41:34Z"
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:Gille/StrangeMerges_30-7B-slerp", "base_model:merge:Gille/StrangeMerges_30-7B-slerp", "base_model:nbeerbower/Flammen-Trismegistus-7B", "base_model:merge:nbeerbower/Flammen-Trismegistus-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-09T22:35:13Z"
--- license: apache-2.0 base_model: - nbeerbower/Flammen-Trismegistus-7B - Gille/StrangeMerges_30-7B-slerp library_name: transformers tags: - mergekit - merge --- # flammen4-mistral-7B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [nbeerbower/Flammen-Trismegistus-7B](https://huggingface.co/nbeerbower/Flammen-Trismegistus-7B) * [Gille/StrangeMerges_30-7B-slerp](https://huggingface.co/Gille/StrangeMerges_30-7B-slerp) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: nbeerbower/Flammen-Trismegistus-7B layer_range: [0, 32] - model: Gille/StrangeMerges_30-7B-slerp layer_range: [0, 32] merge_method: slerp base_model: nbeerbower/Flammen-Trismegistus-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
MayBashendy/ArabicNewSplits4_FineTuningAraBERT_run1_AugV5_k16_task1_organization
MayBashendy
"2024-12-08T23:40:31Z"
162
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-12-08T23:24:44Z"
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits4_FineTuningAraBERT_run1_AugV5_k16_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits4_FineTuningAraBERT_run1_AugV5_k16_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9719 - Qwk: 0.5938 - Mse: 0.9719 - Rmse: 0.9858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0270 | 2 | 5.2625 | -0.0098 | 5.2625 | 2.2940 | | No log | 0.0541 | 4 | 3.1414 | 0.0781 | 3.1414 | 1.7724 | | No log | 0.0811 | 6 | 2.0213 | 0.1164 | 2.0213 | 1.4217 | | No log | 0.1081 | 8 | 1.6582 | 0.1040 | 1.6582 | 1.2877 | | No log | 0.1351 | 10 | 1.5226 | 0.0839 | 1.5226 | 1.2339 | | No log | 0.1622 | 12 | 1.3814 | 0.1737 | 1.3814 | 1.1753 | | No log | 0.1892 | 14 | 1.5867 | 0.0398 | 1.5867 | 1.2596 | | No log | 0.2162 | 16 | 1.6973 | 0.0271 | 1.6973 | 1.3028 | | No log | 0.2432 | 18 | 1.5629 | 0.0757 | 1.5629 | 1.2502 | | No log | 0.2703 | 20 | 1.3762 | 0.1693 | 1.3762 | 1.1731 | | No log | 0.2973 | 22 | 1.2822 | 0.2629 | 1.2822 | 1.1324 | | No log | 0.3243 | 24 | 1.1827 | 0.2335 | 1.1827 | 1.0875 | | No log | 0.3514 | 26 | 1.1192 | 0.3408 | 1.1192 | 1.0579 | | No log | 0.3784 | 28 | 1.1288 | 0.3275 | 1.1288 | 1.0625 | | No log | 0.4054 | 30 | 1.0919 | 0.3000 | 1.0919 | 1.0450 | | No log | 0.4324 | 32 | 1.2183 | 0.3367 | 1.2183 | 1.1038 | | No log | 0.4595 | 34 | 1.2235 | 0.3341 | 1.2235 | 1.1061 | | No log | 0.4865 | 36 | 1.0933 | 0.3683 | 1.0933 | 1.0456 | | No log | 0.5135 | 38 | 1.0721 | 0.3689 | 1.0721 | 1.0354 | | No log | 0.5405 | 40 | 1.0867 | 0.3513 | 1.0867 | 1.0424 | | No log | 0.5676 | 42 | 1.0980 | 0.3788 | 1.0980 | 1.0478 | | No log | 0.5946 | 44 | 1.1128 | 0.3353 | 1.1128 | 1.0549 | | No log | 0.6216 | 46 | 1.1470 | 0.1629 | 1.1470 | 1.0710 | | No log | 0.6486 | 48 | 1.1757 | 0.1334 | 1.1757 | 1.0843 | | No log | 0.6757 | 50 | 1.1721 | 0.1334 | 1.1721 | 1.0826 | | No log | 0.7027 | 52 | 1.0801 | 0.3083 | 1.0801 | 1.0393 | | No log | 0.7297 | 54 | 1.0158 | 0.4266 | 1.0158 | 1.0079 | | No log | 0.7568 | 56 | 1.0456 | 0.4664 | 1.0456 | 1.0225 | | No log | 0.7838 | 58 | 1.0692 | 0.4113 | 1.0692 | 1.0340 | | No log | 0.8108 | 60 | 0.9997 | 0.4574 | 0.9997 | 0.9999 | | No log | 0.8378 | 62 | 0.9798 | 0.4411 | 0.9798 | 0.9899 | | No log | 0.8649 | 64 | 0.9569 | 0.4030 | 0.9569 | 0.9782 | | No log | 0.8919 | 66 | 0.9134 | 0.4555 | 0.9134 | 0.9557 | | No log | 0.9189 | 68 | 0.9138 | 0.4659 | 0.9138 | 0.9559 | | No log | 0.9459 | 70 | 1.0369 | 0.4453 | 1.0369 | 1.0183 | | No log | 0.9730 | 72 | 1.0050 | 0.4451 | 1.0050 | 1.0025 | | No log | 1.0 | 74 | 0.8375 | 0.4842 | 0.8375 | 0.9151 | | No log | 1.0270 | 76 | 0.8823 | 0.4761 | 0.8823 | 0.9393 | | No log | 1.0541 | 78 | 0.9597 | 0.5131 | 0.9597 | 0.9797 | | No log | 1.0811 | 80 | 0.9042 | 0.5595 | 0.9042 | 0.9509 | | No log | 1.1081 | 82 | 0.8496 | 0.6109 | 0.8496 | 0.9217 | | No log | 1.1351 | 84 | 0.8806 | 0.5784 | 0.8806 | 0.9384 | | No log | 1.1622 | 86 | 0.8994 | 0.6073 | 0.8994 | 0.9484 | | No log | 1.1892 | 88 | 0.9758 | 0.5693 | 0.9758 | 0.9878 | | No log | 1.2162 | 90 | 1.0179 | 0.5154 | 1.0179 | 1.0089 | | No log | 1.2432 | 92 | 0.9529 | 0.5348 | 0.9529 | 0.9761 | | No log | 1.2703 | 94 | 0.8386 | 0.5595 | 0.8386 | 0.9158 | | No log | 1.2973 | 96 | 0.8038 | 0.5649 | 0.8038 | 0.8966 | | No log | 1.3243 | 98 | 0.8687 | 0.5384 | 0.8687 | 0.9320 | | No log | 1.3514 | 100 | 0.7965 | 0.5801 | 0.7965 | 0.8925 | | No log | 1.3784 | 102 | 0.7695 | 0.6263 | 0.7695 | 0.8772 | | No log | 1.4054 | 104 | 0.8306 | 0.6033 | 0.8306 | 0.9114 | | No log | 1.4324 | 106 | 0.8712 | 0.6062 | 0.8712 | 0.9334 | | No log | 1.4595 | 108 | 0.8975 | 0.6229 | 0.8975 | 0.9474 | | No log | 1.4865 | 110 | 0.8995 | 0.6320 | 0.8995 | 0.9484 | | No log | 1.5135 | 112 | 0.8404 | 0.6480 | 0.8404 | 0.9167 | | No log | 1.5405 | 114 | 0.8390 | 0.6552 | 0.8390 | 0.9160 | | No log | 1.5676 | 116 | 0.7836 | 0.6655 | 0.7836 | 0.8852 | | No log | 1.5946 | 118 | 0.7839 | 0.6991 | 0.7839 | 0.8854 | | No log | 1.6216 | 120 | 1.0192 | 0.5668 | 1.0192 | 1.0095 | | No log | 1.6486 | 122 | 1.2261 | 0.5312 | 1.2261 | 1.1073 | | No log | 1.6757 | 124 | 1.2190 | 0.5234 | 1.2190 | 1.1041 | | No log | 1.7027 | 126 | 0.9818 | 0.6320 | 0.9818 | 0.9908 | | No log | 1.7297 | 128 | 0.9525 | 0.6401 | 0.9525 | 0.9759 | | No log | 1.7568 | 130 | 1.1336 | 0.5127 | 1.1336 | 1.0647 | | No log | 1.7838 | 132 | 1.3577 | 0.4011 | 1.3577 | 1.1652 | | No log | 1.8108 | 134 | 1.3193 | 0.4090 | 1.3193 | 1.1486 | | No log | 1.8378 | 136 | 1.0441 | 0.5615 | 1.0441 | 1.0218 | | No log | 1.8649 | 138 | 0.9320 | 0.6487 | 0.9320 | 0.9654 | | No log | 1.8919 | 140 | 1.0070 | 0.5975 | 1.0070 | 1.0035 | | No log | 1.9189 | 142 | 1.2195 | 0.4796 | 1.2195 | 1.1043 | | No log | 1.9459 | 144 | 1.2984 | 0.4031 | 1.2984 | 1.1395 | | No log | 1.9730 | 146 | 1.0953 | 0.5339 | 1.0953 | 1.0466 | | No log | 2.0 | 148 | 0.9263 | 0.6280 | 0.9263 | 0.9624 | | No log | 2.0270 | 150 | 0.9394 | 0.6280 | 0.9394 | 0.9692 | | No log | 2.0541 | 152 | 1.2203 | 0.4734 | 1.2203 | 1.1047 | | No log | 2.0811 | 154 | 1.4484 | 0.4627 | 1.4484 | 1.2035 | | No log | 2.1081 | 156 | 1.3119 | 0.4760 | 1.3119 | 1.1454 | | No log | 2.1351 | 158 | 1.2366 | 0.5134 | 1.2366 | 1.1120 | | No log | 2.1622 | 160 | 1.2309 | 0.5150 | 1.2309 | 1.1095 | | No log | 2.1892 | 162 | 1.3679 | 0.5026 | 1.3679 | 1.1696 | | No log | 2.2162 | 164 | 1.5282 | 0.4815 | 1.5282 | 1.2362 | | No log | 2.2432 | 166 | 1.5263 | 0.4815 | 1.5263 | 1.2354 | | No log | 2.2703 | 168 | 1.3866 | 0.4933 | 1.3866 | 1.1776 | | No log | 2.2973 | 170 | 1.1684 | 0.5198 | 1.1684 | 1.0809 | | No log | 2.3243 | 172 | 1.1582 | 0.4999 | 1.1582 | 1.0762 | | No log | 2.3514 | 174 | 1.2508 | 0.4641 | 1.2508 | 1.1184 | | No log | 2.3784 | 176 | 1.0980 | 0.5310 | 1.0980 | 1.0479 | | No log | 2.4054 | 178 | 0.8573 | 0.5712 | 0.8573 | 0.9259 | | No log | 2.4324 | 180 | 0.7984 | 0.5828 | 0.7984 | 0.8936 | | No log | 2.4595 | 182 | 0.8931 | 0.5827 | 0.8931 | 0.9450 | | No log | 2.4865 | 184 | 1.0443 | 0.5232 | 1.0443 | 1.0219 | | No log | 2.5135 | 186 | 1.3070 | 0.4361 | 1.3070 | 1.1433 | | No log | 2.5405 | 188 | 1.3619 | 0.4391 | 1.3619 | 1.1670 | | No log | 2.5676 | 190 | 1.1913 | 0.4966 | 1.1913 | 1.0914 | | No log | 2.5946 | 192 | 0.9667 | 0.5891 | 0.9667 | 0.9832 | | No log | 2.6216 | 194 | 0.9073 | 0.6575 | 0.9073 | 0.9525 | | No log | 2.6486 | 196 | 0.9993 | 0.5704 | 0.9993 | 0.9996 | | No log | 2.6757 | 198 | 1.2759 | 0.4617 | 1.2759 | 1.1296 | | No log | 2.7027 | 200 | 1.4216 | 0.4315 | 1.4216 | 1.1923 | | No log | 2.7297 | 202 | 1.3947 | 0.4220 | 1.3947 | 1.1810 | | No log | 2.7568 | 204 | 1.2783 | 0.4573 | 1.2783 | 1.1306 | | No log | 2.7838 | 206 | 1.1896 | 0.5081 | 1.1896 | 1.0907 | | No log | 2.8108 | 208 | 1.1863 | 0.5198 | 1.1863 | 1.0892 | | No log | 2.8378 | 210 | 1.2174 | 0.5150 | 1.2174 | 1.1034 | | No log | 2.8649 | 212 | 1.2754 | 0.4674 | 1.2754 | 1.1294 | | No log | 2.8919 | 214 | 1.2375 | 0.4999 | 1.2375 | 1.1124 | | No log | 2.9189 | 216 | 1.1681 | 0.5324 | 1.1681 | 1.0808 | | No log | 2.9459 | 218 | 1.0497 | 0.5607 | 1.0497 | 1.0246 | | No log | 2.9730 | 220 | 1.0573 | 0.5390 | 1.0573 | 1.0283 | | No log | 3.0 | 222 | 1.2281 | 0.5195 | 1.2281 | 1.1082 | | No log | 3.0270 | 224 | 1.2030 | 0.5191 | 1.2030 | 1.0968 | | No log | 3.0541 | 226 | 0.9654 | 0.5490 | 0.9654 | 0.9825 | | No log | 3.0811 | 228 | 0.7465 | 0.6407 | 0.7465 | 0.8640 | | No log | 3.1081 | 230 | 0.6862 | 0.6551 | 0.6862 | 0.8284 | | No log | 3.1351 | 232 | 0.6838 | 0.6786 | 0.6838 | 0.8269 | | No log | 3.1622 | 234 | 0.7781 | 0.6640 | 0.7781 | 0.8821 | | No log | 3.1892 | 236 | 0.9719 | 0.6023 | 0.9719 | 0.9858 | | No log | 3.2162 | 238 | 1.1987 | 0.5577 | 1.1987 | 1.0948 | | No log | 3.2432 | 240 | 1.3295 | 0.5177 | 1.3295 | 1.1530 | | No log | 3.2703 | 242 | 1.1957 | 0.5286 | 1.1957 | 1.0935 | | No log | 3.2973 | 244 | 1.0864 | 0.5579 | 1.0864 | 1.0423 | | No log | 3.3243 | 246 | 1.1123 | 0.5424 | 1.1123 | 1.0547 | | No log | 3.3514 | 248 | 1.1538 | 0.5252 | 1.1538 | 1.0742 | | No log | 3.3784 | 250 | 1.2171 | 0.5142 | 1.2171 | 1.1032 | | No log | 3.4054 | 252 | 1.1804 | 0.5317 | 1.1804 | 1.0864 | | No log | 3.4324 | 254 | 1.0069 | 0.5607 | 1.0069 | 1.0034 | | No log | 3.4595 | 256 | 0.8726 | 0.6018 | 0.8726 | 0.9341 | | No log | 3.4865 | 258 | 0.9053 | 0.5978 | 0.9053 | 0.9515 | | No log | 3.5135 | 260 | 0.9145 | 0.5974 | 0.9145 | 0.9563 | | No log | 3.5405 | 262 | 1.0277 | 0.5655 | 1.0277 | 1.0137 | | No log | 3.5676 | 264 | 1.2811 | 0.5231 | 1.2811 | 1.1319 | | No log | 3.5946 | 266 | 1.3944 | 0.5064 | 1.3944 | 1.1808 | | No log | 3.6216 | 268 | 1.2908 | 0.5259 | 1.2908 | 1.1361 | | No log | 3.6486 | 270 | 0.9969 | 0.5790 | 0.9969 | 0.9985 | | No log | 3.6757 | 272 | 0.7440 | 0.6930 | 0.7440 | 0.8625 | | No log | 3.7027 | 274 | 0.6873 | 0.7428 | 0.6873 | 0.8290 | | No log | 3.7297 | 276 | 0.6817 | 0.7402 | 0.6817 | 0.8256 | | No log | 3.7568 | 278 | 0.7667 | 0.6528 | 0.7667 | 0.8756 | | No log | 3.7838 | 280 | 0.9435 | 0.5853 | 0.9435 | 0.9713 | | No log | 3.8108 | 282 | 1.1044 | 0.5493 | 1.1044 | 1.0509 | | No log | 3.8378 | 284 | 1.0567 | 0.5586 | 1.0567 | 1.0280 | | No log | 3.8649 | 286 | 0.8623 | 0.6223 | 0.8623 | 0.9286 | | No log | 3.8919 | 288 | 0.8101 | 0.6605 | 0.8101 | 0.9001 | | No log | 3.9189 | 290 | 0.7880 | 0.6543 | 0.7880 | 0.8877 | | No log | 3.9459 | 292 | 0.8041 | 0.6523 | 0.8041 | 0.8967 | | No log | 3.9730 | 294 | 0.8114 | 0.6523 | 0.8114 | 0.9008 | | No log | 4.0 | 296 | 0.7456 | 0.6838 | 0.7456 | 0.8635 | | No log | 4.0270 | 298 | 0.7581 | 0.6625 | 0.7581 | 0.8707 | | No log | 4.0541 | 300 | 0.8289 | 0.6297 | 0.8289 | 0.9104 | | No log | 4.0811 | 302 | 0.9533 | 0.6149 | 0.9533 | 0.9764 | | No log | 4.1081 | 304 | 1.0496 | 0.6149 | 1.0496 | 1.0245 | | No log | 4.1351 | 306 | 1.0085 | 0.6164 | 1.0085 | 1.0042 | | No log | 4.1622 | 308 | 0.9166 | 0.6286 | 0.9166 | 0.9574 | | No log | 4.1892 | 310 | 0.8987 | 0.6251 | 0.8987 | 0.9480 | | No log | 4.2162 | 312 | 0.9373 | 0.6141 | 0.9373 | 0.9681 | | No log | 4.2432 | 314 | 0.9679 | 0.6000 | 0.9679 | 0.9838 | | No log | 4.2703 | 316 | 0.9875 | 0.5941 | 0.9875 | 0.9937 | | No log | 4.2973 | 318 | 0.9111 | 0.6160 | 0.9111 | 0.9545 | | No log | 4.3243 | 320 | 0.7843 | 0.6729 | 0.7843 | 0.8856 | | No log | 4.3514 | 322 | 0.6740 | 0.7070 | 0.6740 | 0.8210 | | No log | 4.3784 | 324 | 0.6754 | 0.7116 | 0.6754 | 0.8218 | | No log | 4.4054 | 326 | 0.7752 | 0.6797 | 0.7752 | 0.8805 | | No log | 4.4324 | 328 | 1.0256 | 0.6254 | 1.0256 | 1.0127 | | No log | 4.4595 | 330 | 1.1731 | 0.5975 | 1.1731 | 1.0831 | | No log | 4.4865 | 332 | 1.2595 | 0.5914 | 1.2595 | 1.1223 | | No log | 4.5135 | 334 | 1.2075 | 0.5914 | 1.2075 | 1.0989 | | No log | 4.5405 | 336 | 1.0271 | 0.6263 | 1.0271 | 1.0135 | | No log | 4.5676 | 338 | 0.8912 | 0.6449 | 0.8912 | 0.9441 | | No log | 4.5946 | 340 | 0.8133 | 0.6716 | 0.8133 | 0.9018 | | No log | 4.6216 | 342 | 0.8276 | 0.6609 | 0.8276 | 0.9097 | | No log | 4.6486 | 344 | 0.9569 | 0.6131 | 0.9569 | 0.9782 | | No log | 4.6757 | 346 | 1.0398 | 0.5859 | 1.0398 | 1.0197 | | No log | 4.7027 | 348 | 1.0992 | 0.5774 | 1.0992 | 1.0484 | | No log | 4.7297 | 350 | 1.1006 | 0.5688 | 1.1006 | 1.0491 | | No log | 4.7568 | 352 | 1.0154 | 0.5870 | 1.0154 | 1.0077 | | No log | 4.7838 | 354 | 0.9228 | 0.6300 | 0.9228 | 0.9606 | | No log | 4.8108 | 356 | 0.8612 | 0.6355 | 0.8612 | 0.9280 | | No log | 4.8378 | 358 | 0.8156 | 0.6784 | 0.8156 | 0.9031 | | No log | 4.8649 | 360 | 0.8143 | 0.6743 | 0.8143 | 0.9024 | | No log | 4.8919 | 362 | 0.8630 | 0.6495 | 0.8630 | 0.9290 | | No log | 4.9189 | 364 | 1.0263 | 0.5823 | 1.0263 | 1.0131 | | No log | 4.9459 | 366 | 1.1079 | 0.5310 | 1.1079 | 1.0525 | | No log | 4.9730 | 368 | 1.0855 | 0.5401 | 1.0855 | 1.0419 | | No log | 5.0 | 370 | 0.9488 | 0.5987 | 0.9488 | 0.9741 | | No log | 5.0270 | 372 | 0.8537 | 0.6111 | 0.8537 | 0.9240 | | No log | 5.0541 | 374 | 0.8181 | 0.6174 | 0.8181 | 0.9045 | | No log | 5.0811 | 376 | 0.7635 | 0.6877 | 0.7635 | 0.8738 | | No log | 5.1081 | 378 | 0.7422 | 0.7081 | 0.7422 | 0.8615 | | No log | 5.1351 | 380 | 0.8021 | 0.6432 | 0.8021 | 0.8956 | | No log | 5.1622 | 382 | 0.9247 | 0.6010 | 0.9247 | 0.9616 | | No log | 5.1892 | 384 | 1.0773 | 0.5774 | 1.0773 | 1.0379 | | No log | 5.2162 | 386 | 1.1278 | 0.5462 | 1.1278 | 1.0620 | | No log | 5.2432 | 388 | 1.0400 | 0.5761 | 1.0400 | 1.0198 | | No log | 5.2703 | 390 | 0.9920 | 0.5935 | 0.9920 | 0.9960 | | No log | 5.2973 | 392 | 1.0073 | 0.5958 | 1.0073 | 1.0036 | | No log | 5.3243 | 394 | 1.0232 | 0.5827 | 1.0232 | 1.0115 | | No log | 5.3514 | 396 | 1.1034 | 0.5486 | 1.1034 | 1.0504 | | No log | 5.3784 | 398 | 1.1537 | 0.5377 | 1.1537 | 1.0741 | | No log | 5.4054 | 400 | 1.0823 | 0.5698 | 1.0823 | 1.0403 | | No log | 5.4324 | 402 | 0.9770 | 0.5892 | 0.9770 | 0.9885 | | No log | 5.4595 | 404 | 0.9580 | 0.5935 | 0.9580 | 0.9788 | | No log | 5.4865 | 406 | 0.9537 | 0.5857 | 0.9537 | 0.9766 | | No log | 5.5135 | 408 | 0.8943 | 0.6088 | 0.8943 | 0.9457 | | No log | 5.5405 | 410 | 0.7948 | 0.6433 | 0.7948 | 0.8915 | | No log | 5.5676 | 412 | 0.7271 | 0.7230 | 0.7271 | 0.8527 | | No log | 5.5946 | 414 | 0.6734 | 0.7427 | 0.6734 | 0.8206 | | No log | 5.6216 | 416 | 0.6704 | 0.7240 | 0.6704 | 0.8188 | | No log | 5.6486 | 418 | 0.7174 | 0.7219 | 0.7174 | 0.8470 | | No log | 5.6757 | 420 | 0.8773 | 0.6454 | 0.8773 | 0.9367 | | No log | 5.7027 | 422 | 1.0723 | 0.5712 | 1.0723 | 1.0355 | | No log | 5.7297 | 424 | 1.1006 | 0.5694 | 1.1006 | 1.0491 | | No log | 5.7568 | 426 | 0.9977 | 0.5660 | 0.9977 | 0.9988 | | No log | 5.7838 | 428 | 0.8426 | 0.6359 | 0.8426 | 0.9179 | | No log | 5.8108 | 430 | 0.7725 | 0.6594 | 0.7725 | 0.8789 | | No log | 5.8378 | 432 | 0.7437 | 0.6909 | 0.7437 | 0.8624 | | No log | 5.8649 | 434 | 0.7824 | 0.6565 | 0.7824 | 0.8845 | | No log | 5.8919 | 436 | 0.8490 | 0.6375 | 0.8490 | 0.9214 | | No log | 5.9189 | 438 | 0.8537 | 0.6127 | 0.8537 | 0.9239 | | No log | 5.9459 | 440 | 0.8060 | 0.6548 | 0.8060 | 0.8977 | | No log | 5.9730 | 442 | 0.7445 | 0.7199 | 0.7445 | 0.8629 | | No log | 6.0 | 444 | 0.7422 | 0.7134 | 0.7422 | 0.8615 | | No log | 6.0270 | 446 | 0.7960 | 0.6612 | 0.7960 | 0.8922 | | No log | 6.0541 | 448 | 0.8989 | 0.6032 | 0.8989 | 0.9481 | | No log | 6.0811 | 450 | 0.9832 | 0.5714 | 0.9832 | 0.9916 | | No log | 6.1081 | 452 | 1.0664 | 0.5650 | 1.0664 | 1.0327 | | No log | 6.1351 | 454 | 1.0988 | 0.5753 | 1.0988 | 1.0482 | | No log | 6.1622 | 456 | 1.1171 | 0.5753 | 1.1171 | 1.0569 | | No log | 6.1892 | 458 | 1.0639 | 0.6012 | 1.0639 | 1.0315 | | No log | 6.2162 | 460 | 0.9678 | 0.5883 | 0.9678 | 0.9838 | | No log | 6.2432 | 462 | 0.8216 | 0.6703 | 0.8216 | 0.9064 | | No log | 6.2703 | 464 | 0.7327 | 0.7375 | 0.7327 | 0.8560 | | No log | 6.2973 | 466 | 0.7059 | 0.7254 | 0.7059 | 0.8402 | | No log | 6.3243 | 468 | 0.7113 | 0.7370 | 0.7113 | 0.8434 | | No log | 6.3514 | 470 | 0.7680 | 0.6911 | 0.7680 | 0.8764 | | No log | 6.3784 | 472 | 0.8547 | 0.6212 | 0.8547 | 0.9245 | | No log | 6.4054 | 474 | 0.9265 | 0.5865 | 0.9265 | 0.9625 | | No log | 6.4324 | 476 | 0.9803 | 0.5690 | 0.9803 | 0.9901 | | No log | 6.4595 | 478 | 0.9649 | 0.5690 | 0.9649 | 0.9823 | | No log | 6.4865 | 480 | 0.9280 | 0.5909 | 0.9280 | 0.9633 | | No log | 6.5135 | 482 | 0.9098 | 0.5984 | 0.9098 | 0.9538 | | No log | 6.5405 | 484 | 0.8872 | 0.6174 | 0.8872 | 0.9419 | | No log | 6.5676 | 486 | 0.9075 | 0.6058 | 0.9075 | 0.9526 | | No log | 6.5946 | 488 | 0.8781 | 0.6174 | 0.8781 | 0.9371 | | No log | 6.6216 | 490 | 0.8601 | 0.6261 | 0.8601 | 0.9274 | | No log | 6.6486 | 492 | 0.8638 | 0.6174 | 0.8638 | 0.9294 | | No log | 6.6757 | 494 | 0.8446 | 0.6457 | 0.8446 | 0.9190 | | No log | 6.7027 | 496 | 0.8596 | 0.6012 | 0.8596 | 0.9271 | | No log | 6.7297 | 498 | 0.8866 | 0.6012 | 0.8866 | 0.9416 | | 0.4931 | 6.7568 | 500 | 0.9294 | 0.5745 | 0.9294 | 0.9640 | | 0.4931 | 6.7838 | 502 | 0.9266 | 0.5836 | 0.9266 | 0.9626 | | 0.4931 | 6.8108 | 504 | 0.9103 | 0.5914 | 0.9103 | 0.9541 | | 0.4931 | 6.8378 | 506 | 0.8644 | 0.5967 | 0.8644 | 0.9297 | | 0.4931 | 6.8649 | 508 | 0.8366 | 0.6294 | 0.8366 | 0.9147 | | 0.4931 | 6.8919 | 510 | 0.8090 | 0.6525 | 0.8090 | 0.8994 | | 0.4931 | 6.9189 | 512 | 0.8221 | 0.6493 | 0.8221 | 0.9067 | | 0.4931 | 6.9459 | 514 | 0.8440 | 0.6212 | 0.8440 | 0.9187 | | 0.4931 | 6.9730 | 516 | 0.8342 | 0.6304 | 0.8342 | 0.9134 | | 0.4931 | 7.0 | 518 | 0.8554 | 0.6212 | 0.8554 | 0.9249 | | 0.4931 | 7.0270 | 520 | 0.8609 | 0.6121 | 0.8609 | 0.9279 | | 0.4931 | 7.0541 | 522 | 0.8948 | 0.6312 | 0.8948 | 0.9460 | | 0.4931 | 7.0811 | 524 | 0.9365 | 0.6338 | 0.9365 | 0.9677 | | 0.4931 | 7.1081 | 526 | 0.9131 | 0.6183 | 0.9131 | 0.9556 | | 0.4931 | 7.1351 | 528 | 0.8497 | 0.6157 | 0.8497 | 0.9218 | | 0.4931 | 7.1622 | 530 | 0.7939 | 0.6759 | 0.7939 | 0.8910 | | 0.4931 | 7.1892 | 532 | 0.7407 | 0.6817 | 0.7407 | 0.8606 | | 0.4931 | 7.2162 | 534 | 0.7286 | 0.6849 | 0.7286 | 0.8536 | | 0.4931 | 7.2432 | 536 | 0.7315 | 0.6849 | 0.7315 | 0.8553 | | 0.4931 | 7.2703 | 538 | 0.7501 | 0.6639 | 0.7501 | 0.8661 | | 0.4931 | 7.2973 | 540 | 0.7694 | 0.6530 | 0.7694 | 0.8772 | | 0.4931 | 7.3243 | 542 | 0.8046 | 0.6403 | 0.8046 | 0.8970 | | 0.4931 | 7.3514 | 544 | 0.8281 | 0.6509 | 0.8281 | 0.9100 | | 0.4931 | 7.3784 | 546 | 0.8491 | 0.6330 | 0.8491 | 0.9215 | | 0.4931 | 7.4054 | 548 | 0.8496 | 0.6330 | 0.8496 | 0.9217 | | 0.4931 | 7.4324 | 550 | 0.8160 | 0.6487 | 0.8160 | 0.9033 | | 0.4931 | 7.4595 | 552 | 0.7767 | 0.6420 | 0.7767 | 0.8813 | | 0.4931 | 7.4865 | 554 | 0.7347 | 0.6647 | 0.7347 | 0.8571 | | 0.4931 | 7.5135 | 556 | 0.7250 | 0.6926 | 0.7250 | 0.8515 | | 0.4931 | 7.5405 | 558 | 0.7395 | 0.6864 | 0.7395 | 0.8599 | | 0.4931 | 7.5676 | 560 | 0.7825 | 0.6713 | 0.7825 | 0.8846 | | 0.4931 | 7.5946 | 562 | 0.8176 | 0.6424 | 0.8176 | 0.9042 | | 0.4931 | 7.6216 | 564 | 0.8398 | 0.6113 | 0.8398 | 0.9164 | | 0.4931 | 7.6486 | 566 | 0.8513 | 0.6034 | 0.8513 | 0.9227 | | 0.4931 | 7.6757 | 568 | 0.8590 | 0.6021 | 0.8590 | 0.9268 | | 0.4931 | 7.7027 | 570 | 0.8748 | 0.6021 | 0.8748 | 0.9353 | | 0.4931 | 7.7297 | 572 | 0.9100 | 0.5935 | 0.9100 | 0.9539 | | 0.4931 | 7.7568 | 574 | 0.9115 | 0.5935 | 0.9115 | 0.9547 | | 0.4931 | 7.7838 | 576 | 0.9131 | 0.5935 | 0.9131 | 0.9555 | | 0.4931 | 7.8108 | 578 | 0.8859 | 0.6077 | 0.8859 | 0.9412 | | 0.4931 | 7.8378 | 580 | 0.8648 | 0.6091 | 0.8648 | 0.9299 | | 0.4931 | 7.8649 | 582 | 0.8698 | 0.6091 | 0.8698 | 0.9326 | | 0.4931 | 7.8919 | 584 | 0.8977 | 0.6077 | 0.8977 | 0.9475 | | 0.4931 | 7.9189 | 586 | 0.8970 | 0.6077 | 0.8970 | 0.9471 | | 0.4931 | 7.9459 | 588 | 0.9159 | 0.5994 | 0.9159 | 0.9570 | | 0.4931 | 7.9730 | 590 | 0.9411 | 0.5958 | 0.9411 | 0.9701 | | 0.4931 | 8.0 | 592 | 0.9642 | 0.5825 | 0.9642 | 0.9819 | | 0.4931 | 8.0270 | 594 | 0.9635 | 0.5950 | 0.9635 | 0.9816 | | 0.4931 | 8.0541 | 596 | 0.9401 | 0.5958 | 0.9401 | 0.9696 | | 0.4931 | 8.0811 | 598 | 0.9078 | 0.6039 | 0.9078 | 0.9528 | | 0.4931 | 8.1081 | 600 | 0.8843 | 0.6122 | 0.8843 | 0.9404 | | 0.4931 | 8.1351 | 602 | 0.9060 | 0.6070 | 0.9060 | 0.9518 | | 0.4931 | 8.1622 | 604 | 0.9271 | 0.6136 | 0.9271 | 0.9629 | | 0.4931 | 8.1892 | 606 | 0.9466 | 0.6093 | 0.9466 | 0.9729 | | 0.4931 | 8.2162 | 608 | 0.9800 | 0.6024 | 0.9800 | 0.9899 | | 0.4931 | 8.2432 | 610 | 1.0231 | 0.5881 | 1.0231 | 1.0115 | | 0.4931 | 8.2703 | 612 | 1.0388 | 0.5848 | 1.0388 | 1.0192 | | 0.4931 | 8.2973 | 614 | 1.0192 | 0.5881 | 1.0192 | 1.0096 | | 0.4931 | 8.3243 | 616 | 0.9653 | 0.6037 | 0.9653 | 0.9825 | | 0.4931 | 8.3514 | 618 | 0.9046 | 0.6132 | 0.9046 | 0.9511 | | 0.4931 | 8.3784 | 620 | 0.8712 | 0.6091 | 0.8712 | 0.9334 | | 0.4931 | 8.4054 | 622 | 0.8721 | 0.6091 | 0.8721 | 0.9339 | | 0.4931 | 8.4324 | 624 | 0.8739 | 0.6091 | 0.8739 | 0.9348 | | 0.4931 | 8.4595 | 626 | 0.8641 | 0.6091 | 0.8641 | 0.9296 | | 0.4931 | 8.4865 | 628 | 0.8658 | 0.6091 | 0.8658 | 0.9305 | | 0.4931 | 8.5135 | 630 | 0.8756 | 0.6091 | 0.8756 | 0.9358 | | 0.4931 | 8.5405 | 632 | 0.9112 | 0.6074 | 0.9112 | 0.9546 | | 0.4931 | 8.5676 | 634 | 0.9381 | 0.6049 | 0.9381 | 0.9686 | | 0.4931 | 8.5946 | 636 | 0.9891 | 0.5857 | 0.9891 | 0.9945 | | 0.4931 | 8.6216 | 638 | 1.0206 | 0.5727 | 1.0206 | 1.0102 | | 0.4931 | 8.6486 | 640 | 1.0637 | 0.5879 | 1.0637 | 1.0314 | | 0.4931 | 8.6757 | 642 | 1.0891 | 0.5868 | 1.0891 | 1.0436 | | 0.4931 | 8.7027 | 644 | 1.0939 | 0.5740 | 1.0939 | 1.0459 | | 0.4931 | 8.7297 | 646 | 1.1069 | 0.5689 | 1.1069 | 1.0521 | | 0.4931 | 8.7568 | 648 | 1.1055 | 0.5689 | 1.1055 | 1.0514 | | 0.4931 | 8.7838 | 650 | 1.0832 | 0.5699 | 1.0832 | 1.0408 | | 0.4931 | 8.8108 | 652 | 1.0454 | 0.5607 | 1.0454 | 1.0224 | | 0.4931 | 8.8378 | 654 | 1.0261 | 0.5684 | 1.0261 | 1.0130 | | 0.4931 | 8.8649 | 656 | 1.0254 | 0.5684 | 1.0254 | 1.0126 | | 0.4931 | 8.8919 | 658 | 1.0350 | 0.5684 | 1.0350 | 1.0173 | | 0.4931 | 8.9189 | 660 | 1.0296 | 0.5684 | 1.0296 | 1.0147 | | 0.4931 | 8.9459 | 662 | 1.0316 | 0.5727 | 1.0316 | 1.0157 | | 0.4931 | 8.9730 | 664 | 1.0500 | 0.5717 | 1.0500 | 1.0247 | | 0.4931 | 9.0 | 666 | 1.0576 | 0.5674 | 1.0576 | 1.0284 | | 0.4931 | 9.0270 | 668 | 1.0430 | 0.5717 | 1.0430 | 1.0213 | | 0.4931 | 9.0541 | 670 | 1.0438 | 0.5717 | 1.0438 | 1.0217 | | 0.4931 | 9.0811 | 672 | 1.0523 | 0.5717 | 1.0523 | 1.0258 | | 0.4931 | 9.1081 | 674 | 1.0448 | 0.5717 | 1.0448 | 1.0221 | | 0.4931 | 9.1351 | 676 | 1.0289 | 0.5717 | 1.0289 | 1.0143 | | 0.4931 | 9.1622 | 678 | 1.0263 | 0.5727 | 1.0263 | 1.0131 | | 0.4931 | 9.1892 | 680 | 1.0340 | 0.5717 | 1.0340 | 1.0168 | | 0.4931 | 9.2162 | 682 | 1.0568 | 0.5717 | 1.0568 | 1.0280 | | 0.4931 | 9.2432 | 684 | 1.0742 | 0.5674 | 1.0742 | 1.0364 | | 0.4931 | 9.2703 | 686 | 1.0755 | 0.5674 | 1.0755 | 1.0370 | | 0.4931 | 9.2973 | 688 | 1.0626 | 0.5717 | 1.0626 | 1.0308 | | 0.4931 | 9.3243 | 690 | 1.0405 | 0.5717 | 1.0405 | 1.0201 | | 0.4931 | 9.3514 | 692 | 1.0126 | 0.5727 | 1.0126 | 1.0063 | | 0.4931 | 9.3784 | 694 | 0.9967 | 0.5932 | 0.9967 | 0.9983 | | 0.4931 | 9.4054 | 696 | 0.9948 | 0.5857 | 0.9948 | 0.9974 | | 0.4931 | 9.4324 | 698 | 0.9886 | 0.5857 | 0.9886 | 0.9943 | | 0.4931 | 9.4595 | 700 | 0.9801 | 0.5958 | 0.9801 | 0.9900 | | 0.4931 | 9.4865 | 702 | 0.9812 | 0.5958 | 0.9812 | 0.9906 | | 0.4931 | 9.5135 | 704 | 0.9825 | 0.5958 | 0.9825 | 0.9912 | | 0.4931 | 9.5405 | 706 | 0.9931 | 0.5814 | 0.9931 | 0.9965 | | 0.4931 | 9.5676 | 708 | 1.0057 | 0.5727 | 1.0057 | 1.0028 | | 0.4931 | 9.5946 | 710 | 1.0127 | 0.5727 | 1.0127 | 1.0063 | | 0.4931 | 9.6216 | 712 | 1.0119 | 0.5727 | 1.0119 | 1.0059 | | 0.4931 | 9.6486 | 714 | 1.0074 | 0.5727 | 1.0074 | 1.0037 | | 0.4931 | 9.6757 | 716 | 1.0074 | 0.5727 | 1.0074 | 1.0037 | | 0.4931 | 9.7027 | 718 | 1.0069 | 0.5727 | 1.0069 | 1.0034 | | 0.4931 | 9.7297 | 720 | 1.0015 | 0.5814 | 1.0015 | 1.0008 | | 0.4931 | 9.7568 | 722 | 0.9956 | 0.5814 | 0.9956 | 0.9978 | | 0.4931 | 9.7838 | 724 | 0.9893 | 0.5825 | 0.9893 | 0.9946 | | 0.4931 | 9.8108 | 726 | 0.9862 | 0.5825 | 0.9862 | 0.9931 | | 0.4931 | 9.8378 | 728 | 0.9824 | 0.5825 | 0.9824 | 0.9912 | | 0.4931 | 9.8649 | 730 | 0.9801 | 0.5915 | 0.9801 | 0.9900 | | 0.4931 | 9.8919 | 732 | 0.9787 | 0.5915 | 0.9787 | 0.9893 | | 0.4931 | 9.9189 | 734 | 0.9763 | 0.5847 | 0.9763 | 0.9881 | | 0.4931 | 9.9459 | 736 | 0.9741 | 0.5847 | 0.9741 | 0.9870 | | 0.4931 | 9.9730 | 738 | 0.9727 | 0.5847 | 0.9727 | 0.9862 | | 0.4931 | 10.0 | 740 | 0.9719 | 0.5938 | 0.9719 | 0.9858 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
Jobiniah/bible-mistral-7b
Jobiniah
"2024-01-20T07:15:29Z"
31
0
peft
[ "peft", "safetensors", "text-generation", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
text-generation
"2024-01-04T04:04:43Z"
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 pipeline_tag: text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
QuantFactory/Mistral-NeMo-Minitron-8B-Base-GGUF
QuantFactory
"2024-08-21T18:36:13Z"
340
5
transformers
[ "transformers", "gguf", "arxiv:2009.03300", "arxiv:2407.14679", "license:other", "endpoints_compatible", "region:us" ]
null
"2024-08-21T17:51:31Z"
--- license: other license_name: nvidia-open-model-license license_link: >- https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf library_name: transformers --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/Mistral-NeMo-Minitron-8B-Base-GGUF This is quantized version of [nvidia/Mistral-NeMo-Minitron-8B-Base](https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Base) created using llama.cpp # Original Model Card # Mistral-NeMo-Minitron-8B-Base ## Model Overview Mistral-NeMo-Minitron-8B-Base is a base text-to-text model that can be adopted for a variety of natural language generation tasks. It is a large language model (LLM) obtained by pruning and distilling the Mistral-NeMo 12B; specifically, we prune the embedding dimension and MLP intermediate dimension in the model. Following pruning, we perform continued training with distillation using 380 billion tokens to arrive at the final model; we use the continuous pre-training data corpus used in Nemotron-4 15B for this purpose. **Model Developer:** NVIDIA **Model Dates:** Mistral-NeMo-Minitron-8B-Base was trained between July 24, 2024 and August 10, 2024. ## License This model is released under the [NVIDIA Open Model License Agreement](https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf). ## Model Architecture Mistral-NeMo-Minitron-8B-Base uses a model embedding size of 4096, 32 attention heads, MLP intermediate dimension of 11520, with 40 layers in total. Additionally, it uses Grouped-Query Attention (GQA) and Rotary Position Embeddings (RoPE). **Architecture Type:** Transformer Decoder (Auto-Regressive Language Model) **Network Architecture:** Mistral-NeMo **Input Type(s):** Text **Input Format(s):** String **Input Parameters:** One Dimensional (1D) **Other Properties Related to Input:** Works well within 8k characters or less. **Output Type(s):** Text **Output Format:** String **Output Parameters:** 1D **Other Properties Related to Output:** None ## Usage Support for this model will be added in the upcoming `transformers` release. In the meantime, please install the library from source: ``` pip install git+https://github.com/huggingface/transformers ``` We can now run inference on this model: ```python import torch from transformers import AutoTokenizer, LlamaForCausalLM # Load the tokenizer and model model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" tokenizer = AutoTokenizer.from_pretrained(model_path) device = 'cuda' dtype = torch.bfloat16 model = LlamaForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) # Prepare the input text prompt = 'Complete the paragraph: our solar system is' inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device) # Generate the output outputs = model.generate(inputs, max_length=20) # Decode and print the output output_text = tokenizer.decode(outputs[0]) print(output_text) ``` ## Software Integration **Runtime Engine(s):** * NeMo 24.05 **Supported Hardware Microarchitecture Compatibility:** <br> * NVIDIA Ampere * NVIDIA Blackwell * NVIDIA Hopper * NVIDIA Lovelace **Operating System(s):** <br> * Linux ## Dataset & Training **Data Collection Method by Dataset:** Automated **Labeling Method by Dataset:** Not Applicable **Properties:** The training corpus for Mistral-NeMo-Minitron-8B-Base consists of English and multilingual text, as well as code. Our sources cover a variety of document types such as: webpages, dialogue, articles, and other written materials. The corpus spans domains including legal, math, science, finance, and more. In our continued training set, we introduce a small portion of question-answering, and alignment style data to improve model performance. **Data Freshness:** Training was done in 2024, the pretraining data has a cutoff of June 2023. ## Evaluation Results _5-shot performance._ Language Understanding evaluated using [Massive Multitask Language Understanding](https://arxiv.org/abs/2009.03300): | Average | | :---- | | 69.5 | _Zero-shot performance._ Evaluated using select datasets from the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) with additions: | HellaSwag | Winogrande | GSM8K| ARC-Challenge | XLSum | | :---- | :---- | :---- | :---- | :---- | | 83.0 | 80.4 | 58.5 | 64.4 | 32.0 _Code generation performance._ Evaluated using [MBPP](https://github.com/google-research/google-research/tree/master/mbpp): | Score | | :---- | | 43.77 | ## Inference **Engine:** TensorRT-LLM **Test Hardware:** NVIDIA A100 **DType:** BFloat16 ## Limitations The model was trained on data that contains toxic language, unsafe content, and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. ## Ethical Considerations NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/). ## References * [Minitron: Compact Language Models via Pruning and Knowledge Distillation](https://arxiv.org/abs/2407.14679) * [LLM Pruning and Distillation in Practice: The Minitron Approach](https://research.nvidia.com/publication/_llm-pruning-and-distillation-practice-minitron-approach)
Mandur/distilbert-base-uncased-finetuned-ner
Mandur
"2023-06-02T18:48:09Z"
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2023-06-01T21:09:52Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9284131205673759 - name: Recall type: recall value: 0.9372413021590782 - name: F1 type: f1 value: 0.932806324110672 - name: Accuracy type: accuracy value: 0.9839388692074285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0616 - Precision: 0.9284 - Recall: 0.9372 - F1: 0.9328 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2442 | 1.0 | 878 | 0.0704 | 0.9151 | 0.9211 | 0.9181 | 0.9812 | | 0.054 | 2.0 | 1756 | 0.0621 | 0.9239 | 0.9346 | 0.9292 | 0.9830 | | 0.0297 | 3.0 | 2634 | 0.0616 | 0.9284 | 0.9372 | 0.9328 | 0.9839 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
lmqg/mt5-small-itquad-qg
lmqg
"2023-01-18T13:47:12Z"
16
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "it", "dataset:lmqg/qg_itquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2022-06-05T23:19:44Z"
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: it datasets: - lmqg/qg_itquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento." example_title: "Question Generation Example 1" - text: "L' individuazione del petrolio e lo sviluppo di nuovi giacimenti richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una produzione significativa." example_title: "Question Generation Example 2" - text: "il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo." example_title: "Question Generation Example 3" model-index: - name: lmqg/mt5-small-itquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_itquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 7.37 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 21.93 - name: METEOR (Question Generation) type: meteor_question_generation value: 17.57 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 80.8 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 56.79 - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer value: 87.66 - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer value: 87.57 - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer value: 87.76 - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer value: 61.6 - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer value: 61.48 - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer value: 61.73 - name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer] type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer value: 81.63 - name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer] type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer value: 82.28 - name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer] type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer value: 81.04 - name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer] type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer value: 55.85 - name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer] type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer value: 56.14 - name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer] type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer value: 55.6 --- # Model Card of `lmqg/mt5-small-itquad-qg` This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small) - **Language:** it - **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="it", model="lmqg/mt5-small-itquad-qg") # model prediction questions = model.generate_q(list_context="Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.", list_answer="Dopo il 1971") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-itquad-qg") output = pipe("<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 80.8 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_1 | 22.78 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_2 | 14.93 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_3 | 10.34 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_4 | 7.37 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | METEOR | 17.57 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | MoverScore | 56.79 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | ROUGE_L | 21.93 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | - ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 87.66 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedF1Score (MoverScore) | 61.6 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedPrecision (BERTScore) | 87.76 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedPrecision (MoverScore) | 61.73 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedRecall (BERTScore) | 87.57 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedRecall (MoverScore) | 61.48 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | - ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/mt5-small-itquad-ae`](https://huggingface.co/lmqg/mt5-small-itquad-ae). [raw metric file](https://huggingface.co/lmqg/mt5-small-itquad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.lmqg_mt5-small-itquad-ae.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 81.63 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedF1Score (MoverScore) | 55.85 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedPrecision (BERTScore) | 81.04 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedPrecision (MoverScore) | 55.6 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedRecall (BERTScore) | 82.28 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | QAAlignedRecall (MoverScore) | 56.14 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_itquad - dataset_name: default - input_types: ['paragraph_answer'] - output_types: ['question'] - prefix_types: None - model: google/mt5-small - max_length: 512 - max_length_output: 32 - epoch: 15 - batch: 16 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.0 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-itquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
Ghali20/Zephyr_beta_5M
Ghali20
"2023-12-16T00:17:38Z"
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:HuggingFaceH4/zephyr-7b-alpha", "base_model:adapter:HuggingFaceH4/zephyr-7b-alpha", "region:us" ]
null
"2023-12-16T00:17:06Z"
--- library_name: peft base_model: HuggingFaceH4/zephyr-7b-alpha --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
ByunByun/lora_0301
ByunByun
"2024-03-01T10:00:33Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-03-01T10:00:09Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/SoMix-xb-GGUF
mradermacher
"2024-06-09T19:13:33Z"
21
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "MaziyarPanahi/TheTop-5x7B-Instruct-S3-v0.1", "argilla/notus-7b-v1", "en", "endpoints_compatible", "region:us" ]
null
"2024-06-09T18:34:17Z"
--- base_model: powermove72/SoMix-xb language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - MaziyarPanahi/TheTop-5x7B-Instruct-S3-v0.1 - argilla/notus-7b-v1 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/powermove72/SoMix-xb <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.Q2_K.gguf) | Q2_K | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.IQ3_XS.gguf) | IQ3_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.Q3_K_S.gguf) | Q3_K_S | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.IQ3_S.gguf) | IQ3_S | 5.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.IQ3_M.gguf) | IQ3_M | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.Q3_K_M.gguf) | Q3_K_M | 5.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.Q3_K_L.gguf) | Q3_K_L | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.IQ4_XS.gguf) | IQ4_XS | 6.2 | | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.Q4_K_S.gguf) | Q4_K_S | 6.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.Q4_K_M.gguf) | Q4_K_M | 6.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.Q5_K_S.gguf) | Q5_K_S | 7.8 | | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.Q5_K_M.gguf) | Q5_K_M | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.Q6_K.gguf) | Q6_K | 9.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/SoMix-xb-GGUF/resolve/main/SoMix-xb.Q8_0.gguf) | Q8_0 | 12.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
MaziyarPanahi/Experiment28M7_Inex12Yam
MaziyarPanahi
"2024-04-08T18:02:29Z"
19
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "base_model:automerger/Experiment28M7-7B", "base_model:merge:automerger/Experiment28M7-7B", "base_model:automerger/Inex12Yam-7B", "base_model:merge:automerger/Inex12Yam-7B", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
"2024-04-08T17:49:19Z"
--- license: apache-2.0 tags: - Safetensors - text-generation-inference - merge model_name: Experiment28M7_Inex12Yam base_model: - automerger/Experiment28M7-7B - automerger/Inex12Yam-7B inference: false model_creator: MaziyarPanahi pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # Experiment28M7_Inex12Yam Experiment28M7_Inex12Yam is a merge of the following models: * [automerger/Experiment28M7-7B](https://huggingface.co/automerger/Experiment28M7-7B) * [automerger/Inex12Yam-7B](https://huggingface.co/automerger/Inex12Yam-7B) ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Experiment28M7_Inex12Yam" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
ZhiyuanQiu/camembert-base-finetuned-Train_RAW_157080-dd
ZhiyuanQiu
"2022-08-13T19:41:50Z"
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-08-13T18:09:10Z"
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: camembert-base-finetuned-Train_RAW_157080-dd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-Train_RAW_157080-dd This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2610 - Precision: 0.8933 - Recall: 0.9183 - F1: 0.9056 - Accuracy: 0.9375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1991 | 1.0 | 5128 | 0.1842 | 0.8684 | 0.9101 | 0.8888 | 0.9358 | | 0.142 | 2.0 | 10256 | 0.2028 | 0.8856 | 0.9176 | 0.9013 | 0.9394 | | 0.1187 | 3.0 | 15384 | 0.2475 | 0.8876 | 0.9160 | 0.9016 | 0.9317 | | 0.082 | 4.0 | 20512 | 0.2610 | 0.8933 | 0.9183 | 0.9056 | 0.9375 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Xu-Ouyang/pythia-12b-deduped-int2-step86000-GPTQ-wikitext2-uva
Xu-Ouyang
"2024-09-20T01:33:59Z"
60
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "2-bit", "gptq", "region:us" ]
text-generation
"2024-09-20T01:32:15Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
John6666/illust-possible-v25-sdxl
John6666
"2024-12-23T06:47:17Z"
208
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "pony", "illustrious", "en", "base_model:Laxhar/noobai-xl-EarlyAccess", "base_model:finetune:Laxhar/noobai-xl-EarlyAccess", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2024-11-13T03:24:05Z"
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - pony - illustrious base_model: Laxhar/sdxl_noob --- Original model is [here](https://civitai.com/models/880866/illust-possible?modelVersionId=1054197). This model created by [OZn_](https://civitai.com/user/OZn_).
stvhuang/rcr-codeserver-66016878-e60b-4231-bcf6-0ca444c52f42-65464d9fc76scht_20240318T042457-ep00
stvhuang
"2024-03-18T10:59:03Z"
60
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
"2024-03-18T10:57:46Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sr5434/AlphaZero-Kuhn-Poker
sr5434
"2024-02-27T23:09:29Z"
0
1
null
[ "license:mit", "region:us" ]
null
"2024-02-27T23:07:14Z"
--- license: mit --- I used PGX and MCTX to train AlphaZero on Kuhn Poker. It ran on a TPU v2-8(courtesy of the TPU Research Cloud Program) for ~3.5 days. Code can be found [here](https://github.com/sr5434/MuZero).
SultanR/SmolTulu-1.7b-Instruct
SultanR
"2024-12-17T00:09:34Z"
252
13
transformers
[ "transformers", "safetensors", "llama", "text-generation", "Tulu3", "Smollm", "SLMs", "Small", "Huggingface", "Allenai", "SFT", "DPO", "GGUF", "conversational", "en", "dataset:allenai/tulu-3-sft-mixture", "dataset:allenai/llama-3.1-tulu-3-8b-preference-mixture", "arxiv:2411.15124", "arxiv:2412.08347", "base_model:HuggingFaceTB/SmolLM2-1.7B", "base_model:finetune:HuggingFaceTB/SmolLM2-1.7B", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-12-01T16:40:35Z"
--- license: apache-2.0 language: - en library_name: transformers tags: - Tulu3 - Smollm - SLMs - Small - Huggingface - Allenai - SFT - DPO - GGUF base_model: - HuggingFaceTB/SmolLM2-1.7B datasets: - allenai/tulu-3-sft-mixture - allenai/llama-3.1-tulu-3-8b-preference-mixture pipeline_tag: text-generation model-index: - name: SmolTulu-1.7b-Instruct results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 65.41 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 12.26 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 2.64 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 2.57 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 1.92 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 7.89 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct name: Open LLM Leaderboard --- # SmolLM2 1.7b Instruction Tuned & DPO Aligned through Tulu 3! ![SmolTulu Banner](smoltulubanner.png) SmolTulu-1.7b-Instruct is the first model in a series of models meant to leverage [AllenAI's Tulu 3 post-training pipeline](https://arxiv.org/abs/2411.15124) to tune the [base version of Huggingface's SmolLM2-1.7b](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B)! The post training pipeline AllenAI came up with seemed like something perfect to apply here. This model scores the highest current score in both IFEval and GSM8k (after SmolTulu-1.7b-Reinforced) while maintaining the extremely low contamination levels in Tulu 3 and SmolLM2! I've listed the datasets used to do both the SFT (supervised finetuning) and DPO (direct preference optimization) stages. Something important to note, this model has only undergone SFT and DPO! Find the RLVR version here, [SmolTulu-1.7b-Reinforced](https://huggingface.co/SultanR/SmolTulu-1.7b-Reinforced) ## Evaluation I ran these evaluations using [SmolLM2's evaluation code](https://github.com/huggingface/smollm/tree/main/evaluation) for a more fair comparison. | Metric | SmolTulu-1.7b-Instruct | SmolTulu-1.7b-Reinforced | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct | |:----------------------------|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:| | ARC (Average) | 51.5 | 51.1 | **51.7** | 41.6 | 46.2 | 43.7 | | BBH (3-shot) | 33.8 | 33.4 | 32.2 | 27.6 | **35.3** | 25.7 | | GSM8K (5-shot) | 51.6 | **61.0** | 48.2 | 26.8 | 42.8 | 4.6 | | HellaSwag | 61.1 | 60.4 | **66.1** | 56.1 | 60.9 | 55.5 | | IFEval (Average prompt/inst) | 67.7 | **69.3** | 56.7 | 53.5 | 47.4 | 23.1 | | MMLU-Pro (MCF) | 17.4 | 17.3 | 19.3 | 12.7 | **24.2** | 11.7 | | PIQA | 72.2 | 72.1 | **74.4** | 72.3 | 73.2 | 71.6 | ## Training Details The model was trained using Direct Preference Optimization (DPO) with the following configuration: - Base model: SmolLM2-1.7B with AllenAI's SFT pipeline ran - Mixed precision: bfloat16 - Learning rate: 8e-7 with linear scheduler - Warmup ratio: 0.1 - Training epochs: 1 - Effective batch size: 12 - Sequence length: 4096 tokens - DPO loss: Length-normalized DPO - DPO beta: 5.0 - Gradient checkpointing enabled - DeepSpeed Stage 3 for memory optimization ## Usage Just like any Huggingface model, just run it using the transformers library: ```python # pip install transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "SultanR/SmolTulu-1.7b-Instruct" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` You can also use the model in llama.cpp through the [gguf version](https://huggingface.co/SultanR/SmolTulu-1.7b-Instruct-GGUF)! ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_SultanR__SmolTulu-1.7b-Instruct) To give a more holistic overview, I also added the Open LLM Leaderboard results, which differ a lot from the script that was used to benchmark SmolLM2-Instruct. As of writing this, the number 1 ranking model in IFEval for any model under 2 billion parameters :) | Metric |Value| |-------------------|----:| |Avg. |15.45| |IFEval (0-Shot) |65.41| |BBH (3-Shot) |12.26| |MATH Lvl 5 (4-Shot)| 2.64| |GPQA (0-shot) | 2.57| |MuSR (0-shot) | 1.92| |MMLU-PRO (5-shot) | 7.89| ## Citation ``` @misc{alrashed2024smoltuluhigherlearningrate, title={SmolTulu: Higher Learning Rate to Batch Size Ratios Can Lead to Better Reasoning in SLMs}, author={Sultan Alrashed}, year={2024}, eprint={2412.08347}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.08347}, } ``` The training methodology follows the Tulu 3 paper: ``` @article{lambert2024tulu3, title={TÜLU 3: Pushing Frontiers in Open Language Model Post-Training}, author={Lambert, Nathan and Morrison, Jacob and Pyatkin, Valentina and others}, year={2024}, journal={arXiv preprint arXiv:2411.15124} } ```
ivaan01/TFG-Mauri
ivaan01
"2023-05-19T00:09:00Z"
0
0
null
[ "conversational", "dataset:samhog/psychology-10k", "region:us" ]
text-generation
"2023-05-18T23:07:24Z"
--- datasets: - samhog/psychology-10k pipeline_tag: conversational ---
m-biriuchinskii/Creole-classifier-v1-balanced
m-biriuchinskii
"2024-04-17T07:03:56Z"
1
0
fasttext
[ "fasttext", "language", "text-classification", "fr", "region:us" ]
text-classification
"2024-04-17T06:50:48Z"
--- language: - fr metrics: - accuracy library_name: fasttext pipeline_tag: text-classification tags: - language --- ## Results - **Nombre d'échantillons:** 11853 - **Précision:** 0.669 - **Rappel:** 0.669
TakedaAIML/section_classifier
TakedaAIML
"2024-09-17T07:38:43Z"
53
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "text-classification", "fr", "en", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "region:us" ]
text-classification
"2024-09-10T06:53:05Z"
--- license: apache-2.0 language: - fr - en base_model: - google-bert/bert-base-uncased pipeline_tag: text-classification library_name: sentence-transformers --- # Takeda Section Classifier Pretrained model (finetuned version of [BERT Multilingual Uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased)) on french and english documents using supervised training for sections classification. This work has been made by Digital Innovation Team from Belgium 🇧🇪 (LE). ## Model Description The model aims at classifying text in classes representing part of reports: * Description * Immediate Correction * Root Cause * Action Plan * Impacted Elements ## Intended uses & limitations The model can be use for Takeda documentation, the team do not guarantee results for out of the scope documentation. ## How to Use You can use this model directly with a pipeline for text classification: ```python from transformers import ( TextClassificationPipeline, AutoTokenizer, AutoModelForSequenceClassification, ) tokenizer = AutoTokenizer.from_pretrained("TakedaAIML/section_classifier") model = AutoModelForSequenceClassification.from_pretrained( "TakedaAIML/section_classifier" ) pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer) prediction = pipe('this is a piece of text representing the Description section. An event occur on june 24 and ...') ```
C0ttontheBunny/Catnap
C0ttontheBunny
"2024-02-01T02:53:37Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2024-01-31T18:43:52Z"
--- license: openrail ---
daniel40/e377f248-fc22-49f5-a894-a420a75da0c4
daniel40
"2025-01-28T21:39:00Z"
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.3", "base_model:adapter:lmsys/vicuna-7b-v1.3", "region:us" ]
null
"2025-01-28T21:24:09Z"
--- library_name: peft base_model: lmsys/vicuna-7b-v1.3 tags: - axolotl - generated_from_trainer model-index: - name: e377f248-fc22-49f5-a894-a420a75da0c4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: lmsys/vicuna-7b-v1.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7f0c587cec1971bb_train_data.json ds_type: json format: custom path: /workspace/input_data/7f0c587cec1971bb_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/e377f248-fc22-49f5-a894-a420a75da0c4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/7f0c587cec1971bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1575562f-a79f-4a26-8bf7-62d290bbfa3d wandb_project: Birthday-SN56-27-Gradients-On-Demand wandb_run: your_name wandb_runid: 1575562f-a79f-4a26-8bf7-62d290bbfa3d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e377f248-fc22-49f5-a894-a420a75da0c4 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.9941 | | 1.8674 | 0.0008 | 13 | 1.7657 | | 1.7289 | 0.0015 | 26 | 1.5677 | | 1.5153 | 0.0023 | 39 | 1.5160 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Neko-Institute-of-Science/LLaMA-7B-4bit-128g
Neko-Institute-of-Science
"2023-04-15T19:30:55Z"
15
7
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2023-04-07T04:41:38Z"
``` 7B (act-order true-sequential groupsize) wikitext2 5.677095890045166 (stock 16bit) wikitext2 5.768329620361328 (32g) wikitext2 5.833956718444824 (128g) ptb-new 10.10704231262207 (stock 16bit) ptb-new 10.273148536682129 (32g) ptb-new 10.347890853881836 (128g) c4-new 7.343583106994629 (stock 16bit) c4-new 7.443920612335205 (32g) c4-new 7.5146918296813965 (128g) ```
tensorblock/Teleut-7b-GGUF
tensorblock
"2024-12-03T17:29:01Z"
12
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "dataset:allenai/tulu-3-sft-mixture", "base_model:allura-org/Teleut-7b", "base_model:quantized:allura-org/Teleut-7b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-12-03T16:42:57Z"
--- library_name: transformers license: apache-2.0 base_model: allura-org/Teleut-7b datasets: - allenai/tulu-3-sft-mixture tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## allura-org/Teleut-7b - GGUF This repo contains GGUF format model files for [allura-org/Teleut-7b](https://huggingface.co/allura-org/Teleut-7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). <div style="text-align: left; margin: 20px 0;"> <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Run them on the TensorBlock client using your local machine ↗ </a> </div> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Teleut-7b-Q2_K.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [Teleut-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [Teleut-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [Teleut-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [Teleut-7b-Q4_0.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Teleut-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [Teleut-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [Teleut-7b-Q5_0.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Teleut-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [Teleut-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [Teleut-7b-Q6_K.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [Teleut-7b-Q8_0.gguf](https://huggingface.co/tensorblock/Teleut-7b-GGUF/blob/main/Teleut-7b-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Teleut-7b-GGUF --include "Teleut-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Teleut-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
emilykang/medner-cardiovascular_pulmonary_lora
emilykang
"2024-05-15T16:00:29Z"
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
null
"2024-05-15T12:58:16Z"
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 datasets: - generator model-index: - name: medner-cardiovascular_pulmonary_lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medner-cardiovascular_pulmonary_lora This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.1+cu118 - Datasets 2.19.0 - Tokenizers 0.19.1
BroAlanTaps/GPT2-large-256-17250steps-1.2Btokens
BroAlanTaps
"2024-10-11T14:35:49Z"
119
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-10-11T14:34:00Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Geneva-12B-GCv2-50k-GGUF
mradermacher
"2025-02-04T08:54:05Z"
296
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "trl", "gammacorpus", "geneva", "chat", "mistral", "conversational", "en", "fr", "de", "es", "it", "pt", "ru", "zh", "ja", "dataset:rubenroy/GammaCorpus-v2-50k", "base_model:rubenroy/Geneva-12B-GCv2-50k", "base_model:quantized:rubenroy/Geneva-12B-GCv2-50k", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-02-04T08:08:32Z"
--- base_model: rubenroy/Geneva-12B-GCv2-50k datasets: - rubenroy/GammaCorpus-v2-50k language: - en - fr - de - es - it - pt - ru - zh - ja library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - trl - gammacorpus - geneva - chat - mistral - conversational --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/rubenroy/Geneva-12B-GCv2-50k <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Geneva-12B-GCv2-50k-GGUF/resolve/main/Geneva-12B-GCv2-50k.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_SystemError0.0_Seed103
behzadnet
"2023-12-17T21:36:36Z"
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
"2023-12-17T21:36:33Z"
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
DerekTrayn/Ale
DerekTrayn
"2023-08-20T15:03:27Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2023-08-20T15:02:32Z"
--- license: openrail ---
gf2rl/david1
gf2rl
"2023-03-29T23:51:19Z"
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
"2023-03-29T23:51:12Z"
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: david1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 9.50 +/- 0.50 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bakisanlan/ppo_LunarLander_v2_bksnln
bakisanlan
"2022-12-12T23:35:56Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2022-12-12T23:35:29Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.79 +/- 21.11 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AngeT10/Totti
AngeT10
"2023-10-11T16:51:01Z"
0
0
null
[ "license:openrail", "region:us" ]
null
"2023-10-11T16:48:18Z"
--- license: openrail ---
teneriffa/TherapyBeagle-11B-v1-Q4_0-GGUF
teneriffa
"2024-04-08T12:01:20Z"
23
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "dataset:jerryjalapeno/nart-100k-synthetic", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-04-08T11:58:01Z"
--- license: cc-by-nc-4.0 tags: - llama-cpp - gguf-my-repo datasets: - jerryjalapeno/nart-100k-synthetic --- # teneriffa/TherapyBeagle-11B-v1-Q4_0-GGUF This model was converted to GGUF format from [`victunes/TherapyBeagle-11B-v1`](https://huggingface.co/victunes/TherapyBeagle-11B-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/victunes/TherapyBeagle-11B-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo teneriffa/TherapyBeagle-11B-v1-Q4_0-GGUF --model therapybeagle-11b-v1.Q4_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo teneriffa/TherapyBeagle-11B-v1-Q4_0-GGUF --model therapybeagle-11b-v1.Q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m therapybeagle-11b-v1.Q4_0.gguf -n 128 ```
junklivs/distilbert-base-uncased-finetuned-cola
junklivs
"2023-03-31T15:25:27Z"
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-03-31T13:28:41Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5361146089547957 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8228 - Matthews Correlation: 0.5361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5241 | 1.0 | 535 | 0.5480 | 0.4006 | | 0.3496 | 2.0 | 1070 | 0.5164 | 0.4819 | | 0.2387 | 3.0 | 1605 | 0.6022 | 0.5138 | | 0.1779 | 4.0 | 2140 | 0.7458 | 0.5280 | | 0.127 | 5.0 | 2675 | 0.8228 | 0.5361 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
Vivian12300/Meta-Llama-3-8B-Instruct_mathqa_French_new
Vivian12300
"2024-07-10T14:01:42Z"
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "dataset:generator", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-07-10T12:56:36Z"
--- tags: - trl - sft - generated_from_trainer datasets: - generator model-index: - name: Meta-Llama-3-8B-Instruct_mathqa_French_new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Meta-Llama-3-8B-Instruct_mathqa_French_new This model was trained from scratch on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 36 ### Training results ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
YUNSUN7/Haneul
YUNSUN7
"2024-05-01T07:52:13Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2024-05-01T07:51:02Z"
--- license: apache-2.0 ---
sail-rvc/JUNGKOOK_AI__RVC_v2_200_Epochs_
sail-rvc
"2023-07-14T07:24:14Z"
1
0
transformers
[ "transformers", "rvc", "sail-rvc", "audio-to-audio", "endpoints_compatible", "region:us" ]
audio-to-audio
"2023-07-14T07:23:56Z"
--- pipeline_tag: audio-to-audio tags: - rvc - sail-rvc --- # JUNGKOOK_AI__RVC_v2_200_Epochs_ ## RVC Model ![banner](https://i.imgur.com/xocCjhH.jpg) This model repo was automatically generated. Date: 2023-07-14 07:24:14 Bot Name: juuxnscrap Model Type: RVC Source: https://huggingface.co/juuxn/RVCModels/ Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
steveice/videomae-base-finetuned-engine-subset
steveice
"2023-03-10T20:02:38Z"
61
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
"2023-03-10T19:33:03Z"
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-engine-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-engine-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5634 - Accuracy: 0.475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 224 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6687 | 0.25 | 57 | 2.5948 | 0.15 | | 2.3001 | 1.25 | 114 | 2.2452 | 0.175 | | 2.1531 | 2.25 | 171 | 1.9180 | 0.3875 | | 1.6332 | 3.24 | 224 | 1.5634 | 0.475 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1+cu113 - Datasets 2.10.1 - Tokenizers 0.13.2
sinhala-nlp/xlm-t-hasoc-hi
sinhala-nlp
"2022-11-01T20:15:31Z"
100
0
transformers
[ "transformers", "pytorch", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2022-11-01T19:32:51Z"
--- license: apache-2.0 ---
aa-unh/poca-SoccerTwos
aa-unh
"2024-04-11T21:29:45Z"
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
"2024-04-11T21:28:02Z"
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: aa-unh/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
qgallouedec/tqc-Hopper-v3-1640964538
qgallouedec
"2024-04-10T19:34:01Z"
2
0
stable-baselines3
[ "stable-baselines3", "Hopper-v3", "deep-reinforcement-learning", "reinforcement-learning", "Hopper-v4", "model-index", "region:us" ]
reinforcement-learning
"2023-02-28T15:07:17Z"
--- library_name: stable-baselines3 tags: - Hopper-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 - Hopper-v4 model-index: - name: TQC results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hopper-v3 type: Hopper-v3 metrics: - type: mean_reward value: 3702.73 +/- 5.94 name: mean_reward verified: false --- # **TQC** Agent playing **Hopper-v3** This is a trained model of a **TQC** agent playing **Hopper-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo tqc --env Hopper-v3 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo tqc --env Hopper-v3 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo tqc --env Hopper-v3 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo tqc --env Hopper-v3 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo tqc --env Hopper-v3 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo tqc --env Hopper-v3 -f logs/ -orga qgallouedec ``` ## Hyperparameters ```python OrderedDict([('learning_starts', 10000), ('n_timesteps', 1000000.0), ('policy', 'MlpPolicy'), ('top_quantiles_to_drop_per_net', 5), ('normalize', False)]) ```
PrunaAI/fateme-nateghi23-Llama-3-8B-Instruct-Finance-RAG-bnb-8bit-smashed
PrunaAI
"2024-12-03T23:45:53Z"
6
0
null
[ "safetensors", "llama", "pruna-ai", "base_model:fateme-nateghi23/Llama-3-8B-Instruct-Finance-RAG", "base_model:quantized:fateme-nateghi23/Llama-3-8B-Instruct-Finance-RAG", "8-bit", "bitsandbytes", "region:us" ]
null
"2024-12-03T23:34:32Z"
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: fateme-nateghi23/Llama-3-8B-Instruct-Finance-RAG metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo fateme-nateghi23/Llama-3-8B-Instruct-Finance-RAG installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/fateme-nateghi23-Llama-3-8B-Instruct-Finance-RAG-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("fateme-nateghi23/Llama-3-8B-Instruct-Finance-RAG") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model fateme-nateghi23/Llama-3-8B-Instruct-Finance-RAG before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
guoyu-zhang/model_usp3_dpo9
guoyu-zhang
"2024-04-17T08:35:27Z"
0
0
peft
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "license:llama2", "region:us" ]
null
"2024-04-17T08:35:16Z"
--- license: llama2 library_name: peft tags: - trl - dpo - generated_from_trainer base_model: meta-llama/Llama-2-7b-chat-hf model-index: - name: model_usp3_dpo9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_usp3_dpo9 This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3840 - Rewards/chosen: -5.8994 - Rewards/rejected: -15.8549 - Rewards/accuracies: 0.75 - Rewards/margins: 9.9555 - Logps/rejected: -125.7216 - Logps/chosen: -114.4451 - Logits/rejected: -0.5607 - Logits/chosen: -0.5006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.1194 | 2.67 | 100 | 1.1073 | 5.0437 | 2.1933 | 0.7400 | 2.8504 | -105.6681 | -102.2862 | 0.0014 | 0.0428 | | 0.0189 | 5.33 | 200 | 2.5034 | -3.9384 | -11.8385 | 0.7000 | 7.9001 | -121.2590 | -112.2662 | -0.7943 | -0.7591 | | 0.0521 | 8.0 | 300 | 2.6657 | 2.8593 | -3.0059 | 0.6700 | 5.8652 | -111.4450 | -104.7133 | -0.3470 | -0.2646 | | 0.0001 | 10.67 | 400 | 2.4434 | -6.5026 | -16.5073 | 0.7400 | 10.0046 | -126.4465 | -115.1154 | -0.5717 | -0.5110 | | 0.0 | 13.33 | 500 | 2.3881 | -5.9046 | -15.8560 | 0.75 | 9.9513 | -125.7228 | -114.4510 | -0.5605 | -0.5010 | | 0.0 | 16.0 | 600 | 2.3960 | -5.9125 | -15.8411 | 0.75 | 9.9286 | -125.7063 | -114.4597 | -0.5602 | -0.5003 | | 0.0 | 18.67 | 700 | 2.3936 | -5.8978 | -15.8162 | 0.75 | 9.9184 | -125.6786 | -114.4434 | -0.5604 | -0.5003 | | 0.0 | 21.33 | 800 | 2.3929 | -5.9227 | -15.8715 | 0.75 | 9.9488 | -125.7401 | -114.4710 | -0.5609 | -0.5010 | | 0.0 | 24.0 | 900 | 2.3975 | -5.9447 | -15.8363 | 0.75 | 9.8917 | -125.7010 | -114.4955 | -0.5609 | -0.5009 | | 0.0 | 26.67 | 1000 | 2.3840 | -5.8994 | -15.8549 | 0.75 | 9.9555 | -125.7216 | -114.4451 | -0.5607 | -0.5006 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
VamsiPranav/sequential-training
VamsiPranav
"2023-11-22T21:01:14Z"
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-11-22T20:28:49Z"
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: sequential-training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sequential-training This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
DevozZ/LunarLander-v2
DevozZ
"2023-05-21T16:06:12Z"
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
"2023-05-21T15:49:21Z"
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -58.93 +/- 81.11 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'LunarLander' 'seed': 42 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 500000 'learning_rate': 0.001 'num_envs': 16 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'DevozZ/LunarLander-v2' 'batch_size': 2048 'minibatch_size': 512} ```
BookWormXtreme/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-3.5bpw-exl2
BookWormXtreme
"2024-01-06T07:12:02Z"
0
1
null
[ "safetensors", "license:apache-2.0", "region:us" ]
null
"2024-01-05T11:09:16Z"
--- license: apache-2.0 --- # Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-3.5bpw-exl2 This is a 3.5bpw exl2 quant of DrShotgun's Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss. All credit for merging, etc goes to DrShotgun. [Original Repo Link](https://huggingface.co/Doctor-Shotgun/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss) ## Original Model Card: Experimental model, using a limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers, and then fused to [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) at 0.5 weight. Would try with temp ~1.5-2 and min-p of ~0.03-0.05 since mixtral does appear to be highly confident on its responses and can enter repetition loops after several thousand tokens of responses. [Peft Adapter](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora) ## Usage: The intended prompt format is the Alpaca instruction format of LimaRP v3: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input: User: {utterance} ### Response: Character: {utterance} (etc.) ``` ## Message length control Due to the inclusion of LimaRP v3, it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The available lengths are: `micro, tiny, short, medium, long, massive, huge, enormous, humongous, unlimited`. The recommended starting length is `medium`. Keep in mind that the AI may ramble or impersonate the user with very long messages. ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the merged models for details.
aseratus1/214439b2-71ec-465c-b5dd-8760be6169e1
aseratus1
"2025-01-29T09:09:21Z"
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M", "base_model:adapter:unsloth/SmolLM2-360M", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-29T08:59:05Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M tags: - axolotl - generated_from_trainer model-index: - name: 214439b2-71ec-465c-b5dd-8760be6169e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 155f72bf61c52f9c_train_data.json ds_type: json format: custom path: /workspace/input_data/155f72bf61c52f9c_train_data.json type: field_input: title_main field_instruction: texte field_output: texteHtml format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aseratus1/214439b2-71ec-465c-b5dd-8760be6169e1 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/155f72bf61c52f9c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d46de064-6529-4c08-8755-e14ca536003f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d46de064-6529-4c08-8755-e14ca536003f warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 214439b2-71ec-465c-b5dd-8760be6169e1 This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1953 | 0.3535 | 200 | 0.1348 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
uppaluru/distilbert-base-uncased-finetuned-ner
uppaluru
"2025-01-09T16:34:11Z"
129
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2024-12-23T11:38:00Z"
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9239082487869431 - name: Recall type: recall value: 0.9372413021590782 - name: F1 type: f1 value: 0.9305270172710612 - name: Accuracy type: accuracy value: 0.9835575960728867 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.9239 - Recall: 0.9372 - F1: 0.9305 - Accuracy: 0.9836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2515 | 1.0 | 878 | 0.0699 | 0.9048 | 0.9184 | 0.9116 | 0.9801 | | 0.0527 | 2.0 | 1756 | 0.0610 | 0.9193 | 0.9341 | 0.9266 | 0.9828 | | 0.0312 | 3.0 | 2634 | 0.0617 | 0.9239 | 0.9372 | 0.9305 | 0.9836 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
aifoundry-org/FLUX.1-schnell-Quantized
aifoundry-org
"2024-08-27T18:37:38Z"
1,125
6
null
[ "gguf", "text-to-image", "image-generation", "flux", "en", "base_model:black-forest-labs/FLUX.1-schnell", "base_model:quantized:black-forest-labs/FLUX.1-schnell", "license:apache-2.0", "region:us" ]
text-to-image
"2024-08-16T15:55:43Z"
--- base_model: black-forest-labs/FLUX.1-schnell license: apache-2.0 language: - en pipeline_tag: text-to-image tags: - text-to-image - image-generation - flux --- Quantized versions of https://huggingface.co/black-forest-labs/FLUX.1-schnell Tools used for quantization: modded [stable-diffusion.cpp](https://github.com/leejet/stable-diffusion.cpp), [LlamaQuantizer](https://github.com/aifoundry-org/LlamaQuantizer) **Work in progress, use at your own risk** ## How to: [WIP] 1. Dowload and build [stable-diffusion.cpp](https://github.com/leejet/stable-diffusion.cpp) 2. Download one of the models from this repo and * Autoencoder https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/ae.safetensors * CLIP_L https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/clip_l.safetensors * T5XXL https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/t5xxl_fp16.safetensors 3. Enter your `stable-diffusion.cpp` dir 4. Run the following command: ``` ./build/bin/sd --diffusion-model [path to gguf] --vae [path to ae.safetensors] --clip_l [path to clip_l.safetensors] --t5xxl [path to t5xxl_fp16.safetensors] -p "a frog holding a sign saying 'hi' " -o ../frog.png -v --cfg-scale 1.0 --sampling-method euler -v --seed 42 --steps 4 ``` ## Results: <table style="border-collapse: collapse; width: 100%;"> <tr> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"><strong>Quant type</strong></td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"><strong>Size</strong></td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em; min-width: 256px;"><strong>Result (x0.5)</strong></td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"><strong>Download link</strong></td> </tr> <tr> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong>default</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong>23.8 GB</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/blob/main/examples/flux_frog_default.png"> <img src="./examples/flux_frog_default.png" alt="flux_frog_default.png" style="display: block; margin: 0 auto; min-width: 256px; width: 256px; height: 256px; aspect-ratio: 1 / 1; object-fit: cover;"> </a> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/flux1-schnell.safetensors">flux1-schnell.safetensors.gguf</a> </td> </tr> <tr> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong>FP16</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong> 23.8 GB</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/blob/main/examples/flux_frog_F16.png"> <img src="./examples/flux_frog_F16.png" alt="flux_frog_F16.png" style="display: block; margin: 0 auto; min-width: 256px; width: 256px; height: 256px; aspect-ratio: 1 / 1; object-fit: cover;"> </a> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/resolve/main/flux1-schnell-F16.gguf">flux1-schnell-F16.gguf</a> </td> </tr> <tr> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong>Q8_0</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong> 12.6 GB</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/blob/main/examples/flux_frog_Q8_0.png"> <img src="./examples/flux_frog_Q8_0.png" alt="flux_frog_Q8_0.png" style="display: block; margin: 0 auto; min-width: 256px; width: 256px; height: 256px; aspect-ratio: 1 / 1; object-fit: cover;"> </a> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/resolve/main/flux1-schnell-Q8_0.gguf">flux1-schnell-Q8_0.gguf</a> </td> <tr> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong>Q5_0</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong> 8.18 GB</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/blob/main/examples/flux_frog_Q5_0.png"> <img src="./examples/flux_frog_Q5_0.png" alt="flux_frog_Q5_0.png" style="display: block; margin: 0 auto; min-width: 256px; width: 256px; height: 256px; aspect-ratio: 1 / 1; object-fit: cover;"> </a> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/resolve/main/flux1-schnell-Q5_0.gguf">flux1-schnell-Q5_0.gguf</a> </td> </tr> <tr> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong>Q5_1</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong> 8.92 GB</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/blob/main/examples/flux_frog_Q5_1.png"> <img src="./examples/flux_frog_Q5_1.png" alt="flux_frog_Q5_1.png" style="display: block; margin: 0 auto; min-width: 256px; width: 256px; height: 256px; aspect-ratio: 1 / 1; object-fit: cover;"> </a> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/resolve/main/flux1-schnell-Q5_1.gguf">flux1-schnell-Q5_1.gguf</a> </td> </tr> <tr> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong>Q4_0</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong> 6.69 GB</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/blob/main/examples/flux_frog_Q4_0.png"> <img src="./examples/flux_frog_Q4_0.png" alt="flux_frog_Q4_0.png" style="display: block; margin: 0 auto; min-width: 256px; width: 256px; height: 256px; aspect-ratio: 1 / 1; object-fit: cover;"> </a> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/resolve/main/flux1-schnell-Q4_0.gguf">flux1-schnell-Q4_0.gguf</a> </td> </tr> <tr> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong>Q4_1</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong> 7.43 GB</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/blob/main/examples/flux_frog_Q4_1.png"> <img src="./examples/flux_frog_Q4_1.png" alt="flux_frog_Q4_1.png" style="display: block; margin: 0 auto; min-width: 256px; width: 256px; height: 256px;"> </a> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/resolve/main/flux1-schnell-Q4_1.gguf">flux1-schnell-Q4_1.gguf</a> </td> </tr> <tr> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong>Q4_K</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong> 6.69 GB</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/blob/main/examples/flux_frog_Q4_K.png"> <img src="./examples/flux_frog_Q4_K.png" alt="flux_frog_Q4_K.png" style="display: block; margin: 0 auto; min-width: 256px; width: 256px; height: 256px; aspect-ratio: 1 / 1; object-fit: cover;"> </a> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/resolve/main/flux1-schnell-Q4_K.gguf">flux1-schnell-Q4_K.gguf</a> </td> </tr> <tr> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong>Q2_K</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <strong> 3.9 GB</strong> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/blob/main/examples/flux_frog_Q2_K.png"> <img src="./examples/flux_frog_Q2_K.png" alt="flux_frog_Q2_K.png" style="display: block; margin: 0 auto; min-width: 256px; width: 256px; height: 256px; aspect-ratio: 1 / 1; object-fit: cover;"> </a> </td> <td style="border: none; padding: 10px; text-align: center; vertical-align: middle; font-size: 1.5em;"> <a href="https://huggingface.co/aifoundry-org/FLUX.1-schnell-Quantized/resolve/main/flux1-schnell-Q2_K.gguf">flux1-schnell-Q2_K.gguf</a> </td> </tr> </table>
shisa-ai/Mistral-Nemo-Japanese-Instruct-2408-GPTQ-W4A16-gs128
shisa-ai
"2025-01-21T18:47:49Z"
6
0
null
[ "safetensors", "mistral", "gptq", "ja", "en", "base_model:cyberagent/Mistral-Nemo-Japanese-Instruct-2408", "base_model:quantized:cyberagent/Mistral-Nemo-Japanese-Instruct-2408", "license:apache-2.0", "4-bit", "region:us" ]
null
"2025-01-21T17:49:38Z"
--- license: apache-2.0 language: - ja - en base_model: - cyberagent/Mistral-Nemo-Japanese-Instruct-2408 tags: - gptq --- W4A16 gs128 GPTQ quant of [cyberagent/Mistral-Nemo-Japanese-Instruct-2408](https://huggingface.co/cyberagent/Mistral-Nemo-Japanese-Instruct-2408) w/ [GPTQModel](https://github.com/ModelCloud/GPTQModel) 1.7.2 using [augmxnt/ultra-orca-boros-en-ja-v1](https://huggingface.co/datasets/augmxnt/ultra-orca-boros-en-ja-v1) as calibration set
gcmsrc/distilbert-base-uncased-finetuned-emotion
gcmsrc
"2023-05-21T15:46:15Z"
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-09-05T15:27:07Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9355 - name: F1 type: f1 value: 0.9356480877541032 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1424 - Accuracy: 0.9355 - F1: 0.9356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5311 | 1.0 | 250 | 0.1817 | 0.932 | 0.9317 | | 0.14 | 2.0 | 500 | 0.1483 | 0.9365 | 0.9368 | | 0.0915 | 3.0 | 750 | 0.1424 | 0.9355 | 0.9356 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.2+cu102 - Datasets 2.8.0 - Tokenizers 0.10.3
Stardragon2099/florencetrial-17e
Stardragon2099
"2024-12-17T06:28:21Z"
104
0
transformers
[ "transformers", "safetensors", "florence2", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
"2024-12-17T06:26:07Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
davidschulte/ESM_DBQ__Bottega.Veneta.Product.prices.United.States_default
davidschulte
"2024-11-28T16:18:38Z"
9
0
null
[ "safetensors", "embedding_space_map", "BaseLM:bert-base-multilingual-uncased", "dataset:DBQ/Bottega.Veneta.Product.prices.United.States", "arxiv:2410.15148", "base_model:google-bert/bert-base-multilingual-uncased", "base_model:finetune:google-bert/bert-base-multilingual-uncased", "license:apache-2.0", "region:us" ]
null
"2024-11-28T16:18:34Z"
--- base_model: bert-base-multilingual-uncased datasets: - DBQ/Bottega.Veneta.Product.prices.United.States license: apache-2.0 tags: - embedding_space_map - BaseLM:bert-base-multilingual-uncased --- # ESM DBQ/Bottega.Veneta.Product.prices.United.States <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> ESM - **Developed by:** David Schulte - **Model type:** ESM - **Base Model:** bert-base-multilingual-uncased - **Intermediate Task:** DBQ/Bottega.Veneta.Product.prices.United.States - **ESM architecture:** linear - **Language(s) (NLP):** [More Information Needed] - **License:** Apache-2.0 license ## Training Details ### Intermediate Task - **Task ID:** DBQ/Bottega.Veneta.Product.prices.United.States - **Subset [optional]:** default - **Text Column:** title - **Label Column:** category2_code - **Dataset Split:** train - **Sample size [optional]:** 4469 - **Sample seed [optional]:** ### Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Language Model Training Hyperparameters [optional] - **Epochs:** 3 - **Batch size:** 32 - **Learning rate:** 2e-05 - **Weight Decay:** 0.01 - **Optimizer**: AdamW ### ESM Training Hyperparameters [optional] - **Epochs:** 10 - **Batch size:** 32 - **Learning rate:** 0.001 - **Weight Decay:** 0.01 - **Optimizer**: AdamW ### Additional trainiung details [optional] ## Model evaluation ### Evaluation of fine-tuned language model [optional] ### Evaluation of ESM [optional] MSE: ### Additional evaluation details [optional] ## What are Embedding Space Maps? <!-- This section describes the evaluation protocols and provides the results. --> Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text. ESMs can be used for intermediate task selection with the ESM-LogME workflow. ## How can I use Embedding Space Maps for Intermediate Task Selection? [![PyPI version](https://img.shields.io/pypi/v/hf-dataset-selector.svg)](https://pypi.org/project/hf-dataset-selector) We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps. **hf-dataset-selector** fetches ESMs for a given language model and uses it to find the best dataset for applying intermediate training to the target task. ESMs are found by their tags on the Huggingface Hub. ```python from hfselect import Dataset, compute_task_ranking # Load target dataset from the Hugging Face Hub dataset = Dataset.from_hugging_face( name="stanfordnlp/imdb", split="train", text_col="text", label_col="label", is_regression=False, num_examples=1000, seed=42 ) # Fetch ESMs and rank tasks task_ranking = compute_task_ranking( dataset=dataset, model_name="bert-base-multilingual-uncased" ) # Display top 5 recommendations print(task_ranking[:5]) ``` For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector). ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> If you are using this Embedding Space Maps, please cite our [paper](https://arxiv.org/abs/2410.15148). **BibTeX:** ``` @misc{schulte2024moreparameterefficientselectionintermediate, title={Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning}, author={David Schulte and Felix Hamborg and Alan Akbik}, year={2024}, eprint={2410.15148}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2410.15148}, } ``` **APA:** ``` Schulte, D., Hamborg, F., & Akbik, A. (2024). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. arXiv preprint arXiv:2410.15148. ``` ## Additional Information
mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF
mradermacher
"2024-09-08T23:25:33Z"
93
2
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:nbeerbower/Stella-mistral-nemo-12B-v2", "base_model:quantized:nbeerbower/Stella-mistral-nemo-12B-v2", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2024-09-08T16:54:02Z"
--- base_model: nbeerbower/Stella-mistral-nemo-12B-v2 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/nbeerbower/Stella-mistral-nemo-12B-v2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 7.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 7.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 7.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Stella-mistral-nemo-12B-v2-i1-GGUF/resolve/main/Stella-mistral-nemo-12B-v2.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Nishitbaria/Aurora-style-lora
Nishitbaria
"2024-12-08T06:38:22Z"
6
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
"2024-12-08T06:13:15Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- <lora:Aurora_BorealiStyler_FLUX-000018:1.3> This is a digital artwork showcasing a breathtaking aurora borealis display in a nighttime landscape. The central subject is the word "Aurora", stylized in glowing, ethereal colors, rendered in vibrant hues of green, blue, and pink, appearing to be formed by the swirling aurora lights. output: url: images/41903012.jpeg - text: >- <lora:Aurora_BorealiStyler_FLUX-000018:1.3> This is a digital artwork showcasing a breathtaking aurora borealis display in a nighttime landscape. The central subject is the word "Nishit Bariya", stylized in glowing, ethereal colors, rendered in vibrant hues of green, blue, and pink, appearing to be formed by the swirling aurora lights. output: url: images/example_bagfi1yvv.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: >- Digital artwork showcasing a breathtaking aurora borealis display in a nighttime landscape. The central subject is (SUBJECT), stylized in glowing, ethereal colors, rendered in vibrant hues of (COLORS), appearing to be formed by the swirling aurora lights. --- # Aurora-style-lora <Gallery /> ## Trigger words You should use `Digital artwork showcasing a breathtaking aurora borealis display in a nighttime landscape. The central subject is (SUBJECT)` to trigger the image generation. You should use `stylized in glowing` to trigger the image generation. You should use `ethereal colors` to trigger the image generation. You should use `rendered in vibrant hues of (COLORS)` to trigger the image generation. You should use `appearing to be formed by the swirling aurora lights.` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Nishitbaria/Aurora-style-lora/tree/main) them in the Files & versions tab.