state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case a.mk ๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E v : E hv : v โˆˆ K w : E hw : w โˆˆ Kแ—ฎ โŠข w โˆˆ LinearMap.ker ((innerSL ๐•œ) โ†‘{ val := v, property := hv })
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw
simpa using hw _ hv
/-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw
Mathlib.Analysis.InnerProductSpace.Orthogonal.116_0.QXx0GYqLoAbtfq1
/-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E))
Mathlib_Analysis_InnerProductSpace_Orthogonal
case a ๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E โŠข โจ… v, LinearMap.ker ((innerSL ๐•œ) โ†‘v) โ‰ค Kแ—ฎ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท
intro v hv w hw
/-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท
Mathlib.Analysis.InnerProductSpace.Orthogonal.116_0.QXx0GYqLoAbtfq1
/-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E))
Mathlib_Analysis_InnerProductSpace_Orthogonal
case a ๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E v : E hv : v โˆˆ โจ… v, LinearMap.ker ((innerSL ๐•œ) โ†‘v) w : E hw : w โˆˆ K โŠข inner w v = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw
simp only [mem_iInf] at hv
/-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw
Mathlib.Analysis.InnerProductSpace.Orthogonal.116_0.QXx0GYqLoAbtfq1
/-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E))
Mathlib_Analysis_InnerProductSpace_Orthogonal
case a ๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E v w : E hw : w โˆˆ K hv : โˆ€ (i : โ†ฅK), v โˆˆ LinearMap.ker ((innerSL ๐•œ) โ†‘i) โŠข inner w v = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv
exact hv โŸจw, hwโŸฉ
/-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv
Mathlib.Analysis.InnerProductSpace.Orthogonal.116_0.QXx0GYqLoAbtfq1
/-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E))
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E โŠข IsClosed โ†‘Kแ—ฎ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by
rw [orthogonal_eq_inter K]
/-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.128_0.QXx0GYqLoAbtfq1
/-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E)
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E โŠข IsClosed โ†‘(โจ… v, LinearMap.ker ((innerSL ๐•œ) โ†‘v))
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K]
have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E))
/-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K]
Mathlib.Analysis.InnerProductSpace.Orthogonal.128_0.QXx0GYqLoAbtfq1
/-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E)
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E this : โˆ€ (v : โ†ฅK), IsClosed โ†‘(LinearMap.ker ((innerSL ๐•œ) โ†‘v)) โŠข IsClosed โ†‘(โจ… v, LinearMap.ker ((innerSL ๐•œ) โ†‘v))
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E))
convert isClosed_iInter this
/-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E))
Mathlib.Analysis.InnerProductSpace.Orthogonal.128_0.QXx0GYqLoAbtfq1
/-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E)
Mathlib_Analysis_InnerProductSpace_Orthogonal
case h.e'_3 ๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E this : โˆ€ (v : โ†ฅK), IsClosed โ†‘(LinearMap.ker ((innerSL ๐•œ) โ†‘v)) โŠข โ†‘(โจ… v, LinearMap.ker ((innerSL ๐•œ) โ†‘v)) = โ‹‚ i, โ†‘(LinearMap.ker ((innerSL ๐•œ) โ†‘i))
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this
simp only [iInf_coe]
/-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this
Mathlib.Analysis.InnerProductSpace.Orthogonal.128_0.QXx0GYqLoAbtfq1
/-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E)
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E โŠข โŠคแ—ฎ = โŠฅ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by
ext x
@[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.186_0.QXx0GYqLoAbtfq1
@[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
case h ๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E x : E โŠข x โˆˆ โŠคแ—ฎ โ†” x โˆˆ โŠฅ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x
rw [mem_bot, mem_orthogonal]
@[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x
Mathlib.Analysis.InnerProductSpace.Orthogonal.186_0.QXx0GYqLoAbtfq1
@[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
case h ๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E x : E โŠข (โˆ€ u โˆˆ โŠค, inner u x = 0) โ†” x = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal]
exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ
@[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal]
Mathlib.Analysis.InnerProductSpace.Orthogonal.186_0.QXx0GYqLoAbtfq1
@[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E x : E โŠข x = 0 โ†’ โˆ€ u โˆˆ โŠค, inner u x = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by
rintro rfl
@[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by
Mathlib.Analysis.InnerProductSpace.Orthogonal.186_0.QXx0GYqLoAbtfq1
@[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E โŠข โˆ€ u โˆˆ โŠค, inner u 0 = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl
simp
@[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl
Mathlib.Analysis.InnerProductSpace.Orthogonal.186_0.QXx0GYqLoAbtfq1
@[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E โŠข โŠฅแ—ฎ = โŠค
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by
rw [โ† top_orthogonal_eq_bot, eq_top_iff]
@[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.196_0.QXx0GYqLoAbtfq1
@[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E โŠข โŠค โ‰ค โŠคแ—ฎแ—ฎ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff]
exact le_orthogonal_orthogonal โŠค
@[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff]
Mathlib.Analysis.InnerProductSpace.Orthogonal.196_0.QXx0GYqLoAbtfq1
@[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E โŠข Kแ—ฎ = โŠค โ†” K = โŠฅ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by
refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.202_0.QXx0GYqLoAbtfq1
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E โŠข K = โŠฅ โ†’ Kแ—ฎ = โŠค
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by
rintro rfl
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by
Mathlib.Analysis.InnerProductSpace.Orthogonal.202_0.QXx0GYqLoAbtfq1
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F โŠข โŠฅแ—ฎ = โŠค
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl
exact bot_orthogonal_eq_top
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl
Mathlib.Analysis.InnerProductSpace.Orthogonal.202_0.QXx0GYqLoAbtfq1
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E โŠข Kแ—ฎ = โŠค โ†’ K = โŠฅ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ
intro h
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ
Mathlib.Analysis.InnerProductSpace.Orthogonal.202_0.QXx0GYqLoAbtfq1
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E h : Kแ—ฎ = โŠค โŠข K = โŠฅ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h
have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h
Mathlib.Analysis.InnerProductSpace.Orthogonal.202_0.QXx0GYqLoAbtfq1
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F K : Submodule ๐•œ E h : Kแ—ฎ = โŠค this : K โŠ“ Kแ—ฎ = โŠฅ โŠข K = โŠฅ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot
rwa [h, inf_comm, top_inf_eq] at this
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot
Mathlib.Analysis.InnerProductSpace.Orthogonal.202_0.QXx0GYqLoAbtfq1
@[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F U : Submodule ๐•œ E V : Set (Submodule ๐•œ E) โŠข (โˆ€ Uแตข โˆˆ V, Uแตข โŸ‚ U) โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by
simp_rw [isOrtho_comm]
@[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by
Mathlib.Analysis.InnerProductSpace.Orthogonal.355_0.QXx0GYqLoAbtfq1
@[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F ฮน : Sort u_4 U : Submodule ๐•œ E V : ฮน โ†’ Submodule ๐•œ E โŠข (โˆ€ (i : ฮน), V i โŸ‚ U) โ†” โˆ€ (i : ฮน), U โŸ‚ V i
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by
simp_rw [isOrtho_comm]
@[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by
Mathlib.Analysis.InnerProductSpace.Orthogonal.367_0.QXx0GYqLoAbtfq1
@[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F s t : Set E โŠข span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒu : Eโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒv : Eโฆ„, v โˆˆ t โ†’ inner u v = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by
simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq]
@[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.373_0.QXx0GYqLoAbtfq1
@[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ†’โ‚—แตข[๐•œ] F U V : Submodule ๐•œ E h : U โŸ‚ V โŠข Submodule.map f U โŸ‚ Submodule.map f V
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by
rw [isOrtho_iff_inner_eq] at *
theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.381_0.QXx0GYqLoAbtfq1
theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ†’โ‚—แตข[๐•œ] F U V : Submodule ๐•œ E h : โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, inner u v = 0 โŠข โˆ€ u โˆˆ Submodule.map f U, โˆ€ v โˆˆ Submodule.map f V, inner u v = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at *
simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map]
theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at *
Mathlib.Analysis.InnerProductSpace.Orthogonal.381_0.QXx0GYqLoAbtfq1
theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ†’โ‚—แตข[๐•œ] F U V : Submodule ๐•œ E h : โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, inner u v = 0 โŠข โˆ€ a โˆˆ U, โˆ€ a_2 โˆˆ V, inner a a_2 = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map]
exact h
theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map]
Mathlib.Analysis.InnerProductSpace.Orthogonal.381_0.QXx0GYqLoAbtfq1
theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ†’โ‚—แตข[๐•œ] F U V : Submodule ๐•œ F h : U โŸ‚ V โŠข Submodule.comap f U โŸ‚ Submodule.comap f V
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map] exact h #align submodule.is_ortho.map Submodule.IsOrtho.map theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by
rw [isOrtho_iff_inner_eq] at *
theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.388_0.QXx0GYqLoAbtfq1
theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ†’โ‚—แตข[๐•œ] F U V : Submodule ๐•œ F h : โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, inner u v = 0 โŠข โˆ€ u โˆˆ Submodule.comap f U, โˆ€ v โˆˆ Submodule.comap f V, inner u v = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map] exact h #align submodule.is_ortho.map Submodule.IsOrtho.map theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by rw [isOrtho_iff_inner_eq] at *
simp_rw [mem_comap, โ† f.inner_map_map]
theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by rw [isOrtho_iff_inner_eq] at *
Mathlib.Analysis.InnerProductSpace.Orthogonal.388_0.QXx0GYqLoAbtfq1
theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ†’โ‚—แตข[๐•œ] F U V : Submodule ๐•œ F h : โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, inner u v = 0 โŠข โˆ€ (u : E), f u โˆˆ U โ†’ โˆ€ (v : E), f v โˆˆ V โ†’ inner (f u) (f v) = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map] exact h #align submodule.is_ortho.map Submodule.IsOrtho.map theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_comap, โ† f.inner_map_map]
intro u hu v hv
theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_comap, โ† f.inner_map_map]
Mathlib.Analysis.InnerProductSpace.Orthogonal.388_0.QXx0GYqLoAbtfq1
theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ†’โ‚—แตข[๐•œ] F U V : Submodule ๐•œ F h : โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, inner u v = 0 u : E hu : f u โˆˆ U v : E hv : f v โˆˆ V โŠข inner (f u) (f v) = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map] exact h #align submodule.is_ortho.map Submodule.IsOrtho.map theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_comap, โ† f.inner_map_map] intro u hu v hv
exact h _ hu _ hv
theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_comap, โ† f.inner_map_map] intro u hu v hv
Mathlib.Analysis.InnerProductSpace.Orthogonal.388_0.QXx0GYqLoAbtfq1
theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ‰ƒโ‚—แตข[๐•œ] F U V : Submodule ๐•œ E h : Submodule.map f U โŸ‚ Submodule.map f V โŠข U โŸ‚ V
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map] exact h #align submodule.is_ortho.map Submodule.IsOrtho.map theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_comap, โ† f.inner_map_map] intro u hu v hv exact h _ hu _ hv #align submodule.is_ortho.comap Submodule.IsOrtho.comap @[simp] theorem IsOrtho.map_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} : U.map f โŸ‚ V.map f โ†” U โŸ‚ V := โŸจfun h => by
have hf : โˆ€ p : Submodule ๐•œ E, (p.map f).comap f.toLinearIsometry = p := comap_map_eq_of_injective f.injective
@[simp] theorem IsOrtho.map_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} : U.map f โŸ‚ V.map f โ†” U โŸ‚ V := โŸจfun h => by
Mathlib.Analysis.InnerProductSpace.Orthogonal.396_0.QXx0GYqLoAbtfq1
@[simp] theorem IsOrtho.map_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} : U.map f โŸ‚ V.map f โ†” U โŸ‚ V
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ‰ƒโ‚—แตข[๐•œ] F U V : Submodule ๐•œ E h : Submodule.map f U โŸ‚ Submodule.map f V hf : โˆ€ (p : Submodule ๐•œ E), Submodule.comap (LinearIsometryEquiv.toLinearIsometry f) (Submodule.map f p) = p โŠข U โŸ‚ V
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map] exact h #align submodule.is_ortho.map Submodule.IsOrtho.map theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_comap, โ† f.inner_map_map] intro u hu v hv exact h _ hu _ hv #align submodule.is_ortho.comap Submodule.IsOrtho.comap @[simp] theorem IsOrtho.map_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} : U.map f โŸ‚ V.map f โ†” U โŸ‚ V := โŸจfun h => by have hf : โˆ€ p : Submodule ๐•œ E, (p.map f).comap f.toLinearIsometry = p := comap_map_eq_of_injective f.injective
simpa only [hf] using h.comap f.toLinearIsometry
@[simp] theorem IsOrtho.map_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} : U.map f โŸ‚ V.map f โ†” U โŸ‚ V := โŸจfun h => by have hf : โˆ€ p : Submodule ๐•œ E, (p.map f).comap f.toLinearIsometry = p := comap_map_eq_of_injective f.injective
Mathlib.Analysis.InnerProductSpace.Orthogonal.396_0.QXx0GYqLoAbtfq1
@[simp] theorem IsOrtho.map_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} : U.map f โŸ‚ V.map f โ†” U โŸ‚ V
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ‰ƒโ‚—แตข[๐•œ] F U V : Submodule ๐•œ F h : Submodule.comap f U โŸ‚ Submodule.comap f V โŠข U โŸ‚ V
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map] exact h #align submodule.is_ortho.map Submodule.IsOrtho.map theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_comap, โ† f.inner_map_map] intro u hu v hv exact h _ hu _ hv #align submodule.is_ortho.comap Submodule.IsOrtho.comap @[simp] theorem IsOrtho.map_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} : U.map f โŸ‚ V.map f โ†” U โŸ‚ V := โŸจfun h => by have hf : โˆ€ p : Submodule ๐•œ E, (p.map f).comap f.toLinearIsometry = p := comap_map_eq_of_injective f.injective simpa only [hf] using h.comap f.toLinearIsometry, IsOrtho.map f.toLinearIsometryโŸฉ #align submodule.is_ortho.map_iff Submodule.IsOrtho.map_iff @[simp] theorem IsOrtho.comap_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} : U.comap f โŸ‚ V.comap f โ†” U โŸ‚ V := โŸจfun h => by
have hf : โˆ€ p : Submodule ๐•œ F, (p.comap f).map f.toLinearIsometry = p := map_comap_eq_of_surjective f.surjective
@[simp] theorem IsOrtho.comap_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} : U.comap f โŸ‚ V.comap f โ†” U โŸ‚ V := โŸจfun h => by
Mathlib.Analysis.InnerProductSpace.Orthogonal.404_0.QXx0GYqLoAbtfq1
@[simp] theorem IsOrtho.comap_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} : U.comap f โŸ‚ V.comap f โ†” U โŸ‚ V
Mathlib_Analysis_InnerProductSpace_Orthogonal
๐•œ : Type u_1 E : Type u_2 F : Type u_3 instโœโด : IsROrC ๐•œ instโœยณ : NormedAddCommGroup E instโœยฒ : InnerProductSpace ๐•œ E instโœยน : NormedAddCommGroup F instโœ : InnerProductSpace ๐•œ F f : E โ‰ƒโ‚—แตข[๐•œ] F U V : Submodule ๐•œ F h : Submodule.comap f U โŸ‚ Submodule.comap f V hf : โˆ€ (p : Submodule ๐•œ F), Submodule.map (LinearIsometryEquiv.toLinearIsometry f) (Submodule.comap f p) = p โŠข U โŸ‚ V
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sรฉbastien Gouรซzel, Frรฉdรฉric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kแ—ฎ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U โŸ‚ V`. Note this is not the same unicode symbol as `โŠฅ` (`Bot`). -/ variable {๐•œ E F : Type*} [IsROrC ๐•œ] variable [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] variable [NormedAddCommGroup F] [InnerProductSpace ๐•œ F] local notation "โŸช" x ", " y "โŸซ" => @inner ๐•œ _ _ x y namespace Submodule variable (K : Submodule ๐•œ E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule ๐•œ E where carrier := { v | โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "แ—ฎ" => orthogonal K /-- When a vector is in `Kแ—ฎ`. -/ theorem mem_orthogonal (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชu, vโŸซ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kแ—ฎ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v โˆˆ Kแ—ฎ โ†” โˆ€ u โˆˆ K, โŸชv, uโŸซ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kแ—ฎ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชu, vโŸซ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kแ—ฎ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u โˆˆ K) (hv : v โˆˆ Kแ—ฎ) : โŸชv, uโŸซ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(๐•œ โˆ™ u)แ—ฎ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชu, vโŸซ = 0 := by refine' โŸจinner_right_of_mem_orthogonal (mem_span_singleton_self u), _โŸฉ intro hv w hw rw [mem_span_singleton] at hw obtain โŸจc, rflโŸฉ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(๐•œ โˆ™ u)แ—ฎ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v โˆˆ (๐•œ โˆ™ u)แ—ฎ โ†” โŸชv, uโŸซ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : โˆ€ v : K, โŸชx, vโŸซ = โŸชy, vโŸซ) : x - y โˆˆ Kแ—ฎ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : โˆ€ v : K, โŸช(v : E), xโŸซ = โŸช(v : E), yโŸซ) : x - y โˆˆ Kแ—ฎ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h โŸจu, huโŸฉ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K โŠ“ Kแ—ฎ = โŠฅ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun โŸจhx, hoโŸฉ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kแ—ฎ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kแ—ฎ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kแ—ฎ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kแ—ฎ = โจ… v : K, LinearMap.ker (innerSL ๐•œ (v : E)) := by apply le_antisymm ยท rw [le_iInf_iff] rintro โŸจv, hvโŸฉ w hw simpa using hw _ hv ยท intro v hv w hw simp only [mem_iInf] at hv exact hv โŸจw, hwโŸฉ #align submodule.orthogonal_eq_inter Submodule.orthogonal_eq_inter /-- The orthogonal complement of any submodule `K` is closed. -/ theorem isClosed_orthogonal : IsClosed (Kแ—ฎ : Set E) := by rw [orthogonal_eq_inter K] have := fun v : K => ContinuousLinearMap.isClosed_ker (innerSL ๐•œ (v : E)) convert isClosed_iInter this simp only [iInf_coe] #align submodule.is_closed_orthogonal Submodule.isClosed_orthogonal /-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/ instance instOrthogonalCompleteSpace [CompleteSpace E] : CompleteSpace Kแ—ฎ := K.isClosed_orthogonal.completeSpace_coe variable (๐•œ E) /-- `orthogonal` gives a `GaloisConnection` between `Submodule ๐•œ E` and its `OrderDual`. -/ theorem orthogonal_gc : @GaloisConnection (Submodule ๐•œ E) (Submodule ๐•œ E)แต’แตˆ _ _ orthogonal orthogonal := fun _Kโ‚ _Kโ‚‚ => โŸจfun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu), fun h _v hv _u hu => inner_left_of_mem_orthogonal hv (h hu)โŸฉ #align submodule.orthogonal_gc Submodule.orthogonal_gc variable {๐•œ E} /-- `orthogonal` reverses the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_le {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚‚แ—ฎ โ‰ค Kโ‚แ—ฎ := (orthogonal_gc ๐•œ E).monotone_l h #align submodule.orthogonal_le Submodule.orthogonal_le /-- `orthogonal.orthogonal` preserves the `โ‰ค` ordering of two subspaces. -/ theorem orthogonal_orthogonal_monotone {Kโ‚ Kโ‚‚ : Submodule ๐•œ E} (h : Kโ‚ โ‰ค Kโ‚‚) : Kโ‚แ—ฎแ—ฎ โ‰ค Kโ‚‚แ—ฎแ—ฎ := orthogonal_le (orthogonal_le h) #align submodule.orthogonal_orthogonal_monotone Submodule.orthogonal_orthogonal_monotone /-- `K` is contained in `Kแ—ฎแ—ฎ`. -/ theorem le_orthogonal_orthogonal : K โ‰ค Kแ—ฎแ—ฎ := (orthogonal_gc ๐•œ E).le_u_l _ #align submodule.le_orthogonal_orthogonal Submodule.le_orthogonal_orthogonal /-- The inf of two orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem inf_orthogonal (Kโ‚ Kโ‚‚ : Submodule ๐•œ E) : Kโ‚แ—ฎ โŠ“ Kโ‚‚แ—ฎ = (Kโ‚ โŠ” Kโ‚‚)แ—ฎ := (orthogonal_gc ๐•œ E).l_sup.symm #align submodule.inf_orthogonal Submodule.inf_orthogonal /-- The inf of an indexed family of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem iInf_orthogonal {ฮน : Type*} (K : ฮน โ†’ Submodule ๐•œ E) : โจ… i, (K i)แ—ฎ = (iSup K)แ—ฎ := (orthogonal_gc ๐•œ E).l_iSup.symm #align submodule.infi_orthogonal Submodule.iInf_orthogonal /-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/ theorem sInf_orthogonal (s : Set <| Submodule ๐•œ E) : โจ… K โˆˆ s, Kแ—ฎ = (sSup s)แ—ฎ := (orthogonal_gc ๐•œ E).l_sSup.symm #align submodule.Inf_orthogonal Submodule.sInf_orthogonal @[simp] theorem top_orthogonal_eq_bot : (โŠค : Submodule ๐•œ E)แ—ฎ = โŠฅ := by ext x rw [mem_bot, mem_orthogonal] exact โŸจfun h => inner_self_eq_zero.mp (h x mem_top), by rintro rfl simpโŸฉ #align submodule.top_orthogonal_eq_bot Submodule.top_orthogonal_eq_bot @[simp] theorem bot_orthogonal_eq_top : (โŠฅ : Submodule ๐•œ E)แ—ฎ = โŠค := by rw [โ† top_orthogonal_eq_bot, eq_top_iff] exact le_orthogonal_orthogonal โŠค #align submodule.bot_orthogonal_eq_top Submodule.bot_orthogonal_eq_top @[simp] theorem orthogonal_eq_top_iff : Kแ—ฎ = โŠค โ†” K = โŠฅ := by refine' โŸจ_, by rintro rfl exact bot_orthogonal_eq_topโŸฉ intro h have : K โŠ“ Kแ—ฎ = โŠฅ := K.orthogonal_disjoint.eq_bot rwa [h, inf_comm, top_inf_eq] at this #align submodule.orthogonal_eq_top_iff Submodule.orthogonal_eq_top_iff theorem orthogonalFamily_self : OrthogonalFamily ๐•œ (fun b => โ†ฅ(cond b K Kแ—ฎ)) fun b => (cond b K Kแ—ฎ).subtypeโ‚—แตข | true, true => absurd rfl | true, false => fun _ x y => inner_right_of_mem_orthogonal x.prop y.prop | false, true => fun _ x y => inner_left_of_mem_orthogonal y.prop x.prop | false, false => absurd rfl #align submodule.orthogonal_family_self Submodule.orthogonalFamily_self end Submodule @[simp] theorem bilinFormOfRealInner_orthogonal {E} [NormedAddCommGroup E] [InnerProductSpace โ„ E] (K : Submodule โ„ E) : bilinFormOfRealInner.orthogonal K = Kแ—ฎ := rfl #align bilin_form_of_real_inner_orthogonal bilinFormOfRealInner_orthogonal /-! ### Orthogonality of submodules In this section we define `Submodule.IsOrtho U V`, with notation `U โŸ‚ V`. The API roughly matches that of `Disjoint`. -/ namespace Submodule /-- The proposition that two submodules are orthogonal. Has notation `U โŸ‚ V`. -/ def IsOrtho (U V : Submodule ๐•œ E) : Prop := U โ‰ค Vแ—ฎ #align submodule.is_ortho Submodule.IsOrtho @[inherit_doc] infixl:50 " โŸ‚ " => Submodule.IsOrtho theorem isOrtho_iff_le {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” U โ‰ค Vแ—ฎ := Iff.rfl #align submodule.is_ortho_iff_le Submodule.isOrtho_iff_le @[symm] theorem IsOrtho.symm {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โŸ‚ U := (le_orthogonal_orthogonal _).trans (orthogonal_le h) #align submodule.is_ortho.symm Submodule.IsOrtho.symm theorem isOrtho_comm {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” V โŸ‚ U := โŸจIsOrtho.symm, IsOrtho.symmโŸฉ #align submodule.is_ortho_comm Submodule.isOrtho_comm theorem symmetric_isOrtho : Symmetric (IsOrtho : Submodule ๐•œ E โ†’ Submodule ๐•œ E โ†’ Prop) := fun _ _ => IsOrtho.symm #align submodule.symmetric_is_ortho Submodule.symmetric_isOrtho theorem IsOrtho.inner_eq {U V : Submodule ๐•œ E} (h : U โŸ‚ V) {u v : E} (hu : u โˆˆ U) (hv : v โˆˆ V) : โŸชu, vโŸซ = 0 := h.symm hv _ hu #align submodule.is_ortho.inner_eq Submodule.IsOrtho.inner_eq theorem isOrtho_iff_inner_eq {U V : Submodule ๐•œ E} : U โŸ‚ V โ†” โˆ€ u โˆˆ U, โˆ€ v โˆˆ V, โŸชu, vโŸซ = 0 := forallโ‚„_congr fun _u _hu _v _hv => inner_eq_zero_symm #align submodule.is_ortho_iff_inner_eq Submodule.isOrtho_iff_inner_eq /- TODO: generalize `Submodule.mapโ‚‚` to semilinear maps, so that we can state `U โŸ‚ V โ†” Submodule.mapโ‚‚ (innerโ‚›โ‚— ๐•œ) U V โ‰ค โŠฅ`. -/ @[simp] theorem isOrtho_bot_left {V : Submodule ๐•œ E} : โŠฅ โŸ‚ V := bot_le #align submodule.is_ortho_bot_left Submodule.isOrtho_bot_left @[simp] theorem isOrtho_bot_right {U : Submodule ๐•œ E} : U โŸ‚ โŠฅ := isOrtho_bot_left.symm #align submodule.is_ortho_bot_right Submodule.isOrtho_bot_right theorem IsOrtho.mono_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (h : Uโ‚ โŸ‚ V) : Uโ‚‚ โŸ‚ V := hU.trans h #align submodule.is_ortho.mono_left Submodule.IsOrtho.mono_left theorem IsOrtho.mono_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} (hV : Vโ‚‚ โ‰ค Vโ‚) (h : U โŸ‚ Vโ‚) : U โŸ‚ Vโ‚‚ := (h.symm.mono_left hV).symm #align submodule.is_ortho.mono_right Submodule.IsOrtho.mono_right theorem IsOrtho.mono {Uโ‚ Vโ‚ Uโ‚‚ Vโ‚‚ : Submodule ๐•œ E} (hU : Uโ‚‚ โ‰ค Uโ‚) (hV : Vโ‚‚ โ‰ค Vโ‚) (h : Uโ‚ โŸ‚ Vโ‚) : Uโ‚‚ โŸ‚ Vโ‚‚ := (h.mono_right hV).mono_left hU #align submodule.is_ortho.mono Submodule.IsOrtho.mono @[simp] theorem isOrtho_self {U : Submodule ๐•œ E} : U โŸ‚ U โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun x hx => inner_self_eq_zero.mp (h hx x hx), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_self Submodule.isOrtho_self @[simp] theorem isOrtho_orthogonal_right (U : Submodule ๐•œ E) : U โŸ‚ Uแ—ฎ := le_orthogonal_orthogonal _ #align submodule.is_ortho_orthogonal_right Submodule.isOrtho_orthogonal_right @[simp] theorem isOrtho_orthogonal_left (U : Submodule ๐•œ E) : Uแ—ฎ โŸ‚ U := (isOrtho_orthogonal_right U).symm #align submodule.is_ortho_orthogonal_left Submodule.isOrtho_orthogonal_left theorem IsOrtho.le {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U โ‰ค Vแ—ฎ := h #align submodule.is_ortho.le Submodule.IsOrtho.le theorem IsOrtho.ge {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : V โ‰ค Uแ—ฎ := h.symm #align submodule.is_ortho.ge Submodule.IsOrtho.ge @[simp] theorem isOrtho_top_right {U : Submodule ๐•œ E} : U โŸ‚ โŠค โ†” U = โŠฅ := โŸจfun h => eq_bot_iff.mpr fun _x hx => inner_self_eq_zero.mp (h hx _ mem_top), fun h => h.symm โ–ธ isOrtho_bot_leftโŸฉ #align submodule.is_ortho_top_right Submodule.isOrtho_top_right @[simp] theorem isOrtho_top_left {V : Submodule ๐•œ E} : โŠค โŸ‚ V โ†” V = โŠฅ := isOrtho_comm.trans isOrtho_top_right #align submodule.is_ortho_top_left Submodule.isOrtho_top_left /-- Orthogonal submodules are disjoint. -/ theorem IsOrtho.disjoint {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : Disjoint U V := (Submodule.orthogonal_disjoint _).mono_right h.symm #align submodule.is_ortho.disjoint Submodule.IsOrtho.disjoint @[simp] theorem isOrtho_sup_left {Uโ‚ Uโ‚‚ V : Submodule ๐•œ E} : Uโ‚ โŠ” Uโ‚‚ โŸ‚ V โ†” Uโ‚ โŸ‚ V โˆง Uโ‚‚ โŸ‚ V := sup_le_iff #align submodule.is_ortho_sup_left Submodule.isOrtho_sup_left @[simp] theorem isOrtho_sup_right {U Vโ‚ Vโ‚‚ : Submodule ๐•œ E} : U โŸ‚ Vโ‚ โŠ” Vโ‚‚ โ†” U โŸ‚ Vโ‚ โˆง U โŸ‚ Vโ‚‚ := isOrtho_comm.trans <| isOrtho_sup_left.trans <| isOrtho_comm.and isOrtho_comm #align submodule.is_ortho_sup_right Submodule.isOrtho_sup_right @[simp] theorem isOrtho_sSup_left {U : Set (Submodule ๐•œ E)} {V : Submodule ๐•œ E} : sSup U โŸ‚ V โ†” โˆ€ Uแตข โˆˆ U, Uแตข โŸ‚ V := sSup_le_iff #align submodule.is_ortho_Sup_left Submodule.isOrtho_sSup_left @[simp] theorem isOrtho_sSup_right {U : Submodule ๐•œ E} {V : Set (Submodule ๐•œ E)} : U โŸ‚ sSup V โ†” โˆ€ Vแตข โˆˆ V, U โŸ‚ Vแตข := isOrtho_comm.trans <| isOrtho_sSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_Sup_right Submodule.isOrtho_sSup_right @[simp] theorem isOrtho_iSup_left {ฮน : Sort*} {U : ฮน โ†’ Submodule ๐•œ E} {V : Submodule ๐•œ E} : iSup U โŸ‚ V โ†” โˆ€ i, U i โŸ‚ V := iSup_le_iff #align submodule.is_ortho_supr_left Submodule.isOrtho_iSup_left @[simp] theorem isOrtho_iSup_right {ฮน : Sort*} {U : Submodule ๐•œ E} {V : ฮน โ†’ Submodule ๐•œ E} : U โŸ‚ iSup V โ†” โˆ€ i, U โŸ‚ V i := isOrtho_comm.trans <| isOrtho_iSup_left.trans <| by simp_rw [isOrtho_comm] #align submodule.is_ortho_supr_right Submodule.isOrtho_iSup_right @[simp] theorem isOrtho_span {s t : Set E} : span ๐•œ s โŸ‚ span ๐•œ t โ†” โˆ€ โฆƒuโฆ„, u โˆˆ s โ†’ โˆ€ โฆƒvโฆ„, v โˆˆ t โ†’ โŸชu, vโŸซ = 0 := by simp_rw [span_eq_iSup_of_singleton_spans s, span_eq_iSup_of_singleton_spans t, isOrtho_iSup_left, isOrtho_iSup_right, isOrtho_iff_le, span_le, Set.subset_def, SetLike.mem_coe, mem_orthogonal_singleton_iff_inner_left, Set.mem_singleton_iff, forall_eq] #align submodule.is_ortho_span Submodule.isOrtho_span theorem IsOrtho.map (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} (h : U โŸ‚ V) : U.map f โŸ‚ V.map f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iffโ‚‚, LinearIsometry.inner_map_map] exact h #align submodule.is_ortho.map Submodule.IsOrtho.map theorem IsOrtho.comap (f : E โ†’โ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} (h : U โŸ‚ V) : U.comap f โŸ‚ V.comap f := by rw [isOrtho_iff_inner_eq] at * simp_rw [mem_comap, โ† f.inner_map_map] intro u hu v hv exact h _ hu _ hv #align submodule.is_ortho.comap Submodule.IsOrtho.comap @[simp] theorem IsOrtho.map_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ E} : U.map f โŸ‚ V.map f โ†” U โŸ‚ V := โŸจfun h => by have hf : โˆ€ p : Submodule ๐•œ E, (p.map f).comap f.toLinearIsometry = p := comap_map_eq_of_injective f.injective simpa only [hf] using h.comap f.toLinearIsometry, IsOrtho.map f.toLinearIsometryโŸฉ #align submodule.is_ortho.map_iff Submodule.IsOrtho.map_iff @[simp] theorem IsOrtho.comap_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} : U.comap f โŸ‚ V.comap f โ†” U โŸ‚ V := โŸจfun h => by have hf : โˆ€ p : Submodule ๐•œ F, (p.comap f).map f.toLinearIsometry = p := map_comap_eq_of_surjective f.surjective
simpa only [hf] using h.map f.toLinearIsometry
@[simp] theorem IsOrtho.comap_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} : U.comap f โŸ‚ V.comap f โ†” U โŸ‚ V := โŸจfun h => by have hf : โˆ€ p : Submodule ๐•œ F, (p.comap f).map f.toLinearIsometry = p := map_comap_eq_of_surjective f.surjective
Mathlib.Analysis.InnerProductSpace.Orthogonal.404_0.QXx0GYqLoAbtfq1
@[simp] theorem IsOrtho.comap_iff (f : E โ‰ƒโ‚—แตข[๐•œ] F) {U V : Submodule ๐•œ F} : U.comap f โŸ‚ V.comap f โ†” U โŸ‚ V
Mathlib_Analysis_InnerProductSpace_Orthogonal
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ a b : ฮฑ โŠข IsRegular โŠฅ
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by
rw [IsRegular, compl_bot, compl_top]
theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by
Mathlib.Order.Heyting.Regular.60_0.HFWfWmvQ8w4gAZO
theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ a b : ฮฑ โŠข IsRegular โŠค
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by
rw [IsRegular, compl_top, compl_bot]
theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by
Mathlib.Order.Heyting.Regular.63_0.HFWfWmvQ8w4gAZO
theorem isRegular_top : IsRegular (โŠค : ฮฑ)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ a b : ฮฑ ha : IsRegular a hb : IsRegular b โŠข IsRegular (a โŠ“ b)
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by
rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq]
theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by
Mathlib.Order.Heyting.Regular.66_0.HFWfWmvQ8w4gAZO
theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ a b : ฮฑ ha : IsRegular a hb : IsRegular b โŠข IsRegular (a โ‡จ b)
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by
rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq]
theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by
Mathlib.Order.Heyting.Regular.70_0.HFWfWmvQ8w4gAZO
theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ a b : ฮฑ ha : IsRegular a โŠข Disjoint aแถœ b โ†” b โ‰ค a
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by
rw [โ† le_compl_iff_disjoint_left, ha.eq]
protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by
Mathlib.Order.Heyting.Regular.78_0.HFWfWmvQ8w4gAZO
protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ a b : ฮฑ hb : IsRegular b โŠข Disjoint a bแถœ โ†” a โ‰ค b
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by
rw [โ† le_compl_iff_disjoint_right, hb.eq]
protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by
Mathlib.Order.Heyting.Regular.82_0.HFWfWmvQ8w4gAZO
protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ aโœ b : ฮฑ h : โˆ€ (a : ฮฑ), IsRegular (a โŠ” aแถœ) a : ฮฑ โŠข a โŠ” aแถœ = โŠค
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by rw [โ† le_compl_iff_disjoint_right, hb.eq] #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff -- See note [reducible non-instances] /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by
erw [โ† (h a), compl_sup, inf_compl_eq_bot, compl_bot]
/-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by
Mathlib.Order.Heyting.Regular.87_0.HFWfWmvQ8w4gAZO
/-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ aโœ bโœ : ฮฑ srcโœยณ : Lattice (Regular ฮฑ) := lattice srcโœยฒ : BoundedOrder (Regular ฮฑ) := boundedOrder srcโœยน : HImp (Regular ฮฑ) := himp srcโœ : HasCompl (Regular ฮฑ) := hasCompl a b c : Regular ฮฑ โŠข โ†‘((a โŠ” b) โŠ“ (a โŠ” c)) โ‰ค โ†‘(a โŠ” b โŠ“ c)
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by rw [โ† le_compl_iff_disjoint_right, hb.eq] #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff -- See note [reducible non-instances] /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by erw [โ† (h a), compl_sup, inf_compl_eq_bot, compl_bot]โŸฉ { โ€นHeytingAlgebra ฮฑโ€บ, GeneralizedHeytingAlgebra.toDistribLattice with himp_eq := fun a b => eq_of_forall_le_iff fun c => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm inf_compl_le_bot := fun a => (this _).1.le_bot top_le_sup_compl := fun a => (this _).2.top_le } #align boolean_algebra.of_regular BooleanAlgebra.ofRegular variable (ฮฑ) /-- The boolean algebra of Heyting regular elements. -/ def Regular : Type _ := { a : ฮฑ // IsRegular a } #align heyting.regular Heyting.Regular variable {ฮฑ} namespace Regular --Porting note: `val` and `prop` are new /-- The coercion `Regular ฮฑ โ†’ ฮฑ` -/ @[coe] def val : Regular ฮฑ โ†’ ฮฑ := Subtype.val theorem prop : โˆ€ a : Regular ฮฑ, IsRegular a.val := Subtype.prop instance : CoeOut (Regular ฮฑ) ฮฑ := โŸจRegular.valโŸฉ theorem coe_injective : Injective ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) := Subtype.coe_injective #align heyting.regular.coe_injective Heyting.Regular.coe_injective @[simp] theorem coe_inj {a b : Regular ฮฑ} : (a : ฮฑ) = b โ†” a = b := Subtype.coe_inj #align heyting.regular.coe_inj Heyting.Regular.coe_inj instance top : Top (Regular ฮฑ) := โŸจโŸจโŠค, isRegular_topโŸฉโŸฉ instance bot : Bot (Regular ฮฑ) := โŸจโŸจโŠฅ, isRegular_botโŸฉโŸฉ instance inf : Inf (Regular ฮฑ) := โŸจfun a b => โŸจa โŠ“ b, a.2.inf b.2โŸฉโŸฉ instance himp : HImp (Regular ฮฑ) := โŸจfun a b => โŸจa โ‡จ b, a.2.himp b.2โŸฉโŸฉ instance hasCompl : HasCompl (Regular ฮฑ) := โŸจfun a => โŸจaแถœ, isRegular_compl _โŸฉโŸฉ @[simp, norm_cast] theorem coe_top : ((โŠค : Regular ฮฑ) : ฮฑ) = โŠค := rfl #align heyting.regular.coe_top Heyting.Regular.coe_top @[simp, norm_cast] theorem coe_bot : ((โŠฅ : Regular ฮฑ) : ฮฑ) = โŠฅ := rfl #align heyting.regular.coe_bot Heyting.Regular.coe_bot @[simp, norm_cast] theorem coe_inf (a b : Regular ฮฑ) : (โ†‘(a โŠ“ b) : ฮฑ) = (a : ฮฑ) โŠ“ b := rfl #align heyting.regular.coe_inf Heyting.Regular.coe_inf @[simp, norm_cast] theorem coe_himp (a b : Regular ฮฑ) : (โ†‘(a โ‡จ b) : ฮฑ) = (a : ฮฑ) โ‡จ b := rfl #align heyting.regular.coe_himp Heyting.Regular.coe_himp @[simp, norm_cast] theorem coe_compl (a : Regular ฮฑ) : (โ†‘aแถœ : ฮฑ) = (a : ฮฑ)แถœ := rfl #align heyting.regular.coe_compl Heyting.Regular.coe_compl instance : Inhabited (Regular ฮฑ) := โŸจโŠฅโŸฉ instance : SemilatticeInf (Regular ฮฑ) := coe_injective.semilatticeInf _ coe_inf instance boundedOrder : BoundedOrder (Regular ฮฑ) := BoundedOrder.lift ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) (fun _ _ => id) coe_top coe_bot @[simp, norm_cast] theorem coe_le_coe {a b : Regular ฮฑ} : (a : ฮฑ) โ‰ค b โ†” a โ‰ค b := Iff.rfl #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {a b : Regular ฮฑ} : (a : ฮฑ) < b โ†” a < b := Iff.rfl #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/ def toRegular : ฮฑ โ†’o Regular ฮฑ := โŸจfun a => โŸจaแถœแถœ, isRegular_compl _โŸฉ, fun _ _ h => coe_le_coe.1 <| compl_le_compl <| compl_le_compl hโŸฉ #align heyting.regular.to_regular Heyting.Regular.toRegular @[simp, norm_cast] theorem coe_toRegular (a : ฮฑ) : (toRegular a : ฮฑ) = aแถœแถœ := rfl #align heyting.regular.coe_to_regular Heyting.Regular.coe_toRegular @[simp] theorem toRegular_coe (a : Regular ฮฑ) : toRegular (a : ฮฑ) = a := coe_injective a.2 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe /-- The Galois insertion between `Regular.toRegular` and `coe`. -/ def gi : GaloisInsertion toRegular ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) where choice a ha := โŸจa, ha.antisymm le_compl_complโŸฉ gc _ b := coe_le_coe.symm.trans <| โŸจle_compl_compl.trans, fun h => (compl_anti <| compl_anti h).trans_eq b.2โŸฉ le_l_u _ := le_compl_compl choice_eq _ ha := coe_injective <| le_compl_compl.antisymm ha #align heyting.regular.gi Heyting.Regular.gi instance lattice : Lattice (Regular ฮฑ) := gi.liftLattice @[simp, norm_cast] theorem coe_sup (a b : Regular ฮฑ) : (โ†‘(a โŠ” b) : ฮฑ) = ((a : ฮฑ) โŠ” b)แถœแถœ := rfl #align heyting.regular.coe_sup Heyting.Regular.coe_sup instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by
dsimp
instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by
Mathlib.Order.Heyting.Regular.224_0.HFWfWmvQ8w4gAZO
instance : BooleanAlgebra (Regular ฮฑ)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ aโœ bโœ : ฮฑ srcโœยณ : Lattice (Regular ฮฑ) := lattice srcโœยฒ : BoundedOrder (Regular ฮฑ) := boundedOrder srcโœยน : HImp (Regular ฮฑ) := himp srcโœ : HasCompl (Regular ฮฑ) := hasCompl a b c : Regular ฮฑ โŠข (โ†‘a โŠ” โ†‘b)แถœแถœ โŠ“ (โ†‘a โŠ” โ†‘c)แถœแถœ โ‰ค (โ†‘a โŠ” โ†‘b โŠ“ โ†‘c)แถœแถœ
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by rw [โ† le_compl_iff_disjoint_right, hb.eq] #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff -- See note [reducible non-instances] /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by erw [โ† (h a), compl_sup, inf_compl_eq_bot, compl_bot]โŸฉ { โ€นHeytingAlgebra ฮฑโ€บ, GeneralizedHeytingAlgebra.toDistribLattice with himp_eq := fun a b => eq_of_forall_le_iff fun c => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm inf_compl_le_bot := fun a => (this _).1.le_bot top_le_sup_compl := fun a => (this _).2.top_le } #align boolean_algebra.of_regular BooleanAlgebra.ofRegular variable (ฮฑ) /-- The boolean algebra of Heyting regular elements. -/ def Regular : Type _ := { a : ฮฑ // IsRegular a } #align heyting.regular Heyting.Regular variable {ฮฑ} namespace Regular --Porting note: `val` and `prop` are new /-- The coercion `Regular ฮฑ โ†’ ฮฑ` -/ @[coe] def val : Regular ฮฑ โ†’ ฮฑ := Subtype.val theorem prop : โˆ€ a : Regular ฮฑ, IsRegular a.val := Subtype.prop instance : CoeOut (Regular ฮฑ) ฮฑ := โŸจRegular.valโŸฉ theorem coe_injective : Injective ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) := Subtype.coe_injective #align heyting.regular.coe_injective Heyting.Regular.coe_injective @[simp] theorem coe_inj {a b : Regular ฮฑ} : (a : ฮฑ) = b โ†” a = b := Subtype.coe_inj #align heyting.regular.coe_inj Heyting.Regular.coe_inj instance top : Top (Regular ฮฑ) := โŸจโŸจโŠค, isRegular_topโŸฉโŸฉ instance bot : Bot (Regular ฮฑ) := โŸจโŸจโŠฅ, isRegular_botโŸฉโŸฉ instance inf : Inf (Regular ฮฑ) := โŸจfun a b => โŸจa โŠ“ b, a.2.inf b.2โŸฉโŸฉ instance himp : HImp (Regular ฮฑ) := โŸจfun a b => โŸจa โ‡จ b, a.2.himp b.2โŸฉโŸฉ instance hasCompl : HasCompl (Regular ฮฑ) := โŸจfun a => โŸจaแถœ, isRegular_compl _โŸฉโŸฉ @[simp, norm_cast] theorem coe_top : ((โŠค : Regular ฮฑ) : ฮฑ) = โŠค := rfl #align heyting.regular.coe_top Heyting.Regular.coe_top @[simp, norm_cast] theorem coe_bot : ((โŠฅ : Regular ฮฑ) : ฮฑ) = โŠฅ := rfl #align heyting.regular.coe_bot Heyting.Regular.coe_bot @[simp, norm_cast] theorem coe_inf (a b : Regular ฮฑ) : (โ†‘(a โŠ“ b) : ฮฑ) = (a : ฮฑ) โŠ“ b := rfl #align heyting.regular.coe_inf Heyting.Regular.coe_inf @[simp, norm_cast] theorem coe_himp (a b : Regular ฮฑ) : (โ†‘(a โ‡จ b) : ฮฑ) = (a : ฮฑ) โ‡จ b := rfl #align heyting.regular.coe_himp Heyting.Regular.coe_himp @[simp, norm_cast] theorem coe_compl (a : Regular ฮฑ) : (โ†‘aแถœ : ฮฑ) = (a : ฮฑ)แถœ := rfl #align heyting.regular.coe_compl Heyting.Regular.coe_compl instance : Inhabited (Regular ฮฑ) := โŸจโŠฅโŸฉ instance : SemilatticeInf (Regular ฮฑ) := coe_injective.semilatticeInf _ coe_inf instance boundedOrder : BoundedOrder (Regular ฮฑ) := BoundedOrder.lift ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) (fun _ _ => id) coe_top coe_bot @[simp, norm_cast] theorem coe_le_coe {a b : Regular ฮฑ} : (a : ฮฑ) โ‰ค b โ†” a โ‰ค b := Iff.rfl #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {a b : Regular ฮฑ} : (a : ฮฑ) < b โ†” a < b := Iff.rfl #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/ def toRegular : ฮฑ โ†’o Regular ฮฑ := โŸจfun a => โŸจaแถœแถœ, isRegular_compl _โŸฉ, fun _ _ h => coe_le_coe.1 <| compl_le_compl <| compl_le_compl hโŸฉ #align heyting.regular.to_regular Heyting.Regular.toRegular @[simp, norm_cast] theorem coe_toRegular (a : ฮฑ) : (toRegular a : ฮฑ) = aแถœแถœ := rfl #align heyting.regular.coe_to_regular Heyting.Regular.coe_toRegular @[simp] theorem toRegular_coe (a : Regular ฮฑ) : toRegular (a : ฮฑ) = a := coe_injective a.2 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe /-- The Galois insertion between `Regular.toRegular` and `coe`. -/ def gi : GaloisInsertion toRegular ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) where choice a ha := โŸจa, ha.antisymm le_compl_complโŸฉ gc _ b := coe_le_coe.symm.trans <| โŸจle_compl_compl.trans, fun h => (compl_anti <| compl_anti h).trans_eq b.2โŸฉ le_l_u _ := le_compl_compl choice_eq _ ha := coe_injective <| le_compl_compl.antisymm ha #align heyting.regular.gi Heyting.Regular.gi instance lattice : Lattice (Regular ฮฑ) := gi.liftLattice @[simp, norm_cast] theorem coe_sup (a b : Regular ฮฑ) : (โ†‘(a โŠ” b) : ฮฑ) = ((a : ฮฑ) โŠ” b)แถœแถœ := rfl #align heyting.regular.coe_sup Heyting.Regular.coe_sup instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp
rw [sup_inf_left, compl_compl_inf_distrib]
instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp
Mathlib.Order.Heyting.Regular.224_0.HFWfWmvQ8w4gAZO
instance : BooleanAlgebra (Regular ฮฑ)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ aโœ b : ฮฑ srcโœยณ : Lattice (Regular ฮฑ) := lattice srcโœยฒ : BoundedOrder (Regular ฮฑ) := boundedOrder srcโœยน : HImp (Regular ฮฑ) := himp srcโœ : HasCompl (Regular ฮฑ) := hasCompl a : Regular ฮฑ โŠข โ†‘โŠค โ‰ค โ†‘(a โŠ” aแถœ)
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by rw [โ† le_compl_iff_disjoint_right, hb.eq] #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff -- See note [reducible non-instances] /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by erw [โ† (h a), compl_sup, inf_compl_eq_bot, compl_bot]โŸฉ { โ€นHeytingAlgebra ฮฑโ€บ, GeneralizedHeytingAlgebra.toDistribLattice with himp_eq := fun a b => eq_of_forall_le_iff fun c => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm inf_compl_le_bot := fun a => (this _).1.le_bot top_le_sup_compl := fun a => (this _).2.top_le } #align boolean_algebra.of_regular BooleanAlgebra.ofRegular variable (ฮฑ) /-- The boolean algebra of Heyting regular elements. -/ def Regular : Type _ := { a : ฮฑ // IsRegular a } #align heyting.regular Heyting.Regular variable {ฮฑ} namespace Regular --Porting note: `val` and `prop` are new /-- The coercion `Regular ฮฑ โ†’ ฮฑ` -/ @[coe] def val : Regular ฮฑ โ†’ ฮฑ := Subtype.val theorem prop : โˆ€ a : Regular ฮฑ, IsRegular a.val := Subtype.prop instance : CoeOut (Regular ฮฑ) ฮฑ := โŸจRegular.valโŸฉ theorem coe_injective : Injective ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) := Subtype.coe_injective #align heyting.regular.coe_injective Heyting.Regular.coe_injective @[simp] theorem coe_inj {a b : Regular ฮฑ} : (a : ฮฑ) = b โ†” a = b := Subtype.coe_inj #align heyting.regular.coe_inj Heyting.Regular.coe_inj instance top : Top (Regular ฮฑ) := โŸจโŸจโŠค, isRegular_topโŸฉโŸฉ instance bot : Bot (Regular ฮฑ) := โŸจโŸจโŠฅ, isRegular_botโŸฉโŸฉ instance inf : Inf (Regular ฮฑ) := โŸจfun a b => โŸจa โŠ“ b, a.2.inf b.2โŸฉโŸฉ instance himp : HImp (Regular ฮฑ) := โŸจfun a b => โŸจa โ‡จ b, a.2.himp b.2โŸฉโŸฉ instance hasCompl : HasCompl (Regular ฮฑ) := โŸจfun a => โŸจaแถœ, isRegular_compl _โŸฉโŸฉ @[simp, norm_cast] theorem coe_top : ((โŠค : Regular ฮฑ) : ฮฑ) = โŠค := rfl #align heyting.regular.coe_top Heyting.Regular.coe_top @[simp, norm_cast] theorem coe_bot : ((โŠฅ : Regular ฮฑ) : ฮฑ) = โŠฅ := rfl #align heyting.regular.coe_bot Heyting.Regular.coe_bot @[simp, norm_cast] theorem coe_inf (a b : Regular ฮฑ) : (โ†‘(a โŠ“ b) : ฮฑ) = (a : ฮฑ) โŠ“ b := rfl #align heyting.regular.coe_inf Heyting.Regular.coe_inf @[simp, norm_cast] theorem coe_himp (a b : Regular ฮฑ) : (โ†‘(a โ‡จ b) : ฮฑ) = (a : ฮฑ) โ‡จ b := rfl #align heyting.regular.coe_himp Heyting.Regular.coe_himp @[simp, norm_cast] theorem coe_compl (a : Regular ฮฑ) : (โ†‘aแถœ : ฮฑ) = (a : ฮฑ)แถœ := rfl #align heyting.regular.coe_compl Heyting.Regular.coe_compl instance : Inhabited (Regular ฮฑ) := โŸจโŠฅโŸฉ instance : SemilatticeInf (Regular ฮฑ) := coe_injective.semilatticeInf _ coe_inf instance boundedOrder : BoundedOrder (Regular ฮฑ) := BoundedOrder.lift ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) (fun _ _ => id) coe_top coe_bot @[simp, norm_cast] theorem coe_le_coe {a b : Regular ฮฑ} : (a : ฮฑ) โ‰ค b โ†” a โ‰ค b := Iff.rfl #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {a b : Regular ฮฑ} : (a : ฮฑ) < b โ†” a < b := Iff.rfl #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/ def toRegular : ฮฑ โ†’o Regular ฮฑ := โŸจfun a => โŸจaแถœแถœ, isRegular_compl _โŸฉ, fun _ _ h => coe_le_coe.1 <| compl_le_compl <| compl_le_compl hโŸฉ #align heyting.regular.to_regular Heyting.Regular.toRegular @[simp, norm_cast] theorem coe_toRegular (a : ฮฑ) : (toRegular a : ฮฑ) = aแถœแถœ := rfl #align heyting.regular.coe_to_regular Heyting.Regular.coe_toRegular @[simp] theorem toRegular_coe (a : Regular ฮฑ) : toRegular (a : ฮฑ) = a := coe_injective a.2 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe /-- The Galois insertion between `Regular.toRegular` and `coe`. -/ def gi : GaloisInsertion toRegular ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) where choice a ha := โŸจa, ha.antisymm le_compl_complโŸฉ gc _ b := coe_le_coe.symm.trans <| โŸจle_compl_compl.trans, fun h => (compl_anti <| compl_anti h).trans_eq b.2โŸฉ le_l_u _ := le_compl_compl choice_eq _ ha := coe_injective <| le_compl_compl.antisymm ha #align heyting.regular.gi Heyting.Regular.gi instance lattice : Lattice (Regular ฮฑ) := gi.liftLattice @[simp, norm_cast] theorem coe_sup (a b : Regular ฮฑ) : (โ†‘(a โŠ” b) : ฮฑ) = ((a : ฮฑ) โŠ” b)แถœแถœ := rfl #align heyting.regular.coe_sup Heyting.Regular.coe_sup instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by
dsimp
instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by
Mathlib.Order.Heyting.Regular.224_0.HFWfWmvQ8w4gAZO
instance : BooleanAlgebra (Regular ฮฑ)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ aโœ b : ฮฑ srcโœยณ : Lattice (Regular ฮฑ) := lattice srcโœยฒ : BoundedOrder (Regular ฮฑ) := boundedOrder srcโœยน : HImp (Regular ฮฑ) := himp srcโœ : HasCompl (Regular ฮฑ) := hasCompl a : Regular ฮฑ โŠข โŠค โ‰ค (โ†‘a โŠ” (โ†‘a)แถœ)แถœแถœ
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by rw [โ† le_compl_iff_disjoint_right, hb.eq] #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff -- See note [reducible non-instances] /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by erw [โ† (h a), compl_sup, inf_compl_eq_bot, compl_bot]โŸฉ { โ€นHeytingAlgebra ฮฑโ€บ, GeneralizedHeytingAlgebra.toDistribLattice with himp_eq := fun a b => eq_of_forall_le_iff fun c => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm inf_compl_le_bot := fun a => (this _).1.le_bot top_le_sup_compl := fun a => (this _).2.top_le } #align boolean_algebra.of_regular BooleanAlgebra.ofRegular variable (ฮฑ) /-- The boolean algebra of Heyting regular elements. -/ def Regular : Type _ := { a : ฮฑ // IsRegular a } #align heyting.regular Heyting.Regular variable {ฮฑ} namespace Regular --Porting note: `val` and `prop` are new /-- The coercion `Regular ฮฑ โ†’ ฮฑ` -/ @[coe] def val : Regular ฮฑ โ†’ ฮฑ := Subtype.val theorem prop : โˆ€ a : Regular ฮฑ, IsRegular a.val := Subtype.prop instance : CoeOut (Regular ฮฑ) ฮฑ := โŸจRegular.valโŸฉ theorem coe_injective : Injective ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) := Subtype.coe_injective #align heyting.regular.coe_injective Heyting.Regular.coe_injective @[simp] theorem coe_inj {a b : Regular ฮฑ} : (a : ฮฑ) = b โ†” a = b := Subtype.coe_inj #align heyting.regular.coe_inj Heyting.Regular.coe_inj instance top : Top (Regular ฮฑ) := โŸจโŸจโŠค, isRegular_topโŸฉโŸฉ instance bot : Bot (Regular ฮฑ) := โŸจโŸจโŠฅ, isRegular_botโŸฉโŸฉ instance inf : Inf (Regular ฮฑ) := โŸจfun a b => โŸจa โŠ“ b, a.2.inf b.2โŸฉโŸฉ instance himp : HImp (Regular ฮฑ) := โŸจfun a b => โŸจa โ‡จ b, a.2.himp b.2โŸฉโŸฉ instance hasCompl : HasCompl (Regular ฮฑ) := โŸจfun a => โŸจaแถœ, isRegular_compl _โŸฉโŸฉ @[simp, norm_cast] theorem coe_top : ((โŠค : Regular ฮฑ) : ฮฑ) = โŠค := rfl #align heyting.regular.coe_top Heyting.Regular.coe_top @[simp, norm_cast] theorem coe_bot : ((โŠฅ : Regular ฮฑ) : ฮฑ) = โŠฅ := rfl #align heyting.regular.coe_bot Heyting.Regular.coe_bot @[simp, norm_cast] theorem coe_inf (a b : Regular ฮฑ) : (โ†‘(a โŠ“ b) : ฮฑ) = (a : ฮฑ) โŠ“ b := rfl #align heyting.regular.coe_inf Heyting.Regular.coe_inf @[simp, norm_cast] theorem coe_himp (a b : Regular ฮฑ) : (โ†‘(a โ‡จ b) : ฮฑ) = (a : ฮฑ) โ‡จ b := rfl #align heyting.regular.coe_himp Heyting.Regular.coe_himp @[simp, norm_cast] theorem coe_compl (a : Regular ฮฑ) : (โ†‘aแถœ : ฮฑ) = (a : ฮฑ)แถœ := rfl #align heyting.regular.coe_compl Heyting.Regular.coe_compl instance : Inhabited (Regular ฮฑ) := โŸจโŠฅโŸฉ instance : SemilatticeInf (Regular ฮฑ) := coe_injective.semilatticeInf _ coe_inf instance boundedOrder : BoundedOrder (Regular ฮฑ) := BoundedOrder.lift ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) (fun _ _ => id) coe_top coe_bot @[simp, norm_cast] theorem coe_le_coe {a b : Regular ฮฑ} : (a : ฮฑ) โ‰ค b โ†” a โ‰ค b := Iff.rfl #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {a b : Regular ฮฑ} : (a : ฮฑ) < b โ†” a < b := Iff.rfl #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/ def toRegular : ฮฑ โ†’o Regular ฮฑ := โŸจfun a => โŸจaแถœแถœ, isRegular_compl _โŸฉ, fun _ _ h => coe_le_coe.1 <| compl_le_compl <| compl_le_compl hโŸฉ #align heyting.regular.to_regular Heyting.Regular.toRegular @[simp, norm_cast] theorem coe_toRegular (a : ฮฑ) : (toRegular a : ฮฑ) = aแถœแถœ := rfl #align heyting.regular.coe_to_regular Heyting.Regular.coe_toRegular @[simp] theorem toRegular_coe (a : Regular ฮฑ) : toRegular (a : ฮฑ) = a := coe_injective a.2 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe /-- The Galois insertion between `Regular.toRegular` and `coe`. -/ def gi : GaloisInsertion toRegular ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) where choice a ha := โŸจa, ha.antisymm le_compl_complโŸฉ gc _ b := coe_le_coe.symm.trans <| โŸจle_compl_compl.trans, fun h => (compl_anti <| compl_anti h).trans_eq b.2โŸฉ le_l_u _ := le_compl_compl choice_eq _ ha := coe_injective <| le_compl_compl.antisymm ha #align heyting.regular.gi Heyting.Regular.gi instance lattice : Lattice (Regular ฮฑ) := gi.liftLattice @[simp, norm_cast] theorem coe_sup (a b : Regular ฮฑ) : (โ†‘(a โŠ” b) : ฮฑ) = ((a : ฮฑ) โŠ” b)แถœแถœ := rfl #align heyting.regular.coe_sup Heyting.Regular.coe_sup instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp
rw [compl_sup, inf_compl_eq_bot, compl_bot]
instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp
Mathlib.Order.Heyting.Regular.224_0.HFWfWmvQ8w4gAZO
instance : BooleanAlgebra (Regular ฮฑ)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ aโœ bโœ : ฮฑ srcโœยณ : Lattice (Regular ฮฑ) := lattice srcโœยฒ : BoundedOrder (Regular ฮฑ) := boundedOrder srcโœยน : HImp (Regular ฮฑ) := himp srcโœ : HasCompl (Regular ฮฑ) := hasCompl a b : Regular ฮฑ โŠข โ†‘(a โ‡จ b) = โ†‘(b โŠ” aแถœ)
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by rw [โ† le_compl_iff_disjoint_right, hb.eq] #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff -- See note [reducible non-instances] /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by erw [โ† (h a), compl_sup, inf_compl_eq_bot, compl_bot]โŸฉ { โ€นHeytingAlgebra ฮฑโ€บ, GeneralizedHeytingAlgebra.toDistribLattice with himp_eq := fun a b => eq_of_forall_le_iff fun c => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm inf_compl_le_bot := fun a => (this _).1.le_bot top_le_sup_compl := fun a => (this _).2.top_le } #align boolean_algebra.of_regular BooleanAlgebra.ofRegular variable (ฮฑ) /-- The boolean algebra of Heyting regular elements. -/ def Regular : Type _ := { a : ฮฑ // IsRegular a } #align heyting.regular Heyting.Regular variable {ฮฑ} namespace Regular --Porting note: `val` and `prop` are new /-- The coercion `Regular ฮฑ โ†’ ฮฑ` -/ @[coe] def val : Regular ฮฑ โ†’ ฮฑ := Subtype.val theorem prop : โˆ€ a : Regular ฮฑ, IsRegular a.val := Subtype.prop instance : CoeOut (Regular ฮฑ) ฮฑ := โŸจRegular.valโŸฉ theorem coe_injective : Injective ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) := Subtype.coe_injective #align heyting.regular.coe_injective Heyting.Regular.coe_injective @[simp] theorem coe_inj {a b : Regular ฮฑ} : (a : ฮฑ) = b โ†” a = b := Subtype.coe_inj #align heyting.regular.coe_inj Heyting.Regular.coe_inj instance top : Top (Regular ฮฑ) := โŸจโŸจโŠค, isRegular_topโŸฉโŸฉ instance bot : Bot (Regular ฮฑ) := โŸจโŸจโŠฅ, isRegular_botโŸฉโŸฉ instance inf : Inf (Regular ฮฑ) := โŸจfun a b => โŸจa โŠ“ b, a.2.inf b.2โŸฉโŸฉ instance himp : HImp (Regular ฮฑ) := โŸจfun a b => โŸจa โ‡จ b, a.2.himp b.2โŸฉโŸฉ instance hasCompl : HasCompl (Regular ฮฑ) := โŸจfun a => โŸจaแถœ, isRegular_compl _โŸฉโŸฉ @[simp, norm_cast] theorem coe_top : ((โŠค : Regular ฮฑ) : ฮฑ) = โŠค := rfl #align heyting.regular.coe_top Heyting.Regular.coe_top @[simp, norm_cast] theorem coe_bot : ((โŠฅ : Regular ฮฑ) : ฮฑ) = โŠฅ := rfl #align heyting.regular.coe_bot Heyting.Regular.coe_bot @[simp, norm_cast] theorem coe_inf (a b : Regular ฮฑ) : (โ†‘(a โŠ“ b) : ฮฑ) = (a : ฮฑ) โŠ“ b := rfl #align heyting.regular.coe_inf Heyting.Regular.coe_inf @[simp, norm_cast] theorem coe_himp (a b : Regular ฮฑ) : (โ†‘(a โ‡จ b) : ฮฑ) = (a : ฮฑ) โ‡จ b := rfl #align heyting.regular.coe_himp Heyting.Regular.coe_himp @[simp, norm_cast] theorem coe_compl (a : Regular ฮฑ) : (โ†‘aแถœ : ฮฑ) = (a : ฮฑ)แถœ := rfl #align heyting.regular.coe_compl Heyting.Regular.coe_compl instance : Inhabited (Regular ฮฑ) := โŸจโŠฅโŸฉ instance : SemilatticeInf (Regular ฮฑ) := coe_injective.semilatticeInf _ coe_inf instance boundedOrder : BoundedOrder (Regular ฮฑ) := BoundedOrder.lift ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) (fun _ _ => id) coe_top coe_bot @[simp, norm_cast] theorem coe_le_coe {a b : Regular ฮฑ} : (a : ฮฑ) โ‰ค b โ†” a โ‰ค b := Iff.rfl #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {a b : Regular ฮฑ} : (a : ฮฑ) < b โ†” a < b := Iff.rfl #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/ def toRegular : ฮฑ โ†’o Regular ฮฑ := โŸจfun a => โŸจaแถœแถœ, isRegular_compl _โŸฉ, fun _ _ h => coe_le_coe.1 <| compl_le_compl <| compl_le_compl hโŸฉ #align heyting.regular.to_regular Heyting.Regular.toRegular @[simp, norm_cast] theorem coe_toRegular (a : ฮฑ) : (toRegular a : ฮฑ) = aแถœแถœ := rfl #align heyting.regular.coe_to_regular Heyting.Regular.coe_toRegular @[simp] theorem toRegular_coe (a : Regular ฮฑ) : toRegular (a : ฮฑ) = a := coe_injective a.2 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe /-- The Galois insertion between `Regular.toRegular` and `coe`. -/ def gi : GaloisInsertion toRegular ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) where choice a ha := โŸจa, ha.antisymm le_compl_complโŸฉ gc _ b := coe_le_coe.symm.trans <| โŸจle_compl_compl.trans, fun h => (compl_anti <| compl_anti h).trans_eq b.2โŸฉ le_l_u _ := le_compl_compl choice_eq _ ha := coe_injective <| le_compl_compl.antisymm ha #align heyting.regular.gi Heyting.Regular.gi instance lattice : Lattice (Regular ฮฑ) := gi.liftLattice @[simp, norm_cast] theorem coe_sup (a b : Regular ฮฑ) : (โ†‘(a โŠ” b) : ฮฑ) = ((a : ฮฑ) โŠ” b)แถœแถœ := rfl #align heyting.regular.coe_sup Heyting.Regular.coe_sup instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp rw [compl_sup, inf_compl_eq_bot, compl_bot] himp_eq := fun a b => coe_injective (by
dsimp
instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp rw [compl_sup, inf_compl_eq_bot, compl_bot] himp_eq := fun a b => coe_injective (by
Mathlib.Order.Heyting.Regular.224_0.HFWfWmvQ8w4gAZO
instance : BooleanAlgebra (Regular ฮฑ)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ aโœ bโœ : ฮฑ srcโœยณ : Lattice (Regular ฮฑ) := lattice srcโœยฒ : BoundedOrder (Regular ฮฑ) := boundedOrder srcโœยน : HImp (Regular ฮฑ) := himp srcโœ : HasCompl (Regular ฮฑ) := hasCompl a b : Regular ฮฑ โŠข โ†‘a โ‡จ โ†‘b = (โ†‘b โŠ” (โ†‘a)แถœ)แถœแถœ
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by rw [โ† le_compl_iff_disjoint_right, hb.eq] #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff -- See note [reducible non-instances] /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by erw [โ† (h a), compl_sup, inf_compl_eq_bot, compl_bot]โŸฉ { โ€นHeytingAlgebra ฮฑโ€บ, GeneralizedHeytingAlgebra.toDistribLattice with himp_eq := fun a b => eq_of_forall_le_iff fun c => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm inf_compl_le_bot := fun a => (this _).1.le_bot top_le_sup_compl := fun a => (this _).2.top_le } #align boolean_algebra.of_regular BooleanAlgebra.ofRegular variable (ฮฑ) /-- The boolean algebra of Heyting regular elements. -/ def Regular : Type _ := { a : ฮฑ // IsRegular a } #align heyting.regular Heyting.Regular variable {ฮฑ} namespace Regular --Porting note: `val` and `prop` are new /-- The coercion `Regular ฮฑ โ†’ ฮฑ` -/ @[coe] def val : Regular ฮฑ โ†’ ฮฑ := Subtype.val theorem prop : โˆ€ a : Regular ฮฑ, IsRegular a.val := Subtype.prop instance : CoeOut (Regular ฮฑ) ฮฑ := โŸจRegular.valโŸฉ theorem coe_injective : Injective ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) := Subtype.coe_injective #align heyting.regular.coe_injective Heyting.Regular.coe_injective @[simp] theorem coe_inj {a b : Regular ฮฑ} : (a : ฮฑ) = b โ†” a = b := Subtype.coe_inj #align heyting.regular.coe_inj Heyting.Regular.coe_inj instance top : Top (Regular ฮฑ) := โŸจโŸจโŠค, isRegular_topโŸฉโŸฉ instance bot : Bot (Regular ฮฑ) := โŸจโŸจโŠฅ, isRegular_botโŸฉโŸฉ instance inf : Inf (Regular ฮฑ) := โŸจfun a b => โŸจa โŠ“ b, a.2.inf b.2โŸฉโŸฉ instance himp : HImp (Regular ฮฑ) := โŸจfun a b => โŸจa โ‡จ b, a.2.himp b.2โŸฉโŸฉ instance hasCompl : HasCompl (Regular ฮฑ) := โŸจfun a => โŸจaแถœ, isRegular_compl _โŸฉโŸฉ @[simp, norm_cast] theorem coe_top : ((โŠค : Regular ฮฑ) : ฮฑ) = โŠค := rfl #align heyting.regular.coe_top Heyting.Regular.coe_top @[simp, norm_cast] theorem coe_bot : ((โŠฅ : Regular ฮฑ) : ฮฑ) = โŠฅ := rfl #align heyting.regular.coe_bot Heyting.Regular.coe_bot @[simp, norm_cast] theorem coe_inf (a b : Regular ฮฑ) : (โ†‘(a โŠ“ b) : ฮฑ) = (a : ฮฑ) โŠ“ b := rfl #align heyting.regular.coe_inf Heyting.Regular.coe_inf @[simp, norm_cast] theorem coe_himp (a b : Regular ฮฑ) : (โ†‘(a โ‡จ b) : ฮฑ) = (a : ฮฑ) โ‡จ b := rfl #align heyting.regular.coe_himp Heyting.Regular.coe_himp @[simp, norm_cast] theorem coe_compl (a : Regular ฮฑ) : (โ†‘aแถœ : ฮฑ) = (a : ฮฑ)แถœ := rfl #align heyting.regular.coe_compl Heyting.Regular.coe_compl instance : Inhabited (Regular ฮฑ) := โŸจโŠฅโŸฉ instance : SemilatticeInf (Regular ฮฑ) := coe_injective.semilatticeInf _ coe_inf instance boundedOrder : BoundedOrder (Regular ฮฑ) := BoundedOrder.lift ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) (fun _ _ => id) coe_top coe_bot @[simp, norm_cast] theorem coe_le_coe {a b : Regular ฮฑ} : (a : ฮฑ) โ‰ค b โ†” a โ‰ค b := Iff.rfl #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {a b : Regular ฮฑ} : (a : ฮฑ) < b โ†” a < b := Iff.rfl #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/ def toRegular : ฮฑ โ†’o Regular ฮฑ := โŸจfun a => โŸจaแถœแถœ, isRegular_compl _โŸฉ, fun _ _ h => coe_le_coe.1 <| compl_le_compl <| compl_le_compl hโŸฉ #align heyting.regular.to_regular Heyting.Regular.toRegular @[simp, norm_cast] theorem coe_toRegular (a : ฮฑ) : (toRegular a : ฮฑ) = aแถœแถœ := rfl #align heyting.regular.coe_to_regular Heyting.Regular.coe_toRegular @[simp] theorem toRegular_coe (a : Regular ฮฑ) : toRegular (a : ฮฑ) = a := coe_injective a.2 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe /-- The Galois insertion between `Regular.toRegular` and `coe`. -/ def gi : GaloisInsertion toRegular ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) where choice a ha := โŸจa, ha.antisymm le_compl_complโŸฉ gc _ b := coe_le_coe.symm.trans <| โŸจle_compl_compl.trans, fun h => (compl_anti <| compl_anti h).trans_eq b.2โŸฉ le_l_u _ := le_compl_compl choice_eq _ ha := coe_injective <| le_compl_compl.antisymm ha #align heyting.regular.gi Heyting.Regular.gi instance lattice : Lattice (Regular ฮฑ) := gi.liftLattice @[simp, norm_cast] theorem coe_sup (a b : Regular ฮฑ) : (โ†‘(a โŠ” b) : ฮฑ) = ((a : ฮฑ) โŠ” b)แถœแถœ := rfl #align heyting.regular.coe_sup Heyting.Regular.coe_sup instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp rw [compl_sup, inf_compl_eq_bot, compl_bot] himp_eq := fun a b => coe_injective (by dsimp
rw [compl_sup, a.prop.eq]
instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp rw [compl_sup, inf_compl_eq_bot, compl_bot] himp_eq := fun a b => coe_injective (by dsimp
Mathlib.Order.Heyting.Regular.224_0.HFWfWmvQ8w4gAZO
instance : BooleanAlgebra (Regular ฮฑ)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ aโœ bโœ : ฮฑ srcโœยณ : Lattice (Regular ฮฑ) := lattice srcโœยฒ : BoundedOrder (Regular ฮฑ) := boundedOrder srcโœยน : HImp (Regular ฮฑ) := himp srcโœ : HasCompl (Regular ฮฑ) := hasCompl a b : Regular ฮฑ โŠข โ†‘a โ‡จ โ†‘b = ((โ†‘b)แถœ โŠ“ โ†‘a)แถœ
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by rw [โ† le_compl_iff_disjoint_right, hb.eq] #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff -- See note [reducible non-instances] /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by erw [โ† (h a), compl_sup, inf_compl_eq_bot, compl_bot]โŸฉ { โ€นHeytingAlgebra ฮฑโ€บ, GeneralizedHeytingAlgebra.toDistribLattice with himp_eq := fun a b => eq_of_forall_le_iff fun c => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm inf_compl_le_bot := fun a => (this _).1.le_bot top_le_sup_compl := fun a => (this _).2.top_le } #align boolean_algebra.of_regular BooleanAlgebra.ofRegular variable (ฮฑ) /-- The boolean algebra of Heyting regular elements. -/ def Regular : Type _ := { a : ฮฑ // IsRegular a } #align heyting.regular Heyting.Regular variable {ฮฑ} namespace Regular --Porting note: `val` and `prop` are new /-- The coercion `Regular ฮฑ โ†’ ฮฑ` -/ @[coe] def val : Regular ฮฑ โ†’ ฮฑ := Subtype.val theorem prop : โˆ€ a : Regular ฮฑ, IsRegular a.val := Subtype.prop instance : CoeOut (Regular ฮฑ) ฮฑ := โŸจRegular.valโŸฉ theorem coe_injective : Injective ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) := Subtype.coe_injective #align heyting.regular.coe_injective Heyting.Regular.coe_injective @[simp] theorem coe_inj {a b : Regular ฮฑ} : (a : ฮฑ) = b โ†” a = b := Subtype.coe_inj #align heyting.regular.coe_inj Heyting.Regular.coe_inj instance top : Top (Regular ฮฑ) := โŸจโŸจโŠค, isRegular_topโŸฉโŸฉ instance bot : Bot (Regular ฮฑ) := โŸจโŸจโŠฅ, isRegular_botโŸฉโŸฉ instance inf : Inf (Regular ฮฑ) := โŸจfun a b => โŸจa โŠ“ b, a.2.inf b.2โŸฉโŸฉ instance himp : HImp (Regular ฮฑ) := โŸจfun a b => โŸจa โ‡จ b, a.2.himp b.2โŸฉโŸฉ instance hasCompl : HasCompl (Regular ฮฑ) := โŸจfun a => โŸจaแถœ, isRegular_compl _โŸฉโŸฉ @[simp, norm_cast] theorem coe_top : ((โŠค : Regular ฮฑ) : ฮฑ) = โŠค := rfl #align heyting.regular.coe_top Heyting.Regular.coe_top @[simp, norm_cast] theorem coe_bot : ((โŠฅ : Regular ฮฑ) : ฮฑ) = โŠฅ := rfl #align heyting.regular.coe_bot Heyting.Regular.coe_bot @[simp, norm_cast] theorem coe_inf (a b : Regular ฮฑ) : (โ†‘(a โŠ“ b) : ฮฑ) = (a : ฮฑ) โŠ“ b := rfl #align heyting.regular.coe_inf Heyting.Regular.coe_inf @[simp, norm_cast] theorem coe_himp (a b : Regular ฮฑ) : (โ†‘(a โ‡จ b) : ฮฑ) = (a : ฮฑ) โ‡จ b := rfl #align heyting.regular.coe_himp Heyting.Regular.coe_himp @[simp, norm_cast] theorem coe_compl (a : Regular ฮฑ) : (โ†‘aแถœ : ฮฑ) = (a : ฮฑ)แถœ := rfl #align heyting.regular.coe_compl Heyting.Regular.coe_compl instance : Inhabited (Regular ฮฑ) := โŸจโŠฅโŸฉ instance : SemilatticeInf (Regular ฮฑ) := coe_injective.semilatticeInf _ coe_inf instance boundedOrder : BoundedOrder (Regular ฮฑ) := BoundedOrder.lift ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) (fun _ _ => id) coe_top coe_bot @[simp, norm_cast] theorem coe_le_coe {a b : Regular ฮฑ} : (a : ฮฑ) โ‰ค b โ†” a โ‰ค b := Iff.rfl #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {a b : Regular ฮฑ} : (a : ฮฑ) < b โ†” a < b := Iff.rfl #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/ def toRegular : ฮฑ โ†’o Regular ฮฑ := โŸจfun a => โŸจaแถœแถœ, isRegular_compl _โŸฉ, fun _ _ h => coe_le_coe.1 <| compl_le_compl <| compl_le_compl hโŸฉ #align heyting.regular.to_regular Heyting.Regular.toRegular @[simp, norm_cast] theorem coe_toRegular (a : ฮฑ) : (toRegular a : ฮฑ) = aแถœแถœ := rfl #align heyting.regular.coe_to_regular Heyting.Regular.coe_toRegular @[simp] theorem toRegular_coe (a : Regular ฮฑ) : toRegular (a : ฮฑ) = a := coe_injective a.2 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe /-- The Galois insertion between `Regular.toRegular` and `coe`. -/ def gi : GaloisInsertion toRegular ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) where choice a ha := โŸจa, ha.antisymm le_compl_complโŸฉ gc _ b := coe_le_coe.symm.trans <| โŸจle_compl_compl.trans, fun h => (compl_anti <| compl_anti h).trans_eq b.2โŸฉ le_l_u _ := le_compl_compl choice_eq _ ha := coe_injective <| le_compl_compl.antisymm ha #align heyting.regular.gi Heyting.Regular.gi instance lattice : Lattice (Regular ฮฑ) := gi.liftLattice @[simp, norm_cast] theorem coe_sup (a b : Regular ฮฑ) : (โ†‘(a โŠ” b) : ฮฑ) = ((a : ฮฑ) โŠ” b)แถœแถœ := rfl #align heyting.regular.coe_sup Heyting.Regular.coe_sup instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp rw [compl_sup, inf_compl_eq_bot, compl_bot] himp_eq := fun a b => coe_injective (by dsimp rw [compl_sup, a.prop.eq]
refine' eq_of_forall_le_iff fun c => le_himp_iff.trans _
instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp rw [compl_sup, inf_compl_eq_bot, compl_bot] himp_eq := fun a b => coe_injective (by dsimp rw [compl_sup, a.prop.eq]
Mathlib.Order.Heyting.Regular.224_0.HFWfWmvQ8w4gAZO
instance : BooleanAlgebra (Regular ฮฑ)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ aโœ bโœ : ฮฑ srcโœยณ : Lattice (Regular ฮฑ) := lattice srcโœยฒ : BoundedOrder (Regular ฮฑ) := boundedOrder srcโœยน : HImp (Regular ฮฑ) := himp srcโœ : HasCompl (Regular ฮฑ) := hasCompl a b : Regular ฮฑ c : ฮฑ โŠข c โŠ“ โ†‘a โ‰ค โ†‘b โ†” c โ‰ค ((โ†‘b)แถœ โŠ“ โ†‘a)แถœ
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by rw [โ† le_compl_iff_disjoint_right, hb.eq] #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff -- See note [reducible non-instances] /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by erw [โ† (h a), compl_sup, inf_compl_eq_bot, compl_bot]โŸฉ { โ€นHeytingAlgebra ฮฑโ€บ, GeneralizedHeytingAlgebra.toDistribLattice with himp_eq := fun a b => eq_of_forall_le_iff fun c => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm inf_compl_le_bot := fun a => (this _).1.le_bot top_le_sup_compl := fun a => (this _).2.top_le } #align boolean_algebra.of_regular BooleanAlgebra.ofRegular variable (ฮฑ) /-- The boolean algebra of Heyting regular elements. -/ def Regular : Type _ := { a : ฮฑ // IsRegular a } #align heyting.regular Heyting.Regular variable {ฮฑ} namespace Regular --Porting note: `val` and `prop` are new /-- The coercion `Regular ฮฑ โ†’ ฮฑ` -/ @[coe] def val : Regular ฮฑ โ†’ ฮฑ := Subtype.val theorem prop : โˆ€ a : Regular ฮฑ, IsRegular a.val := Subtype.prop instance : CoeOut (Regular ฮฑ) ฮฑ := โŸจRegular.valโŸฉ theorem coe_injective : Injective ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) := Subtype.coe_injective #align heyting.regular.coe_injective Heyting.Regular.coe_injective @[simp] theorem coe_inj {a b : Regular ฮฑ} : (a : ฮฑ) = b โ†” a = b := Subtype.coe_inj #align heyting.regular.coe_inj Heyting.Regular.coe_inj instance top : Top (Regular ฮฑ) := โŸจโŸจโŠค, isRegular_topโŸฉโŸฉ instance bot : Bot (Regular ฮฑ) := โŸจโŸจโŠฅ, isRegular_botโŸฉโŸฉ instance inf : Inf (Regular ฮฑ) := โŸจfun a b => โŸจa โŠ“ b, a.2.inf b.2โŸฉโŸฉ instance himp : HImp (Regular ฮฑ) := โŸจfun a b => โŸจa โ‡จ b, a.2.himp b.2โŸฉโŸฉ instance hasCompl : HasCompl (Regular ฮฑ) := โŸจfun a => โŸจaแถœ, isRegular_compl _โŸฉโŸฉ @[simp, norm_cast] theorem coe_top : ((โŠค : Regular ฮฑ) : ฮฑ) = โŠค := rfl #align heyting.regular.coe_top Heyting.Regular.coe_top @[simp, norm_cast] theorem coe_bot : ((โŠฅ : Regular ฮฑ) : ฮฑ) = โŠฅ := rfl #align heyting.regular.coe_bot Heyting.Regular.coe_bot @[simp, norm_cast] theorem coe_inf (a b : Regular ฮฑ) : (โ†‘(a โŠ“ b) : ฮฑ) = (a : ฮฑ) โŠ“ b := rfl #align heyting.regular.coe_inf Heyting.Regular.coe_inf @[simp, norm_cast] theorem coe_himp (a b : Regular ฮฑ) : (โ†‘(a โ‡จ b) : ฮฑ) = (a : ฮฑ) โ‡จ b := rfl #align heyting.regular.coe_himp Heyting.Regular.coe_himp @[simp, norm_cast] theorem coe_compl (a : Regular ฮฑ) : (โ†‘aแถœ : ฮฑ) = (a : ฮฑ)แถœ := rfl #align heyting.regular.coe_compl Heyting.Regular.coe_compl instance : Inhabited (Regular ฮฑ) := โŸจโŠฅโŸฉ instance : SemilatticeInf (Regular ฮฑ) := coe_injective.semilatticeInf _ coe_inf instance boundedOrder : BoundedOrder (Regular ฮฑ) := BoundedOrder.lift ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) (fun _ _ => id) coe_top coe_bot @[simp, norm_cast] theorem coe_le_coe {a b : Regular ฮฑ} : (a : ฮฑ) โ‰ค b โ†” a โ‰ค b := Iff.rfl #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {a b : Regular ฮฑ} : (a : ฮฑ) < b โ†” a < b := Iff.rfl #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/ def toRegular : ฮฑ โ†’o Regular ฮฑ := โŸจfun a => โŸจaแถœแถœ, isRegular_compl _โŸฉ, fun _ _ h => coe_le_coe.1 <| compl_le_compl <| compl_le_compl hโŸฉ #align heyting.regular.to_regular Heyting.Regular.toRegular @[simp, norm_cast] theorem coe_toRegular (a : ฮฑ) : (toRegular a : ฮฑ) = aแถœแถœ := rfl #align heyting.regular.coe_to_regular Heyting.Regular.coe_toRegular @[simp] theorem toRegular_coe (a : Regular ฮฑ) : toRegular (a : ฮฑ) = a := coe_injective a.2 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe /-- The Galois insertion between `Regular.toRegular` and `coe`. -/ def gi : GaloisInsertion toRegular ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) where choice a ha := โŸจa, ha.antisymm le_compl_complโŸฉ gc _ b := coe_le_coe.symm.trans <| โŸจle_compl_compl.trans, fun h => (compl_anti <| compl_anti h).trans_eq b.2โŸฉ le_l_u _ := le_compl_compl choice_eq _ ha := coe_injective <| le_compl_compl.antisymm ha #align heyting.regular.gi Heyting.Regular.gi instance lattice : Lattice (Regular ฮฑ) := gi.liftLattice @[simp, norm_cast] theorem coe_sup (a b : Regular ฮฑ) : (โ†‘(a โŠ” b) : ฮฑ) = ((a : ฮฑ) โŠ” b)แถœแถœ := rfl #align heyting.regular.coe_sup Heyting.Regular.coe_sup instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp rw [compl_sup, inf_compl_eq_bot, compl_bot] himp_eq := fun a b => coe_injective (by dsimp rw [compl_sup, a.prop.eq] refine' eq_of_forall_le_iff fun c => le_himp_iff.trans _
rw [le_compl_iff_disjoint_right, disjoint_left_comm]
instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp rw [compl_sup, inf_compl_eq_bot, compl_bot] himp_eq := fun a b => coe_injective (by dsimp rw [compl_sup, a.prop.eq] refine' eq_of_forall_le_iff fun c => le_himp_iff.trans _
Mathlib.Order.Heyting.Regular.224_0.HFWfWmvQ8w4gAZO
instance : BooleanAlgebra (Regular ฮฑ)
Mathlib_Order_Heyting_Regular
ฮฑ : Type u_1 instโœ : HeytingAlgebra ฮฑ aโœ bโœ : ฮฑ srcโœยณ : Lattice (Regular ฮฑ) := lattice srcโœยฒ : BoundedOrder (Regular ฮฑ) := boundedOrder srcโœยน : HImp (Regular ฮฑ) := himp srcโœ : HasCompl (Regular ฮฑ) := hasCompl a b : Regular ฮฑ c : ฮฑ โŠข c โŠ“ โ†‘a โ‰ค โ†‘b โ†” Disjoint (โ†‘b)แถœ (c โŠ“ โ†‘a)
/- Copyright (c) 2022 Yaรซl Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaรซl Dillies -/ import Mathlib.Order.GaloisConnection #align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f" /-! # Heyting regular elements This file defines Heyting regular elements, elements of a Heyting algebra that are their own double complement, and proves that they form a boolean algebra. From a logic standpoint, this means that we can perform classical logic within intuitionistic logic by simply double-negating all propositions. This is practical for synthetic computability theory. ## Main declarations * `IsRegular`: `a` is Heyting-regular if `aแถœแถœ = a`. * `Regular`: The subtype of Heyting-regular elements. * `Regular.BooleanAlgebra`: Heyting-regular elements form a boolean algebra. ## References * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3] -/ open Function variable {ฮฑ : Type*} namespace Heyting section HasCompl variable [HasCompl ฮฑ] {a : ฮฑ} /-- An element of a Heyting algebra is regular if its double complement is itself. -/ def IsRegular (a : ฮฑ) : Prop := aแถœแถœ = a #align heyting.is_regular Heyting.IsRegular protected theorem IsRegular.eq : IsRegular a โ†’ aแถœแถœ = a := id #align heyting.is_regular.eq Heyting.IsRegular.eq instance IsRegular.decidablePred [DecidableEq ฮฑ] : @DecidablePred ฮฑ IsRegular := fun _ => โ€นDecidableEq ฮฑโ€บ _ _ #align heyting.is_regular.decidable_pred Heyting.IsRegular.decidablePred end HasCompl section HeytingAlgebra variable [HeytingAlgebra ฮฑ] {a b : ฮฑ} theorem isRegular_bot : IsRegular (โŠฅ : ฮฑ) := by rw [IsRegular, compl_bot, compl_top] #align heyting.is_regular_bot Heyting.isRegular_bot theorem isRegular_top : IsRegular (โŠค : ฮฑ) := by rw [IsRegular, compl_top, compl_bot] #align heyting.is_regular_top Heyting.isRegular_top theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โŠ“ b) := by rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq] #align heyting.is_regular.inf Heyting.IsRegular.inf theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a โ‡จ b) := by rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq] #align heyting.is_regular.himp Heyting.IsRegular.himp theorem isRegular_compl (a : ฮฑ) : IsRegular aแถœ := compl_compl_compl _ #align heyting.is_regular_compl Heyting.isRegular_compl protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aแถœ b โ†” b โ‰ค a := by rw [โ† le_compl_iff_disjoint_left, ha.eq] #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bแถœ โ†” a โ‰ค b := by rw [โ† le_compl_iff_disjoint_right, hb.eq] #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff -- See note [reducible non-instances] /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/ @[reducible] def _root_.BooleanAlgebra.ofRegular (h : โˆ€ a : ฮฑ, IsRegular (a โŠ” aแถœ)) : BooleanAlgebra ฮฑ := have : โˆ€ a : ฮฑ, IsCompl a aแถœ := fun a => โŸจdisjoint_compl_right, codisjoint_iff.2 <| by erw [โ† (h a), compl_sup, inf_compl_eq_bot, compl_bot]โŸฉ { โ€นHeytingAlgebra ฮฑโ€บ, GeneralizedHeytingAlgebra.toDistribLattice with himp_eq := fun a b => eq_of_forall_le_iff fun c => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm inf_compl_le_bot := fun a => (this _).1.le_bot top_le_sup_compl := fun a => (this _).2.top_le } #align boolean_algebra.of_regular BooleanAlgebra.ofRegular variable (ฮฑ) /-- The boolean algebra of Heyting regular elements. -/ def Regular : Type _ := { a : ฮฑ // IsRegular a } #align heyting.regular Heyting.Regular variable {ฮฑ} namespace Regular --Porting note: `val` and `prop` are new /-- The coercion `Regular ฮฑ โ†’ ฮฑ` -/ @[coe] def val : Regular ฮฑ โ†’ ฮฑ := Subtype.val theorem prop : โˆ€ a : Regular ฮฑ, IsRegular a.val := Subtype.prop instance : CoeOut (Regular ฮฑ) ฮฑ := โŸจRegular.valโŸฉ theorem coe_injective : Injective ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) := Subtype.coe_injective #align heyting.regular.coe_injective Heyting.Regular.coe_injective @[simp] theorem coe_inj {a b : Regular ฮฑ} : (a : ฮฑ) = b โ†” a = b := Subtype.coe_inj #align heyting.regular.coe_inj Heyting.Regular.coe_inj instance top : Top (Regular ฮฑ) := โŸจโŸจโŠค, isRegular_topโŸฉโŸฉ instance bot : Bot (Regular ฮฑ) := โŸจโŸจโŠฅ, isRegular_botโŸฉโŸฉ instance inf : Inf (Regular ฮฑ) := โŸจfun a b => โŸจa โŠ“ b, a.2.inf b.2โŸฉโŸฉ instance himp : HImp (Regular ฮฑ) := โŸจfun a b => โŸจa โ‡จ b, a.2.himp b.2โŸฉโŸฉ instance hasCompl : HasCompl (Regular ฮฑ) := โŸจfun a => โŸจaแถœ, isRegular_compl _โŸฉโŸฉ @[simp, norm_cast] theorem coe_top : ((โŠค : Regular ฮฑ) : ฮฑ) = โŠค := rfl #align heyting.regular.coe_top Heyting.Regular.coe_top @[simp, norm_cast] theorem coe_bot : ((โŠฅ : Regular ฮฑ) : ฮฑ) = โŠฅ := rfl #align heyting.regular.coe_bot Heyting.Regular.coe_bot @[simp, norm_cast] theorem coe_inf (a b : Regular ฮฑ) : (โ†‘(a โŠ“ b) : ฮฑ) = (a : ฮฑ) โŠ“ b := rfl #align heyting.regular.coe_inf Heyting.Regular.coe_inf @[simp, norm_cast] theorem coe_himp (a b : Regular ฮฑ) : (โ†‘(a โ‡จ b) : ฮฑ) = (a : ฮฑ) โ‡จ b := rfl #align heyting.regular.coe_himp Heyting.Regular.coe_himp @[simp, norm_cast] theorem coe_compl (a : Regular ฮฑ) : (โ†‘aแถœ : ฮฑ) = (a : ฮฑ)แถœ := rfl #align heyting.regular.coe_compl Heyting.Regular.coe_compl instance : Inhabited (Regular ฮฑ) := โŸจโŠฅโŸฉ instance : SemilatticeInf (Regular ฮฑ) := coe_injective.semilatticeInf _ coe_inf instance boundedOrder : BoundedOrder (Regular ฮฑ) := BoundedOrder.lift ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) (fun _ _ => id) coe_top coe_bot @[simp, norm_cast] theorem coe_le_coe {a b : Regular ฮฑ} : (a : ฮฑ) โ‰ค b โ†” a โ‰ค b := Iff.rfl #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe @[simp, norm_cast] theorem coe_lt_coe {a b : Regular ฮฑ} : (a : ฮฑ) < b โ†” a < b := Iff.rfl #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/ def toRegular : ฮฑ โ†’o Regular ฮฑ := โŸจfun a => โŸจaแถœแถœ, isRegular_compl _โŸฉ, fun _ _ h => coe_le_coe.1 <| compl_le_compl <| compl_le_compl hโŸฉ #align heyting.regular.to_regular Heyting.Regular.toRegular @[simp, norm_cast] theorem coe_toRegular (a : ฮฑ) : (toRegular a : ฮฑ) = aแถœแถœ := rfl #align heyting.regular.coe_to_regular Heyting.Regular.coe_toRegular @[simp] theorem toRegular_coe (a : Regular ฮฑ) : toRegular (a : ฮฑ) = a := coe_injective a.2 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe /-- The Galois insertion between `Regular.toRegular` and `coe`. -/ def gi : GaloisInsertion toRegular ((โ†‘) : Regular ฮฑ โ†’ ฮฑ) where choice a ha := โŸจa, ha.antisymm le_compl_complโŸฉ gc _ b := coe_le_coe.symm.trans <| โŸจle_compl_compl.trans, fun h => (compl_anti <| compl_anti h).trans_eq b.2โŸฉ le_l_u _ := le_compl_compl choice_eq _ ha := coe_injective <| le_compl_compl.antisymm ha #align heyting.regular.gi Heyting.Regular.gi instance lattice : Lattice (Regular ฮฑ) := gi.liftLattice @[simp, norm_cast] theorem coe_sup (a b : Regular ฮฑ) : (โ†‘(a โŠ” b) : ฮฑ) = ((a : ฮฑ) โŠ” b)แถœแถœ := rfl #align heyting.regular.coe_sup Heyting.Regular.coe_sup instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp rw [compl_sup, inf_compl_eq_bot, compl_bot] himp_eq := fun a b => coe_injective (by dsimp rw [compl_sup, a.prop.eq] refine' eq_of_forall_le_iff fun c => le_himp_iff.trans _ rw [le_compl_iff_disjoint_right, disjoint_left_comm]
rw [b.prop.disjoint_compl_left_iff]
instance : BooleanAlgebra (Regular ฮฑ) := { Regular.lattice, Regular.boundedOrder, Regular.himp, Regular.hasCompl with le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp rw [sup_inf_left, compl_compl_inf_distrib] inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right top_le_sup_compl := fun a => coe_le_coe.1 <| by dsimp rw [compl_sup, inf_compl_eq_bot, compl_bot] himp_eq := fun a b => coe_injective (by dsimp rw [compl_sup, a.prop.eq] refine' eq_of_forall_le_iff fun c => le_himp_iff.trans _ rw [le_compl_iff_disjoint_right, disjoint_left_comm]
Mathlib.Order.Heyting.Regular.224_0.HFWfWmvQ8w4gAZO
instance : BooleanAlgebra (Regular ฮฑ)
Mathlib_Order_Heyting_Regular
๐•œ : Type u_1 instโœโด : NontriviallyNormedField ๐•œ E : Type u_2 instโœยณ : SeminormedAddCommGroup E instโœยฒ : NormedSpace ๐•œ E F : Type u_3 instโœยน : NormedAddCommGroup F instโœ : NormedSpace ๐•œ F โŠข โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by
rw [inclusionInDoubleDual_norm_eq]
theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by
Mathlib.Analysis.NormedSpace.Dual.83_0.WirVfj6f5oiZZ2w
theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœโด : NontriviallyNormedField ๐•œ E : Type u_2 instโœยณ : SeminormedAddCommGroup E instโœยฒ : NormedSpace ๐•œ E F : Type u_3 instโœยน : NormedAddCommGroup F instโœ : NormedSpace ๐•œ F โŠข โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– โ‰ค 1
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq]
exact ContinuousLinearMap.norm_id_le
theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq]
Mathlib.Analysis.NormedSpace.Dual.83_0.WirVfj6f5oiZZ2w
theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœโด : NontriviallyNormedField ๐•œ E : Type u_2 instโœยณ : SeminormedAddCommGroup E instโœยฒ : NormedSpace ๐•œ E F : Type u_3 instโœยน : NormedAddCommGroup F instโœ : NormedSpace ๐•œ F x : E โŠข โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by
simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x
theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by
Mathlib.Analysis.NormedSpace.Dual.88_0.WirVfj6f5oiZZ2w
theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€–
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœโด : NontriviallyNormedField ๐•œ E : Type u_2 instโœยณ : SeminormedAddCommGroup E instโœยฒ : NormedSpace ๐•œ E F : Type u_3 instโœยน : NormedAddCommGroup F instโœ : NormedSpace ๐•œ F โŠข LinearMap.SeparatingLeft (dualPairing ๐•œ E)
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by
rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot]
theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by
Mathlib.Analysis.NormedSpace.Dual.102_0.WirVfj6f5oiZZ2w
theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœโด : NontriviallyNormedField ๐•œ E : Type u_2 instโœยณ : SeminormedAddCommGroup E instโœยฒ : NormedSpace ๐•œ E F : Type u_3 instโœยน : NormedAddCommGroup F instโœ : NormedSpace ๐•œ F โŠข Function.Injective โ‡‘(dualPairing ๐•œ E)
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot]
exact ContinuousLinearMap.coe_injective
theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot]
Mathlib.Analysis.NormedSpace.Dual.102_0.WirVfj6f5oiZZ2w
theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x : E M : โ„ hMp : 0 โ‰ค M hM : โˆ€ (f : Dual ๐•œ E), โ€–f xโ€– โ‰ค M * โ€–fโ€– โŠข โ€–xโ€– โ‰ค M
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by
classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one]
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by
Mathlib.Analysis.NormedSpace.Dual.113_0.WirVfj6f5oiZZ2w
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x : E M : โ„ hMp : 0 โ‰ค M hM : โˆ€ (f : Dual ๐•œ E), โ€–f xโ€– โ‰ค M * โ€–fโ€– โŠข โ€–xโ€– โ‰ค M
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical
by_cases h : x = 0
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical
Mathlib.Analysis.NormedSpace.Dual.113_0.WirVfj6f5oiZZ2w
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M
Mathlib_Analysis_NormedSpace_Dual
case pos ๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x : E M : โ„ hMp : 0 โ‰ค M hM : โˆ€ (f : Dual ๐•œ E), โ€–f xโ€– โ‰ค M * โ€–fโ€– h : x = 0 โŠข โ€–xโ€– โ‰ค M
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท
simp only [h, hMp, norm_zero]
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท
Mathlib.Analysis.NormedSpace.Dual.113_0.WirVfj6f5oiZZ2w
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M
Mathlib_Analysis_NormedSpace_Dual
case neg ๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x : E M : โ„ hMp : 0 โ‰ค M hM : โˆ€ (f : Dual ๐•œ E), โ€–f xโ€– โ‰ค M * โ€–fโ€– h : ยฌx = 0 โŠข โ€–xโ€– โ‰ค M
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท
obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท
Mathlib.Analysis.NormedSpace.Dual.113_0.WirVfj6f5oiZZ2w
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M
Mathlib_Analysis_NormedSpace_Dual
case neg.intro.intro ๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x : E M : โ„ hMp : 0 โ‰ค M hM : โˆ€ (f : Dual ๐•œ E), โ€–f xโ€– โ‰ค M * โ€–fโ€– h : ยฌx = 0 f : E โ†’L[๐•œ] ๐•œ hfโ‚ : โ€–fโ€– = 1 hfx : f x = โ†‘โ€–xโ€– โŠข โ€–xโ€– โ‰ค M
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h
calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one]
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h
Mathlib.Analysis.NormedSpace.Dual.113_0.WirVfj6f5oiZZ2w
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x : E M : โ„ hMp : 0 โ‰ค M hM : โˆ€ (f : Dual ๐•œ E), โ€–f xโ€– โ‰ค M * โ€–fโ€– h : ยฌx = 0 f : E โ†’L[๐•œ] ๐•œ hfโ‚ : โ€–fโ€– = 1 hfx : f x = โ†‘โ€–xโ€– โŠข โ€–โ†‘โ€–xโ€–โ€– = โ€–f xโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by
rw [hfx]
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by
Mathlib.Analysis.NormedSpace.Dual.113_0.WirVfj6f5oiZZ2w
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x : E M : โ„ hMp : 0 โ‰ค M hM : โˆ€ (f : Dual ๐•œ E), โ€–f xโ€– โ‰ค M * โ€–fโ€– h : ยฌx = 0 f : E โ†’L[๐•œ] ๐•œ hfโ‚ : โ€–fโ€– = 1 hfx : f x = โ†‘โ€–xโ€– โŠข M * โ€–fโ€– = M
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by
rw [hfโ‚, mul_one]
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by
Mathlib.Analysis.NormedSpace.Dual.113_0.WirVfj6f5oiZZ2w
/-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x : E h : โˆ€ (f : Dual ๐•œ E), f x = 0 f : Dual ๐•œ E โŠข โ€–f xโ€– โ‰ค 0 * โ€–fโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by
simp [h f]
theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by
Mathlib.Analysis.NormedSpace.Dual.128_0.WirVfj6f5oiZZ2w
theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x : E hx : x = 0 โŠข โˆ€ (g : Dual ๐•œ E), g x = 0
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by
simp [hx]
theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by
Mathlib.Analysis.NormedSpace.Dual.132_0.WirVfj6f5oiZZ2w
theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x y : E โŠข x = y โ†” โˆ€ (g : Dual ๐•œ E), g x = g y
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by
rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)]
/-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by
Mathlib.Analysis.NormedSpace.Dual.136_0.WirVfj6f5oiZZ2w
/-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E x y : E โŠข (โˆ€ (g : Dual ๐•œ E), g (x - y) = 0) โ†” โˆ€ (g : Dual ๐•œ E), g x = g y
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)]
simp [sub_eq_zero]
/-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)]
Mathlib.Analysis.NormedSpace.Dual.136_0.WirVfj6f5oiZZ2w
/-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E srcโœ : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := inclusionInDoubleDual ๐•œ E โŠข โˆ€ (x : E), โ€–โ†‘srcโœ xโ€– = โ€–xโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by
intro x
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by
Mathlib.Analysis.NormedSpace.Dual.142_0.WirVfj6f5oiZZ2w
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E srcโœ : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := inclusionInDoubleDual ๐•œ E x : E โŠข โ€–โ†‘srcโœ xโ€– = โ€–xโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x
apply le_antisymm
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x
Mathlib.Analysis.NormedSpace.Dual.142_0.WirVfj6f5oiZZ2w
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E)
Mathlib_Analysis_NormedSpace_Dual
case a ๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E srcโœ : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := inclusionInDoubleDual ๐•œ E x : E โŠข โ€–โ†‘srcโœ xโ€– โ‰ค โ€–xโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท
exact double_dual_bound ๐•œ E x
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท
Mathlib.Analysis.NormedSpace.Dual.142_0.WirVfj6f5oiZZ2w
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E)
Mathlib_Analysis_NormedSpace_Dual
case a ๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E srcโœ : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := inclusionInDoubleDual ๐•œ E x : E โŠข โ€–xโ€– โ‰ค โ€–โ†‘srcโœ xโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x
rw [ContinuousLinearMap.norm_def]
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x
Mathlib.Analysis.NormedSpace.Dual.142_0.WirVfj6f5oiZZ2w
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E)
Mathlib_Analysis_NormedSpace_Dual
case a ๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E srcโœ : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := inclusionInDoubleDual ๐•œ E x : E โŠข โ€–xโ€– โ‰ค sInf {c | 0 โ‰ค c โˆง โˆ€ (x_1 : Dual ๐•œ E), โ€–(โ†‘srcโœ x) x_1โ€– โ‰ค c * โ€–x_1โ€–}
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def]
refine' le_csInf ContinuousLinearMap.bounds_nonempty _
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def]
Mathlib.Analysis.NormedSpace.Dual.142_0.WirVfj6f5oiZZ2w
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E)
Mathlib_Analysis_NormedSpace_Dual
case a ๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E srcโœ : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := inclusionInDoubleDual ๐•œ E x : E โŠข โˆ€ b โˆˆ {c | 0 โ‰ค c โˆง โˆ€ (x_1 : Dual ๐•œ E), โ€–(โ†‘srcโœ x) x_1โ€– โ‰ค c * โ€–x_1โ€–}, โ€–xโ€– โ‰ค b
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _
rintro c โŸจhc1, hc2โŸฉ
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _
Mathlib.Analysis.NormedSpace.Dual.142_0.WirVfj6f5oiZZ2w
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E)
Mathlib_Analysis_NormedSpace_Dual
case a.intro ๐•œ : Type v instโœยฒ : IsROrC ๐•œ E : Type u instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E srcโœ : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := inclusionInDoubleDual ๐•œ E x : E c : โ„ hc1 : 0 โ‰ค c hc2 : โˆ€ (x_1 : Dual ๐•œ E), โ€–(โ†‘srcโœ x) x_1โ€– โ‰ค c * โ€–x_1โ€– โŠข โ€–xโ€– โ‰ค c
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ
exact norm_le_dual_bound ๐•œ x hc1 hc2
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ
Mathlib.Analysis.NormedSpace.Dual.142_0.WirVfj6f5oiZZ2w
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E โŠข IsClosed (polar ๐•œ s)
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by
dsimp only [NormedSpace.polar]
theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by
Mathlib.Analysis.NormedSpace.Dual.183_0.WirVfj6f5oiZZ2w
theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E โŠข IsClosed (LinearMap.polar (LinearMap.flip (dualPairing ๐•œ E)) s)
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar]
simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply]
theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar]
Mathlib.Analysis.NormedSpace.Dual.183_0.WirVfj6f5oiZZ2w
theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E โŠข IsClosed (โ‹‚ x โˆˆ s, {y | โ€–((dualPairing ๐•œ E) y) xโ€– โ‰ค 1})
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply]
refine' isClosed_biInter fun z _ => _
theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply]
Mathlib.Analysis.NormedSpace.Dual.183_0.WirVfj6f5oiZZ2w
theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E z : E xโœ : z โˆˆ s โŠข IsClosed {y | โ€–((dualPairing ๐•œ E) y) zโ€– โ‰ค 1}
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _
exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm
theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _
Mathlib.Analysis.NormedSpace.Dual.183_0.WirVfj6f5oiZZ2w
theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E โŠข IsClosed ((LinearMap.polar (LinearMap.flip (LinearMap.flip (dualPairing ๐•œ E))) โˆ˜ โ‡‘OrderDual.ofDual) (LinearMap.polar (LinearMap.flip (dualPairing ๐•œ E)) s))
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by
simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous
@[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by
Mathlib.Analysis.NormedSpace.Dual.190_0.WirVfj6f5oiZZ2w
@[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– โŠข cโปยน โ€ข x' โˆˆ polar ๐•œ s
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by
by_cases c_zero : c = 0
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
case pos ๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– c_zero : c = 0 โŠข cโปยน โ€ข x' โˆˆ polar ๐•œ s
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท
simp only [c_zero, inv_zero, zero_smul]
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
case pos ๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– c_zero : c = 0 โŠข 0 โˆˆ polar ๐•œ s
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul]
exact (dualPairing ๐•œ E).flip.zero_mem_polar _
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul]
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
case neg ๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– c_zero : ยฌc = 0 โŠข cโปยน โ€ข x' โˆˆ polar ๐•œ s
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _
have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
case neg ๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– c_zero : ยฌc = 0 eq : โˆ€ (z : E), โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– โŠข cโปยน โ€ข x' โˆˆ polar ๐•œ s
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _
have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _)
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– c_zero : ยฌc = 0 eq : โˆ€ (z : E), โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– โŠข โˆ€ z โˆˆ s, โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by
intro z hzs
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– c_zero : ยฌc = 0 eq : โˆ€ (z : E), โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– z : E hzs : z โˆˆ s โŠข โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs
rw [eq z]
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– c_zero : ยฌc = 0 eq : โˆ€ (z : E), โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– z : E hzs : z โˆˆ s โŠข โ€–cโปยนโ€– * โ€–x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z]
apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _)
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z]
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
case neg ๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– c_zero : ยฌc = 0 eq : โˆ€ (z : E), โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– le : โˆ€ z โˆˆ s, โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– โŠข cโปยน โ€ข x' โˆˆ polar ๐•œ s
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _)
have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv]
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _)
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– c_zero : ยฌc = 0 eq : โˆ€ (z : E), โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– le : โˆ€ z โˆˆ s, โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– โŠข โ€–cโปยนโ€– * โ€–cโ€– = 1
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by
simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv]
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
case neg ๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E s : Set E x' : Dual ๐•œ E c : ๐•œ hc : โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค โ€–cโ€– c_zero : ยฌc = 0 eq : โˆ€ (z : E), โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– le : โˆ€ z โˆˆ s, โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 โŠข cโปยน โ€ข x' โˆˆ polar ๐•œ s
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv]
rwa [cancel] at le
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv]
Mathlib.Analysis.NormedSpace.Dual.201_0.WirVfj6f5oiZZ2w
/-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E c : ๐•œ hc : 1 < โ€–cโ€– r : โ„ hr : 0 < r โŠข polar ๐•œ (ball 0 r) โІ closedBall 0 (โ€–cโ€– / r)
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv] rwa [cancel] at le #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by
intro x' hx'
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by
Mathlib.Analysis.NormedSpace.Dual.218_0.WirVfj6f5oiZZ2w
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E c : ๐•œ hc : 1 < โ€–cโ€– r : โ„ hr : 0 < r x' : Dual ๐•œ E hx' : x' โˆˆ polar ๐•œ (ball 0 r) โŠข x' โˆˆ closedBall 0 (โ€–cโ€– / r)
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv] rwa [cancel] at le #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx'
rw [mem_polar_iff] at hx'
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx'
Mathlib.Analysis.NormedSpace.Dual.218_0.WirVfj6f5oiZZ2w
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E c : ๐•œ hc : 1 < โ€–cโ€– r : โ„ hr : 0 < r x' : Dual ๐•œ E hx' : โˆ€ z โˆˆ ball 0 r, โ€–x' zโ€– โ‰ค 1 โŠข x' โˆˆ closedBall 0 (โ€–cโ€– / r)
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv] rwa [cancel] at le #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx'
simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at *
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx'
Mathlib.Analysis.NormedSpace.Dual.218_0.WirVfj6f5oiZZ2w
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E c : ๐•œ hc : 1 < โ€–cโ€– r : โ„ hr : 0 < r x' : Dual ๐•œ E hx' : โˆ€ (z : E), โ€–zโ€– < r โ†’ โ€–x' zโ€– โ‰ค 1 โŠข โ€–x'โ€– โ‰ค โ€–cโ€– / r
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv] rwa [cancel] at le #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at *
have hcr : 0 < โ€–cโ€– / r := div_pos (zero_lt_one.trans hc) hr
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at *
Mathlib.Analysis.NormedSpace.Dual.218_0.WirVfj6f5oiZZ2w
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E c : ๐•œ hc : 1 < โ€–cโ€– r : โ„ hr : 0 < r x' : Dual ๐•œ E hx' : โˆ€ (z : E), โ€–zโ€– < r โ†’ โ€–x' zโ€– โ‰ค 1 hcr : 0 < โ€–cโ€– / r โŠข โ€–x'โ€– โ‰ค โ€–cโ€– / r
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv] rwa [cancel] at le #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at * have hcr : 0 < โ€–cโ€– / r := div_pos (zero_lt_one.trans hc) hr
refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x hโ‚ hโ‚‚ => _
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at * have hcr : 0 < โ€–cโ€– / r := div_pos (zero_lt_one.trans hc) hr
Mathlib.Analysis.NormedSpace.Dual.218_0.WirVfj6f5oiZZ2w
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E c : ๐•œ hc : 1 < โ€–cโ€– r : โ„ hr : 0 < r x' : Dual ๐•œ E hx' : โˆ€ (z : E), โ€–zโ€– < r โ†’ โ€–x' zโ€– โ‰ค 1 hcr : 0 < โ€–cโ€– / r x : E hโ‚ : r / โ€–cโ€– โ‰ค โ€–xโ€– hโ‚‚ : โ€–xโ€– < r โŠข โ€–x' xโ€– โ‰ค โ€–cโ€– / r * โ€–xโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv] rwa [cancel] at le #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at * have hcr : 0 < โ€–cโ€– / r := div_pos (zero_lt_one.trans hc) hr refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x hโ‚ hโ‚‚ => _
calc โ€–x' xโ€– โ‰ค 1 := hx' _ hโ‚‚ _ โ‰ค โ€–cโ€– / r * โ€–xโ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa [inv_div])
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at * have hcr : 0 < โ€–cโ€– / r := div_pos (zero_lt_one.trans hc) hr refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x hโ‚ hโ‚‚ => _
Mathlib.Analysis.NormedSpace.Dual.218_0.WirVfj6f5oiZZ2w
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r)
Mathlib_Analysis_NormedSpace_Dual
๐•œ : Type u_1 instโœยฒ : NontriviallyNormedField ๐•œ E : Type u_2 instโœยน : SeminormedAddCommGroup E instโœ : NormedSpace ๐•œ E c : ๐•œ hc : 1 < โ€–cโ€– r : โ„ hr : 0 < r x' : Dual ๐•œ E hx' : โˆ€ (z : E), โ€–zโ€– < r โ†’ โ€–x' zโ€– โ‰ค 1 hcr : 0 < โ€–cโ€– / r x : E hโ‚ : r / โ€–cโ€– โ‰ค โ€–xโ€– hโ‚‚ : โ€–xโ€– < r โŠข (โ€–cโ€– / r)โปยน โ‰ค โ€–xโ€–
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv] rwa [cancel] at le #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at * have hcr : 0 < โ€–cโ€– / r := div_pos (zero_lt_one.trans hc) hr refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x hโ‚ hโ‚‚ => _ calc โ€–x' xโ€– โ‰ค 1 := hx' _ hโ‚‚ _ โ‰ค โ€–cโ€– / r * โ€–xโ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by
rwa [inv_div]
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at * have hcr : 0 < โ€–cโ€– / r := div_pos (zero_lt_one.trans hc) hr refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x hโ‚ hโ‚‚ => _ calc โ€–x' xโ€– โ‰ค 1 := hx' _ hโ‚‚ _ โ‰ค โ€–cโ€– / r * โ€–xโ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by
Mathlib.Analysis.NormedSpace.Dual.218_0.WirVfj6f5oiZZ2w
theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r)
Mathlib_Analysis_NormedSpace_Dual
๐•œโœ : Type u_1 instโœโต : NontriviallyNormedField ๐•œโœ Eโœ : Type u_2 instโœโด : SeminormedAddCommGroup Eโœ instโœยณ : NormedSpace ๐•œโœ Eโœ ๐•œ : Type u_3 E : Type u_4 instโœยฒ : IsROrC ๐•œ instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E r : โ„ hr : 0 < r โŠข polar ๐•œ (closedBall 0 r) = closedBall 0 rโปยน
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv] rwa [cancel] at le #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at * have hcr : 0 < โ€–cโ€– / r := div_pos (zero_lt_one.trans hc) hr refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x hโ‚ hโ‚‚ => _ calc โ€–x' xโ€– โ‰ค 1 := hx' _ hโ‚‚ _ โ‰ค โ€–cโ€– / r * โ€–xโ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa [inv_div]) #align normed_space.polar_ball_subset_closed_ball_div NormedSpace.polar_ball_subset_closedBall_div variable (๐•œ) theorem closedBall_inv_subset_polar_closedBall {r : โ„} : closedBall (0 : Dual ๐•œ E) rโปยน โІ polar ๐•œ (closedBall (0 : E) r) := fun x' hx' x hx => calc โ€–x' xโ€– โ‰ค โ€–x'โ€– * โ€–xโ€– := x'.le_op_norm x _ โ‰ค rโปยน * r := (mul_le_mul (mem_closedBall_zero_iff.1 hx') (mem_closedBall_zero_iff.1 hx) (norm_nonneg _) (dist_nonneg.trans hx')) _ = r / r := (inv_mul_eq_div _ _) _ โ‰ค 1 := div_self_le_one r #align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBall /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with inverse radius. -/ theorem polar_closedBall {๐•œ E : Type*} [IsROrC ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) : polar ๐•œ (closedBall (0 : E) r) = closedBall (0 : Dual ๐•œ E) rโปยน := by
refine' Subset.antisymm _ (closedBall_inv_subset_polar_closedBall ๐•œ)
/-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with inverse radius. -/ theorem polar_closedBall {๐•œ E : Type*} [IsROrC ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) : polar ๐•œ (closedBall (0 : E) r) = closedBall (0 : Dual ๐•œ E) rโปยน := by
Mathlib.Analysis.NormedSpace.Dual.243_0.WirVfj6f5oiZZ2w
/-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with inverse radius. -/ theorem polar_closedBall {๐•œ E : Type*} [IsROrC ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) : polar ๐•œ (closedBall (0 : E) r) = closedBall (0 : Dual ๐•œ E) rโปยน
Mathlib_Analysis_NormedSpace_Dual
๐•œโœ : Type u_1 instโœโต : NontriviallyNormedField ๐•œโœ Eโœ : Type u_2 instโœโด : SeminormedAddCommGroup Eโœ instโœยณ : NormedSpace ๐•œโœ Eโœ ๐•œ : Type u_3 E : Type u_4 instโœยฒ : IsROrC ๐•œ instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E r : โ„ hr : 0 < r โŠข polar ๐•œ (closedBall 0 r) โІ closedBall 0 rโปยน
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv] rwa [cancel] at le #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at * have hcr : 0 < โ€–cโ€– / r := div_pos (zero_lt_one.trans hc) hr refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x hโ‚ hโ‚‚ => _ calc โ€–x' xโ€– โ‰ค 1 := hx' _ hโ‚‚ _ โ‰ค โ€–cโ€– / r * โ€–xโ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa [inv_div]) #align normed_space.polar_ball_subset_closed_ball_div NormedSpace.polar_ball_subset_closedBall_div variable (๐•œ) theorem closedBall_inv_subset_polar_closedBall {r : โ„} : closedBall (0 : Dual ๐•œ E) rโปยน โІ polar ๐•œ (closedBall (0 : E) r) := fun x' hx' x hx => calc โ€–x' xโ€– โ‰ค โ€–x'โ€– * โ€–xโ€– := x'.le_op_norm x _ โ‰ค rโปยน * r := (mul_le_mul (mem_closedBall_zero_iff.1 hx') (mem_closedBall_zero_iff.1 hx) (norm_nonneg _) (dist_nonneg.trans hx')) _ = r / r := (inv_mul_eq_div _ _) _ โ‰ค 1 := div_self_le_one r #align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBall /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with inverse radius. -/ theorem polar_closedBall {๐•œ E : Type*} [IsROrC ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) : polar ๐•œ (closedBall (0 : E) r) = closedBall (0 : Dual ๐•œ E) rโปยน := by refine' Subset.antisymm _ (closedBall_inv_subset_polar_closedBall ๐•œ)
intro x' h
/-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with inverse radius. -/ theorem polar_closedBall {๐•œ E : Type*} [IsROrC ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) : polar ๐•œ (closedBall (0 : E) r) = closedBall (0 : Dual ๐•œ E) rโปยน := by refine' Subset.antisymm _ (closedBall_inv_subset_polar_closedBall ๐•œ)
Mathlib.Analysis.NormedSpace.Dual.243_0.WirVfj6f5oiZZ2w
/-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with inverse radius. -/ theorem polar_closedBall {๐•œ E : Type*} [IsROrC ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) : polar ๐•œ (closedBall (0 : E) r) = closedBall (0 : Dual ๐•œ E) rโปยน
Mathlib_Analysis_NormedSpace_Dual
๐•œโœ : Type u_1 instโœโต : NontriviallyNormedField ๐•œโœ Eโœ : Type u_2 instโœโด : SeminormedAddCommGroup Eโœ instโœยณ : NormedSpace ๐•œโœ Eโœ ๐•œ : Type u_3 E : Type u_4 instโœยฒ : IsROrC ๐•œ instโœยน : NormedAddCommGroup E instโœ : NormedSpace ๐•œ E r : โ„ hr : 0 < r x' : Dual ๐•œ E h : x' โˆˆ polar ๐•œ (closedBall 0 r) โŠข x' โˆˆ closedBall 0 rโปยน
/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import Mathlib.Analysis.NormedSpace.HahnBanach.Extension import Mathlib.Analysis.NormedSpace.IsROrC import Mathlib.Analysis.LocallyConvex.Polar #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # The topological dual of a normed space In this file we define the topological dual `NormedSpace.Dual` of a normed space, and the continuous linear map `NormedSpace.inclusionInDoubleDual` from a normed space into its double dual. For base field `๐•œ = โ„` or `๐•œ = โ„‚`, this map is actually an isometric embedding; we provide a version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear isometric embedding, `E โ†’โ‚—แตข[๐•œ] (Dual ๐•œ (Dual ๐•œ E))`. Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed. ## Main definitions * `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space in its double dual, considered as a bounded linear map and as a linear isometry, respectively. * `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals `x'` for which `โ€–x' zโ€– โ‰ค 1` for every `z โˆˆ s`. ## Tags dual -/ noncomputable section open Classical Topology Bornology universe u v namespace NormedSpace section General variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] variable (F : Type*) [NormedAddCommGroup F] [NormedSpace ๐•œ F] /-- The topological dual of a seminormed space `E`. -/ abbrev Dual : Type _ := E โ†’L[๐•œ] ๐•œ #align normed_space.dual NormedSpace.Dual -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until -- leanprover/lean4#2522 is resolved; remove once fixed instance : NormedSpace ๐•œ (Dual ๐•œ E) := inferInstance -- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until -- leanprover/lean4#2522 is resolved; remove once fixed instance : SeminormedAddCommGroup (Dual ๐•œ E) := inferInstance /-- The inclusion of a normed space in its double (topological) dual, considered as a bounded linear map. -/ def inclusionInDoubleDual : E โ†’L[๐•œ] Dual ๐•œ (Dual ๐•œ E) := ContinuousLinearMap.apply ๐•œ ๐•œ #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual @[simp] theorem dual_def (x : E) (f : Dual ๐•œ E) : inclusionInDoubleDual ๐•œ E x f = f x := rfl #align normed_space.dual_def NormedSpace.dual_def theorem inclusionInDoubleDual_norm_eq : โ€–inclusionInDoubleDual ๐•œ Eโ€– = โ€–ContinuousLinearMap.id ๐•œ (Dual ๐•œ E)โ€– := ContinuousLinearMap.op_norm_flip _ #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq theorem inclusionInDoubleDual_norm_le : โ€–inclusionInDoubleDual ๐•œ Eโ€– โ‰ค 1 := by rw [inclusionInDoubleDual_norm_eq] exact ContinuousLinearMap.norm_id_le #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le theorem double_dual_bound (x : E) : โ€–(inclusionInDoubleDual ๐•œ E) xโ€– โ‰ค โ€–xโ€– := by simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le ๐•œ E) x #align normed_space.double_dual_bound NormedSpace.double_dual_bound /-- The dual pairing as a bilinear form. -/ def dualPairing : Dual ๐•œ E โ†’โ‚—[๐•œ] E โ†’โ‚—[๐•œ] ๐•œ := ContinuousLinearMap.coeLM ๐•œ #align normed_space.dual_pairing NormedSpace.dualPairing @[simp] theorem dualPairing_apply {v : Dual ๐•œ E} {x : E} : dualPairing ๐•œ E v x = v x := rfl #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply theorem dualPairing_separatingLeft : (dualPairing ๐•œ E).SeparatingLeft := by rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot] exact ContinuousLinearMap.coe_injective #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft end General section BidualIsometry variable (๐•œ : Type v) [IsROrC ๐•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace ๐•œ E] /-- If one controls the norm of every `f x`, then one controls the norm of `x`. Compare `ContinuousLinearMap.op_norm_le_bound`. -/ theorem norm_le_dual_bound (x : E) {M : โ„} (hMp : 0 โ‰ค M) (hM : โˆ€ f : Dual ๐•œ E, โ€–f xโ€– โ‰ค M * โ€–fโ€–) : โ€–xโ€– โ‰ค M := by classical by_cases h : x = 0 ยท simp only [h, hMp, norm_zero] ยท obtain โŸจf, hfโ‚, hfxโŸฉ : โˆƒ f : E โ†’L[๐•œ] ๐•œ, โ€–fโ€– = 1 โˆง f x = โ€–xโ€– := exists_dual_vector ๐•œ x h calc โ€–xโ€– = โ€–(โ€–xโ€– : ๐•œ)โ€– := IsROrC.norm_coe_norm.symm _ = โ€–f xโ€– := by rw [hfx] _ โ‰ค M * โ€–fโ€– := (hM f) _ = M := by rw [hfโ‚, mul_one] #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : โˆ€ f : Dual ๐•œ E, f x = (0 : ๐•œ)) : x = 0 := norm_le_zero_iff.mp (norm_le_dual_bound ๐•œ x le_rfl fun f => by simp [h f]) #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 โ†” โˆ€ g : Dual ๐•œ E, g x = 0 := โŸจfun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero ๐•œ hโŸฉ #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero /-- See also `geometric_hahn_banach_point_point`. -/ theorem eq_iff_forall_dual_eq {x y : E} : x = y โ†” โˆ€ g : Dual ๐•œ E, g x = g y := by rw [โ† sub_eq_zero, eq_zero_iff_forall_dual_eq_zero ๐•œ (x - y)] simp [sub_eq_zero] #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/ def inclusionInDoubleDualLi : E โ†’โ‚—แตข[๐•œ] Dual ๐•œ (Dual ๐•œ E) := { inclusionInDoubleDual ๐•œ E with norm_map' := by intro x apply le_antisymm ยท exact double_dual_bound ๐•œ E x rw [ContinuousLinearMap.norm_def] refine' le_csInf ContinuousLinearMap.bounds_nonempty _ rintro c โŸจhc1, hc2โŸฉ exact norm_le_dual_bound ๐•œ x hc1 hc2 } #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi end BidualIsometry section PolarSets open Metric Set NormedSpace /-- Given a subset `s` in a normed space `E` (over a field `๐•œ`), the polar `polar ๐•œ s` is the subset of `Dual ๐•œ E` consisting of those functionals which evaluate to something of norm at most one at all points `z โˆˆ s`. -/ def polar (๐•œ : Type*) [NontriviallyNormedField ๐•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] : Set E โ†’ Set (Dual ๐•œ E) := (dualPairing ๐•œ E).flip.polar #align normed_space.polar NormedSpace.polar variable (๐•œ : Type*) [NontriviallyNormedField ๐•œ] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] theorem mem_polar_iff {x' : Dual ๐•œ E} (s : Set E) : x' โˆˆ polar ๐•œ s โ†” โˆ€ z โˆˆ s, โ€–x' zโ€– โ‰ค 1 := Iff.rfl #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff @[simp] theorem polar_univ : polar ๐•œ (univ : Set E) = {(0 : Dual ๐•œ E)} := (dualPairing ๐•œ E).flip.polar_univ (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft ๐•œ E)) #align normed_space.polar_univ NormedSpace.polar_univ theorem isClosed_polar (s : Set E) : IsClosed (polar ๐•œ s) := by dsimp only [NormedSpace.polar] simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply] refine' isClosed_biInter fun z _ => _ exact isClosed_Iic.preimage (ContinuousLinearMap.apply ๐•œ ๐•œ z).continuous.norm #align normed_space.is_closed_polar NormedSpace.isClosed_polar @[simp] theorem polar_closure (s : Set E) : polar ๐•œ (closure s) = polar ๐•œ s := ((dualPairing ๐•œ E).flip.polar_antitone subset_closure).antisymm <| (dualPairing ๐•œ E).flip.polar_gc.l_le <| closure_minimal ((dualPairing ๐•œ E).flip.polar_gc.le_u_l s) <| by simpa [LinearMap.flip_flip] using (isClosed_polar _ _).preimage (inclusionInDoubleDual ๐•œ E).continuous #align normed_space.polar_closure NormedSpace.polar_closure variable {๐•œ} /-- If `x'` is a dual element such that the norms `โ€–x' zโ€–` are bounded for `z โˆˆ s`, then a small scalar multiple of `x'` is in `polar ๐•œ s`. -/ theorem smul_mem_polar {s : Set E} {x' : Dual ๐•œ E} {c : ๐•œ} (hc : โˆ€ z, z โˆˆ s โ†’ โ€–x' zโ€– โ‰ค โ€–cโ€–) : cโปยน โ€ข x' โˆˆ polar ๐•œ s := by by_cases c_zero : c = 0 ยท simp only [c_zero, inv_zero, zero_smul] exact (dualPairing ๐•œ E).flip.zero_mem_polar _ have eq : โˆ€ z, โ€–cโปยน โ€ข x' zโ€– = โ€–cโปยนโ€– * โ€–x' zโ€– := fun z => norm_smul cโปยน _ have le : โˆ€ z, z โˆˆ s โ†’ โ€–cโปยน โ€ข x' zโ€– โ‰ค โ€–cโปยนโ€– * โ€–cโ€– := by intro z hzs rw [eq z] apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _) have cancel : โ€–cโปยนโ€– * โ€–cโ€– = 1 := by simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv] rwa [cancel] at le #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar theorem polar_ball_subset_closedBall_div {c : ๐•œ} (hc : 1 < โ€–cโ€–) {r : โ„} (hr : 0 < r) : polar ๐•œ (ball (0 : E) r) โІ closedBall (0 : Dual ๐•œ E) (โ€–cโ€– / r) := by intro x' hx' rw [mem_polar_iff] at hx' simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at * have hcr : 0 < โ€–cโ€– / r := div_pos (zero_lt_one.trans hc) hr refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x hโ‚ hโ‚‚ => _ calc โ€–x' xโ€– โ‰ค 1 := hx' _ hโ‚‚ _ โ‰ค โ€–cโ€– / r * โ€–xโ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa [inv_div]) #align normed_space.polar_ball_subset_closed_ball_div NormedSpace.polar_ball_subset_closedBall_div variable (๐•œ) theorem closedBall_inv_subset_polar_closedBall {r : โ„} : closedBall (0 : Dual ๐•œ E) rโปยน โІ polar ๐•œ (closedBall (0 : E) r) := fun x' hx' x hx => calc โ€–x' xโ€– โ‰ค โ€–x'โ€– * โ€–xโ€– := x'.le_op_norm x _ โ‰ค rโปยน * r := (mul_le_mul (mem_closedBall_zero_iff.1 hx') (mem_closedBall_zero_iff.1 hx) (norm_nonneg _) (dist_nonneg.trans hx')) _ = r / r := (inv_mul_eq_div _ _) _ โ‰ค 1 := div_self_le_one r #align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBall /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with inverse radius. -/ theorem polar_closedBall {๐•œ E : Type*} [IsROrC ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) : polar ๐•œ (closedBall (0 : E) r) = closedBall (0 : Dual ๐•œ E) rโปยน := by refine' Subset.antisymm _ (closedBall_inv_subset_polar_closedBall ๐•œ) intro x' h
simp only [mem_closedBall_zero_iff]
/-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with inverse radius. -/ theorem polar_closedBall {๐•œ E : Type*} [IsROrC ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) : polar ๐•œ (closedBall (0 : E) r) = closedBall (0 : Dual ๐•œ E) rโปยน := by refine' Subset.antisymm _ (closedBall_inv_subset_polar_closedBall ๐•œ) intro x' h
Mathlib.Analysis.NormedSpace.Dual.243_0.WirVfj6f5oiZZ2w
/-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with inverse radius. -/ theorem polar_closedBall {๐•œ E : Type*} [IsROrC ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (hr : 0 < r) : polar ๐•œ (closedBall (0 : E) r) = closedBall (0 : Dual ๐•œ E) rโปยน
Mathlib_Analysis_NormedSpace_Dual