state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case insert α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s✝ : Set α ι : Type u_5 f : ι → α → F' i : ι s : Finset ι his : i ∉ s heq : (∀ i ∈ s, Integrable (f i)) → μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] hf : ∀ i_1 ∈ insert i s, Integrable (f i_1) ⊢ μ[f i + ∑ x in s, f x|m] =ᵐ[μ] μ[f i|m] + ∑ x in s, μ[f x|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his]
exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem))
theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his]
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.293_0.yd50cWAuCo6hlry
theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' ⊢ μ[c • f|m] =ᵐ[μ] c • μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by
by_cases hm : m ≤ m0
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 ⊢ μ[c • f|m] =ᵐ[μ] c • μ[f|m] case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : ¬m ≤ m0 ⊢ μ[c • f|m] =ᵐ[μ] c • μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0
swap
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : ¬m ≤ m0 ⊢ μ[c • f|m] =ᵐ[μ] c • μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; ·
simp_rw [condexp_of_not_le hm]
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : ¬m ≤ m0 ⊢ 0 =ᵐ[μ] c • 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm];
simp
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm];
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : ¬m ≤ m0 ⊢ 0 =ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp;
rfl
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp;
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 ⊢ μ[c • f|m] =ᵐ[μ] c • μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl
by_cases hμm : SigmaFinite (μ.trim hm)
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm : SigmaFinite (Measure.trim μ hm) ⊢ μ[c • f|m] =ᵐ[μ] c • μ[f|m] case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm : ¬SigmaFinite (Measure.trim μ hm) ⊢ μ[c • f|m] =ᵐ[μ] c • μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm)
swap
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm)
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm : ¬SigmaFinite (Measure.trim μ hm) ⊢ μ[c • f|m] =ᵐ[μ] c • μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; ·
simp_rw [condexp_of_not_sigmaFinite hm hμm]
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm : ¬SigmaFinite (Measure.trim μ hm) ⊢ 0 =ᵐ[μ] c • 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm];
simp
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm];
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm : ¬SigmaFinite (Measure.trim μ hm) ⊢ 0 =ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp;
rfl
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp;
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm : SigmaFinite (Measure.trim μ hm) ⊢ μ[c • f|m] =ᵐ[μ] c • μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl
haveI : SigmaFinite (μ.trim hm) := hμm
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) ⊢ μ[c • f|m] =ᵐ[μ] c • μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm
refine' (condexp_ae_eq_condexpL1 hm _).trans _
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) ⊢ ↑↑(condexpL1 hm μ (c • f)) =ᵐ[μ] c • μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _
rw [condexpL1_smul c f]
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) ⊢ ↑↑(c • condexpL1 hm μ f) =ᵐ[μ] c • μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f]
refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f]
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) ⊢ ∀ᵐ (x : α) ∂μ, (μ[f|m]) x = ↑↑(condexpL1 hm μ f) x → ↑↑(c • condexpL1 hm μ f) x = (c • μ[f|m]) x
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _
refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α c : 𝕜 f : α → F' hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) x : α hx1 : ↑↑(c • condexpL1 hm μ f) x = (c • ↑↑(condexpL1 hm μ f)) x hx2 : (μ[f|m]) x = ↑↑(condexpL1 hm μ f) x ⊢ ↑↑(c • condexpL1 hm μ f) x = (c • μ[f|m]) x
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _
rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2]
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.303_0.yd50cWAuCo6hlry
theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α f : α → F' ⊢ μ[-f|m] =ᵐ[μ] -μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by
letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance
theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.316_0.yd50cWAuCo6hlry
theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α f : α → F' this : Module ℝ (α → F') := Pi.module α (fun x => F') ℝ ⊢ μ[-f|m] =ᵐ[μ] -μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance
calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m])
theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.316_0.yd50cWAuCo6hlry
theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α f : α → F' this : Module ℝ (α → F') := Pi.module α (fun x => F') ℝ ⊢ μ[-f|m] = μ[-1 • f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by
rw [neg_one_smul ℝ f]
theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.316_0.yd50cWAuCo6hlry
theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f g : α → F' s : Set α hf : Integrable f hg : Integrable g ⊢ μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by
simp_rw [sub_eq_add_neg]
theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.324_0.yd50cWAuCo6hlry
theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f g : α → F' s : Set α hf : Integrable f hg : Integrable g ⊢ μ[f + -g|m] =ᵐ[μ] μ[f|m] + -μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg]
exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g))
theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg]
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.324_0.yd50cWAuCo6hlry
theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) ⊢ μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by
by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂))
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) ⊢ μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ : ¬SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) ⊢ μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂))
swap
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂))
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ : ¬SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) ⊢ μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; ·
simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ : ¬SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) ⊢ 0 =ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁];
rfl
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁];
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) ⊢ μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl
haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ this : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) ⊢ μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁
by_cases hf : Integrable f μ
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ this : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) hf : Integrable f ⊢ μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ this : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) hf : ¬Integrable f ⊢ μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ
swap
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ this : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) hf : ¬Integrable f ⊢ μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; ·
simp_rw [condexp_undef hf, condexp_zero]
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ this : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) hf : ¬Integrable f ⊢ 0 =ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero];
rfl
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero];
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ this : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) hf : Integrable f ⊢ μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl
refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp)
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ this : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) hf : Integrable f ⊢ ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → ∫ (x : α) in s, (μ[μ[f|m₂]|m₁]) x ∂μ = ∫ (x : α) in s, (μ[f|m₁]) x ∂μ
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp)
intro s hs _
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp)
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s✝ : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ this : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) hf : Integrable f s : Set α hs : MeasurableSet s a✝ : ↑↑μ s < ⊤ ⊢ ∫ (x : α) in s, (μ[μ[f|m₂]|m₁]) x ∂μ = ∫ (x : α) in s, (μ[f|m₁]) x ∂μ
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _
rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs]
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedSpace 𝕜 F inst✝⁴ : NormedAddCommGroup F' inst✝³ : NormedSpace 𝕜 F' inst✝² : NormedSpace ℝ F' inst✝¹ : CompleteSpace F' m m0✝ : MeasurableSpace α μ✝ : Measure α f g : α → F' s✝ : Set α m₁ m₂ m0 : MeasurableSpace α μ : Measure α hm₁₂ : m₁ ≤ m₂ hm₂ : m₂ ≤ m0 inst✝ : SigmaFinite (Measure.trim μ hm₂) hμm₁ this : SigmaFinite (Measure.trim μ (_ : m₁ ≤ m0)) hf : Integrable f s : Set α hs : MeasurableSet s a✝ : ↑↑μ s < ⊤ ⊢ ∫ (x : α) in s, (μ[f|m₂]) x ∂μ = ∫ (x : α) in s, (μ[f|m₁]) x ∂μ
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs]
rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)]
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs]
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.330_0.yd50cWAuCo6hlry
theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g ⊢ μ[f|m] ≤ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by
by_cases hm : m ≤ m0
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.347_0.yd50cWAuCo6hlry
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : m ≤ m0 ⊢ μ[f|m] ≤ᵐ[μ] μ[g|m] case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : ¬m ≤ m0 ⊢ μ[f|m] ≤ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0
swap
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.347_0.yd50cWAuCo6hlry
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : ¬m ≤ m0 ⊢ μ[f|m] ≤ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; ·
simp_rw [condexp_of_not_le hm]
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.347_0.yd50cWAuCo6hlry
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : ¬m ≤ m0 ⊢ 0 ≤ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm];
rfl
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm];
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.347_0.yd50cWAuCo6hlry
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : m ≤ m0 ⊢ μ[f|m] ≤ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl
by_cases hμm : SigmaFinite (μ.trim hm)
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.347_0.yd50cWAuCo6hlry
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : m ≤ m0 hμm : SigmaFinite (Measure.trim μ hm) ⊢ μ[f|m] ≤ᵐ[μ] μ[g|m] case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : m ≤ m0 hμm : ¬SigmaFinite (Measure.trim μ hm) ⊢ μ[f|m] ≤ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm)
swap
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm)
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.347_0.yd50cWAuCo6hlry
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : m ≤ m0 hμm : ¬SigmaFinite (Measure.trim μ hm) ⊢ μ[f|m] ≤ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; ·
simp_rw [condexp_of_not_sigmaFinite hm hμm]
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.347_0.yd50cWAuCo6hlry
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : m ≤ m0 hμm : ¬SigmaFinite (Measure.trim μ hm) ⊢ 0 ≤ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm];
rfl
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm];
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.347_0.yd50cWAuCo6hlry
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : m ≤ m0 hμm : SigmaFinite (Measure.trim μ hm) ⊢ μ[f|m] ≤ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl
haveI : SigmaFinite (μ.trim hm) := hμm
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.347_0.yd50cWAuCo6hlry
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f g : α → E hf : Integrable f hg : Integrable g hfg : f ≤ᵐ[μ] g hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) ⊢ μ[f|m] ≤ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm
exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm)
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.347_0.yd50cWAuCo6hlry
theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f : α → E hf : 0 ≤ᵐ[μ] f ⊢ 0 ≤ᵐ[μ] μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by
by_cases hfint : Integrable f μ
theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.359_0.yd50cWAuCo6hlry
theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f : α → E hf : 0 ≤ᵐ[μ] f hfint : Integrable f ⊢ 0 ≤ᵐ[μ] μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ ·
rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])]
theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.359_0.yd50cWAuCo6hlry
theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f : α → E hf : 0 ≤ᵐ[μ] f hfint : Integrable f ⊢ μ[0|m] ≤ᵐ[μ] μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])]
exact condexp_mono (integrable_zero _ _ _) hfint hf
theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])]
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.359_0.yd50cWAuCo6hlry
theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f : α → E hf : 0 ≤ᵐ[μ] f hfint : ¬Integrable f ⊢ 0 ≤ᵐ[μ] μ[f|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf ·
rw [condexp_undef hfint]
theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.359_0.yd50cWAuCo6hlry
theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f : α → E hf : f ≤ᵐ[μ] 0 ⊢ μ[f|m] ≤ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by
by_cases hfint : Integrable f μ
theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.367_0.yd50cWAuCo6hlry
theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f : α → E hf : f ≤ᵐ[μ] 0 hfint : Integrable f ⊢ μ[f|m] ≤ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ ·
rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])]
theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.367_0.yd50cWAuCo6hlry
theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f : α → E hf : f ≤ᵐ[μ] 0 hfint : Integrable f ⊢ μ[f|m] ≤ᵐ[μ] μ[0|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])]
exact condexp_mono hfint (integrable_zero _ _ _) hf
theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])]
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.367_0.yd50cWAuCo6hlry
theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup F inst✝⁸ : NormedSpace 𝕜 F inst✝⁷ : NormedAddCommGroup F' inst✝⁶ : NormedSpace 𝕜 F' inst✝⁵ : NormedSpace ℝ F' inst✝⁴ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g : α → F' s : Set α E : Type u_5 inst✝³ : NormedLatticeAddCommGroup E inst✝² : CompleteSpace E inst✝¹ : NormedSpace ℝ E inst✝ : OrderedSMul ℝ E f : α → E hf : f ≤ᵐ[μ] 0 hfint : ¬Integrable f ⊢ μ[f|m] ≤ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf ·
rw [condexp_undef hfint]
theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.367_0.yd50cWAuCo6hlry
theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] ⊢ μ[f|m] =ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by
by_cases hm : m ≤ m0
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 ⊢ μ[f|m] =ᵐ[μ] μ[g|m] case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : ¬m ≤ m0 ⊢ μ[f|m] =ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0;
swap
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0;
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : ¬m ≤ m0 ⊢ μ[f|m] =ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; ·
simp_rw [condexp_of_not_le hm]
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : ¬m ≤ m0 ⊢ 0 =ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm];
rfl
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm];
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 ⊢ μ[f|m] =ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl
by_cases hμm : SigmaFinite (μ.trim hm)
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm : SigmaFinite (Measure.trim μ hm) ⊢ μ[f|m] =ᵐ[μ] μ[g|m] case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm : ¬SigmaFinite (Measure.trim μ hm) ⊢ μ[f|m] =ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm);
swap
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm);
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm : ¬SigmaFinite (Measure.trim μ hm) ⊢ μ[f|m] =ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; ·
simp_rw [condexp_of_not_sigmaFinite hm hμm]
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; ·
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case neg α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm : ¬SigmaFinite (Measure.trim μ hm) ⊢ 0 =ᵐ[μ] 0
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm];
rfl
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm];
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm : SigmaFinite (Measure.trim μ hm) ⊢ μ[f|m] =ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl
haveI : SigmaFinite (μ.trim hm) := hμm
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) ⊢ μ[f|m] =ᵐ[μ] μ[g|m]
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm
refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) ⊢ ↑↑(condexpL1 hm μ g) =ᵐ[μ] ↑↑(condexpL1 hm μ f)
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm
rw [← Lp.ext_iff]
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) ⊢ condexpL1 hm μ g = condexpL1 hm μ f
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff]
have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1 refine' (condexp_ae_eq_condexpL1 hm (gs n)).symm.trans ((hfg n).symm.trans _) exact condexp_ae_eq_condexpL1 hm (fs n)
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff]
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) ⊢ ∀ (n : ℕ), condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n)
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by
intro n
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) n : ℕ ⊢ condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n)
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n
ext1
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case h α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) n : ℕ ⊢ ↑↑(condexpL1 hm μ (gs n)) =ᵐ[μ] ↑↑(condexpL1 hm μ (fs n))
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1
refine' (condexp_ae_eq_condexpL1 hm (gs n)).symm.trans ((hfg n).symm.trans _)
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case h α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) n : ℕ ⊢ μ[fs n|m] =ᵐ[μ] ↑↑(condexpL1 hm μ (fs n))
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1 refine' (condexp_ae_eq_condexpL1 hm (gs n)).symm.trans ((hfg n).symm.trans _)
exact condexp_ae_eq_condexpL1 hm (fs n)
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1 refine' (condexp_ae_eq_condexpL1 hm (gs n)).symm.trans ((hfg n).symm.trans _)
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) hn_eq : ∀ (n : ℕ), condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) ⊢ condexpL1 hm μ g = condexpL1 hm μ f
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1 refine' (condexp_ae_eq_condexpL1 hm (gs n)).symm.trans ((hfg n).symm.trans _) exact condexp_ae_eq_condexpL1 hm (fs n)
have hcond_fs : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_condexpL1_of_dominated_convergence hm _ (fun n => (hfs_int n).1) h_int_bound_fs hfs_bound hfs
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1 refine' (condexp_ae_eq_condexpL1 hm (gs n)).symm.trans ((hfg n).symm.trans _) exact condexp_ae_eq_condexpL1 hm (fs n)
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) hn_eq : ∀ (n : ℕ), condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) hcond_fs : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) ⊢ condexpL1 hm μ g = condexpL1 hm μ f
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1 refine' (condexp_ae_eq_condexpL1 hm (gs n)).symm.trans ((hfg n).symm.trans _) exact condexp_ae_eq_condexpL1 hm (fs n) have hcond_fs : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_condexpL1_of_dominated_convergence hm _ (fun n => (hfs_int n).1) h_int_bound_fs hfs_bound hfs
have hcond_gs : Tendsto (fun n => condexpL1 hm μ (gs n)) atTop (𝓝 (condexpL1 hm μ g)) := tendsto_condexpL1_of_dominated_convergence hm _ (fun n => (hgs_int n).1) h_int_bound_gs hgs_bound hgs
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1 refine' (condexp_ae_eq_condexpL1 hm (gs n)).symm.trans ((hfg n).symm.trans _) exact condexp_ae_eq_condexpL1 hm (fs n) have hcond_fs : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_condexpL1_of_dominated_convergence hm _ (fun n => (hfs_int n).1) h_int_bound_fs hfs_bound hfs
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
case pos α : Type u_1 F : Type u_2 F' : Type u_3 𝕜 : Type u_4 p : ℝ≥0∞ inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F inst✝³ : NormedAddCommGroup F' inst✝² : NormedSpace 𝕜 F' inst✝¹ : NormedSpace ℝ F' inst✝ : CompleteSpace F' m m0 : MeasurableSpace α μ : Measure α f✝ g✝ : α → F' s : Set α fs gs : ℕ → α → F' f g : α → F' hfs_int : ∀ (n : ℕ), Integrable (fs n) hgs_int : ∀ (n : ℕ), Integrable (gs n) hfs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x)) hgs : ∀ᵐ (x : α) ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x)) bound_fs : α → ℝ h_int_bound_fs : Integrable bound_fs bound_gs : α → ℝ h_int_bound_gs : Integrable bound_gs hfs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖fs n x‖ ≤ bound_fs x hgs_bound : ∀ (n : ℕ), ∀ᵐ (x : α) ∂μ, ‖gs n x‖ ≤ bound_gs x hfg : ∀ (n : ℕ), μ[fs n|m] =ᵐ[μ] μ[gs n|m] hm : m ≤ m0 hμm this : SigmaFinite (Measure.trim μ hm) hn_eq : ∀ (n : ℕ), condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) hcond_fs : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) hcond_gs : Tendsto (fun n => condexpL1 hm μ (gs n)) atTop (𝓝 (condexpL1 hm μ g)) ⊢ condexpL1 hm μ g = condexpL1 hm μ f
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1 #align_import measure_theory.function.conditional_expectation.basic from "leanprover-community/mathlib"@"d8bbb04e2d2a44596798a9207ceefc0fb236e41e" /-! # Conditional expectation We build the conditional expectation of an integrable function `f` with value in a Banach space with respect to a measure `μ` (defined on a measurable space structure `m0`) and a measurable space structure `m` with `hm : m ≤ m0` (a sub-sigma-algebra). This is an `m`-strongly measurable function `μ[f|hm]` which is integrable and verifies `∫ x in s, μ[f|hm] x ∂μ = ∫ x in s, f x ∂μ` for all `m`-measurable sets `s`. It is unique as an element of `L¹`. The construction is done in four steps: * Define the conditional expectation of an `L²` function, as an element of `L²`. This is the orthogonal projection on the subspace of almost everywhere `m`-measurable functions. * Show that the conditional expectation of the indicator of a measurable set with finite measure is integrable and define a map `Set α → (E →L[ℝ] (α →₁[μ] E))` which to a set associates a linear map. That linear map sends `x ∈ E` to the conditional expectation of the indicator of the set with value `x`. * Extend that map to `condexpL1Clm : (α →₁[μ] E) →L[ℝ] (α →₁[μ] E)`. This is done using the same construction as the Bochner integral (see the file `MeasureTheory/Integral/SetToL1`). * Define the conditional expectation of a function `f : α → E`, which is an integrable function `α → E` equal to 0 if `f` is not integrable, and equal to an `m`-measurable representative of `condexpL1Clm` applied to `[f]`, the equivalence class of `f` in `L¹`. The first step is done in `MeasureTheory.Function.ConditionalExpectation.CondexpL2`, the two next steps in `MeasureTheory.Function.ConditionalExpectation.CondexpL1` and the final step is performed in this file. ## Main results The conditional expectation and its properties * `condexp (m : MeasurableSpace α) (μ : Measure α) (f : α → E)`: conditional expectation of `f` with respect to `m`. * `integrable_condexp` : `condexp` is integrable. * `stronglyMeasurable_condexp` : `condexp` is `m`-strongly-measurable. * `set_integral_condexp (hf : Integrable f μ) (hs : MeasurableSet[m] s)` : if `m ≤ m0` (the σ-algebra over which the measure is defined), then the conditional expectation verifies `∫ x in s, condexp m μ f x ∂μ = ∫ x in s, f x ∂μ` for any `m`-measurable set `s`. While `condexp` is function-valued, we also define `condexpL1` with value in `L1` and a continuous linear map `condexpL1Clm` from `L1` to `L1`. `condexp` should be used in most cases. Uniqueness of the conditional expectation * `ae_eq_condexp_of_forall_set_integral_eq`: an a.e. `m`-measurable function which verifies the equality of integrals is a.e. equal to `condexp`. ## Notations For a measure `μ` defined on a measurable space structure `m0`, another measurable space structure `m` with `hm : m ≤ m0` (a sub-σ-algebra) and a function `f`, we define the notation * `μ[f|m] = condexp m μ f`. ## Tags conditional expectation, conditional expected value -/ open TopologicalSpace MeasureTheory.Lp Filter open scoped ENNReal Topology BigOperators MeasureTheory namespace MeasureTheory variable {α F F' 𝕜 : Type*} {p : ℝ≥0∞} [IsROrC 𝕜] -- 𝕜 for ℝ or ℂ -- F for a Lp submodule [NormedAddCommGroup F] [NormedSpace 𝕜 F] -- F' for integrals on a Lp submodule [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace ℝ F'] [CompleteSpace F'] open scoped Classical variable {m m0 : MeasurableSpace α} {μ : Measure α} {f g : α → F'} {s : Set α} /-- Conditional expectation of a function. It is defined as 0 if any one of the following conditions is true: - `m` is not a sub-σ-algebra of `m0`, - `μ` is not σ-finite with respect to `m`, - `f` is not integrable. -/ noncomputable irreducible_def condexp (m : MeasurableSpace α) {m0 : MeasurableSpace α} (μ : Measure α) (f : α → F') : α → F' := if hm : m ≤ m0 then if h : SigmaFinite (μ.trim hm) ∧ Integrable f μ then if StronglyMeasurable[m] f then f else (@aestronglyMeasurable'_condexpL1 _ _ _ _ _ m m0 μ hm h.1 _).mk (@condexpL1 _ _ _ _ _ _ _ hm μ h.1 f) else 0 else 0 #align measure_theory.condexp MeasureTheory.condexp -- We define notation `μ[f|m]` for the conditional expectation of `f` with respect to `m`. scoped notation μ "[" f "|" m "]" => MeasureTheory.condexp m μ f theorem condexp_of_not_le (hm_not : ¬m ≤ m0) : μ[f|m] = 0 := by rw [condexp, dif_neg hm_not] #align measure_theory.condexp_of_not_le MeasureTheory.condexp_of_not_le theorem condexp_of_not_sigmaFinite (hm : m ≤ m0) (hμm_not : ¬SigmaFinite (μ.trim hm)) : μ[f|m] = 0 := by rw [condexp, dif_pos hm, dif_neg]; push_neg; exact fun h => absurd h hμm_not #align measure_theory.condexp_of_not_sigma_finite MeasureTheory.condexp_of_not_sigmaFinite theorem condexp_of_sigmaFinite (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] : μ[f|m] = if Integrable f μ then if StronglyMeasurable[m] f then f else aestronglyMeasurable'_condexpL1.mk (condexpL1 hm μ f) else 0 := by rw [condexp, dif_pos hm] simp only [hμm, Ne.def, true_and_iff] by_cases hf : Integrable f μ · rw [dif_pos hf, if_pos hf] · rw [dif_neg hf, if_neg hf] #align measure_theory.condexp_of_sigma_finite MeasureTheory.condexp_of_sigmaFinite theorem condexp_of_stronglyMeasurable (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : StronglyMeasurable[m] f) (hfi : Integrable f μ) : μ[f|m] = f := by rw [condexp_of_sigmaFinite hm, if_pos hfi, if_pos hf] #align measure_theory.condexp_of_strongly_measurable MeasureTheory.condexp_of_stronglyMeasurable theorem condexp_const (hm : m ≤ m0) (c : F') [IsFiniteMeasure μ] : μ[fun _ : α => c|m] = fun _ => c := condexp_of_stronglyMeasurable hm (@stronglyMeasurable_const _ _ m _ _) (integrable_const c) #align measure_theory.condexp_const MeasureTheory.condexp_const theorem condexp_ae_eq_condexpL1 (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (f : α → F') : μ[f|m] =ᵐ[μ] condexpL1 hm μ f := by rw [condexp_of_sigmaFinite hm] by_cases hfi : Integrable f μ · rw [if_pos hfi] by_cases hfm : StronglyMeasurable[m] f · rw [if_pos hfm] exact (condexpL1_of_aestronglyMeasurable' (StronglyMeasurable.aeStronglyMeasurable' hfm) hfi).symm · rw [if_neg hfm] exact (AEStronglyMeasurable'.ae_eq_mk aestronglyMeasurable'_condexpL1).symm rw [if_neg hfi, condexpL1_undef hfi] exact (coeFn_zero _ _ _).symm set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1 MeasureTheory.condexp_ae_eq_condexpL1 theorem condexp_ae_eq_condexpL1Clm (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : μ[f|m] =ᵐ[μ] condexpL1Clm F' hm μ (hf.toL1 f) := by refine' (condexp_ae_eq_condexpL1 hm f).trans (eventually_of_forall fun x => _) rw [condexpL1_eq hf] set_option linter.uppercaseLean3 false in #align measure_theory.condexp_ae_eq_condexp_L1_clm MeasureTheory.condexp_ae_eq_condexpL1Clm theorem condexp_undef (hf : ¬Integrable f μ) : μ[f|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite, if_neg hf] #align measure_theory.condexp_undef MeasureTheory.condexp_undef @[simp] theorem condexp_zero : μ[(0 : α → F')|m] = 0 := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm] by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm] haveI : SigmaFinite (μ.trim hm) := hμm exact condexp_of_stronglyMeasurable hm (@stronglyMeasurable_zero _ _ m _ _) (integrable_zero _ _ _) #align measure_theory.condexp_zero MeasureTheory.condexp_zero theorem stronglyMeasurable_condexp : StronglyMeasurable[m] (μ[f|m]) := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact stronglyMeasurable_zero by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact stronglyMeasurable_zero haveI : SigmaFinite (μ.trim hm) := hμm rw [condexp_of_sigmaFinite hm] split_ifs with hfi hfm · exact hfm · exact AEStronglyMeasurable'.stronglyMeasurable_mk _ · exact stronglyMeasurable_zero #align measure_theory.strongly_measurable_condexp MeasureTheory.stronglyMeasurable_condexp theorem condexp_congr_ae (h : f =ᵐ[μ] g) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm f).trans (Filter.EventuallyEq.trans (by rw [condexpL1_congr_ae hm h]) (condexp_ae_eq_condexpL1 hm g).symm) #align measure_theory.condexp_congr_ae MeasureTheory.condexp_congr_ae theorem condexp_of_aestronglyMeasurable' (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] {f : α → F'} (hf : AEStronglyMeasurable' m f μ) (hfi : Integrable f μ) : μ[f|m] =ᵐ[μ] f := by refine' ((condexp_congr_ae hf.ae_eq_mk).trans _).trans hf.ae_eq_mk.symm rw [condexp_of_stronglyMeasurable hm hf.stronglyMeasurable_mk ((integrable_congr hf.ae_eq_mk).mp hfi)] #align measure_theory.condexp_of_ae_strongly_measurable' MeasureTheory.condexp_of_aestronglyMeasurable' theorem integrable_condexp : Integrable (μ[f|m]) μ := by by_cases hm : m ≤ m0 swap; · rw [condexp_of_not_le hm]; exact integrable_zero _ _ _ by_cases hμm : SigmaFinite (μ.trim hm) swap; · rw [condexp_of_not_sigmaFinite hm hμm]; exact integrable_zero _ _ _ haveI : SigmaFinite (μ.trim hm) := hμm exact (integrable_condexpL1 f).congr (condexp_ae_eq_condexpL1 hm f).symm #align measure_theory.integrable_condexp MeasureTheory.integrable_condexp /-- The integral of the conditional expectation `μ[f|hm]` over an `m`-measurable set is equal to the integral of `f` on that set. -/ theorem set_integral_condexp (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] (hf : Integrable f μ) (hs : MeasurableSet[m] s) : ∫ x in s, (μ[f|m]) x ∂μ = ∫ x in s, f x ∂μ := by rw [set_integral_congr_ae (hm s hs) ((condexp_ae_eq_condexpL1 hm f).mono fun x hx _ => hx)] exact set_integral_condexpL1 hf hs #align measure_theory.set_integral_condexp MeasureTheory.set_integral_condexp theorem integral_condexp (hm : m ≤ m0) [hμm : SigmaFinite (μ.trim hm)] (hf : Integrable f μ) : ∫ x, (μ[f|m]) x ∂μ = ∫ x, f x ∂μ := by suffices ∫ x in Set.univ, (μ[f|m]) x ∂μ = ∫ x in Set.univ, f x ∂μ by simp_rw [integral_univ] at this; exact this exact set_integral_condexp hm hf (@MeasurableSet.univ _ m) #align measure_theory.integral_condexp MeasureTheory.integral_condexp /-- **Uniqueness of the conditional expectation** If a function is a.e. `m`-measurable, verifies an integrability condition and has same integral as `f` on all `m`-measurable sets, then it is a.e. equal to `μ[f|hm]`. -/ theorem ae_eq_condexp_of_forall_set_integral_eq (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {f g : α → F'} (hf : Integrable f μ) (hg_int_finite : ∀ s, MeasurableSet[m] s → μ s < ∞ → IntegrableOn g s μ) (hg_eq : ∀ s : Set α, MeasurableSet[m] s → μ s < ∞ → ∫ x in s, g x ∂μ = ∫ x in s, f x ∂μ) (hgm : AEStronglyMeasurable' m g μ) : g =ᵐ[μ] μ[f|m] := by refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hm hg_int_finite (fun s _ _ => integrable_condexp.integrableOn) (fun s hs hμs => _) hgm (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) rw [hg_eq s hs hμs, set_integral_condexp hm hf hs] #align measure_theory.ae_eq_condexp_of_forall_set_integral_eq MeasureTheory.ae_eq_condexp_of_forall_set_integral_eq theorem condexp_bot' [hμ : NeZero μ] (f : α → F') : μ[f|⊥] = fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by by_cases hμ_finite : IsFiniteMeasure μ swap · have h : ¬SigmaFinite (μ.trim bot_le) := by rwa [sigmaFinite_trim_bot_iff] rw [not_isFiniteMeasure_iff] at hμ_finite rw [condexp_of_not_sigmaFinite bot_le h] simp only [hμ_finite, ENNReal.top_toReal, inv_zero, zero_smul] rfl by_cases hf : Integrable f μ swap; · rw [integral_undef hf, smul_zero, condexp_undef hf]; rfl have h_meas : StronglyMeasurable[⊥] (μ[f|⊥]) := stronglyMeasurable_condexp obtain ⟨c, h_eq⟩ := stronglyMeasurable_bot_iff.mp h_meas rw [h_eq] have h_integral : ∫ x, (μ[f|⊥]) x ∂μ = ∫ x, f x ∂μ := integral_condexp bot_le hf simp_rw [h_eq, integral_const] at h_integral rw [← h_integral, ← smul_assoc, smul_eq_mul, inv_mul_cancel, one_smul] rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or] exact ⟨NeZero.ne _, measure_ne_top μ Set.univ⟩ #align measure_theory.condexp_bot' MeasureTheory.condexp_bot' theorem condexp_bot_ae_eq (f : α → F') : μ[f|⊥] =ᵐ[μ] fun _ => (μ Set.univ).toReal⁻¹ • ∫ x, f x ∂μ := by rcases eq_zero_or_neZero μ with rfl | hμ · rw [ae_zero]; exact eventually_bot · exact eventually_of_forall <| congr_fun (condexp_bot' f) #align measure_theory.condexp_bot_ae_eq MeasureTheory.condexp_bot_ae_eq theorem condexp_bot [IsProbabilityMeasure μ] (f : α → F') : μ[f|⊥] = fun _ => ∫ x, f x ∂μ := by refine' (condexp_bot' f).trans _; rw [measure_univ, ENNReal.one_toReal, inv_one, one_smul] #align measure_theory.condexp_bot MeasureTheory.condexp_bot theorem condexp_add (hf : Integrable f μ) (hg : Integrable g μ) : μ[f + g|m] =ᵐ[μ] μ[f|m] + μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_add hf hg] exact (coeFn_add _ _).trans ((condexp_ae_eq_condexpL1 hm _).symm.add (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_add MeasureTheory.condexp_add theorem condexp_finset_sum {ι : Type*} {s : Finset ι} {f : ι → α → F'} (hf : ∀ i ∈ s, Integrable (f i) μ) : μ[∑ i in s, f i|m] =ᵐ[μ] ∑ i in s, μ[f i|m] := by induction' s using Finset.induction_on with i s his heq hf · rw [Finset.sum_empty, Finset.sum_empty, condexp_zero] · rw [Finset.sum_insert his, Finset.sum_insert his] exact (condexp_add (hf i <| Finset.mem_insert_self i s) <| integrable_finset_sum' _ fun j hmem => hf j <| Finset.mem_insert_of_mem hmem).trans ((EventuallyEq.refl _ _).add (heq fun j hmem => hf j <| Finset.mem_insert_of_mem hmem)) #align measure_theory.condexp_finset_sum MeasureTheory.condexp_finset_sum theorem condexp_smul (c : 𝕜) (f : α → F') : μ[c • f|m] =ᵐ[μ] c • μ[f|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; simp; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; simp; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm _).trans _ rw [condexpL1_smul c f] refine' (@condexp_ae_eq_condexpL1 _ _ _ _ _ m _ _ hm _ f).mp _ refine' (coeFn_smul c (condexpL1 hm μ f)).mono fun x hx1 hx2 => _ rw [hx1, Pi.smul_apply, Pi.smul_apply, hx2] #align measure_theory.condexp_smul MeasureTheory.condexp_smul theorem condexp_neg (f : α → F') : μ[-f|m] =ᵐ[μ] -μ[f|m] := by letI : Module ℝ (α → F') := @Pi.module α (fun _ => F') ℝ _ _ fun _ => inferInstance calc μ[-f|m] = μ[(-1 : ℝ) • f|m] := by rw [neg_one_smul ℝ f] _ =ᵐ[μ] (-1 : ℝ) • μ[f|m] := (condexp_smul (-1) f) _ = -μ[f|m] := neg_one_smul ℝ (μ[f|m]) #align measure_theory.condexp_neg MeasureTheory.condexp_neg theorem condexp_sub (hf : Integrable f μ) (hg : Integrable g μ) : μ[f - g|m] =ᵐ[μ] μ[f|m] - μ[g|m] := by simp_rw [sub_eq_add_neg] exact (condexp_add hf hg.neg).trans (EventuallyEq.rfl.add (condexp_neg g)) #align measure_theory.condexp_sub MeasureTheory.condexp_sub theorem condexp_condexp_of_le {m₁ m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm₁₂ : m₁ ≤ m₂) (hm₂ : m₂ ≤ m0) [SigmaFinite (μ.trim hm₂)] : μ[μ[f|m₂]|m₁] =ᵐ[μ] μ[f|m₁] := by by_cases hμm₁ : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) swap; · simp_rw [condexp_of_not_sigmaFinite (hm₁₂.trans hm₂) hμm₁]; rfl haveI : SigmaFinite (μ.trim (hm₁₂.trans hm₂)) := hμm₁ by_cases hf : Integrable f μ swap; · simp_rw [condexp_undef hf, condexp_zero]; rfl refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' (hm₁₂.trans hm₂) (fun s _ _ => integrable_condexp.integrableOn) (fun s _ _ => integrable_condexp.integrableOn) _ (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) (StronglyMeasurable.aeStronglyMeasurable' stronglyMeasurable_condexp) intro s hs _ rw [set_integral_condexp (hm₁₂.trans hm₂) integrable_condexp hs] rw [set_integral_condexp (hm₁₂.trans hm₂) hf hs, set_integral_condexp hm₂ hf (hm₁₂ s hs)] #align measure_theory.condexp_condexp_of_le MeasureTheory.condexp_condexp_of_le theorem condexp_mono {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f g : α → E} (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) : μ[f|m] ≤ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0 swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm) swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm exact (condexp_ae_eq_condexpL1 hm _).trans_le ((condexpL1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexpL1 hm _).symm) #align measure_theory.condexp_mono MeasureTheory.condexp_mono theorem condexp_nonneg {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ᵐ[μ] μ[f|m] := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono (integrable_zero _ _ _) hfint hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonneg MeasureTheory.condexp_nonneg theorem condexp_nonpos {E} [NormedLatticeAddCommGroup E] [CompleteSpace E] [NormedSpace ℝ E] [OrderedSMul ℝ E] {f : α → E} (hf : f ≤ᵐ[μ] 0) : μ[f|m] ≤ᵐ[μ] 0 := by by_cases hfint : Integrable f μ · rw [(condexp_zero.symm : (0 : α → E) = μ[0|m])] exact condexp_mono hfint (integrable_zero _ _ _) hf · rw [condexp_undef hfint] #align measure_theory.condexp_nonpos MeasureTheory.condexp_nonpos /-- **Lebesgue dominated convergence theorem**: sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `condexpL1`. -/ theorem tendsto_condexpL1_of_dominated_convergence (hm : m ≤ m0) [SigmaFinite (μ.trim hm)] {fs : ℕ → α → F'} {f : α → F'} (bound_fs : α → ℝ) (hfs_meas : ∀ n, AEStronglyMeasurable (fs n) μ) (h_int_bound_fs : Integrable bound_fs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_setToFun_of_dominated_convergence _ bound_fs hfs_meas h_int_bound_fs hfs_bound hfs set_option linter.uppercaseLean3 false in #align measure_theory.tendsto_condexp_L1_of_dominated_convergence MeasureTheory.tendsto_condexpL1_of_dominated_convergence /-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1 refine' (condexp_ae_eq_condexpL1 hm (gs n)).symm.trans ((hfg n).symm.trans _) exact condexp_ae_eq_condexpL1 hm (fs n) have hcond_fs : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_condexpL1_of_dominated_convergence hm _ (fun n => (hfs_int n).1) h_int_bound_fs hfs_bound hfs have hcond_gs : Tendsto (fun n => condexpL1 hm μ (gs n)) atTop (𝓝 (condexpL1 hm μ g)) := tendsto_condexpL1_of_dominated_convergence hm _ (fun n => (hgs_int n).1) h_int_bound_gs hgs_bound hgs
exact tendsto_nhds_unique_of_eventuallyEq hcond_gs hcond_fs (eventually_of_forall hn_eq)
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m] := by by_cases hm : m ≤ m0; swap; · simp_rw [condexp_of_not_le hm]; rfl by_cases hμm : SigmaFinite (μ.trim hm); swap; · simp_rw [condexp_of_not_sigmaFinite hm hμm]; rfl haveI : SigmaFinite (μ.trim hm) := hμm refine' (condexp_ae_eq_condexpL1 hm f).trans ((condexp_ae_eq_condexpL1 hm g).trans _).symm rw [← Lp.ext_iff] have hn_eq : ∀ n, condexpL1 hm μ (gs n) = condexpL1 hm μ (fs n) := by intro n ext1 refine' (condexp_ae_eq_condexpL1 hm (gs n)).symm.trans ((hfg n).symm.trans _) exact condexp_ae_eq_condexpL1 hm (fs n) have hcond_fs : Tendsto (fun n => condexpL1 hm μ (fs n)) atTop (𝓝 (condexpL1 hm μ f)) := tendsto_condexpL1_of_dominated_convergence hm _ (fun n => (hfs_int n).1) h_int_bound_fs hfs_bound hfs have hcond_gs : Tendsto (fun n => condexpL1 hm μ (gs n)) atTop (𝓝 (condexpL1 hm μ g)) := tendsto_condexpL1_of_dominated_convergence hm _ (fun n => (hgs_int n).1) h_int_bound_gs hgs_bound hgs
Mathlib.MeasureTheory.Function.ConditionalExpectation.Basic.388_0.yd50cWAuCo6hlry
/-- If two sequences of functions have a.e. equal conditional expectations at each step, converge and verify dominated convergence hypotheses, then the conditional expectations of their limits are a.e. equal. -/ theorem tendsto_condexp_unique (fs gs : ℕ → α → F') (f g : α → F') (hfs_int : ∀ n, Integrable (fs n) μ) (hgs_int : ∀ n, Integrable (gs n) μ) (hfs : ∀ᵐ x ∂μ, Tendsto (fun n => fs n x) atTop (𝓝 (f x))) (hgs : ∀ᵐ x ∂μ, Tendsto (fun n => gs n x) atTop (𝓝 (g x))) (bound_fs : α → ℝ) (h_int_bound_fs : Integrable bound_fs μ) (bound_gs : α → ℝ) (h_int_bound_gs : Integrable bound_gs μ) (hfs_bound : ∀ n, ∀ᵐ x ∂μ, ‖fs n x‖ ≤ bound_fs x) (hgs_bound : ∀ n, ∀ᵐ x ∂μ, ‖gs n x‖ ≤ bound_gs x) (hfg : ∀ n, μ[fs n|m] =ᵐ[μ] μ[gs n|m]) : μ[f|m] =ᵐ[μ] μ[g|m]
Mathlib_MeasureTheory_Function_ConditionalExpectation_Basic
C : Type u_2 inst✝¹ : Category.{u_1, u_2} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C f : X ⟶ Y ⊢ Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by
constructor
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by
Mathlib.CategoryTheory.Abelian.Refinements.81_0.V6xug7mjcHzOwwS
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f
Mathlib_CategoryTheory_Abelian_Refinements
case mp C : Type u_2 inst✝¹ : Category.{u_1, u_2} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C f : X ⟶ Y ⊢ Epi f → ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor ·
intro _ A a
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor ·
Mathlib.CategoryTheory.Abelian.Refinements.81_0.V6xug7mjcHzOwwS
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f
Mathlib_CategoryTheory_Abelian_Refinements
case mp C : Type u_2 inst✝¹ : Category.{u_1, u_2} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C f : X ⟶ Y a✝ : Epi f A : C a : A ⟶ Y ⊢ ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ a = x ≫ f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a
exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a
Mathlib.CategoryTheory.Abelian.Refinements.81_0.V6xug7mjcHzOwwS
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f
Mathlib_CategoryTheory_Abelian_Refinements
case mpr C : Type u_2 inst✝¹ : Category.{u_1, u_2} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C f : X ⟶ Y ⊢ (∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ f) → Epi f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ ·
intro hf
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ ·
Mathlib.CategoryTheory.Abelian.Refinements.81_0.V6xug7mjcHzOwwS
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f
Mathlib_CategoryTheory_Abelian_Refinements
case mpr C : Type u_2 inst✝¹ : Category.{u_1, u_2} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C f : X ⟶ Y hf : ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ f ⊢ Epi f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf
obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y)
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf
Mathlib.CategoryTheory.Abelian.Refinements.81_0.V6xug7mjcHzOwwS
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f
Mathlib_CategoryTheory_Abelian_Refinements
case mpr.intro.intro.intro.intro C : Type u_2 inst✝¹ : Category.{u_1, u_2} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C f : X ⟶ Y hf : ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ f A : C π : A ⟶ Y hπ : Epi π a' : A ⟶ X fac : π ≫ 𝟙 Y = a' ≫ f ⊢ Epi f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y)
rw [comp_id] at fac
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y)
Mathlib.CategoryTheory.Abelian.Refinements.81_0.V6xug7mjcHzOwwS
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f
Mathlib_CategoryTheory_Abelian_Refinements
case mpr.intro.intro.intro.intro C : Type u_2 inst✝¹ : Category.{u_1, u_2} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C f : X ⟶ Y hf : ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ f A : C π : A ⟶ Y hπ : Epi π a' : A ⟶ X fac : π = a' ≫ f ⊢ Epi f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac
exact epi_of_epi_fac fac.symm
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac
Mathlib.CategoryTheory.Abelian.Refinements.81_0.V6xug7mjcHzOwwS
lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f
Mathlib_CategoryTheory_Abelian_Refinements
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C ⊢ Exact S ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂), x₂ ≫ S.g = 0 → ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by
rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements]
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C ⊢ (∀ ⦃A : C⦄ (y : A ⟶ cycles S), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ toCycles S) ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂), x₂ ≫ S.g = 0 → ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements]
constructor
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements]
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
case mp C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C ⊢ (∀ ⦃A : C⦄ (y : A ⟶ cycles S), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ toCycles S) → ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂), x₂ ≫ S.g = 0 → ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor ·
intro hS A a ha
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor ·
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
case mp C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C hS : ∀ ⦃A : C⦄ (y : A ⟶ cycles S), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ toCycles S A : C a : A ⟶ S.X₂ ha : a ≫ S.g = 0 ⊢ ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ a = x₁ ≫ S.f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha
obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha)
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
case mp.intro.intro.intro.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C hS : ∀ ⦃A : C⦄ (y : A ⟶ cycles S), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ toCycles S A : C a : A ⟶ S.X₂ ha : a ≫ S.g = 0 A' : C π : A' ⟶ A hπ : Epi π x₁ : A' ⟶ S.X₁ fac : π ≫ liftCycles S a ha = x₁ ≫ toCycles S ⊢ ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ a = x₁ ≫ S.f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha)
exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha)
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C hS : ∀ ⦃A : C⦄ (y : A ⟶ cycles S), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ toCycles S A : C a : A ⟶ S.X₂ ha : a ≫ S.g = 0 A' : C π : A' ⟶ A hπ : Epi π x₁ : A' ⟶ S.X₁ fac : π ≫ liftCycles S a ha = x₁ ≫ toCycles S ⊢ π ≫ a = x₁ ≫ S.f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by
simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
case mpr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C ⊢ (∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂), x₂ ≫ S.g = 0 → ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f) → ∀ ⦃A : C⦄ (y : A ⟶ cycles S), ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ y = x ≫ toCycles S
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ ·
intro hS A a
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ ·
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
case mpr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C hS : ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂), x₂ ≫ S.g = 0 → ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f A : C a : A ⟶ cycles S ⊢ ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ a = x ≫ toCycles S
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ · intro hS A a
obtain ⟨A', π, hπ, x₁, fac⟩ := hS (a ≫ S.iCycles) (by simp)
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ · intro hS A a
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C hS : ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂), x₂ ≫ S.g = 0 → ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f A : C a : A ⟶ cycles S ⊢ (a ≫ iCycles S) ≫ S.g = 0
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ · intro hS A a obtain ⟨A', π, hπ, x₁, fac⟩ := hS (a ≫ S.iCycles) (by
simp
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ · intro hS A a obtain ⟨A', π, hπ, x₁, fac⟩ := hS (a ≫ S.iCycles) (by
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
case mpr.intro.intro.intro.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C hS : ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂), x₂ ≫ S.g = 0 → ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f A : C a : A ⟶ cycles S A' : C π : A' ⟶ A hπ : Epi π x₁ : A' ⟶ S.X₁ fac : π ≫ a ≫ iCycles S = x₁ ≫ S.f ⊢ ∃ A' π, ∃ (_ : Epi π), ∃ x, π ≫ a = x ≫ toCycles S
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ · intro hS A a obtain ⟨A', π, hπ, x₁, fac⟩ := hS (a ≫ S.iCycles) (by simp)
exact ⟨A', π, hπ, x₁, by simp only [← cancel_mono S.iCycles, assoc, toCycles_i, fac]⟩
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ · intro hS A a obtain ⟨A', π, hπ, x₁, fac⟩ := hS (a ≫ S.iCycles) (by simp)
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C hS : ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂), x₂ ≫ S.g = 0 → ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f A : C a : A ⟶ cycles S A' : C π : A' ⟶ A hπ : Epi π x₁ : A' ⟶ S.X₁ fac : π ≫ a ≫ iCycles S = x₁ ≫ S.f ⊢ π ≫ a = x₁ ≫ toCycles S
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ · intro hS A a obtain ⟨A', π, hπ, x₁, fac⟩ := hS (a ≫ S.iCycles) (by simp) exact ⟨A', π, hπ, x₁, by
simp only [← cancel_mono S.iCycles, assoc, toCycles_i, fac]
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ · intro hS A a obtain ⟨A', π, hπ, x₁, fac⟩ := hS (a ≫ S.iCycles) (by simp) exact ⟨A', π, hπ, x₁, by
Mathlib.CategoryTheory.Abelian.Refinements.96_0.V6xug7mjcHzOwwS
lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C hS : Exact S A : C x₂ : A ⟶ S.X₂ hx₂ : x₂ ≫ S.g = 0 ⊢ ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ · intro hS A a obtain ⟨A', π, hπ, x₁, fac⟩ := hS (a ≫ S.iCycles) (by simp) exact ⟨A', π, hπ, x₁, by simp only [← cancel_mono S.iCycles, assoc, toCycles_i, fac]⟩ variable {S} lemma ShortComplex.Exact.exact_up_to_refinements (hS : S.Exact) {A : C} (x₂ : A ⟶ S.X₂) (hx₂ : x₂ ≫ S.g = 0) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by
rw [ShortComplex.exact_iff_exact_up_to_refinements] at hS
lemma ShortComplex.Exact.exact_up_to_refinements (hS : S.Exact) {A : C} (x₂ : A ⟶ S.X₂) (hx₂ : x₂ ≫ S.g = 0) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by
Mathlib.CategoryTheory.Abelian.Refinements.110_0.V6xug7mjcHzOwwS
lemma ShortComplex.Exact.exact_up_to_refinements (hS : S.Exact) {A : C} (x₂ : A ⟶ S.X₂) (hx₂ : x₂ ≫ S.g = 0) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C S S₁ S₂ : ShortComplex C hS : ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂), x₂ ≫ S.g = 0 → ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f A : C x₂ : A ⟶ S.X₂ hx₂ : x₂ ≫ S.g = 0 ⊢ ∃ A' π, ∃ (_ : Epi π), ∃ x₁, π ≫ x₂ = x₁ ≫ S.f
/- Copyright (c) 2023 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import Mathlib.Algebra.Homology.ShortComplex.Exact /-! # Refinements In order to prove injectivity/surjectivity/exactness properties for diagrams in the category of abelian groups, we often need to do diagram chases. Some of these can be carried out in more general abelian categories: for example, a morphism `X ⟶ Y` in an abelian category `C` is a monomorphism if and only if for all `A : C`, the induced map `(A ⟶ X) → (A ⟶ Y)` of abelian groups is a monomorphism, i.e. injective. Alternatively, the yoneda presheaf functor which sends `X` to the presheaf of maps `A ⟶ X` for all `A : C` preserves and reflects monomorphisms. However, if `p : X ⟶ Y` is an epimorphism in `C` and `A : C`, `(A ⟶ X) → (A ⟶ Y)` may fail to be surjective (unless `p` is a split epimorphism). In this file, the basic result is `epi_iff_surjective_up_to_refinements` which states that `f : X ⟶ Y` is a morphism in an abelian category, then it is an epimorphism if and only if for all `y : A ⟶ Y`, there exists an epimorphism `π : A' ⟶ A` and `x : A' ⟶ X` such that `π ≫ y = x ≫ f`. In order words, if we allow a precomposition with an epimorphism, we may lift a morphism to `Y` to a morphism to `X`. Following unpublished notes by George Bergman, we shall say that the precomposition by an epimorphism `π ≫ y` is a refinement of `y`. Then, we get that an epimorphism is a morphism that is "surjective up to refinements". (This result is similar to the fact that a morphism of sheaves on a topological space or a site is epi iff sections can be lifted locally. Then, arguing "up to refinements" is very similar to arguing locally for a Grothendieck topology (TODO: show that it corresponds to arguing for the canonical topology on the abelian category `C` by showing that a morphism in `C` is an epi iff the corresponding morphisms of sheaves for the canonical topology is an epi, and that the criteria `epi_iff_surjective_up_to_refinements` could be deduced from this equivalence.) Similarly, it is possible to show that a short complex in an abelian category is exact if and only if it is exact up to refinements (see `ShortComplex.exact_iff_exact_up_to_refinements`). As it is outlined in the documentation of the file `CategoryTheory.Abelian.Pseudoelements`, the Freyd-Mitchell embedding theorem implies the existence of a faithful and exact functor `ι` from an abelian category `C` to the category of abelian groups. If we define a pseudo-element of `X : C` to be an element in `ι.obj X`, one may do diagram chases in any abelian category using these pseudo-elements. However, using this approach would require proving this embedding theorem! Currently, mathlib contains a weaker notion of pseudo-elements `CategoryTheory.Abelian.Pseudoelements`. Some theorems can be obtained using this notion, but there is the issue that for this notion of pseudo-elements a morphism `X ⟶ Y` in `C` is not determined by its action on pseudo-elements (see also `Counterexamples/Pseudoelement`). On the contrary, the approach consisting of working up to refinements does not require the introduction of other types: we only need to work with morphisms `A ⟶ X` in `C` which we may consider as being "sort of elements of `X`". One may carry diagram-chasing by tracking these morphisms and sometimes introducing an auxiliary epimorphism `A' ⟶ A`. ## References * George Bergman, A note on abelian categories – translating element-chasing proofs, and exact embedding in abelian groups (1974) http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf -/ namespace CategoryTheory open Category Limits variable {C : Type _} [Category C] [Abelian C] {X Y : C} (S : ShortComplex C) {S₁ S₂ : ShortComplex C} lemma epi_iff_surjective_up_to_refinements (f : X ⟶ Y) : Epi f ↔ ∀ ⦃A : C⦄ (y : A ⟶ Y), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := by constructor · intro _ A a exact ⟨pullback a f, pullback.fst, inferInstance, pullback.snd, pullback.condition⟩ · intro hf obtain ⟨A, π, hπ, a', fac⟩ := hf (𝟙 Y) rw [comp_id] at fac exact epi_of_epi_fac fac.symm lemma surjective_up_to_refinements_of_epi (f : X ⟶ Y) [Epi f] {A : C} (y : A ⟶ Y) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x : A' ⟶ X), π ≫ y = x ≫ f := (epi_iff_surjective_up_to_refinements f).1 inferInstance y lemma ShortComplex.exact_iff_exact_up_to_refinements : S.Exact ↔ ∀ ⦃A : C⦄ (x₂ : A ⟶ S.X₂) (_ : x₂ ≫ S.g = 0), ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [S.exact_iff_epi_toCycles, epi_iff_surjective_up_to_refinements] constructor · intro hS A a ha obtain ⟨A', π, hπ, x₁, fac⟩ := hS (S.liftCycles a ha) exact ⟨A', π, hπ, x₁, by simpa only [assoc, liftCycles_i, toCycles_i] using fac =≫ S.iCycles⟩ · intro hS A a obtain ⟨A', π, hπ, x₁, fac⟩ := hS (a ≫ S.iCycles) (by simp) exact ⟨A', π, hπ, x₁, by simp only [← cancel_mono S.iCycles, assoc, toCycles_i, fac]⟩ variable {S} lemma ShortComplex.Exact.exact_up_to_refinements (hS : S.Exact) {A : C} (x₂ : A ⟶ S.X₂) (hx₂ : x₂ ≫ S.g = 0) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [ShortComplex.exact_iff_exact_up_to_refinements] at hS
exact hS x₂ hx₂
lemma ShortComplex.Exact.exact_up_to_refinements (hS : S.Exact) {A : C} (x₂ : A ⟶ S.X₂) (hx₂ : x₂ ≫ S.g = 0) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f := by rw [ShortComplex.exact_iff_exact_up_to_refinements] at hS
Mathlib.CategoryTheory.Abelian.Refinements.110_0.V6xug7mjcHzOwwS
lemma ShortComplex.Exact.exact_up_to_refinements (hS : S.Exact) {A : C} (x₂ : A ⟶ S.X₂) (hx₂ : x₂ ≫ S.g = 0) : ∃ (A' : C) (π : A' ⟶ A) (_ : Epi π) (x₁ : A' ⟶ S.X₁), π ≫ x₂ = x₁ ≫ S.f
Mathlib_CategoryTheory_Abelian_Refinements
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x y : E a b : 𝕜 ⊢ StrictConvex 𝕜 univ
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
Mathlib.Analysis.Convex.Strict.66_0.eLomqYdbrwkwew8
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x✝ y✝ : E a✝⁶ b✝ : 𝕜 x : E a✝⁵ : x ∈ univ y : E a✝⁴ : y ∈ univ a✝³ : x ≠ y a b : 𝕜 a✝² : 0 < a a✝¹ : 0 < b a✝ : a + b = 1 ⊢ a • x + b • y ∈ interior univ
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _
rw [interior_univ]
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _
Mathlib.Analysis.Convex.Strict.66_0.eLomqYdbrwkwew8
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x✝ y✝ : E a✝⁶ b✝ : 𝕜 x : E a✝⁵ : x ∈ univ y : E a✝⁴ : y ∈ univ a✝³ : x ≠ y a b : 𝕜 a✝² : 0 < a a✝¹ : 0 < b a✝ : a + b = 1 ⊢ a • x + b • y ∈ univ
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ]
exact mem_univ _
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ]
Mathlib.Analysis.Convex.Strict.66_0.eLomqYdbrwkwew8
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x y : E a b : 𝕜 t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t ⊢ StrictConvex 𝕜 (s ∩ t)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by
Mathlib.Analysis.Convex.Strict.77_0.eLomqYdbrwkwew8
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x✝ y✝ : E a✝ b✝ : 𝕜 t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t x : E hx : x ∈ s ∩ t y : E hy : y ∈ s ∩ t hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior (s ∩ t)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab
Mathlib.Analysis.Convex.Strict.77_0.eLomqYdbrwkwew8
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x✝ y✝ : E a✝ b✝ : 𝕜 t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t x : E hx : x ∈ s ∩ t y : E hy : y ∈ s ∩ t hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior s ∩ interior t
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter]
Mathlib.Analysis.Convex.Strict.77_0.eLomqYdbrwkwew8
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x y : E a b : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) ⊢ StrictConvex 𝕜 (⋃ i, s i)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
Mathlib.Analysis.Convex.Strict.84_0.eLomqYdbrwkwew8
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ y✝ : E a✝ b✝ : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x : E hx : x ∈ ⋃ i, s i y : E hy : y ∈ ⋃ i, s i hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior (⋃ i, s i)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab
Mathlib.Analysis.Convex.Strict.84_0.eLomqYdbrwkwew8
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
Mathlib_Analysis_Convex_Strict