state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ y✝ : E a✝ b✝ : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x : E hx : ∃ i, x ∈ s i y : E hy : ∃ i, y ∈ s i hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior (⋃ i, s i)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy
Mathlib.Analysis.Convex.Strict.84_0.eLomqYdbrwkwew8
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
Mathlib_Analysis_Convex_Strict
case intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ y✝ : E a✝ b✝ : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x y : E hy : ∃ i, y ∈ s i hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 i : ι hx : x ∈ s i ⊢ a • x + b • y ∈ interior (⋃ i, s i)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx
Mathlib.Analysis.Convex.Strict.84_0.eLomqYdbrwkwew8
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
Mathlib_Analysis_Convex_Strict
case intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ y✝ : E a✝ b✝ : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x y : E hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 i : ι hx : x ∈ s i j : ι hy : y ∈ s j ⊢ a • x + b • y ∈ interior (⋃ i, s i)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy
Mathlib.Analysis.Convex.Strict.84_0.eLomqYdbrwkwew8
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
Mathlib_Analysis_Convex_Strict
case intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s✝ : Set E x✝ y✝ : E a✝ b✝ : 𝕜 ι : Sort u_6 s : ι → Set E hdir : Directed (fun x x_1 => x ⊆ x_1) s hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i) x y : E hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 i : ι hx : x ∈ s i j : ι hy : y ∈ s j k : ι hik : s i ⊆ s k hjk : s j ⊆ s k ⊢ a • x + b • y ∈ interior (⋃ i, s i)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j
Mathlib.Analysis.Convex.Strict.84_0.eLomqYdbrwkwew8
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x y : E a b : 𝕜 S : Set (Set E) hdir : DirectedOn (fun x x_1 => x ⊆ x_1) S hS : ∀ s ∈ S, StrictConvex 𝕜 s ⊢ StrictConvex 𝕜 (⋃₀ S)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
Mathlib.Analysis.Convex.Strict.94_0.eLomqYdbrwkwew8
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : SMul 𝕜 E inst✝ : SMul 𝕜 F s : Set E x y : E a b : 𝕜 S : Set (Set E) hdir : DirectedOn (fun x x_1 => x ⊆ x_1) S hS : ∀ s ∈ S, StrictConvex 𝕜 s ⊢ StrictConvex 𝕜 (⋃ i, ↑i)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion]
Mathlib.Analysis.Convex.Strict.94_0.eLomqYdbrwkwew8
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommMonoid E inst✝⁶ : AddCommMonoid F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F s : Set E inst✝³ : Semiring 𝕝 inst✝² : Module 𝕝 E inst✝¹ : Module 𝕝 F inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝 hs : StrictConvex 𝕜 s f : E →ₗ[𝕝] F hf : IsOpenMap ⇑f ⊢ StrictConvex 𝕜 (⇑f '' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by
Mathlib.Analysis.Convex.Strict.129_0.eLomqYdbrwkwew8
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s)
Mathlib_Analysis_Convex_Strict
case intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommMonoid E inst✝⁶ : AddCommMonoid F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F s : Set E inst✝³ : Semiring 𝕝 inst✝² : Module 𝕝 E inst✝¹ : Module 𝕝 F inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝 hs : StrictConvex 𝕜 s f : E →ₗ[𝕝] F hf : IsOpenMap ⇑f x : E hx : x ∈ s y : E hy : y ∈ s hxy : f x ≠ f y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y ∈ interior (⇑f '' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
Mathlib.Analysis.Convex.Strict.129_0.eLomqYdbrwkwew8
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s)
Mathlib_Analysis_Convex_Strict
case intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommMonoid E inst✝⁶ : AddCommMonoid F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F s : Set E inst✝³ : Semiring 𝕝 inst✝² : Module 𝕝 E inst✝¹ : Module 𝕝 F inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝 hs : StrictConvex 𝕜 s f : E →ₗ[𝕝] F hf : IsOpenMap ⇑f x : E hx : x ∈ s y : E hy : y ∈ s hxy : f x ≠ f y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ f (a • x + b • y) = a • f x + b • f y
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
Mathlib.Analysis.Convex.Strict.129_0.eLomqYdbrwkwew8
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E s : Set F hs : StrictConvex 𝕜 s f : E →ₗ[𝕜] F hf : Continuous ⇑f hfinj : Injective ⇑f ⊢ StrictConvex 𝕜 (⇑f ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
Mathlib.Analysis.Convex.Strict.142_0.eLomqYdbrwkwew8
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E s : Set F hs : StrictConvex 𝕜 s f : E →ₗ[𝕜] F hf : Continuous ⇑f hfinj : Injective ⇑f x : E hx : x ∈ ⇑f ⁻¹' s y : E hy : y ∈ ⇑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior (⇑f ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab
Mathlib.Analysis.Convex.Strict.142_0.eLomqYdbrwkwew8
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E s : Set F hs : StrictConvex 𝕜 s f : E →ₗ[𝕜] F hf : Continuous ⇑f hfinj : Injective ⇑f x : E hx : x ∈ ⇑f ⁻¹' s y : E hy : y ∈ ⇑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ ⇑f ⁻¹' interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _
Mathlib.Analysis.Convex.Strict.142_0.eLomqYdbrwkwew8
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedSemiring 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommMonoid E inst✝² : AddCommMonoid F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ : Set E s : Set F hs : StrictConvex 𝕜 s f : E →ₗ[𝕜] F hf : Continuous ⇑f hfinj : Injective ⇑f x : E hx : x ∈ ⇑f ⁻¹' s y : E hy : y ∈ ⇑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y ∈ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
Mathlib.Analysis.Convex.Strict.142_0.eLomqYdbrwkwew8
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s ⊢ StrictConvex 𝕜 s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y ⊢ (fun x y => openSegment 𝕜 x y ⊆ interior s) x y
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y ⊢ (fun x y => openSegment 𝕜 x y ⊆ interior s) x y
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s
Mathlib_Analysis_Convex_Strict
case inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y hlt : x < y ⊢ openSegment 𝕜 x y ⊆ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [
skip
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s
Mathlib_Analysis_Convex_Strict
case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y hlt : y < x ⊢ openSegment 𝕜 x y ⊆ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip;
rw [openSegment_symm]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip;
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s
Mathlib_Analysis_Convex_Strict
case inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y hlt : x < y ⊢ openSegment 𝕜 x y ⊆ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s
Mathlib_Analysis_Convex_Strict
case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹¹ : OrderedSemiring 𝕜 inst✝¹⁰ : TopologicalSpace E inst✝⁹ : TopologicalSpace F inst✝⁸ : AddCommMonoid E inst✝⁷ : AddCommMonoid F inst✝⁶ : Module 𝕜 E inst✝⁵ : Module 𝕜 F s✝ : Set E inst✝⁴ : TopologicalSpace β inst✝³ : LinearOrderedCancelAddCommMonoid β inst✝² : OrderTopology β inst✝¹ : Module 𝕜 β inst✝ : OrderedSMul 𝕜 β s : Set β hs : OrdConnected s x : β hx : x ∈ s y : β hy : y ∈ s hxy : x ≠ y hlt : y < x ⊢ openSegment 𝕜 y x ⊆ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace F inst✝² : AddCancelCommMonoid E inst✝¹ : ContinuousAdd E inst✝ : Module 𝕜 E s : Set E hs : StrictConvex 𝕜 s z : E ⊢ StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
/-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
Mathlib.Analysis.Convex.Strict.220_0.eLomqYdbrwkwew8
/-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace F inst✝² : AddCancelCommMonoid E inst✝¹ : ContinuousAdd E inst✝ : Module 𝕜 E s : Set E hs : StrictConvex 𝕜 s z x : E hx : x ∈ (fun x => z + x) ⁻¹' s y : E hy : y ∈ (fun x => z + x) ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior ((fun x => z + x) ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
/-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab
Mathlib.Analysis.Convex.Strict.220_0.eLomqYdbrwkwew8
/-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace F inst✝² : AddCancelCommMonoid E inst✝¹ : ContinuousAdd E inst✝ : Module 𝕜 E s : Set E hs : StrictConvex 𝕜 s z x : E hx : x ∈ (fun x => z + x) ⁻¹' s y : E hy : y ∈ (fun x => z + x) ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ (fun b => z + b) ⁻¹' interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
/-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
Mathlib.Analysis.Convex.Strict.220_0.eLomqYdbrwkwew8
/-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace F inst✝² : AddCancelCommMonoid E inst✝¹ : ContinuousAdd E inst✝ : Module 𝕜 E s : Set E hs : StrictConvex 𝕜 s z x : E hx : x ∈ (fun x => z + x) ⁻¹' s y : E hy : y ∈ (fun x => z + x) ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 h : a • (fun x => z + x) x + b • (fun x => z + x) y ∈ interior s ⊢ a • x + b • y ∈ (fun b => z + b) ⁻¹' interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
/-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
Mathlib.Analysis.Convex.Strict.220_0.eLomqYdbrwkwew8
/-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : TopologicalSpace F inst✝² : AddCancelCommMonoid E inst✝¹ : ContinuousAdd E inst✝ : Module 𝕜 E s : Set E hs : StrictConvex 𝕜 s z : E ⊢ StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
/-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
Mathlib.Analysis.Convex.Strict.229_0.eLomqYdbrwkwew8
/-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t ⊢ StrictConvex 𝕜 (s + t)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t)
Mathlib_Analysis_Convex_Strict
case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t x y : E hx : x ∈ s hy : y ∈ t h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • (fun x x_1 => x + x_1) v w + b • (fun x x_1 => x + x_1) x y ∈ interior (s + t)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t)
Mathlib_Analysis_Convex_Strict
case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t x y : E hx : x ∈ s hy : y ∈ t h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • v + b • x + (a • w + b • y) ∈ interior (s + t)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm]
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t)
Mathlib_Analysis_Convex_Strict
case intro.intro.intro.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t y : E hy : y ∈ t a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hx : v ∈ s h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y ⊢ a • v + b • v + (a • w + b • y) ∈ interior (s + t)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x ·
refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x ·
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t)
Mathlib_Analysis_Convex_Strict
case intro.intro.intro.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t y : E hy : y ∈ t a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hx : v ∈ s h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y ⊢ a • v + b • v + (a • w + b • y) ∈ interior ({v} + t)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t)
Mathlib_Analysis_Convex_Strict
case intro.intro.intro.intro.intro.intro.intro.intro.inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t y : E hy : y ∈ t a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hx : v ∈ s h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y ⊢ v + (a • w + b • y) ∈ interior ((fun x => v + x) '' t)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add]
exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add]
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t)
Mathlib_Analysis_Convex_Strict
case intro.intro.intro.intro.intro.intro.intro.intro.inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s ht : StrictConvex 𝕜 t v w : E hv : v ∈ s hw : w ∈ t x y : E hx : x ∈ s hy : y ∈ t h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 hvx : v ≠ x ⊢ a • v + b • x + (a • w + b • y) ∈ interior (s + t)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s z : E ⊢ StrictConvex 𝕜 ((fun x => z + x) '' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by
Mathlib.Analysis.Convex.Strict.260_0.eLomqYdbrwkwew8
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁷ : OrderedSemiring 𝕜 inst✝⁶ : TopologicalSpace E inst✝⁵ : TopologicalSpace F inst✝⁴ : AddCommGroup E inst✝³ : AddCommGroup F inst✝² : Module 𝕜 E inst✝¹ : Module 𝕜 F inst✝ : ContinuousAdd E s t : Set E hs : StrictConvex 𝕜 s z : E ⊢ StrictConvex 𝕜 ((fun x => x + z) '' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by
simpa only [add_comm] using hs.add_left z
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by
Mathlib.Analysis.Convex.Strict.265_0.eLomqYdbrwkwew8
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F inst✝³ : LinearOrderedField 𝕝 inst✝² : Module 𝕝 E inst✝¹ : ContinuousConstSMul 𝕝 E inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝 s : Set E x : E hs : StrictConvex 𝕜 s c : 𝕝 ⊢ StrictConvex 𝕜 (c • s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
Mathlib.Analysis.Convex.Strict.281_0.eLomqYdbrwkwew8
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s)
Mathlib_Analysis_Convex_Strict
case inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F inst✝³ : LinearOrderedField 𝕝 inst✝² : Module 𝕝 E inst✝¹ : ContinuousConstSMul 𝕝 E inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝 s : Set E x : E hs : StrictConvex 𝕜 s ⊢ StrictConvex 𝕜 (0 • s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 ·
exact (subsingleton_zero_smul_set _).strictConvex
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 ·
Mathlib.Analysis.Convex.Strict.281_0.eLomqYdbrwkwew8
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s)
Mathlib_Analysis_Convex_Strict
case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝¹⁰ : OrderedSemiring 𝕜 inst✝⁹ : TopologicalSpace E inst✝⁸ : TopologicalSpace F inst✝⁷ : AddCommGroup E inst✝⁶ : AddCommGroup F inst✝⁵ : Module 𝕜 E inst✝⁴ : Module 𝕜 F inst✝³ : LinearOrderedField 𝕝 inst✝² : Module 𝕝 E inst✝¹ : ContinuousConstSMul 𝕝 E inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝 s : Set E x : E hs : StrictConvex 𝕜 s c : 𝕝 hc : c ≠ 0 ⊢ StrictConvex 𝕜 (c • s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex ·
exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex ·
Mathlib.Analysis.Convex.Strict.281_0.eLomqYdbrwkwew8
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s c : 𝕜 ⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s c : 𝕜 ⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical
obtain rfl | hc := eq_or_ne c 0
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
case inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s ⊢ StrictConvex 𝕜 ((fun z => 0 • z) ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 ·
simp_rw [zero_smul, preimage_const]
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 ·
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
case inl 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s ⊢ StrictConvex 𝕜 (if 0 ∈ s then univ else ∅)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const]
split_ifs
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const]
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
case pos 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s h✝ : 0 ∈ s ⊢ StrictConvex 𝕜 univ
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs ·
exact strictConvex_univ
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs ·
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
case neg 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s h✝ : 0 ∉ s ⊢ StrictConvex 𝕜 ∅
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ ·
exact strictConvex_empty
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ ·
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s c : 𝕜 hc : c ≠ 0 ⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s c : 𝕜 hc : c ≠ 0 ⊢ Continuous ⇑((LinearMap.lsmul 𝕜 E) c)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
case inr 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : OrderedCommSemiring 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : NoZeroSMulDivisors 𝕜 E inst✝ : ContinuousConstSMul 𝕜 E s : Set E hs : StrictConvex 𝕜 s c : 𝕜 hc : c ≠ 0 ⊢ Continuous ⇑({ toAddHom := { toFun := fun m => { toAddHom := { toFun := (fun x x_1 => x • x_1) m, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }, map_add' := (_ : ∀ (m₁ m₂ : 𝕜), (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) (m₁ + m₂) = (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₁ + (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₂) }, map_smul' := (_ : ∀ (c m : 𝕜), AddHom.toFun { toFun := fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }, map_add' := (_ : ∀ (m₁ m₂ : 𝕜), (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) (m₁ + m₂) = (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₁ + (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₂) } (c • m) = (RingHom.id 𝕜) c • AddHom.toFun { toFun := fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }, map_add' := (_ : ∀ (m₁ m₂ : 𝕜), (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) (m₁ + m₂) = (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₁ + (fun m => { toAddHom := { toFun := fun x => m • x, map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) }, map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) }) m₂) } m) } c)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁸ : OrderedRing 𝕜 inst✝⁷ : TopologicalSpace E inst✝⁶ : TopologicalSpace F inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F s t : Set E x y : E inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 hs : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s h : openSegment 𝕜 x y ⊆ frontier s ⊢ x = y
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by
Mathlib.Analysis.Convex.Strict.332_0.eLomqYdbrwkwew8
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y
Mathlib_Analysis_Convex_Strict
case intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁸ : OrderedRing 𝕜 inst✝⁷ : TopologicalSpace E inst✝⁶ : TopologicalSpace F inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F s t : Set E x y : E inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 hs : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s h : openSegment 𝕜 x y ⊆ frontier s a : 𝕜 ha₀ : 0 < a ha₁ : a < 1 ⊢ x = y
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
Mathlib.Analysis.Convex.Strict.332_0.eLomqYdbrwkwew8
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y
Mathlib_Analysis_Convex_Strict
case intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁸ : OrderedRing 𝕜 inst✝⁷ : TopologicalSpace E inst✝⁶ : TopologicalSpace F inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F s t : Set E x y : E inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 hs : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s h : openSegment 𝕜 x y ⊆ frontier s a : 𝕜 ha₀ : 0 < a ha₁ : a < 1 ⊢ x = y
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical
by_contra hxy
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical
Mathlib.Analysis.Convex.Strict.332_0.eLomqYdbrwkwew8
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y
Mathlib_Analysis_Convex_Strict
case intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁸ : OrderedRing 𝕜 inst✝⁷ : TopologicalSpace E inst✝⁶ : TopologicalSpace F inst✝⁵ : AddCommGroup E inst✝⁴ : AddCommGroup F inst✝³ : Module 𝕜 E inst✝² : Module 𝕜 F s t : Set E x y : E inst✝¹ : Nontrivial 𝕜 inst✝ : DenselyOrdered 𝕜 hs : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s h : openSegment 𝕜 x y ⊆ frontier s a : 𝕜 ha₀ : 0 < a ha₁ : a < 1 hxy : ¬x = y ⊢ False
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy
exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy
Mathlib.Analysis.Convex.Strict.332_0.eLomqYdbrwkwew8
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • y ∈ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
Mathlib.Analysis.Convex.Strict.343_0.eLomqYdbrwkwew8
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • y = (1 - t) • x + t • (x + y)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by
Mathlib.Analysis.Convex.Strict.343_0.eLomqYdbrwkwew8
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 h : x + t • y = (1 - t) • x + t • (x + y) ⊢ x + t • y ∈ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
Mathlib.Analysis.Convex.Strict.343_0.eLomqYdbrwkwew8
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 h : x + t • y = (1 - t) • x + t • (x + y) ⊢ (1 - t) • x + t • (x + y) ∈ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h]
Mathlib.Analysis.Convex.Strict.343_0.eLomqYdbrwkwew8
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s
Mathlib_Analysis_Convex_Strict
case refine'_1 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 h✝ : x + t • y = (1 - t) • x + t • (x + y) h : x = x + y ⊢ ?refine'_2 h + y = ?refine'_2 h + 0 case refine'_2 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s hx : x ∈ s hxy : x + y ∈ s hy : y ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 h : x + t • y = (1 - t) • x + t • (x + y) ⊢ x = x + y → E
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
Mathlib.Analysis.Convex.Strict.343_0.eLomqYdbrwkwew8
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s zero_mem : 0 ∈ s hx : x ∈ s hx₀ : x ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ t • x ∈ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
Mathlib.Analysis.Convex.Strict.352_0.eLomqYdbrwkwew8
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E hs : StrictConvex 𝕜 s zero_mem : 0 ∈ s hx : x ∈ s hx₀ : x ≠ 0 t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ 0 + x ∈ s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by
simpa using hx
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by
Mathlib.Analysis.Convex.Strict.352_0.eLomqYdbrwkwew8
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E h : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s hxy : x ≠ y t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • (y - x) ∈ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
Mathlib.Analysis.Convex.Strict.357_0.eLomqYdbrwkwew8
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s
Mathlib_Analysis_Convex_Strict
case a 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E h : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s hxy : x ≠ y t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • (y - x) ∈ openSegment 𝕜 x y
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy
Mathlib.Analysis.Convex.Strict.357_0.eLomqYdbrwkwew8
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s
Mathlib_Analysis_Convex_Strict
case a 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t✝ : Set E x y : E h : StrictConvex 𝕜 s hx : x ∈ s hy : y ∈ s hxy : x ≠ y t : 𝕜 ht₀ : 0 < t ht₁ : t < 1 ⊢ x + t • (y - x) ∈ (fun θ => x + θ • (y - x)) '' Ioo 0 1
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image']
Mathlib.Analysis.Convex.Strict.357_0.eLomqYdbrwkwew8
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x y : E s : Set F hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : Continuous ⇑f hfinj : Injective ⇑f ⊢ StrictConvex 𝕜 (⇑f ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
Mathlib.Analysis.Convex.Strict.364_0.eLomqYdbrwkwew8
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y✝ : E s : Set F hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : Continuous ⇑f hfinj : Injective ⇑f x : E hx : x ∈ ⇑f ⁻¹' s y : E hy : y ∈ ⇑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior (⇑f ⁻¹' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab
Mathlib.Analysis.Convex.Strict.364_0.eLomqYdbrwkwew8
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y✝ : E s : Set F hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : Continuous ⇑f hfinj : Injective ⇑f x : E hx : x ∈ ⇑f ⁻¹' s y : E hy : y ∈ ⇑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ ⇑f ⁻¹' interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _
Mathlib.Analysis.Convex.Strict.364_0.eLomqYdbrwkwew8
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s✝ t : Set E x✝ y✝ : E s : Set F hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : Continuous ⇑f hfinj : Injective ⇑f x : E hx : x ∈ ⇑f ⁻¹' s y : E hy : y ∈ ⇑f ⁻¹' s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y ∈ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab]
Mathlib.Analysis.Convex.Strict.364_0.eLomqYdbrwkwew8
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x y : E hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : IsOpenMap ⇑f ⊢ StrictConvex 𝕜 (⇑f '' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.affine_preimage StrictConvex.affine_preimage /-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
/-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by
Mathlib.Analysis.Convex.Strict.373_0.eLomqYdbrwkwew8
/-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s)
Mathlib_Analysis_Convex_Strict
case intro.intro.intro.intro 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁶ : OrderedRing 𝕜 inst✝⁵ : TopologicalSpace E inst✝⁴ : TopologicalSpace F inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s t : Set E x✝ y✝ : E hs : StrictConvex 𝕜 s f : E →ᵃ[𝕜] F hf : IsOpenMap ⇑f x : E hx : x ∈ s y : E hy : y ∈ s hxy : f x ≠ f y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • f x + b • f y ∈ interior (⇑f '' s)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.affine_preimage StrictConvex.affine_preimage /-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
exact hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
/-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
Mathlib.Analysis.Convex.Strict.373_0.eLomqYdbrwkwew8
/-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s)
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : StrictConvex 𝕜 s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b ⊢ (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.affine_preimage StrictConvex.affine_preimage /-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab exact hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩ #align strict_convex.affine_image StrictConvex.affine_image variable [TopologicalAddGroup E] theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) := hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective #align strict_convex.neg StrictConvex.neg theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) := (sub_eq_add_neg s t).symm ▸ hs.add ht.neg #align strict_convex.sub StrictConvex.sub end AddCommGroup end OrderedRing section LinearOrderedField variable [LinearOrderedField 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E} /-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : StrictConvex 𝕜 s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b ⊢ a / (a + b) + b / (a + b) = 1
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.affine_preimage StrictConvex.affine_preimage /-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab exact hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩ #align strict_convex.affine_image StrictConvex.affine_image variable [TopologicalAddGroup E] theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) := hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective #align strict_convex.neg StrictConvex.neg theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) := (sub_eq_add_neg s t).symm ▸ hs.add ht.neg #align strict_convex.sub StrictConvex.sub end AddCommGroup end OrderedRing section LinearOrderedField variable [LinearOrderedField 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E} /-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : StrictConvex 𝕜 s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b ⊢ (a + b) / (a + b) = 1
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.affine_preimage StrictConvex.affine_preimage /-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab exact hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩ #align strict_convex.affine_image StrictConvex.affine_image variable [TopologicalAddGroup E] theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) := hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective #align strict_convex.neg StrictConvex.neg theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) := (sub_eq_add_neg s t).symm ▸ hs.add ht.neg #align strict_convex.sub StrictConvex.sub end AddCommGroup end OrderedRing section LinearOrderedField variable [LinearOrderedField 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E} /-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) rw [← add_div]
exact div_self (add_pos ha hb).ne'
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) rw [← add_div]
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a • x + b • y ∈ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.affine_preimage StrictConvex.affine_preimage /-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab exact hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩ #align strict_convex.affine_image StrictConvex.affine_image variable [TopologicalAddGroup E] theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) := hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective #align strict_convex.neg StrictConvex.neg theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) := (sub_eq_add_neg s t).symm ▸ hs.add ht.neg #align strict_convex.sub StrictConvex.sub end AddCommGroup end OrderedRing section LinearOrderedField variable [LinearOrderedField 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E} /-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) rw [← add_div] exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
convert h hx hy hxy ha hb
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) rw [← add_div] exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
Mathlib_Analysis_Convex_Strict
case h.e'_4.h.e'_5.h.e'_5 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ a = a / (a + b)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.affine_preimage StrictConvex.affine_preimage /-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab exact hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩ #align strict_convex.affine_image StrictConvex.affine_image variable [TopologicalAddGroup E] theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) := hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective #align strict_convex.neg StrictConvex.neg theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) := (sub_eq_add_neg s t).symm ▸ hs.add ht.neg #align strict_convex.sub StrictConvex.sub end AddCommGroup end OrderedRing section LinearOrderedField variable [LinearOrderedField 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E} /-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) rw [← add_div] exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by convert h hx hy hxy ha hb <;>
rw [hab, div_one]
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) rw [← add_div] exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by convert h hx hy hxy ha hb <;>
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
Mathlib_Analysis_Convex_Strict
case h.e'_4.h.e'_6.h.e'_5 𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x✝ : E h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s x : E hx : x ∈ s y : E hy : y ∈ s hxy : x ≠ y a b : 𝕜 ha : 0 < a hb : 0 < b hab : a + b = 1 ⊢ b = b / (a + b)
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.affine_preimage StrictConvex.affine_preimage /-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab exact hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩ #align strict_convex.affine_image StrictConvex.affine_image variable [TopologicalAddGroup E] theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) := hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective #align strict_convex.neg StrictConvex.neg theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) := (sub_eq_add_neg s t).symm ▸ hs.add ht.neg #align strict_convex.sub StrictConvex.sub end AddCommGroup end OrderedRing section LinearOrderedField variable [LinearOrderedField 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E} /-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) rw [← add_div] exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by convert h hx hy hxy ha hb <;>
rw [hab, div_one]
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) rw [← add_div] exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by convert h hx hy hxy ha hb <;>
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
/-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : StrictConvex 𝕜 s zero_mem : 0 ∈ s hx : x ∈ s hx₀ : x ≠ 0 t : 𝕜 ht : 1 < t ⊢ x ∈ t • interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.affine_preimage StrictConvex.affine_preimage /-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab exact hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩ #align strict_convex.affine_image StrictConvex.affine_image variable [TopologicalAddGroup E] theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) := hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective #align strict_convex.neg StrictConvex.neg theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) := (sub_eq_add_neg s t).symm ▸ hs.add ht.neg #align strict_convex.sub StrictConvex.sub end AddCommGroup end OrderedRing section LinearOrderedField variable [LinearOrderedField 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E} /-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) rw [← add_div] exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by convert h hx hy hxy ha hb <;> rw [hab, div_one]⟩ #align strict_convex_iff_div strictConvex_iff_div theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s := by
rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans ht).ne']
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s := by
Mathlib.Analysis.Convex.Strict.416_0.eLomqYdbrwkwew8
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 𝕝 : Type u_2 E : Type u_3 F : Type u_4 β : Type u_5 inst✝⁵ : LinearOrderedField 𝕜 inst✝⁴ : TopologicalSpace E inst✝³ : AddCommGroup E inst✝² : AddCommGroup F inst✝¹ : Module 𝕜 E inst✝ : Module 𝕜 F s : Set E x : E hs : StrictConvex 𝕜 s zero_mem : 0 ∈ s hx : x ∈ s hx₀ : x ≠ 0 t : 𝕜 ht : 1 < t ⊢ t⁻¹ • x ∈ interior s
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Analysis.Convex.Basic import Mathlib.Topology.Algebra.Order.Group #align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219" /-! # Strictly convex sets This file defines strictly convex sets. A set is strictly convex if the open segment between any two distinct points lies in its interior. -/ open Set open Convex Pointwise variable {𝕜 𝕝 E F β : Type*} open Function Set open Convex section OrderedSemiring variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommMonoid variable [AddCommMonoid E] [AddCommMonoid F] section SMul variable (𝕜) variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E) /-- A set is strictly convex if the open segment between any two distinct points lies is in its interior. This basically means "convex and not flat on the boundary". -/ def StrictConvex : Prop := s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s #align strict_convex StrictConvex variable {𝕜 s} variable {x y : E} {a b : 𝕜} theorem strictConvex_iff_openSegment_subset : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s := forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm #align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s := strictConvex_iff_openSegment_subset.1 hs hx hy h #align strict_convex.open_segment_subset StrictConvex.openSegment_subset theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) := pairwise_empty _ #align strict_convex_empty strictConvex_empty theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by intro x _ y _ _ a b _ _ _ rw [interior_univ] exact mem_univ _ #align strict_convex_univ strictConvex_univ protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y := hs.eq hx hy fun H => h <| H ha hb hab #align strict_convex.eq StrictConvex.eq protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s ∩ t) := by intro x hx y hy hxy a b ha hb hab rw [interior_inter] exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩ #align strict_convex.inter StrictConvex.inter theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s) (hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by rintro x hx y hy hxy a b ha hb hab rw [mem_iUnion] at hx hy obtain ⟨i, hx⟩ := hx obtain ⟨j, hy⟩ := hy obtain ⟨k, hik, hjk⟩ := hdir i j exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab) #align directed.strict_convex_Union Directed.strictConvex_iUnion theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S) (hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by rw [sUnion_eq_iUnion] exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2 #align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion end SMul section Module variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E} protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s := convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab => interior_subset <| hs hx hy hxy ha hb hab #align strict_convex.convex StrictConvex.convex /-- An open convex set is strictly convex. -/ protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s := fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab #align convex.strict_convex_of_open Convex.strictConvex_of_isOpen theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s := ⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩ #align is_open.strict_convex_iff IsOpen.strictConvex_iff theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) := pairwise_singleton _ _ #align strict_convex_singleton strictConvex_singleton theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s := hs.pairwise _ #align set.subsingleton.strict_convex Set.Subsingleton.strictConvex theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F] [LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩ rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b] #align strict_convex.linear_image StrictConvex.linear_image theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := hs.linear_image (h.mk' f) hf #align strict_convex.is_linear_image StrictConvex.is_linear_image theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, f.map_add, f.map_smul, f.map_smul] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.linear_preimage StrictConvex.linear_preimage theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := hs.linear_preimage (h.mk' f) hf hfinj #align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage section LinearOrderedCancelAddCommMonoid variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β] [OrderedSMul 𝕜 β] protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) : StrictConvex 𝕜 s := by refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _ cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;> exact (openSegment_subset_Ioo hlt).trans (isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›) #align set.ord_connected.strict_convex Set.OrdConnected.strictConvex theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) := ordConnected_Iic.strictConvex #align strict_convex_Iic strictConvex_Iic theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) := ordConnected_Ici.strictConvex #align strict_convex_Ici strictConvex_Ici theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) := ordConnected_Iio.strictConvex #align strict_convex_Iio strictConvex_Iio theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) := ordConnected_Ioi.strictConvex #align strict_convex_Ioi strictConvex_Ioi theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) := ordConnected_Icc.strictConvex #align strict_convex_Icc strictConvex_Icc theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) := ordConnected_Ioo.strictConvex #align strict_convex_Ioo strictConvex_Ioo theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) := ordConnected_Ico.strictConvex #align strict_convex_Ico strictConvex_Ico theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) := ordConnected_Ioc.strictConvex #align strict_convex_Ioc strictConvex_Ioc theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) := strictConvex_Icc _ _ #align strict_convex_uIcc strictConvex_uIcc theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) := strictConvex_Ioc _ _ #align strict_convex_uIoc strictConvex_uIoc end LinearOrderedCancelAddCommMonoid end Module end AddCommMonoid section AddCancelCommMonoid variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E} /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _ have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h #align strict_convex.preimage_add_right StrictConvex.preimage_add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by simpa only [add_comm] using hs.preimage_add_right z #align strict_convex.preimage_add_left StrictConvex.preimage_add_left end AddCancelCommMonoid section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] section continuous_add variable [ContinuousAdd E] {s t : Set E} theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) := by rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab rw [smul_add, smul_add, add_add_add_comm] obtain rfl | hvx := eq_or_ne v x · refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _ rw [Convex.combo_self hab, singleton_add] exact (isOpenMap_add_left _).image_interior_subset _ (mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab) exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab) #align strict_convex.add StrictConvex.add theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => z + x) '' s) := by simpa only [singleton_add] using (strictConvex_singleton z).add hs #align strict_convex.add_left StrictConvex.add_left theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) : StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z #align strict_convex.add_right StrictConvex.add_right /-- The translation of a strictly convex set is also strictly convex. -/ theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) := hs.add_left x #align strict_convex.vadd StrictConvex.vadd end continuous_add section ContinuousSMul variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E] [LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E} theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by obtain rfl | hc := eq_or_ne c 0 · exact (subsingleton_zero_smul_set _).strictConvex · exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc) #align strict_convex.smul StrictConvex.smul theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) : StrictConvex 𝕜 (z +ᵥ c • s) := (hs.smul c).vadd z #align strict_convex.affinity StrictConvex.affinity end ContinuousSMul end AddCommGroup end OrderedSemiring section OrderedCommSemiring variable [OrderedCommSemiring 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E] {s : Set E} theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) : StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by classical obtain rfl | hc := eq_or_ne c 0 · simp_rw [zero_smul, preimage_const] split_ifs · exact strictConvex_univ · exact strictConvex_empty refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc) unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ exact continuous_const_smul _ #align strict_convex.preimage_smul StrictConvex.preimage_smul end AddCommGroup end OrderedCommSemiring section OrderedRing variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E} theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜] (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) : x = y := by obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one classical by_contra hxy exact (h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2 (hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _) #align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s) (hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by have h : x + t • y = (1 - t) • x + t • (x + y) := by rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul] rw [h] refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _) rw [← h, add_zero] #align strict_convex.add_smul_mem StrictConvex.add_smul_mem theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁ #align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by apply h.openSegment_subset hx hy hxy rw [openSegment_eq_image'] exact mem_image_of_mem _ ⟨ht₀, ht₁⟩ #align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem /-- The preimage of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by intro x hx y hy hxy a b ha hb hab refine' preimage_interior_subset_interior_preimage hf _ rw [mem_preimage, Convex.combo_affine_apply hab] exact hs hx hy (hfinj.ne hxy) ha hb hab #align strict_convex.affine_preimage StrictConvex.affine_preimage /-- The image of a strictly convex set under an affine map is strictly convex. -/ theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) := by rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab exact hf.image_interior_subset _ ⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩ #align strict_convex.affine_image StrictConvex.affine_image variable [TopologicalAddGroup E] theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) := hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective #align strict_convex.neg StrictConvex.neg theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) := (sub_eq_add_neg s t).symm ▸ hs.add ht.neg #align strict_convex.sub StrictConvex.sub end AddCommGroup end OrderedRing section LinearOrderedField variable [LinearOrderedField 𝕜] [TopologicalSpace E] section AddCommGroup variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E} /-- Alternative definition of set strict convexity, using division. -/ theorem strictConvex_iff_div : StrictConvex 𝕜 s ↔ s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s := ⟨fun h x hx y hy hxy a b ha hb => by apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb) rw [← add_div] exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by convert h hx hy hxy ha hb <;> rw [hab, div_one]⟩ #align strict_convex_iff_div strictConvex_iff_div theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s := by rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans ht).ne']
exact hs.smul_mem_of_zero_mem zero_mem hx hx₀ (inv_pos.2 <| zero_lt_one.trans ht) (inv_lt_one ht)
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s := by rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans ht).ne']
Mathlib.Analysis.Convex.Strict.416_0.eLomqYdbrwkwew8
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s
Mathlib_Analysis_Convex_Strict
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E a✝ b✝ : E hx : a✝ ∈ {v | ∀ u ∈ K, inner u v = 0} hy : b✝ ∈ {v | ∀ u ∈ K, inner u v = 0} u : E hu : u ∈ K ⊢ inner u (a✝ + b✝) = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by
rw [inner_add_right, hx u hu, hy u hu, add_zero]
/-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.40_0.QXx0GYqLoAbtfq1
/-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E c : 𝕜 x : E hx : x ∈ { toAddSubsemigroup := { carrier := {v | ∀ u ∈ K, inner u v = 0}, add_mem' := (_ : ∀ {a b : E}, a ∈ {v | ∀ u ∈ K, inner u v = 0} → b ∈ {v | ∀ u ∈ K, inner u v = 0} → ∀ u ∈ K, inner u (a + b) = 0) }, zero_mem' := (_ : ∀ x ∈ K, inner x 0 = 0) }.toAddSubsemigroup.carrier u : E hu : u ∈ K ⊢ inner u (c • x) = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by
rw [inner_smul_right, hx u hu, mul_zero]
/-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.40_0.QXx0GYqLoAbtfq1
/-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E v : E ⊢ v ∈ Kᗮ ↔ ∀ u ∈ K, inner v u = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
/-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.56_0.QXx0GYqLoAbtfq1
/-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E u v : E hu : u ∈ K hv : v ∈ Kᗮ ⊢ inner v u = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.69_0.QXx0GYqLoAbtfq1
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E u v : E hu : u ∈ K hv : v ∈ Kᗮ ⊢ inner u v = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm];
exact inner_right_of_mem_orthogonal hu hv
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm];
Mathlib.Analysis.InnerProductSpace.Orthogonal.69_0.QXx0GYqLoAbtfq1
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E u v : E ⊢ v ∈ (span 𝕜 {u})ᗮ ↔ inner u v = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.74_0.QXx0GYqLoAbtfq1
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E u v : E ⊢ inner u v = 0 → v ∈ (span 𝕜 {u})ᗮ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
Mathlib.Analysis.InnerProductSpace.Orthogonal.74_0.QXx0GYqLoAbtfq1
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E u v : E hv : inner u v = 0 w : E hw : w ∈ span 𝕜 {u} ⊢ inner w v = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw
rw [mem_span_singleton] at hw
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw
Mathlib.Analysis.InnerProductSpace.Orthogonal.74_0.QXx0GYqLoAbtfq1
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E u v : E hv : inner u v = 0 w : E hw : ∃ a, a • u = w ⊢ inner w v = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw
Mathlib.Analysis.InnerProductSpace.Orthogonal.74_0.QXx0GYqLoAbtfq1
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0
Mathlib_Analysis_InnerProductSpace_Orthogonal
case intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E u v : E hv : inner u v = 0 c : 𝕜 ⊢ inner (c • u) v = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw
Mathlib.Analysis.InnerProductSpace.Orthogonal.74_0.QXx0GYqLoAbtfq1
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E u v : E ⊢ v ∈ (span 𝕜 {u})ᗮ ↔ inner v u = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.83_0.QXx0GYqLoAbtfq1
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E x y : E h : ∀ (v : ↥K), inner x ↑v = inner y ↑v ⊢ x - y ∈ Kᗮ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.88_0.QXx0GYqLoAbtfq1
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E x y : E h : ∀ (v : ↥K), inner x ↑v = inner y ↑v ⊢ ∀ u ∈ K, inner (x - y) u = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal']
intro u hu
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal']
Mathlib.Analysis.InnerProductSpace.Orthogonal.88_0.QXx0GYqLoAbtfq1
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E x y : E h : ∀ (v : ↥K), inner x ↑v = inner y ↑v u : E hu : u ∈ K ⊢ inner (x - y) u = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu
rw [inner_sub_left, sub_eq_zero]
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu
Mathlib.Analysis.InnerProductSpace.Orthogonal.88_0.QXx0GYqLoAbtfq1
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E x y : E h : ∀ (v : ↥K), inner x ↑v = inner y ↑v u : E hu : u ∈ K ⊢ inner x u = inner y u
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero]
Mathlib.Analysis.InnerProductSpace.Orthogonal.88_0.QXx0GYqLoAbtfq1
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E x y : E h : ∀ (v : ↥K), inner (↑v) x = inner (↑v) y ⊢ x - y ∈ Kᗮ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by
intro u hu
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.95_0.QXx0GYqLoAbtfq1
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E x y : E h : ∀ (v : ↥K), inner (↑v) x = inner (↑v) y u : E hu : u ∈ K ⊢ inner u (x - y) = 0
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu
rw [inner_sub_right, sub_eq_zero]
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu
Mathlib.Analysis.InnerProductSpace.Orthogonal.95_0.QXx0GYqLoAbtfq1
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E x y : E h : ∀ (v : ↥K), inner (↑v) x = inner (↑v) y u : E hu : u ∈ K ⊢ inner u x = inner u y
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu rw [inner_sub_right, sub_eq_zero]
exact h ⟨u, hu⟩
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu rw [inner_sub_right, sub_eq_zero]
Mathlib.Analysis.InnerProductSpace.Orthogonal.95_0.QXx0GYqLoAbtfq1
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E ⊢ K ⊓ Kᗮ = ⊥
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
/-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.104_0.QXx0GYqLoAbtfq1
/-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E ⊢ K ⊓ Kᗮ ≤ ⊥
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by rw [eq_bot_iff]
intro x
/-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by rw [eq_bot_iff]
Mathlib.Analysis.InnerProductSpace.Orthogonal.104_0.QXx0GYqLoAbtfq1
/-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E x : E ⊢ x ∈ K ⊓ Kᗮ → x ∈ ⊥
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by rw [eq_bot_iff] intro x
rw [mem_inf]
/-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by rw [eq_bot_iff] intro x
Mathlib.Analysis.InnerProductSpace.Orthogonal.104_0.QXx0GYqLoAbtfq1
/-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E x : E ⊢ x ∈ K ∧ x ∈ Kᗮ → x ∈ ⊥
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by rw [eq_bot_iff] intro x rw [mem_inf]
exact fun ⟨hx, ho⟩ => inner_self_eq_zero.1 (ho x hx)
/-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by rw [eq_bot_iff] intro x rw [mem_inf]
Mathlib.Analysis.InnerProductSpace.Orthogonal.104_0.QXx0GYqLoAbtfq1
/-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E ⊢ Disjoint K Kᗮ
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun ⟨hx, ho⟩ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kᗮ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kᗮ := by
simp [disjoint_iff, K.inf_orthogonal_eq_bot]
/-- `K` and `Kᗮ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kᗮ := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.112_0.QXx0GYqLoAbtfq1
/-- `K` and `Kᗮ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kᗮ
Mathlib_Analysis_InnerProductSpace_Orthogonal
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E ⊢ Kᗮ = ⨅ v, LinearMap.ker ((innerSL 𝕜) ↑v)
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun ⟨hx, ho⟩ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kᗮ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kᗮ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by
apply le_antisymm
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by
Mathlib.Analysis.InnerProductSpace.Orthogonal.116_0.QXx0GYqLoAbtfq1
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E))
Mathlib_Analysis_InnerProductSpace_Orthogonal
case a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E ⊢ Kᗮ ≤ ⨅ v, LinearMap.ker ((innerSL 𝕜) ↑v)
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun ⟨hx, ho⟩ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kᗮ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kᗮ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by apply le_antisymm ·
rw [le_iInf_iff]
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by apply le_antisymm ·
Mathlib.Analysis.InnerProductSpace.Orthogonal.116_0.QXx0GYqLoAbtfq1
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E))
Mathlib_Analysis_InnerProductSpace_Orthogonal
case a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace 𝕜 F K : Submodule 𝕜 E ⊢ ∀ (i : ↥K), Kᗮ ≤ LinearMap.ker ((innerSL 𝕜) ↑i)
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis -/ import Mathlib.Analysis.InnerProductSpace.Basic #align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9" /-! # Orthogonal complements of submodules In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established. Some of the more subtle results about the orthogonal complement are delayed to `Analysis.InnerProductSpace.Projection`. See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form. ## Notation The orthogonal complement of a submodule `K` is denoted by `Kᗮ`. The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`. Note this is not the same unicode symbol as `⊥` (`Bot`). -/ variable {𝕜 E F : Type*} [IsROrC 𝕜] variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y namespace Submodule variable (K : Submodule 𝕜 E) /-- The subspace of vectors orthogonal to a given subspace. -/ def orthogonal : Submodule 𝕜 E where carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 } zero_mem' _ _ := inner_zero_right _ add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero] smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero] #align submodule.orthogonal Submodule.orthogonal @[inherit_doc] notation:1200 K "ᗮ" => orthogonal K /-- When a vector is in `Kᗮ`. -/ theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := Iff.rfl #align submodule.mem_orthogonal Submodule.mem_orthogonal /-- When a vector is in `Kᗮ`, with the inner product the other way round. -/ theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by simp_rw [mem_orthogonal, inner_eq_zero_symm] #align submodule.mem_orthogonal' Submodule.mem_orthogonal' variable {K} /-- A vector in `K` is orthogonal to one in `Kᗮ`. -/ theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 := (K.mem_orthogonal v).1 hv u hu #align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal /-- A vector in `Kᗮ` is orthogonal to one in `K`. -/ theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv #align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal /-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩ intro hv w hw rw [mem_span_singleton] at hw obtain ⟨c, rfl⟩ := hw simp [inner_smul_left, hv] #align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right /-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/ theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm] #align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by rw [mem_orthogonal'] intro u hu rw [inner_sub_left, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x - y ∈ Kᗮ := by intro u hu rw [inner_sub_right, sub_eq_zero] exact h ⟨u, hu⟩ #align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right variable (K) /-- `K` and `Kᗮ` have trivial intersection. -/ theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by rw [eq_bot_iff] intro x rw [mem_inf] exact fun ⟨hx, ho⟩ => inner_self_eq_zero.1 (ho x hx) #align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot /-- `K` and `Kᗮ` have trivial intersection. -/ theorem orthogonal_disjoint : Disjoint K Kᗮ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot] #align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint /-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by apply le_antisymm · rw [le_iInf_iff]
rintro ⟨v, hv⟩ w hw
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by apply le_antisymm · rw [le_iInf_iff]
Mathlib.Analysis.InnerProductSpace.Orthogonal.116_0.QXx0GYqLoAbtfq1
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of inner product with each of the elements of `K`. -/ theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E))
Mathlib_Analysis_InnerProductSpace_Orthogonal