state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
ι : Sort u_6
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)
x : E
hx : ∃ i, x ∈ s i
y : E
hy : ∃ i, y ∈ s i
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior (⋃ i, s i)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
|
obtain ⟨i, hx⟩ := hx
|
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
|
Mathlib.Analysis.Convex.Strict.84_0.eLomqYdbrwkwew8
|
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
|
Mathlib_Analysis_Convex_Strict
|
case intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
ι : Sort u_6
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)
x y : E
hy : ∃ i, y ∈ s i
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
i : ι
hx : x ∈ s i
⊢ a • x + b • y ∈ interior (⋃ i, s i)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
|
obtain ⟨j, hy⟩ := hy
|
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
|
Mathlib.Analysis.Convex.Strict.84_0.eLomqYdbrwkwew8
|
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
ι : Sort u_6
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)
x y : E
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
i : ι
hx : x ∈ s i
j : ι
hy : y ∈ s j
⊢ a • x + b • y ∈ interior (⋃ i, s i)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
|
obtain ⟨k, hik, hjk⟩ := hdir i j
|
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
|
Mathlib.Analysis.Convex.Strict.84_0.eLomqYdbrwkwew8
|
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s✝ : Set E
x✝ y✝ : E
a✝ b✝ : 𝕜
ι : Sort u_6
s : ι → Set E
hdir : Directed (fun x x_1 => x ⊆ x_1) s
hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)
x y : E
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
i : ι
hx : x ∈ s i
j : ι
hy : y ∈ s j
k : ι
hik : s i ⊆ s k
hjk : s j ⊆ s k
⊢ a • x + b • y ∈ interior (⋃ i, s i)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
|
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
|
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
|
Mathlib.Analysis.Convex.Strict.84_0.eLomqYdbrwkwew8
|
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x y : E
a b : 𝕜
S : Set (Set E)
hdir : DirectedOn (fun x x_1 => x ⊆ x_1) S
hS : ∀ s ∈ S, StrictConvex 𝕜 s
⊢ StrictConvex 𝕜 (⋃₀ S)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
|
rw [sUnion_eq_iUnion]
|
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
|
Mathlib.Analysis.Convex.Strict.94_0.eLomqYdbrwkwew8
|
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : SMul 𝕜 E
inst✝ : SMul 𝕜 F
s : Set E
x y : E
a b : 𝕜
S : Set (Set E)
hdir : DirectedOn (fun x x_1 => x ⊆ x_1) S
hS : ∀ s ∈ S, StrictConvex 𝕜 s
⊢ StrictConvex 𝕜 (⋃ i, ↑i)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
|
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
|
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
|
Mathlib.Analysis.Convex.Strict.94_0.eLomqYdbrwkwew8
|
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommMonoid E
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
s : Set E
inst✝³ : Semiring 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : Module 𝕝 F
inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕝] F
hf : IsOpenMap ⇑f
⊢ StrictConvex 𝕜 (⇑f '' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
|
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
|
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
|
Mathlib.Analysis.Convex.Strict.129_0.eLomqYdbrwkwew8
|
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommMonoid E
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
s : Set E
inst✝³ : Semiring 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : Module 𝕝 F
inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕝] F
hf : IsOpenMap ⇑f
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : f x ≠ f y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y ∈ interior (⇑f '' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
|
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
|
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
|
Mathlib.Analysis.Convex.Strict.129_0.eLomqYdbrwkwew8
|
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommMonoid E
inst✝⁶ : AddCommMonoid F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
s : Set E
inst✝³ : Semiring 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : Module 𝕝 F
inst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕝] F
hf : IsOpenMap ⇑f
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : f x ≠ f y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ f (a • x + b • y) = a • f x + b • f y
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
|
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
|
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
|
Mathlib.Analysis.Convex.Strict.129_0.eLomqYdbrwkwew8
|
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕜] F
hf : Continuous ⇑f
hfinj : Injective ⇑f
⊢ StrictConvex 𝕜 (⇑f ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
|
intro x hx y hy hxy a b ha hb hab
|
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
|
Mathlib.Analysis.Convex.Strict.142_0.eLomqYdbrwkwew8
|
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕜] F
hf : Continuous ⇑f
hfinj : Injective ⇑f
x : E
hx : x ∈ ⇑f ⁻¹' s
y : E
hy : y ∈ ⇑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior (⇑f ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
|
refine' preimage_interior_subset_interior_preimage hf _
|
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
|
Mathlib.Analysis.Convex.Strict.142_0.eLomqYdbrwkwew8
|
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕜] F
hf : Continuous ⇑f
hfinj : Injective ⇑f
x : E
hx : x ∈ ⇑f ⁻¹' s
y : E
hy : y ∈ ⇑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ ⇑f ⁻¹' interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
|
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
|
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
|
Mathlib.Analysis.Convex.Strict.142_0.eLomqYdbrwkwew8
|
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedSemiring 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommMonoid E
inst✝² : AddCommMonoid F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ : Set E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ₗ[𝕜] F
hf : Continuous ⇑f
hfinj : Injective ⇑f
x : E
hx : x ∈ ⇑f ⁻¹' s
y : E
hy : y ∈ ⇑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y ∈ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
|
exact hs hx hy (hfinj.ne hxy) ha hb hab
|
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
|
Mathlib.Analysis.Convex.Strict.142_0.eLomqYdbrwkwew8
|
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
⊢ StrictConvex 𝕜 s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
|
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
|
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
⊢ (fun x y => openSegment 𝕜 x y ⊆ interior s) x y
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
|
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]]
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
|
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
⊢ (fun x y => openSegment 𝕜 x y ⊆ interior s) x y
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
|
cases' hxy.lt_or_lt with hlt hlt
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
|
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s
|
Mathlib_Analysis_Convex_Strict
|
case inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
hlt : x < y
⊢ openSegment 𝕜 x y ⊆ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [
|
skip
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [
|
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s
|
Mathlib_Analysis_Convex_Strict
|
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
hlt : y < x
⊢ openSegment 𝕜 x y ⊆ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip;
|
rw [openSegment_symm]
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip;
|
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s
|
Mathlib_Analysis_Convex_Strict
|
case inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
hlt : x < y
⊢ openSegment 𝕜 x y ⊆ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
|
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
|
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s
|
Mathlib_Analysis_Convex_Strict
|
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹¹ : OrderedSemiring 𝕜
inst✝¹⁰ : TopologicalSpace E
inst✝⁹ : TopologicalSpace F
inst✝⁸ : AddCommMonoid E
inst✝⁷ : AddCommMonoid F
inst✝⁶ : Module 𝕜 E
inst✝⁵ : Module 𝕜 F
s✝ : Set E
inst✝⁴ : TopologicalSpace β
inst✝³ : LinearOrderedCancelAddCommMonoid β
inst✝² : OrderTopology β
inst✝¹ : Module 𝕜 β
inst✝ : OrderedSMul 𝕜 β
s : Set β
hs : OrdConnected s
x : β
hx : x ∈ s
y : β
hy : y ∈ s
hxy : x ≠ y
hlt : y < x
⊢ openSegment 𝕜 y x ⊆ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
|
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
|
Mathlib.Analysis.Convex.Strict.161_0.eLomqYdbrwkwew8
|
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : TopologicalSpace F
inst✝² : AddCancelCommMonoid E
inst✝¹ : ContinuousAdd E
inst✝ : Module 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
z : E
⊢ StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
|
intro x hx y hy hxy a b ha hb hab
|
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
|
Mathlib.Analysis.Convex.Strict.220_0.eLomqYdbrwkwew8
|
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : TopologicalSpace F
inst✝² : AddCancelCommMonoid E
inst✝¹ : ContinuousAdd E
inst✝ : Module 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
z x : E
hx : x ∈ (fun x => z + x) ⁻¹' s
y : E
hy : y ∈ (fun x => z + x) ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior ((fun x => z + x) ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
|
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
|
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
|
Mathlib.Analysis.Convex.Strict.220_0.eLomqYdbrwkwew8
|
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : TopologicalSpace F
inst✝² : AddCancelCommMonoid E
inst✝¹ : ContinuousAdd E
inst✝ : Module 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
z x : E
hx : x ∈ (fun x => z + x) ⁻¹' s
y : E
hy : y ∈ (fun x => z + x) ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ (fun b => z + b) ⁻¹' interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
|
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
|
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
|
Mathlib.Analysis.Convex.Strict.220_0.eLomqYdbrwkwew8
|
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : TopologicalSpace F
inst✝² : AddCancelCommMonoid E
inst✝¹ : ContinuousAdd E
inst✝ : Module 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
z x : E
hx : x ∈ (fun x => z + x) ⁻¹' s
y : E
hy : y ∈ (fun x => z + x) ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
h : a • (fun x => z + x) x + b • (fun x => z + x) y ∈ interior s
⊢ a • x + b • y ∈ (fun b => z + b) ⁻¹' interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
|
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
|
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
|
Mathlib.Analysis.Convex.Strict.220_0.eLomqYdbrwkwew8
|
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : TopologicalSpace F
inst✝² : AddCancelCommMonoid E
inst✝¹ : ContinuousAdd E
inst✝ : Module 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
z : E
⊢ StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
|
simpa only [add_comm] using hs.preimage_add_right z
|
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
|
Mathlib.Analysis.Convex.Strict.229_0.eLomqYdbrwkwew8
|
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
⊢ StrictConvex 𝕜 (s + t)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
|
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
|
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
x y : E
hx : x ∈ s
hy : y ∈ t
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • (fun x x_1 => x + x_1) v w + b • (fun x x_1 => x + x_1) x y ∈ interior (s + t)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
|
rw [smul_add, smul_add, add_add_add_comm]
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
|
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
x y : E
hx : x ∈ s
hy : y ∈ t
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • v + b • x + (a • w + b • y) ∈ interior (s + t)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
|
obtain rfl | hvx := eq_or_ne v x
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
|
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro.intro.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
y : E
hy : y ∈ t
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx : v ∈ s
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y
⊢ a • v + b • v + (a • w + b • y) ∈ interior (s + t)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
·
|
refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
·
|
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro.intro.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
y : E
hy : y ∈ t
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx : v ∈ s
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y
⊢ a • v + b • v + (a • w + b • y) ∈ interior ({v} + t)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
|
rw [Convex.combo_self hab, singleton_add]
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
|
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro.intro.intro.intro.intro.intro.intro.inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
y : E
hy : y ∈ t
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hx : v ∈ s
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) v y
⊢ v + (a • w + b • y) ∈ interior ((fun x => v + x) '' t)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
|
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
|
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro.intro.intro.intro.intro.intro.intro.inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
ht : StrictConvex 𝕜 t
v w : E
hv : v ∈ s
hw : w ∈ t
x y : E
hx : x ∈ s
hy : y ∈ t
h : (fun x x_1 => x + x_1) v w ≠ (fun x x_1 => x + x_1) x y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
hvx : v ≠ x
⊢ a • v + b • x + (a • w + b • y) ∈ interior (s + t)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
|
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
|
Mathlib.Analysis.Convex.Strict.245_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
z : E
⊢ StrictConvex 𝕜 ((fun x => z + x) '' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
|
simpa only [singleton_add] using (strictConvex_singleton z).add hs
|
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
|
Mathlib.Analysis.Convex.Strict.260_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁷ : OrderedSemiring 𝕜
inst✝⁶ : TopologicalSpace E
inst✝⁵ : TopologicalSpace F
inst✝⁴ : AddCommGroup E
inst✝³ : AddCommGroup F
inst✝² : Module 𝕜 E
inst✝¹ : Module 𝕜 F
inst✝ : ContinuousAdd E
s t : Set E
hs : StrictConvex 𝕜 s
z : E
⊢ StrictConvex 𝕜 ((fun x => x + z) '' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by
|
simpa only [add_comm] using hs.add_left z
|
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by
|
Mathlib.Analysis.Convex.Strict.265_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
inst✝³ : LinearOrderedField 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : ContinuousConstSMul 𝕝 E
inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝
s : Set E
x : E
hs : StrictConvex 𝕜 s
c : 𝕝
⊢ StrictConvex 𝕜 (c • s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
|
obtain rfl | hc := eq_or_ne c 0
|
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
|
Mathlib.Analysis.Convex.Strict.281_0.eLomqYdbrwkwew8
|
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s)
|
Mathlib_Analysis_Convex_Strict
|
case inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
inst✝³ : LinearOrderedField 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : ContinuousConstSMul 𝕝 E
inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝
s : Set E
x : E
hs : StrictConvex 𝕜 s
⊢ StrictConvex 𝕜 (0 • s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
·
|
exact (subsingleton_zero_smul_set _).strictConvex
|
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
·
|
Mathlib.Analysis.Convex.Strict.281_0.eLomqYdbrwkwew8
|
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s)
|
Mathlib_Analysis_Convex_Strict
|
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝¹⁰ : OrderedSemiring 𝕜
inst✝⁹ : TopologicalSpace E
inst✝⁸ : TopologicalSpace F
inst✝⁷ : AddCommGroup E
inst✝⁶ : AddCommGroup F
inst✝⁵ : Module 𝕜 E
inst✝⁴ : Module 𝕜 F
inst✝³ : LinearOrderedField 𝕝
inst✝² : Module 𝕝 E
inst✝¹ : ContinuousConstSMul 𝕝 E
inst✝ : LinearMap.CompatibleSMul E E 𝕜 𝕝
s : Set E
x : E
hs : StrictConvex 𝕜 s
c : 𝕝
hc : c ≠ 0
⊢ StrictConvex 𝕜 (c • s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
·
|
exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
|
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
·
|
Mathlib.Analysis.Convex.Strict.281_0.eLomqYdbrwkwew8
|
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
c : 𝕜
⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
|
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
|
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
c : 𝕜
⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
|
obtain rfl | hc := eq_or_ne c 0
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
|
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
case inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
⊢ StrictConvex 𝕜 ((fun z => 0 • z) ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
·
|
simp_rw [zero_smul, preimage_const]
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
·
|
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
case inl
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
⊢ StrictConvex 𝕜 (if 0 ∈ s then univ else ∅)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
|
split_ifs
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
|
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
case pos
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
h✝ : 0 ∈ s
⊢ StrictConvex 𝕜 univ
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
·
|
exact strictConvex_univ
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
·
|
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
case neg
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
h✝ : 0 ∉ s
⊢ StrictConvex 𝕜 ∅
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
·
|
exact strictConvex_empty
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
·
|
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
c : 𝕜
hc : c ≠ 0
⊢ StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
|
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
|
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
c : 𝕜
hc : c ≠ 0
⊢ Continuous ⇑((LinearMap.lsmul 𝕜 E) c)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
|
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
|
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
case inr
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : OrderedCommSemiring 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : Module 𝕜 E
inst✝¹ : NoZeroSMulDivisors 𝕜 E
inst✝ : ContinuousConstSMul 𝕜 E
s : Set E
hs : StrictConvex 𝕜 s
c : 𝕜
hc : c ≠ 0
⊢ Continuous
⇑({
toAddHom :=
{
toFun := fun m =>
{
toAddHom :=
{ toFun := (fun x x_1 => x • x_1) m,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) },
map_add' :=
(_ :
∀ (m₁ m₂ : 𝕜),
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
(m₁ + m₂) =
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₁ +
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₂) },
map_smul' :=
(_ :
∀ (c m : 𝕜),
AddHom.toFun
{
toFun := fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) },
map_add' :=
(_ :
∀ (m₁ m₂ : 𝕜),
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
(m₁ + m₂) =
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₁ +
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₂) }
(c • m) =
(RingHom.id 𝕜) c •
AddHom.toFun
{
toFun := fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) },
map_add' :=
(_ :
∀ (m₁ m₂ : 𝕜),
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
(m₁ + m₂) =
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₁ +
(fun m =>
{
toAddHom :=
{ toFun := fun x => m • x,
map_add' := (_ : ∀ (b₁ b₂ : E), m • (b₁ + b₂) = m • b₁ + m • b₂) },
map_smul' := (_ : ∀ (c : 𝕜) (m_1 : E), m • c • m_1 = c • m • m_1) })
m₂) }
m) }
c)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
|
exact continuous_const_smul _
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
|
Mathlib.Analysis.Convex.Strict.307_0.eLomqYdbrwkwew8
|
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁸ : OrderedRing 𝕜
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalSpace F
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
s t : Set E
x y : E
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
hs : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
h : openSegment 𝕜 x y ⊆ frontier s
⊢ x = y
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
|
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
|
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
|
Mathlib.Analysis.Convex.Strict.332_0.eLomqYdbrwkwew8
|
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁸ : OrderedRing 𝕜
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalSpace F
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
s t : Set E
x y : E
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
hs : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
h : openSegment 𝕜 x y ⊆ frontier s
a : 𝕜
ha₀ : 0 < a
ha₁ : a < 1
⊢ x = y
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
|
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
|
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
|
Mathlib.Analysis.Convex.Strict.332_0.eLomqYdbrwkwew8
|
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁸ : OrderedRing 𝕜
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalSpace F
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
s t : Set E
x y : E
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
hs : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
h : openSegment 𝕜 x y ⊆ frontier s
a : 𝕜
ha₀ : 0 < a
ha₁ : a < 1
⊢ x = y
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
|
by_contra hxy
|
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
|
Mathlib.Analysis.Convex.Strict.332_0.eLomqYdbrwkwew8
|
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁸ : OrderedRing 𝕜
inst✝⁷ : TopologicalSpace E
inst✝⁶ : TopologicalSpace F
inst✝⁵ : AddCommGroup E
inst✝⁴ : AddCommGroup F
inst✝³ : Module 𝕜 E
inst✝² : Module 𝕜 F
s t : Set E
x y : E
inst✝¹ : Nontrivial 𝕜
inst✝ : DenselyOrdered 𝕜
hs : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
h : openSegment 𝕜 x y ⊆ frontier s
a : 𝕜
ha₀ : 0 < a
ha₁ : a < 1
hxy : ¬x = y
⊢ False
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
|
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
|
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
|
Mathlib.Analysis.Convex.Strict.332_0.eLomqYdbrwkwew8
|
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • y ∈ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
|
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
|
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
|
Mathlib.Analysis.Convex.Strict.343_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • y = (1 - t) • x + t • (x + y)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
|
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
|
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
|
Mathlib.Analysis.Convex.Strict.343_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
h : x + t • y = (1 - t) • x + t • (x + y)
⊢ x + t • y ∈ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
|
rw [h]
|
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
|
Mathlib.Analysis.Convex.Strict.343_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
h : x + t • y = (1 - t) • x + t • (x + y)
⊢ (1 - t) • x + t • (x + y) ∈ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
|
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
|
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
|
Mathlib.Analysis.Convex.Strict.343_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
case refine'_1
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
h✝ : x + t • y = (1 - t) • x + t • (x + y)
h : x = x + y
⊢ ?refine'_2 h + y = ?refine'_2 h + 0
case refine'_2
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
hx : x ∈ s
hxy : x + y ∈ s
hy : y ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
h : x + t • y = (1 - t) • x + t • (x + y)
⊢ x = x + y → E
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
|
rw [← h, add_zero]
|
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
|
Mathlib.Analysis.Convex.Strict.343_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
zero_mem : 0 ∈ s
hx : x ∈ s
hx₀ : x ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ t • x ∈ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
|
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
|
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
|
Mathlib.Analysis.Convex.Strict.352_0.eLomqYdbrwkwew8
|
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
hs : StrictConvex 𝕜 s
zero_mem : 0 ∈ s
hx : x ∈ s
hx₀ : x ≠ 0
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ 0 + x ∈ s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by
|
simpa using hx
|
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by
|
Mathlib.Analysis.Convex.Strict.352_0.eLomqYdbrwkwew8
|
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
h : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • (y - x) ∈ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
|
apply h.openSegment_subset hx hy hxy
|
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
|
Mathlib.Analysis.Convex.Strict.357_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
case a
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
h : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • (y - x) ∈ openSegment 𝕜 x y
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
|
rw [openSegment_eq_image']
|
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
|
Mathlib.Analysis.Convex.Strict.357_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
case a
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t✝ : Set E
x y : E
h : StrictConvex 𝕜 s
hx : x ∈ s
hy : y ∈ s
hxy : x ≠ y
t : 𝕜
ht₀ : 0 < t
ht₁ : t < 1
⊢ x + t • (y - x) ∈ (fun θ => x + θ • (y - x)) '' Ioo 0 1
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
|
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
|
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
|
Mathlib.Analysis.Convex.Strict.357_0.eLomqYdbrwkwew8
|
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x y : E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : Continuous ⇑f
hfinj : Injective ⇑f
⊢ StrictConvex 𝕜 (⇑f ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
|
intro x hx y hy hxy a b ha hb hab
|
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
|
Mathlib.Analysis.Convex.Strict.364_0.eLomqYdbrwkwew8
|
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y✝ : E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : Continuous ⇑f
hfinj : Injective ⇑f
x : E
hx : x ∈ ⇑f ⁻¹' s
y : E
hy : y ∈ ⇑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior (⇑f ⁻¹' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
|
refine' preimage_interior_subset_interior_preimage hf _
|
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
|
Mathlib.Analysis.Convex.Strict.364_0.eLomqYdbrwkwew8
|
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y✝ : E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : Continuous ⇑f
hfinj : Injective ⇑f
x : E
hx : x ∈ ⇑f ⁻¹' s
y : E
hy : y ∈ ⇑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ ⇑f ⁻¹' interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
|
rw [mem_preimage, Convex.combo_affine_apply hab]
|
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
|
Mathlib.Analysis.Convex.Strict.364_0.eLomqYdbrwkwew8
|
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s✝ t : Set E
x✝ y✝ : E
s : Set F
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : Continuous ⇑f
hfinj : Injective ⇑f
x : E
hx : x ∈ ⇑f ⁻¹' s
y : E
hy : y ∈ ⇑f ⁻¹' s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y ∈ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
|
exact hs hx hy (hfinj.ne hxy) ha hb hab
|
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
|
Mathlib.Analysis.Convex.Strict.364_0.eLomqYdbrwkwew8
|
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x y : E
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : IsOpenMap ⇑f
⊢ StrictConvex 𝕜 (⇑f '' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
|
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
|
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
|
Mathlib.Analysis.Convex.Strict.373_0.eLomqYdbrwkwew8
|
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s)
|
Mathlib_Analysis_Convex_Strict
|
case intro.intro.intro.intro
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁶ : OrderedRing 𝕜
inst✝⁵ : TopologicalSpace E
inst✝⁴ : TopologicalSpace F
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s t : Set E
x✝ y✝ : E
hs : StrictConvex 𝕜 s
f : E →ᵃ[𝕜] F
hf : IsOpenMap ⇑f
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : f x ≠ f y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • f x + b • f y ∈ interior (⇑f '' s)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
|
exact
hf.image_interior_subset _
⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
|
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
|
Mathlib.Analysis.Convex.Strict.373_0.eLomqYdbrwkwew8
|
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s)
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : StrictConvex 𝕜 s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
⊢ (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
exact
hf.image_interior_subset _
⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
#align strict_convex.affine_image StrictConvex.affine_image
variable [TopologicalAddGroup E]
theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) :=
hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective
#align strict_convex.neg StrictConvex.neg
theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) :=
(sub_eq_add_neg s t).symm ▸ hs.add ht.neg
#align strict_convex.sub StrictConvex.sub
end AddCommGroup
end OrderedRing
section LinearOrderedField
variable [LinearOrderedField 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
|
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
|
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : StrictConvex 𝕜 s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
⊢ a / (a + b) + b / (a + b) = 1
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
exact
hf.image_interior_subset _
⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
#align strict_convex.affine_image StrictConvex.affine_image
variable [TopologicalAddGroup E]
theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) :=
hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective
#align strict_convex.neg StrictConvex.neg
theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) :=
(sub_eq_add_neg s t).symm ▸ hs.add ht.neg
#align strict_convex.sub StrictConvex.sub
end AddCommGroup
end OrderedRing
section LinearOrderedField
variable [LinearOrderedField 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
|
rw [← add_div]
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
|
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : StrictConvex 𝕜 s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
⊢ (a + b) / (a + b) = 1
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
exact
hf.image_interior_subset _
⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
#align strict_convex.affine_image StrictConvex.affine_image
variable [TopologicalAddGroup E]
theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) :=
hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective
#align strict_convex.neg StrictConvex.neg
theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) :=
(sub_eq_add_neg s t).symm ▸ hs.add ht.neg
#align strict_convex.sub StrictConvex.sub
end AddCommGroup
end OrderedRing
section LinearOrderedField
variable [LinearOrderedField 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
|
exact div_self (add_pos ha hb).ne'
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
|
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a • x + b • y ∈ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
exact
hf.image_interior_subset _
⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
#align strict_convex.affine_image StrictConvex.affine_image
variable [TopologicalAddGroup E]
theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) :=
hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective
#align strict_convex.neg StrictConvex.neg
theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) :=
(sub_eq_add_neg s t).symm ▸ hs.add ht.neg
#align strict_convex.sub StrictConvex.sub
end AddCommGroup
end OrderedRing
section LinearOrderedField
variable [LinearOrderedField 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
|
convert h hx hy hxy ha hb
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
|
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
case h.e'_4.h.e'_5.h.e'_5
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ a = a / (a + b)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
exact
hf.image_interior_subset _
⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
#align strict_convex.affine_image StrictConvex.affine_image
variable [TopologicalAddGroup E]
theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) :=
hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective
#align strict_convex.neg StrictConvex.neg
theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) :=
(sub_eq_add_neg s t).symm ▸ hs.add ht.neg
#align strict_convex.sub StrictConvex.sub
end AddCommGroup
end OrderedRing
section LinearOrderedField
variable [LinearOrderedField 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
convert h hx hy hxy ha hb <;>
|
rw [hab, div_one]
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
convert h hx hy hxy ha hb <;>
|
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
case h.e'_4.h.e'_6.h.e'_5
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x✝ : E
h : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
x : E
hx : x ∈ s
y : E
hy : y ∈ s
hxy : x ≠ y
a b : 𝕜
ha : 0 < a
hb : 0 < b
hab : a + b = 1
⊢ b = b / (a + b)
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
exact
hf.image_interior_subset _
⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
#align strict_convex.affine_image StrictConvex.affine_image
variable [TopologicalAddGroup E]
theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) :=
hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective
#align strict_convex.neg StrictConvex.neg
theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) :=
(sub_eq_add_neg s t).symm ▸ hs.add ht.neg
#align strict_convex.sub StrictConvex.sub
end AddCommGroup
end OrderedRing
section LinearOrderedField
variable [LinearOrderedField 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
convert h hx hy hxy ha hb <;>
|
rw [hab, div_one]
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
convert h hx hy hxy ha hb <;>
|
Mathlib.Analysis.Convex.Strict.404_0.eLomqYdbrwkwew8
|
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : StrictConvex 𝕜 s
zero_mem : 0 ∈ s
hx : x ∈ s
hx₀ : x ≠ 0
t : 𝕜
ht : 1 < t
⊢ x ∈ t • interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
exact
hf.image_interior_subset _
⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
#align strict_convex.affine_image StrictConvex.affine_image
variable [TopologicalAddGroup E]
theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) :=
hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective
#align strict_convex.neg StrictConvex.neg
theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) :=
(sub_eq_add_neg s t).symm ▸ hs.add ht.neg
#align strict_convex.sub StrictConvex.sub
end AddCommGroup
end OrderedRing
section LinearOrderedField
variable [LinearOrderedField 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
convert h hx hy hxy ha hb <;> rw [hab, div_one]⟩
#align strict_convex_iff_div strictConvex_iff_div
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s := by
|
rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans ht).ne']
|
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s := by
|
Mathlib.Analysis.Convex.Strict.416_0.eLomqYdbrwkwew8
|
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
𝕝 : Type u_2
E : Type u_3
F : Type u_4
β : Type u_5
inst✝⁵ : LinearOrderedField 𝕜
inst✝⁴ : TopologicalSpace E
inst✝³ : AddCommGroup E
inst✝² : AddCommGroup F
inst✝¹ : Module 𝕜 E
inst✝ : Module 𝕜 F
s : Set E
x : E
hs : StrictConvex 𝕜 s
zero_mem : 0 ∈ s
hx : x ∈ s
hx₀ : x ≠ 0
t : 𝕜
ht : 1 < t
⊢ t⁻¹ • x ∈ interior s
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
#align_import analysis.convex.strict from "leanprover-community/mathlib"@"84dc0bd6619acaea625086d6f53cb35cdd554219"
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type*}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_iUnion {ι : Sort*} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_iUnion] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_iUnion s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_iUnion
theorem DirectedOn.strictConvex_sUnion {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [sUnion_eq_iUnion]
exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_sUnion
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_isOpen (h : IsOpen s) (hs : Convex 𝕜 s) :
StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_isOpen
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_isOpen h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip; rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s + t) := by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSMul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSMul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
exact
hf.image_interior_subset _
⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
#align strict_convex.affine_image StrictConvex.affine_image
variable [TopologicalAddGroup E]
theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) :=
hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective
#align strict_convex.neg StrictConvex.neg
theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) :=
(sub_eq_add_neg s t).symm ▸ hs.add ht.neg
#align strict_convex.sub StrictConvex.sub
end AddCommGroup
end OrderedRing
section LinearOrderedField
variable [LinearOrderedField 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
convert h hx hy hxy ha hb <;> rw [hab, div_one]⟩
#align strict_convex_iff_div strictConvex_iff_div
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s := by
rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans ht).ne']
|
exact hs.smul_mem_of_zero_mem zero_mem hx hx₀ (inv_pos.2 <| zero_lt_one.trans ht) (inv_lt_one ht)
|
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s := by
rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans ht).ne']
|
Mathlib.Analysis.Convex.Strict.416_0.eLomqYdbrwkwew8
|
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s
|
Mathlib_Analysis_Convex_Strict
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
a✝ b✝ : E
hx : a✝ ∈ {v | ∀ u ∈ K, inner u v = 0}
hy : b✝ ∈ {v | ∀ u ∈ K, inner u v = 0}
u : E
hu : u ∈ K
⊢ inner u (a✝ + b✝) = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by
|
rw [inner_add_right, hx u hu, hy u hu, add_zero]
|
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.40_0.QXx0GYqLoAbtfq1
|
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
c : 𝕜
x : E
hx :
x ∈
{
toAddSubsemigroup :=
{ carrier := {v | ∀ u ∈ K, inner u v = 0},
add_mem' :=
(_ :
∀ {a b : E},
a ∈ {v | ∀ u ∈ K, inner u v = 0} →
b ∈ {v | ∀ u ∈ K, inner u v = 0} → ∀ u ∈ K, inner u (a + b) = 0) },
zero_mem' := (_ : ∀ x ∈ K, inner x 0 = 0) }.toAddSubsemigroup.carrier
u : E
hu : u ∈ K
⊢ inner u (c • x) = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by
|
rw [inner_smul_right, hx u hu, mul_zero]
|
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.40_0.QXx0GYqLoAbtfq1
|
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
v : E
⊢ v ∈ Kᗮ ↔ ∀ u ∈ K, inner v u = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
|
simp_rw [mem_orthogonal, inner_eq_zero_symm]
|
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.56_0.QXx0GYqLoAbtfq1
|
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
u v : E
hu : u ∈ K
hv : v ∈ Kᗮ
⊢ inner v u = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
|
rw [inner_eq_zero_symm]
|
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.69_0.QXx0GYqLoAbtfq1
|
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
u v : E
hu : u ∈ K
hv : v ∈ Kᗮ
⊢ inner u v = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm];
|
exact inner_right_of_mem_orthogonal hu hv
|
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm];
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.69_0.QXx0GYqLoAbtfq1
|
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
u v : E
⊢ v ∈ (span 𝕜 {u})ᗮ ↔ inner u v = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
|
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
|
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.74_0.QXx0GYqLoAbtfq1
|
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
u v : E
⊢ inner u v = 0 → v ∈ (span 𝕜 {u})ᗮ
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
|
intro hv w hw
|
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.74_0.QXx0GYqLoAbtfq1
|
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
u v : E
hv : inner u v = 0
w : E
hw : w ∈ span 𝕜 {u}
⊢ inner w v = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
|
rw [mem_span_singleton] at hw
|
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.74_0.QXx0GYqLoAbtfq1
|
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
u v : E
hv : inner u v = 0
w : E
hw : ∃ a, a • u = w
⊢ inner w v = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
|
obtain ⟨c, rfl⟩ := hw
|
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.74_0.QXx0GYqLoAbtfq1
|
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
case intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
u v : E
hv : inner u v = 0
c : 𝕜
⊢ inner (c • u) v = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
|
simp [inner_smul_left, hv]
|
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.74_0.QXx0GYqLoAbtfq1
|
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
u v : E
⊢ v ∈ (span 𝕜 {u})ᗮ ↔ inner v u = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
|
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
|
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.83_0.QXx0GYqLoAbtfq1
|
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
x y : E
h : ∀ (v : ↥K), inner x ↑v = inner y ↑v
⊢ x - y ∈ Kᗮ
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
|
rw [mem_orthogonal']
|
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.88_0.QXx0GYqLoAbtfq1
|
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
x y : E
h : ∀ (v : ↥K), inner x ↑v = inner y ↑v
⊢ ∀ u ∈ K, inner (x - y) u = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
|
intro u hu
|
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.88_0.QXx0GYqLoAbtfq1
|
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
x y : E
h : ∀ (v : ↥K), inner x ↑v = inner y ↑v
u : E
hu : u ∈ K
⊢ inner (x - y) u = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
|
rw [inner_sub_left, sub_eq_zero]
|
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.88_0.QXx0GYqLoAbtfq1
|
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
x y : E
h : ∀ (v : ↥K), inner x ↑v = inner y ↑v
u : E
hu : u ∈ K
⊢ inner x u = inner y u
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
|
exact h ⟨u, hu⟩
|
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.88_0.QXx0GYqLoAbtfq1
|
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
x y : E
h : ∀ (v : ↥K), inner (↑v) x = inner (↑v) y
⊢ x - y ∈ Kᗮ
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
|
intro u hu
|
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.95_0.QXx0GYqLoAbtfq1
|
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
x y : E
h : ∀ (v : ↥K), inner (↑v) x = inner (↑v) y
u : E
hu : u ∈ K
⊢ inner u (x - y) = 0
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
|
rw [inner_sub_right, sub_eq_zero]
|
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.95_0.QXx0GYqLoAbtfq1
|
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
x y : E
h : ∀ (v : ↥K), inner (↑v) x = inner (↑v) y
u : E
hu : u ∈ K
⊢ inner u x = inner u y
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
rw [inner_sub_right, sub_eq_zero]
|
exact h ⟨u, hu⟩
|
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
rw [inner_sub_right, sub_eq_zero]
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.95_0.QXx0GYqLoAbtfq1
|
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
⊢ K ⊓ Kᗮ = ⊥
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
rw [inner_sub_right, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right
variable (K)
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
|
rw [eq_bot_iff]
|
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.104_0.QXx0GYqLoAbtfq1
|
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
⊢ K ⊓ Kᗮ ≤ ⊥
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
rw [inner_sub_right, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right
variable (K)
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
|
intro x
|
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.104_0.QXx0GYqLoAbtfq1
|
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
x : E
⊢ x ∈ K ⊓ Kᗮ → x ∈ ⊥
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
rw [inner_sub_right, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right
variable (K)
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
intro x
|
rw [mem_inf]
|
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
intro x
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.104_0.QXx0GYqLoAbtfq1
|
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
x : E
⊢ x ∈ K ∧ x ∈ Kᗮ → x ∈ ⊥
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
rw [inner_sub_right, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right
variable (K)
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
intro x
rw [mem_inf]
|
exact fun ⟨hx, ho⟩ => inner_self_eq_zero.1 (ho x hx)
|
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
intro x
rw [mem_inf]
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.104_0.QXx0GYqLoAbtfq1
|
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
⊢ Disjoint K Kᗮ
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
rw [inner_sub_right, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right
variable (K)
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
intro x
rw [mem_inf]
exact fun ⟨hx, ho⟩ => inner_self_eq_zero.1 (ho x hx)
#align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem orthogonal_disjoint : Disjoint K Kᗮ := by
|
simp [disjoint_iff, K.inf_orthogonal_eq_bot]
|
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem orthogonal_disjoint : Disjoint K Kᗮ := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.112_0.QXx0GYqLoAbtfq1
|
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem orthogonal_disjoint : Disjoint K Kᗮ
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
⊢ Kᗮ = ⨅ v, LinearMap.ker ((innerSL 𝕜) ↑v)
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
rw [inner_sub_right, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right
variable (K)
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
intro x
rw [mem_inf]
exact fun ⟨hx, ho⟩ => inner_self_eq_zero.1 (ho x hx)
#align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem orthogonal_disjoint : Disjoint K Kᗮ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot]
#align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of
inner product with each of the elements of `K`. -/
theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by
|
apply le_antisymm
|
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of
inner product with each of the elements of `K`. -/
theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.116_0.QXx0GYqLoAbtfq1
|
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of
inner product with each of the elements of `K`. -/
theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E))
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
case a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
⊢ Kᗮ ≤ ⨅ v, LinearMap.ker ((innerSL 𝕜) ↑v)
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
rw [inner_sub_right, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right
variable (K)
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
intro x
rw [mem_inf]
exact fun ⟨hx, ho⟩ => inner_self_eq_zero.1 (ho x hx)
#align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem orthogonal_disjoint : Disjoint K Kᗮ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot]
#align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of
inner product with each of the elements of `K`. -/
theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by
apply le_antisymm
·
|
rw [le_iInf_iff]
|
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of
inner product with each of the elements of `K`. -/
theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by
apply le_antisymm
·
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.116_0.QXx0GYqLoAbtfq1
|
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of
inner product with each of the elements of `K`. -/
theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E))
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
case a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace 𝕜 F
K : Submodule 𝕜 E
⊢ ∀ (i : ↥K), Kᗮ ≤ LinearMap.ker ((innerSL 𝕜) ↑i)
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import Mathlib.Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.orthogonal from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
# Orthogonal complements of submodules
In this file, the `orthogonal` complement of a submodule `K` is defined, and basic API established.
Some of the more subtle results about the orthogonal complement are delayed to
`Analysis.InnerProductSpace.Projection`.
See also `BilinForm.orthogonal` for orthogonality with respect to a general bilinear form.
## Notation
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
The proposition that two submodules are orthogonal, `Submodule.IsOrtho`, is denoted by `U ⟂ V`.
Note this is not the same unicode symbol as `⊥` (`Bot`).
-/
variable {𝕜 E F : Type*} [IsROrC 𝕜]
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace 𝕜 F]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
namespace Submodule
variable (K : Submodule 𝕜 E)
/-- The subspace of vectors orthogonal to a given subspace. -/
def orthogonal : Submodule 𝕜 E where
carrier := { v | ∀ u ∈ K, ⟪u, v⟫ = 0 }
zero_mem' _ _ := inner_zero_right _
add_mem' hx hy u hu := by rw [inner_add_right, hx u hu, hy u hu, add_zero]
smul_mem' c x hx u hu := by rw [inner_smul_right, hx u hu, mul_zero]
#align submodule.orthogonal Submodule.orthogonal
@[inherit_doc]
notation:1200 K "ᗮ" => orthogonal K
/-- When a vector is in `Kᗮ`. -/
theorem mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 :=
Iff.rfl
#align submodule.mem_orthogonal Submodule.mem_orthogonal
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
theorem mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 := by
simp_rw [mem_orthogonal, inner_eq_zero_symm]
#align submodule.mem_orthogonal' Submodule.mem_orthogonal'
variable {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
theorem inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
#align submodule.inner_right_of_mem_orthogonal Submodule.inner_right_of_mem_orthogonal
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
theorem inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 := by
rw [inner_eq_zero_symm]; exact inner_right_of_mem_orthogonal hu hv
#align submodule.inner_left_of_mem_orthogonal Submodule.inner_left_of_mem_orthogonal
/-- A vector is in `(𝕜 ∙ u)ᗮ` iff it is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_right {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪u, v⟫ = 0 := by
refine' ⟨inner_right_of_mem_orthogonal (mem_span_singleton_self u), _⟩
intro hv w hw
rw [mem_span_singleton] at hw
obtain ⟨c, rfl⟩ := hw
simp [inner_smul_left, hv]
#align submodule.mem_orthogonal_singleton_iff_inner_right Submodule.mem_orthogonal_singleton_iff_inner_right
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
theorem mem_orthogonal_singleton_iff_inner_left {u v : E} : v ∈ (𝕜 ∙ u)ᗮ ↔ ⟪v, u⟫ = 0 := by
rw [mem_orthogonal_singleton_iff_inner_right, inner_eq_zero_symm]
#align submodule.mem_orthogonal_singleton_iff_inner_left Submodule.mem_orthogonal_singleton_iff_inner_left
theorem sub_mem_orthogonal_of_inner_left {x y : E} (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x - y ∈ Kᗮ := by
rw [mem_orthogonal']
intro u hu
rw [inner_sub_left, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_left Submodule.sub_mem_orthogonal_of_inner_left
theorem sub_mem_orthogonal_of_inner_right {x y : E} (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) :
x - y ∈ Kᗮ := by
intro u hu
rw [inner_sub_right, sub_eq_zero]
exact h ⟨u, hu⟩
#align submodule.sub_mem_orthogonal_of_inner_right Submodule.sub_mem_orthogonal_of_inner_right
variable (K)
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ := by
rw [eq_bot_iff]
intro x
rw [mem_inf]
exact fun ⟨hx, ho⟩ => inner_self_eq_zero.1 (ho x hx)
#align submodule.inf_orthogonal_eq_bot Submodule.inf_orthogonal_eq_bot
/-- `K` and `Kᗮ` have trivial intersection. -/
theorem orthogonal_disjoint : Disjoint K Kᗮ := by simp [disjoint_iff, K.inf_orthogonal_eq_bot]
#align submodule.orthogonal_disjoint Submodule.orthogonal_disjoint
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of
inner product with each of the elements of `K`. -/
theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by
apply le_antisymm
· rw [le_iInf_iff]
|
rintro ⟨v, hv⟩ w hw
|
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of
inner product with each of the elements of `K`. -/
theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E)) := by
apply le_antisymm
· rw [le_iInf_iff]
|
Mathlib.Analysis.InnerProductSpace.Orthogonal.116_0.QXx0GYqLoAbtfq1
|
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of
inner product with each of the elements of `K`. -/
theorem orthogonal_eq_inter : Kᗮ = ⨅ v : K, LinearMap.ker (innerSL 𝕜 (v : E))
|
Mathlib_Analysis_InnerProductSpace_Orthogonal
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.