python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-only /* * skl-message.c - HDA DSP interface for FW registration, Pipe and Module * configurations * * Copyright (C) 2015 Intel Corp * Author:Rafal Redzimski <[email protected]> * Jeeja KP <[email protected]> * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/slab.h> #include <linux/pci.h> #include <sound/core.h> #include <sound/pcm.h> #include <uapi/sound/skl-tplg-interface.h> #include "skl-sst-dsp.h" #include "cnl-sst-dsp.h" #include "skl-sst-ipc.h" #include "skl.h" #include "../common/sst-dsp.h" #include "../common/sst-dsp-priv.h" #include "skl-topology.h" static int skl_alloc_dma_buf(struct device *dev, struct snd_dma_buffer *dmab, size_t size) { return snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, dev, size, dmab); } static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab) { snd_dma_free_pages(dmab); return 0; } #define SKL_ASTATE_PARAM_ID 4 void skl_dsp_set_astate_cfg(struct skl_dev *skl, u32 cnt, void *data) { struct skl_ipc_large_config_msg msg = {0}; msg.large_param_id = SKL_ASTATE_PARAM_ID; msg.param_data_size = (cnt * sizeof(struct skl_astate_param) + sizeof(cnt)); skl_ipc_set_large_config(&skl->ipc, &msg, data); } static int skl_dsp_setup_spib(struct device *dev, unsigned int size, int stream_tag, int enable) { struct hdac_bus *bus = dev_get_drvdata(dev); struct hdac_stream *stream = snd_hdac_get_stream(bus, SNDRV_PCM_STREAM_PLAYBACK, stream_tag); if (!stream) return -EINVAL; /* enable/disable SPIB for this hdac stream */ snd_hdac_stream_spbcap_enable(bus, enable, stream->index); /* set the spib value */ snd_hdac_stream_set_spib(bus, stream, size); return 0; } static int skl_dsp_prepare(struct device *dev, unsigned int format, unsigned int size, struct snd_dma_buffer *dmab) { struct hdac_bus *bus = dev_get_drvdata(dev); struct hdac_ext_stream *estream; struct hdac_stream *stream; struct snd_pcm_substream substream; int ret; if (!bus) return -ENODEV; memset(&substream, 0, sizeof(substream)); substream.stream = SNDRV_PCM_STREAM_PLAYBACK; estream = snd_hdac_ext_stream_assign(bus, &substream, HDAC_EXT_STREAM_TYPE_HOST); if (!estream) return -ENODEV; stream = hdac_stream(estream); /* assign decouple host dma channel */ ret = snd_hdac_dsp_prepare(stream, format, size, dmab); if (ret < 0) return ret; skl_dsp_setup_spib(dev, size, stream->stream_tag, true); return stream->stream_tag; } static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag) { struct hdac_bus *bus = dev_get_drvdata(dev); struct hdac_stream *stream; if (!bus) return -ENODEV; stream = snd_hdac_get_stream(bus, SNDRV_PCM_STREAM_PLAYBACK, stream_tag); if (!stream) return -EINVAL; snd_hdac_dsp_trigger(stream, start); return 0; } static int skl_dsp_cleanup(struct device *dev, struct snd_dma_buffer *dmab, int stream_tag) { struct hdac_bus *bus = dev_get_drvdata(dev); struct hdac_stream *stream; struct hdac_ext_stream *estream; if (!bus) return -ENODEV; stream = snd_hdac_get_stream(bus, SNDRV_PCM_STREAM_PLAYBACK, stream_tag); if (!stream) return -EINVAL; estream = stream_to_hdac_ext_stream(stream); skl_dsp_setup_spib(dev, 0, stream_tag, false); snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST); snd_hdac_dsp_cleanup(stream, dmab); return 0; } static struct skl_dsp_loader_ops skl_get_loader_ops(void) { struct skl_dsp_loader_ops loader_ops; memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops)); loader_ops.alloc_dma_buf = skl_alloc_dma_buf; loader_ops.free_dma_buf = skl_free_dma_buf; return loader_ops; }; static struct skl_dsp_loader_ops bxt_get_loader_ops(void) { struct skl_dsp_loader_ops loader_ops; memset(&loader_ops, 0, sizeof(loader_ops)); loader_ops.alloc_dma_buf = skl_alloc_dma_buf; loader_ops.free_dma_buf = skl_free_dma_buf; loader_ops.prepare = skl_dsp_prepare; loader_ops.trigger = skl_dsp_trigger; loader_ops.cleanup = skl_dsp_cleanup; return loader_ops; }; static const struct skl_dsp_ops dsp_ops[] = { { .id = PCI_DEVICE_ID_INTEL_HDA_SKL_LP, .num_cores = 2, .loader_ops = skl_get_loader_ops, .init = skl_sst_dsp_init, .init_fw = skl_sst_init_fw, .cleanup = skl_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_KBL_LP, .num_cores = 2, .loader_ops = skl_get_loader_ops, .init = skl_sst_dsp_init, .init_fw = skl_sst_init_fw, .cleanup = skl_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_APL, .num_cores = 2, .loader_ops = bxt_get_loader_ops, .init = bxt_sst_dsp_init, .init_fw = bxt_sst_init_fw, .cleanup = bxt_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_GML, .num_cores = 2, .loader_ops = bxt_get_loader_ops, .init = bxt_sst_dsp_init, .init_fw = bxt_sst_init_fw, .cleanup = bxt_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_CNL_LP, .num_cores = 4, .loader_ops = bxt_get_loader_ops, .init = cnl_sst_dsp_init, .init_fw = cnl_sst_init_fw, .cleanup = cnl_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_CNL_H, .num_cores = 4, .loader_ops = bxt_get_loader_ops, .init = cnl_sst_dsp_init, .init_fw = cnl_sst_init_fw, .cleanup = cnl_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_CML_LP, .num_cores = 4, .loader_ops = bxt_get_loader_ops, .init = cnl_sst_dsp_init, .init_fw = cnl_sst_init_fw, .cleanup = cnl_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_CML_H, .num_cores = 4, .loader_ops = bxt_get_loader_ops, .init = cnl_sst_dsp_init, .init_fw = cnl_sst_init_fw, .cleanup = cnl_sst_dsp_cleanup }, }; const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id) { int i; for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) { if (dsp_ops[i].id == pci_id) return &dsp_ops[i]; } return NULL; } int skl_init_dsp(struct skl_dev *skl) { void __iomem *mmio_base; struct hdac_bus *bus = skl_to_bus(skl); struct skl_dsp_loader_ops loader_ops; int irq = bus->irq; const struct skl_dsp_ops *ops; struct skl_dsp_cores *cores; int ret; /* enable ppcap interrupt */ snd_hdac_ext_bus_ppcap_enable(bus, true); snd_hdac_ext_bus_ppcap_int_enable(bus, true); /* read the BAR of the ADSP MMIO */ mmio_base = pci_ioremap_bar(skl->pci, 4); if (mmio_base == NULL) { dev_err(bus->dev, "ioremap error\n"); return -ENXIO; } ops = skl_get_dsp_ops(skl->pci->device); if (!ops) { ret = -EIO; goto unmap_mmio; } loader_ops = ops->loader_ops(); ret = ops->init(bus->dev, mmio_base, irq, skl->fw_name, loader_ops, &skl); if (ret < 0) goto unmap_mmio; skl->dsp_ops = ops; cores = &skl->cores; cores->count = ops->num_cores; cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL); if (!cores->state) { ret = -ENOMEM; goto unmap_mmio; } cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count), GFP_KERNEL); if (!cores->usage_count) { ret = -ENOMEM; goto free_core_state; } dev_dbg(bus->dev, "dsp registration status=%d\n", ret); return 0; free_core_state: kfree(cores->state); unmap_mmio: iounmap(mmio_base); return ret; } int skl_free_dsp(struct skl_dev *skl) { struct hdac_bus *bus = skl_to_bus(skl); /* disable ppcap interrupt */ snd_hdac_ext_bus_ppcap_int_enable(bus, false); skl->dsp_ops->cleanup(bus->dev, skl); kfree(skl->cores.state); kfree(skl->cores.usage_count); if (skl->dsp->addr.lpe) iounmap(skl->dsp->addr.lpe); return 0; } /* * In the case of "suspend_active" i.e, the Audio IP being active * during system suspend, immediately excecute any pending D0i3 work * before suspending. This is needed for the IP to work in low power * mode during system suspend. In the case of normal suspend, cancel * any pending D0i3 work. */ int skl_suspend_late_dsp(struct skl_dev *skl) { struct delayed_work *dwork; if (!skl) return 0; dwork = &skl->d0i3.work; if (dwork->work.func) { if (skl->supend_active) flush_delayed_work(dwork); else cancel_delayed_work_sync(dwork); } return 0; } int skl_suspend_dsp(struct skl_dev *skl) { struct hdac_bus *bus = skl_to_bus(skl); int ret; /* if ppcap is not supported return 0 */ if (!bus->ppcap) return 0; ret = skl_dsp_sleep(skl->dsp); if (ret < 0) return ret; /* disable ppcap interrupt */ snd_hdac_ext_bus_ppcap_int_enable(bus, false); snd_hdac_ext_bus_ppcap_enable(bus, false); return 0; } int skl_resume_dsp(struct skl_dev *skl) { struct hdac_bus *bus = skl_to_bus(skl); int ret; /* if ppcap is not supported return 0 */ if (!bus->ppcap) return 0; /* enable ppcap interrupt */ snd_hdac_ext_bus_ppcap_enable(bus, true); snd_hdac_ext_bus_ppcap_int_enable(bus, true); /* check if DSP 1st boot is done */ if (skl->is_first_boot) return 0; /* * Disable dynamic clock and power gating during firmware * and library download */ skl->enable_miscbdcge(skl->dev, false); skl->clock_power_gating(skl->dev, false); ret = skl_dsp_wake(skl->dsp); skl->enable_miscbdcge(skl->dev, true); skl->clock_power_gating(skl->dev, true); if (ret < 0) return ret; if (skl->cfg.astate_cfg != NULL) { skl_dsp_set_astate_cfg(skl, skl->cfg.astate_cfg->count, skl->cfg.astate_cfg); } return ret; } enum skl_bitdepth skl_get_bit_depth(int params) { switch (params) { case 8: return SKL_DEPTH_8BIT; case 16: return SKL_DEPTH_16BIT; case 24: return SKL_DEPTH_24BIT; case 32: return SKL_DEPTH_32BIT; default: return SKL_DEPTH_INVALID; } } /* * Each module in DSP expects a base module configuration, which consists of * PCM format information, which we calculate in driver and resource values * which are read from widget information passed through topology binary * This is send when we create a module with INIT_INSTANCE IPC msg */ static void skl_set_base_module_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_base_cfg *base_cfg) { struct skl_module *module = mconfig->module; struct skl_module_res *res = &module->resources[mconfig->res_idx]; struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; struct skl_module_fmt *format = &fmt->inputs[0].fmt; base_cfg->audio_fmt.number_of_channels = format->channels; base_cfg->audio_fmt.s_freq = format->s_freq; base_cfg->audio_fmt.bit_depth = format->bit_depth; base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth; base_cfg->audio_fmt.ch_cfg = format->ch_cfg; base_cfg->audio_fmt.sample_type = format->sample_type; dev_dbg(skl->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n", format->bit_depth, format->valid_bit_depth, format->ch_cfg); base_cfg->audio_fmt.channel_map = format->ch_map; base_cfg->audio_fmt.interleaving = format->interleaving_style; base_cfg->cpc = res->cpc; base_cfg->ibs = res->ibs; base_cfg->obs = res->obs; base_cfg->is_pages = res->is_pages; } static void fill_pin_params(struct skl_audio_data_format *pin_fmt, struct skl_module_fmt *format) { pin_fmt->number_of_channels = format->channels; pin_fmt->s_freq = format->s_freq; pin_fmt->bit_depth = format->bit_depth; pin_fmt->valid_bit_depth = format->valid_bit_depth; pin_fmt->ch_cfg = format->ch_cfg; pin_fmt->sample_type = format->sample_type; pin_fmt->channel_map = format->ch_map; pin_fmt->interleaving = format->interleaving_style; } /* * Any module configuration begins with a base module configuration but * can be followed by a generic extension containing audio format for all * module's pins that are in use. */ static void skl_set_base_ext_module_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_base_cfg_ext *base_cfg_ext) { struct skl_module *module = mconfig->module; struct skl_module_pin_resources *pin_res; struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; struct skl_module_res *res = &module->resources[mconfig->res_idx]; struct skl_module_fmt *format; struct skl_pin_format *pin_fmt; char *params; int i; base_cfg_ext->nr_input_pins = res->nr_input_pins; base_cfg_ext->nr_output_pins = res->nr_output_pins; base_cfg_ext->priv_param_length = mconfig->formats_config[SKL_PARAM_INIT].caps_size; for (i = 0; i < res->nr_input_pins; i++) { pin_res = &res->input[i]; pin_fmt = &base_cfg_ext->pins_fmt[i]; pin_fmt->pin_idx = pin_res->pin_index; pin_fmt->buf_size = pin_res->buf_size; format = &fmt->inputs[pin_res->pin_index].fmt; fill_pin_params(&pin_fmt->audio_fmt, format); } for (i = 0; i < res->nr_output_pins; i++) { pin_res = &res->output[i]; pin_fmt = &base_cfg_ext->pins_fmt[res->nr_input_pins + i]; pin_fmt->pin_idx = pin_res->pin_index; pin_fmt->buf_size = pin_res->buf_size; format = &fmt->outputs[pin_res->pin_index].fmt; fill_pin_params(&pin_fmt->audio_fmt, format); } if (!base_cfg_ext->priv_param_length) return; params = (char *)base_cfg_ext + sizeof(struct skl_base_cfg_ext); params += (base_cfg_ext->nr_input_pins + base_cfg_ext->nr_output_pins) * sizeof(struct skl_pin_format); memcpy(params, mconfig->formats_config[SKL_PARAM_INIT].caps, mconfig->formats_config[SKL_PARAM_INIT].caps_size); } /* * Copies copier capabilities into copier module and updates copier module * config size. */ static void skl_copy_copier_caps(struct skl_module_cfg *mconfig, struct skl_cpr_cfg *cpr_mconfig) { if (mconfig->formats_config[SKL_PARAM_INIT].caps_size == 0) return; memcpy(&cpr_mconfig->gtw_cfg.config_data, mconfig->formats_config[SKL_PARAM_INIT].caps, mconfig->formats_config[SKL_PARAM_INIT].caps_size); cpr_mconfig->gtw_cfg.config_length = (mconfig->formats_config[SKL_PARAM_INIT].caps_size) / 4; } #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF /* * Calculate the gatewat settings required for copier module, type of * gateway and index of gateway to use */ static u32 skl_get_node_id(struct skl_dev *skl, struct skl_module_cfg *mconfig) { union skl_connector_node_id node_id = {0}; union skl_ssp_dma_node ssp_node = {0}; struct skl_pipe_params *params = mconfig->pipe->p_params; switch (mconfig->dev_type) { case SKL_DEVICE_BT: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_I2S_LINK_OUTPUT_CLASS : SKL_DMA_I2S_LINK_INPUT_CLASS; node_id.node.vindex = params->host_dma_id + (mconfig->vbus_id << 3); break; case SKL_DEVICE_I2S: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_I2S_LINK_OUTPUT_CLASS : SKL_DMA_I2S_LINK_INPUT_CLASS; ssp_node.dma_node.time_slot_index = mconfig->time_slot; ssp_node.dma_node.i2s_instance = mconfig->vbus_id; node_id.node.vindex = ssp_node.val; break; case SKL_DEVICE_DMIC: node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS; node_id.node.vindex = mconfig->vbus_id + (mconfig->time_slot); break; case SKL_DEVICE_HDALINK: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_HDA_LINK_OUTPUT_CLASS : SKL_DMA_HDA_LINK_INPUT_CLASS; node_id.node.vindex = params->link_dma_id; break; case SKL_DEVICE_HDAHOST: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_HDA_HOST_OUTPUT_CLASS : SKL_DMA_HDA_HOST_INPUT_CLASS; node_id.node.vindex = params->host_dma_id; break; default: node_id.val = 0xFFFFFFFF; break; } return node_id.val; } static void skl_setup_cpr_gateway_cfg(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_cpr_cfg *cpr_mconfig) { u32 dma_io_buf; struct skl_module_res *res; int res_idx = mconfig->res_idx; cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(skl, mconfig); if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) { cpr_mconfig->cpr_feature_mask = 0; return; } if (skl->nr_modules) { res = &mconfig->module->resources[mconfig->res_idx]; cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size; goto skip_buf_size_calc; } else { res = &mconfig->module->resources[res_idx]; } switch (mconfig->hw_conn_type) { case SKL_CONN_SOURCE: if (mconfig->dev_type == SKL_DEVICE_HDAHOST) dma_io_buf = res->ibs; else dma_io_buf = res->obs; break; case SKL_CONN_SINK: if (mconfig->dev_type == SKL_DEVICE_HDAHOST) dma_io_buf = res->obs; else dma_io_buf = res->ibs; break; default: dev_warn(skl->dev, "wrong connection type: %d\n", mconfig->hw_conn_type); return; } cpr_mconfig->gtw_cfg.dma_buffer_size = mconfig->dma_buffer_size * dma_io_buf; /* fallback to 2ms default value */ if (!cpr_mconfig->gtw_cfg.dma_buffer_size) { if (mconfig->hw_conn_type == SKL_CONN_SOURCE) cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs; else cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs; } skip_buf_size_calc: cpr_mconfig->cpr_feature_mask = 0; cpr_mconfig->gtw_cfg.config_length = 0; skl_copy_copier_caps(mconfig, cpr_mconfig); } #define DMA_CONTROL_ID 5 #define DMA_I2S_BLOB_SIZE 21 int skl_dsp_set_dma_control(struct skl_dev *skl, u32 *caps, u32 caps_size, u32 node_id) { struct skl_dma_control *dma_ctrl; struct skl_ipc_large_config_msg msg = {0}; int err = 0; /* * if blob size zero, then return */ if (caps_size == 0) return 0; msg.large_param_id = DMA_CONTROL_ID; msg.param_data_size = sizeof(struct skl_dma_control) + caps_size; dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL); if (dma_ctrl == NULL) return -ENOMEM; dma_ctrl->node_id = node_id; /* * NHLT blob may contain additional configs along with i2s blob. * firmware expects only the i2s blob size as the config_length. * So fix to i2s blob size. * size in dwords. */ dma_ctrl->config_length = DMA_I2S_BLOB_SIZE; memcpy(dma_ctrl->config_data, caps, caps_size); err = skl_ipc_set_large_config(&skl->ipc, &msg, (u32 *)dma_ctrl); kfree(dma_ctrl); return err; } EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control); static void skl_setup_out_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_audio_data_format *out_fmt) { struct skl_module *module = mconfig->module; struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; struct skl_module_fmt *format = &fmt->outputs[0].fmt; out_fmt->number_of_channels = (u8)format->channels; out_fmt->s_freq = format->s_freq; out_fmt->bit_depth = format->bit_depth; out_fmt->valid_bit_depth = format->valid_bit_depth; out_fmt->ch_cfg = format->ch_cfg; out_fmt->channel_map = format->ch_map; out_fmt->interleaving = format->interleaving_style; out_fmt->sample_type = format->sample_type; dev_dbg(skl->dev, "copier out format chan=%d fre=%d bitdepth=%d\n", out_fmt->number_of_channels, format->s_freq, format->bit_depth); } /* * DSP needs SRC module for frequency conversion, SRC takes base module * configuration and the target frequency as extra parameter passed as src * config */ static void skl_set_src_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_src_module_cfg *src_mconfig) { struct skl_module *module = mconfig->module; struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx]; struct skl_module_fmt *fmt = &iface->outputs[0].fmt; skl_set_base_module_format(skl, mconfig, (struct skl_base_cfg *)src_mconfig); src_mconfig->src_cfg = fmt->s_freq; } /* * DSP needs updown module to do channel conversion. updown module take base * module configuration and channel configuration * It also take coefficients and now we have defaults applied here */ static void skl_set_updown_mixer_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_up_down_mixer_cfg *mixer_mconfig) { struct skl_module *module = mconfig->module; struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx]; struct skl_module_fmt *fmt = &iface->outputs[0].fmt; skl_set_base_module_format(skl, mconfig, (struct skl_base_cfg *)mixer_mconfig); mixer_mconfig->out_ch_cfg = fmt->ch_cfg; mixer_mconfig->ch_map = fmt->ch_map; } /* * 'copier' is DSP internal module which copies data from Host DMA (HDA host * dma) or link (hda link, SSP, PDM) * Here we calculate the copier module parameters, like PCM format, output * format, gateway settings * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg */ static void skl_set_copier_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_cpr_cfg *cpr_mconfig) { struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt; struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig; skl_set_base_module_format(skl, mconfig, base_cfg); skl_setup_out_format(skl, mconfig, out_fmt); skl_setup_cpr_gateway_cfg(skl, mconfig, cpr_mconfig); } /* * Mic select module allows selecting one or many input channels, thus * acting as a demux. * * Mic select module take base module configuration and out-format * configuration */ static void skl_set_base_outfmt_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_base_outfmt_cfg *base_outfmt_mcfg) { struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt; struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)base_outfmt_mcfg; skl_set_base_module_format(skl, mconfig, base_cfg); skl_setup_out_format(skl, mconfig, out_fmt); } static u16 skl_get_module_param_size(struct skl_dev *skl, struct skl_module_cfg *mconfig) { struct skl_module_res *res; struct skl_module *module = mconfig->module; u16 param_size; switch (mconfig->m_type) { case SKL_MODULE_TYPE_COPIER: param_size = sizeof(struct skl_cpr_cfg); param_size += mconfig->formats_config[SKL_PARAM_INIT].caps_size; return param_size; case SKL_MODULE_TYPE_SRCINT: return sizeof(struct skl_src_module_cfg); case SKL_MODULE_TYPE_UPDWMIX: return sizeof(struct skl_up_down_mixer_cfg); case SKL_MODULE_TYPE_BASE_OUTFMT: case SKL_MODULE_TYPE_MIC_SELECT: return sizeof(struct skl_base_outfmt_cfg); case SKL_MODULE_TYPE_MIXER: case SKL_MODULE_TYPE_KPB: return sizeof(struct skl_base_cfg); case SKL_MODULE_TYPE_ALGO: default: res = &module->resources[mconfig->res_idx]; param_size = sizeof(struct skl_base_cfg) + sizeof(struct skl_base_cfg_ext); param_size += (res->nr_input_pins + res->nr_output_pins) * sizeof(struct skl_pin_format); param_size += mconfig->formats_config[SKL_PARAM_INIT].caps_size; return param_size; } return 0; } /* * DSP firmware supports various modules like copier, SRC, updown etc. * These modules required various parameters to be calculated and sent for * the module initialization to DSP. By default a generic module needs only * base module format configuration */ static int skl_set_module_format(struct skl_dev *skl, struct skl_module_cfg *module_config, u16 *module_config_size, void **param_data) { u16 param_size; param_size = skl_get_module_param_size(skl, module_config); *param_data = kzalloc(param_size, GFP_KERNEL); if (NULL == *param_data) return -ENOMEM; *module_config_size = param_size; switch (module_config->m_type) { case SKL_MODULE_TYPE_COPIER: skl_set_copier_format(skl, module_config, *param_data); break; case SKL_MODULE_TYPE_SRCINT: skl_set_src_format(skl, module_config, *param_data); break; case SKL_MODULE_TYPE_UPDWMIX: skl_set_updown_mixer_format(skl, module_config, *param_data); break; case SKL_MODULE_TYPE_BASE_OUTFMT: case SKL_MODULE_TYPE_MIC_SELECT: skl_set_base_outfmt_format(skl, module_config, *param_data); break; case SKL_MODULE_TYPE_MIXER: case SKL_MODULE_TYPE_KPB: skl_set_base_module_format(skl, module_config, *param_data); break; case SKL_MODULE_TYPE_ALGO: default: skl_set_base_module_format(skl, module_config, *param_data); skl_set_base_ext_module_format(skl, module_config, *param_data + sizeof(struct skl_base_cfg)); break; } dev_dbg(skl->dev, "Module type=%d id=%d config size: %d bytes\n", module_config->m_type, module_config->id.module_id, param_size); print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4, *param_data, param_size, false); return 0; } static int skl_get_queue_index(struct skl_module_pin *mpin, struct skl_module_inst_id id, int max) { int i; for (i = 0; i < max; i++) { if (mpin[i].id.module_id == id.module_id && mpin[i].id.instance_id == id.instance_id) return i; } return -EINVAL; } /* * Allocates queue for each module. * if dynamic, the pin_index is allocated 0 to max_pin. * In static, the pin_index is fixed based on module_id and instance id */ static int skl_alloc_queue(struct skl_module_pin *mpin, struct skl_module_cfg *tgt_cfg, int max) { int i; struct skl_module_inst_id id = tgt_cfg->id; /* * if pin in dynamic, find first free pin * otherwise find match module and instance id pin as topology will * ensure a unique pin is assigned to this so no need to * allocate/free */ for (i = 0; i < max; i++) { if (mpin[i].is_dynamic) { if (!mpin[i].in_use && mpin[i].pin_state == SKL_PIN_UNBIND) { mpin[i].in_use = true; mpin[i].id.module_id = id.module_id; mpin[i].id.instance_id = id.instance_id; mpin[i].id.pvt_id = id.pvt_id; mpin[i].tgt_mcfg = tgt_cfg; return i; } } else { if (mpin[i].id.module_id == id.module_id && mpin[i].id.instance_id == id.instance_id && mpin[i].pin_state == SKL_PIN_UNBIND) { mpin[i].tgt_mcfg = tgt_cfg; return i; } } } return -EINVAL; } static void skl_free_queue(struct skl_module_pin *mpin, int q_index) { if (mpin[q_index].is_dynamic) { mpin[q_index].in_use = false; mpin[q_index].id.module_id = 0; mpin[q_index].id.instance_id = 0; mpin[q_index].id.pvt_id = 0; } mpin[q_index].pin_state = SKL_PIN_UNBIND; mpin[q_index].tgt_mcfg = NULL; } /* Module state will be set to unint, if all the out pin state is UNBIND */ static void skl_clear_module_state(struct skl_module_pin *mpin, int max, struct skl_module_cfg *mcfg) { int i; bool found = false; for (i = 0; i < max; i++) { if (mpin[i].pin_state == SKL_PIN_UNBIND) continue; found = true; break; } if (!found) mcfg->m_state = SKL_MODULE_INIT_DONE; return; } /* * A module needs to be instanataited in DSP. A mdoule is present in a * collection of module referred as a PIPE. * We first calculate the module format, based on module type and then * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper */ int skl_init_module(struct skl_dev *skl, struct skl_module_cfg *mconfig) { u16 module_config_size = 0; void *param_data = NULL; int ret; struct skl_ipc_init_instance_msg msg; dev_dbg(skl->dev, "%s: module_id = %d instance=%d\n", __func__, mconfig->id.module_id, mconfig->id.pvt_id); if (mconfig->pipe->state != SKL_PIPE_CREATED) { dev_err(skl->dev, "Pipe not created state= %d pipe_id= %d\n", mconfig->pipe->state, mconfig->pipe->ppl_id); return -EIO; } ret = skl_set_module_format(skl, mconfig, &module_config_size, &param_data); if (ret < 0) { dev_err(skl->dev, "Failed to set module format ret=%d\n", ret); return ret; } msg.module_id = mconfig->id.module_id; msg.instance_id = mconfig->id.pvt_id; msg.ppl_instance_id = mconfig->pipe->ppl_id; msg.param_data_size = module_config_size; msg.core_id = mconfig->core_id; msg.domain = mconfig->domain; ret = skl_ipc_init_instance(&skl->ipc, &msg, param_data); if (ret < 0) { dev_err(skl->dev, "Failed to init instance ret=%d\n", ret); kfree(param_data); return ret; } mconfig->m_state = SKL_MODULE_INIT_DONE; kfree(param_data); return ret; } static void skl_dump_bind_info(struct skl_dev *skl, struct skl_module_cfg *src_module, struct skl_module_cfg *dst_module) { dev_dbg(skl->dev, "%s: src module_id = %d src_instance=%d\n", __func__, src_module->id.module_id, src_module->id.pvt_id); dev_dbg(skl->dev, "%s: dst_module=%d dst_instance=%d\n", __func__, dst_module->id.module_id, dst_module->id.pvt_id); dev_dbg(skl->dev, "src_module state = %d dst module state = %d\n", src_module->m_state, dst_module->m_state); } /* * On module freeup, we need to unbind the module with modules * it is already bind. * Find the pin allocated and unbind then using bind_unbind IPC */ int skl_unbind_modules(struct skl_dev *skl, struct skl_module_cfg *src_mcfg, struct skl_module_cfg *dst_mcfg) { int ret; struct skl_ipc_bind_unbind_msg msg; struct skl_module_inst_id src_id = src_mcfg->id; struct skl_module_inst_id dst_id = dst_mcfg->id; int in_max = dst_mcfg->module->max_input_pins; int out_max = src_mcfg->module->max_output_pins; int src_index, dst_index, src_pin_state, dst_pin_state; skl_dump_bind_info(skl, src_mcfg, dst_mcfg); /* get src queue index */ src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max); if (src_index < 0) return 0; msg.src_queue = src_index; /* get dst queue index */ dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max); if (dst_index < 0) return 0; msg.dst_queue = dst_index; src_pin_state = src_mcfg->m_out_pin[src_index].pin_state; dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state; if (src_pin_state != SKL_PIN_BIND_DONE || dst_pin_state != SKL_PIN_BIND_DONE) return 0; msg.module_id = src_mcfg->id.module_id; msg.instance_id = src_mcfg->id.pvt_id; msg.dst_module_id = dst_mcfg->id.module_id; msg.dst_instance_id = dst_mcfg->id.pvt_id; msg.bind = false; ret = skl_ipc_bind_unbind(&skl->ipc, &msg); if (!ret) { /* free queue only if unbind is success */ skl_free_queue(src_mcfg->m_out_pin, src_index); skl_free_queue(dst_mcfg->m_in_pin, dst_index); /* * check only if src module bind state, bind is * always from src -> sink */ skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg); } return ret; } #define CPR_SINK_FMT_PARAM_ID 2 /* * Once a module is instantiated it need to be 'bind' with other modules in * the pipeline. For binding we need to find the module pins which are bind * together * This function finds the pins and then sends bund_unbind IPC message to * DSP using IPC helper */ int skl_bind_modules(struct skl_dev *skl, struct skl_module_cfg *src_mcfg, struct skl_module_cfg *dst_mcfg) { int ret = 0; struct skl_ipc_bind_unbind_msg msg; int in_max = dst_mcfg->module->max_input_pins; int out_max = src_mcfg->module->max_output_pins; int src_index, dst_index; struct skl_module_fmt *format; struct skl_cpr_pin_fmt pin_fmt; struct skl_module *module; struct skl_module_iface *fmt; skl_dump_bind_info(skl, src_mcfg, dst_mcfg); if (src_mcfg->m_state < SKL_MODULE_INIT_DONE || dst_mcfg->m_state < SKL_MODULE_INIT_DONE) return 0; src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max); if (src_index < 0) return -EINVAL; msg.src_queue = src_index; dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max); if (dst_index < 0) { skl_free_queue(src_mcfg->m_out_pin, src_index); return -EINVAL; } /* * Copier module requires the separate large_config_set_ipc to * configure the pins other than 0 */ if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) { pin_fmt.sink_id = src_index; module = src_mcfg->module; fmt = &module->formats[src_mcfg->fmt_idx]; /* Input fmt is same as that of src module input cfg */ format = &fmt->inputs[0].fmt; fill_pin_params(&(pin_fmt.src_fmt), format); format = &fmt->outputs[src_index].fmt; fill_pin_params(&(pin_fmt.dst_fmt), format); ret = skl_set_module_params(skl, (void *)&pin_fmt, sizeof(struct skl_cpr_pin_fmt), CPR_SINK_FMT_PARAM_ID, src_mcfg); if (ret < 0) goto out; } msg.dst_queue = dst_index; dev_dbg(skl->dev, "src queue = %d dst queue =%d\n", msg.src_queue, msg.dst_queue); msg.module_id = src_mcfg->id.module_id; msg.instance_id = src_mcfg->id.pvt_id; msg.dst_module_id = dst_mcfg->id.module_id; msg.dst_instance_id = dst_mcfg->id.pvt_id; msg.bind = true; ret = skl_ipc_bind_unbind(&skl->ipc, &msg); if (!ret) { src_mcfg->m_state = SKL_MODULE_BIND_DONE; src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE; dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE; return ret; } out: /* error case , if IPC fails, clear the queue index */ skl_free_queue(src_mcfg->m_out_pin, src_index); skl_free_queue(dst_mcfg->m_in_pin, dst_index); return ret; } static int skl_set_pipe_state(struct skl_dev *skl, struct skl_pipe *pipe, enum skl_ipc_pipeline_state state) { dev_dbg(skl->dev, "%s: pipe_state = %d\n", __func__, state); return skl_ipc_set_pipeline_state(&skl->ipc, pipe->ppl_id, state); } /* * A pipeline is a collection of modules. Before a module in instantiated a * pipeline needs to be created for it. * This function creates pipeline, by sending create pipeline IPC messages * to FW */ int skl_create_pipeline(struct skl_dev *skl, struct skl_pipe *pipe) { int ret; dev_dbg(skl->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id); ret = skl_ipc_create_pipeline(&skl->ipc, pipe->memory_pages, pipe->pipe_priority, pipe->ppl_id, pipe->lp_mode); if (ret < 0) { dev_err(skl->dev, "Failed to create pipeline\n"); return ret; } pipe->state = SKL_PIPE_CREATED; return 0; } /* * A pipeline needs to be deleted on cleanup. If a pipeline is running, * then pause it first. Before actual deletion, pipeline should enter * reset state. Finish the procedure by sending delete pipeline IPC. * DSP will stop the DMA engines and release resources */ int skl_delete_pipe(struct skl_dev *skl, struct skl_pipe *pipe) { int ret; dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); /* If pipe was not created in FW, do not try to delete it */ if (pipe->state < SKL_PIPE_CREATED) return 0; /* If pipe is started, do stop the pipe in FW. */ if (pipe->state >= SKL_PIPE_STARTED) { ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); if (ret < 0) { dev_err(skl->dev, "Failed to stop pipeline\n"); return ret; } pipe->state = SKL_PIPE_PAUSED; } /* reset pipe state before deletion */ ret = skl_set_pipe_state(skl, pipe, PPL_RESET); if (ret < 0) { dev_err(skl->dev, "Failed to reset pipe ret=%d\n", ret); return ret; } pipe->state = SKL_PIPE_RESET; ret = skl_ipc_delete_pipeline(&skl->ipc, pipe->ppl_id); if (ret < 0) { dev_err(skl->dev, "Failed to delete pipeline\n"); return ret; } pipe->state = SKL_PIPE_INVALID; return ret; } /* * A pipeline is also a scheduling entity in DSP which can be run, stopped * For processing data the pipe need to be run by sending IPC set pipe state * to DSP */ int skl_run_pipe(struct skl_dev *skl, struct skl_pipe *pipe) { int ret; dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); /* If pipe was not created in FW, do not try to pause or delete */ if (pipe->state < SKL_PIPE_CREATED) return 0; /* Pipe has to be paused before it is started */ ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); if (ret < 0) { dev_err(skl->dev, "Failed to pause pipe\n"); return ret; } pipe->state = SKL_PIPE_PAUSED; ret = skl_set_pipe_state(skl, pipe, PPL_RUNNING); if (ret < 0) { dev_err(skl->dev, "Failed to start pipe\n"); return ret; } pipe->state = SKL_PIPE_STARTED; return 0; } /* * Stop the pipeline by sending set pipe state IPC * DSP doesnt implement stop so we always send pause message */ int skl_stop_pipe(struct skl_dev *skl, struct skl_pipe *pipe) { int ret; dev_dbg(skl->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id); /* If pipe was not created in FW, do not try to pause or delete */ if (pipe->state < SKL_PIPE_PAUSED) return 0; ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); if (ret < 0) { dev_dbg(skl->dev, "Failed to stop pipe\n"); return ret; } pipe->state = SKL_PIPE_PAUSED; return 0; } /* * Reset the pipeline by sending set pipe state IPC this will reset the DMA * from the DSP side */ int skl_reset_pipe(struct skl_dev *skl, struct skl_pipe *pipe) { int ret; /* If pipe was not created in FW, do not try to pause or delete */ if (pipe->state < SKL_PIPE_PAUSED) return 0; ret = skl_set_pipe_state(skl, pipe, PPL_RESET); if (ret < 0) { dev_dbg(skl->dev, "Failed to reset pipe ret=%d\n", ret); return ret; } pipe->state = SKL_PIPE_RESET; return 0; } /* Algo parameter set helper function */ int skl_set_module_params(struct skl_dev *skl, u32 *params, int size, u32 param_id, struct skl_module_cfg *mcfg) { struct skl_ipc_large_config_msg msg; msg.module_id = mcfg->id.module_id; msg.instance_id = mcfg->id.pvt_id; msg.param_data_size = size; msg.large_param_id = param_id; return skl_ipc_set_large_config(&skl->ipc, &msg, params); } int skl_get_module_params(struct skl_dev *skl, u32 *params, int size, u32 param_id, struct skl_module_cfg *mcfg) { struct skl_ipc_large_config_msg msg; size_t bytes = size; msg.module_id = mcfg->id.module_id; msg.instance_id = mcfg->id.pvt_id; msg.param_data_size = size; msg.large_param_id = param_id; return skl_ipc_get_large_config(&skl->ipc, &msg, &params, &bytes); }
linux-master
sound/soc/intel/skylake/skl-messages.c
// SPDX-License-Identifier: GPL-2.0-only /* * skl-sst-utils.c - SKL sst utils functions * * Copyright (C) 2016 Intel Corp */ #include <linux/device.h> #include <linux/slab.h> #include <linux/uuid.h> #include "../common/sst-dsp.h" #include "../common/sst-dsp-priv.h" #include "skl.h" #define DEFAULT_HASH_SHA256_LEN 32 /* FW Extended Manifest Header id = $AE1 */ #define SKL_EXT_MANIFEST_HEADER_MAGIC 0x31454124 union seg_flags { u32 ul; struct { u32 contents : 1; u32 alloc : 1; u32 load : 1; u32 read_only : 1; u32 code : 1; u32 data : 1; u32 _rsvd0 : 2; u32 type : 4; u32 _rsvd1 : 4; u32 length : 16; } r; } __packed; struct segment_desc { union seg_flags flags; u32 v_base_addr; u32 file_offset; }; struct module_type { u32 load_type : 4; u32 auto_start : 1; u32 domain_ll : 1; u32 domain_dp : 1; u32 rsvd : 25; } __packed; struct adsp_module_entry { u32 struct_id; u8 name[8]; u8 uuid[16]; struct module_type type; u8 hash1[DEFAULT_HASH_SHA256_LEN]; u32 entry_point; u16 cfg_offset; u16 cfg_count; u32 affinity_mask; u16 instance_max_count; u16 instance_bss_size; struct segment_desc segments[3]; } __packed; struct adsp_fw_hdr { u32 id; u32 len; u8 name[8]; u32 preload_page_count; u32 fw_image_flags; u32 feature_mask; u16 major; u16 minor; u16 hotfix; u16 build; u32 num_modules; u32 hw_buf_base; u32 hw_buf_length; u32 load_offset; } __packed; struct skl_ext_manifest_hdr { u32 id; u32 len; u16 version_major; u16 version_minor; u32 entries; }; static int skl_get_pvtid_map(struct uuid_module *module, int instance_id) { int pvt_id; for (pvt_id = 0; pvt_id < module->max_instance; pvt_id++) { if (module->instance_id[pvt_id] == instance_id) return pvt_id; } return -EINVAL; } int skl_get_pvt_instance_id_map(struct skl_dev *skl, int module_id, int instance_id) { struct uuid_module *module; list_for_each_entry(module, &skl->uuid_list, list) { if (module->id == module_id) return skl_get_pvtid_map(module, instance_id); } return -EINVAL; } EXPORT_SYMBOL_GPL(skl_get_pvt_instance_id_map); static inline int skl_getid_32(struct uuid_module *module, u64 *val, int word1_mask, int word2_mask) { int index, max_inst, pvt_id; u32 mask_val; max_inst = module->max_instance; mask_val = (u32)(*val >> word1_mask); if (mask_val != 0xffffffff) { index = ffz(mask_val); pvt_id = index + word1_mask + word2_mask; if (pvt_id <= (max_inst - 1)) { *val |= 1ULL << (index + word1_mask); return pvt_id; } } return -EINVAL; } static inline int skl_pvtid_128(struct uuid_module *module) { int j, i, word1_mask, word2_mask = 0, pvt_id; for (j = 0; j < MAX_INSTANCE_BUFF; j++) { word1_mask = 0; for (i = 0; i < 2; i++) { pvt_id = skl_getid_32(module, &module->pvt_id[j], word1_mask, word2_mask); if (pvt_id >= 0) return pvt_id; word1_mask += 32; if ((word1_mask + word2_mask) >= module->max_instance) return -EINVAL; } word2_mask += 64; if (word2_mask >= module->max_instance) return -EINVAL; } return -EINVAL; } /** * skl_get_pvt_id: generate a private id for use as module id * * @skl: driver context * @uuid_mod: module's uuid * @instance_id: module's instance id * * This generates a 128 bit private unique id for a module TYPE so that * module instance is unique */ int skl_get_pvt_id(struct skl_dev *skl, guid_t *uuid_mod, int instance_id) { struct uuid_module *module; int pvt_id; list_for_each_entry(module, &skl->uuid_list, list) { if (guid_equal(uuid_mod, &module->uuid)) { pvt_id = skl_pvtid_128(module); if (pvt_id >= 0) { module->instance_id[pvt_id] = instance_id; return pvt_id; } } } return -EINVAL; } EXPORT_SYMBOL_GPL(skl_get_pvt_id); /** * skl_put_pvt_id: free up the private id allocated * * @skl: driver context * @uuid_mod: module's uuid * @pvt_id: module pvt id * * This frees a 128 bit private unique id previously generated */ int skl_put_pvt_id(struct skl_dev *skl, guid_t *uuid_mod, int *pvt_id) { int i; struct uuid_module *module; list_for_each_entry(module, &skl->uuid_list, list) { if (guid_equal(uuid_mod, &module->uuid)) { if (*pvt_id != 0) i = (*pvt_id) / 64; else i = 0; module->pvt_id[i] &= ~(1 << (*pvt_id)); *pvt_id = -1; return 0; } } return -EINVAL; } EXPORT_SYMBOL_GPL(skl_put_pvt_id); /* * Parse the firmware binary to get the UUID, module id * and loadable flags */ int snd_skl_parse_uuids(struct sst_dsp *ctx, const struct firmware *fw, unsigned int offset, int index) { struct adsp_fw_hdr *adsp_hdr; struct adsp_module_entry *mod_entry; int i, num_entry, size; const char *buf; struct skl_dev *skl = ctx->thread_context; struct uuid_module *module; struct firmware stripped_fw; unsigned int safe_file; int ret; /* Get the FW pointer to derive ADSP header */ stripped_fw.data = fw->data; stripped_fw.size = fw->size; skl_dsp_strip_extended_manifest(&stripped_fw); buf = stripped_fw.data; /* check if we have enough space in file to move to header */ safe_file = sizeof(*adsp_hdr) + offset; if (stripped_fw.size <= safe_file) { dev_err(ctx->dev, "Small fw file size, No space for hdr\n"); return -EINVAL; } adsp_hdr = (struct adsp_fw_hdr *)(buf + offset); /* check 1st module entry is in file */ safe_file += adsp_hdr->len + sizeof(*mod_entry); if (stripped_fw.size <= safe_file) { dev_err(ctx->dev, "Small fw file size, No module entry\n"); return -EINVAL; } mod_entry = (struct adsp_module_entry *)(buf + offset + adsp_hdr->len); num_entry = adsp_hdr->num_modules; /* check all entries are in file */ safe_file += num_entry * sizeof(*mod_entry); if (stripped_fw.size <= safe_file) { dev_err(ctx->dev, "Small fw file size, No modules\n"); return -EINVAL; } /* * Read the UUID(GUID) from FW Manifest. * * The 16 byte UUID format is: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXX * Populate the UUID table to store module_id and loadable flags * for the module. */ for (i = 0; i < num_entry; i++, mod_entry++) { module = kzalloc(sizeof(*module), GFP_KERNEL); if (!module) { ret = -ENOMEM; goto free_uuid_list; } import_guid(&module->uuid, mod_entry->uuid); module->id = (i | (index << 12)); module->is_loadable = mod_entry->type.load_type; module->max_instance = mod_entry->instance_max_count; size = sizeof(int) * mod_entry->instance_max_count; module->instance_id = devm_kzalloc(ctx->dev, size, GFP_KERNEL); if (!module->instance_id) { ret = -ENOMEM; goto free_uuid_list; } list_add_tail(&module->list, &skl->uuid_list); dev_dbg(ctx->dev, "Adding uuid :%pUL mod id: %d Loadable: %d\n", &module->uuid, module->id, module->is_loadable); } return 0; free_uuid_list: skl_freeup_uuid_list(skl); return ret; } void skl_freeup_uuid_list(struct skl_dev *skl) { struct uuid_module *uuid, *_uuid; list_for_each_entry_safe(uuid, _uuid, &skl->uuid_list, list) { list_del(&uuid->list); kfree(uuid); } } /* * some firmware binary contains some extended manifest. This needs * to be stripped in that case before we load and use that image. * * Get the module id for the module by checking * the table for the UUID for the module */ int skl_dsp_strip_extended_manifest(struct firmware *fw) { struct skl_ext_manifest_hdr *hdr; /* check if fw file is greater than header we are looking */ if (fw->size < sizeof(hdr)) { pr_err("%s: Firmware file small, no hdr\n", __func__); return -EINVAL; } hdr = (struct skl_ext_manifest_hdr *)fw->data; if (hdr->id == SKL_EXT_MANIFEST_HEADER_MAGIC) { fw->size -= hdr->len; fw->data += hdr->len; } return 0; } int skl_sst_ctx_init(struct device *dev, int irq, const char *fw_name, struct skl_dsp_loader_ops dsp_ops, struct skl_dev **dsp, struct sst_dsp_device *skl_dev) { struct skl_dev *skl = *dsp; struct sst_dsp *sst; skl->dev = dev; skl_dev->thread_context = skl; INIT_LIST_HEAD(&skl->uuid_list); skl->dsp = skl_dsp_ctx_init(dev, skl_dev, irq); if (!skl->dsp) { dev_err(skl->dev, "%s: no device\n", __func__); return -ENODEV; } sst = skl->dsp; sst->fw_name = fw_name; sst->dsp_ops = dsp_ops; init_waitqueue_head(&skl->mod_load_wait); INIT_LIST_HEAD(&sst->module_list); skl->is_first_boot = true; return 0; } int skl_prepare_lib_load(struct skl_dev *skl, struct skl_lib_info *linfo, struct firmware *stripped_fw, unsigned int hdr_offset, int index) { int ret; struct sst_dsp *dsp = skl->dsp; if (linfo->fw == NULL) { ret = request_firmware(&linfo->fw, linfo->name, skl->dev); if (ret < 0) { dev_err(skl->dev, "Request lib %s failed:%d\n", linfo->name, ret); return ret; } } if (skl->is_first_boot) { ret = snd_skl_parse_uuids(dsp, linfo->fw, hdr_offset, index); if (ret < 0) return ret; } stripped_fw->data = linfo->fw->data; stripped_fw->size = linfo->fw->size; skl_dsp_strip_extended_manifest(stripped_fw); return 0; } void skl_release_library(struct skl_lib_info *linfo, int lib_count) { int i; /* library indices start from 1 to N. 0 represents base FW */ for (i = 1; i < lib_count; i++) { if (linfo[i].fw) { release_firmware(linfo[i].fw); linfo[i].fw = NULL; } } }
linux-master
sound/soc/intel/skylake/skl-sst-utils.c
// SPDX-License-Identifier: GPL-2.0-only /* * skl-nhlt.c - Intel SKL Platform NHLT parsing * * Copyright (C) 2015 Intel Corp * Author: Sanjiv Kumar <[email protected]> * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/pci.h> #include <sound/intel-nhlt.h> #include "skl.h" #include "skl-i2s.h" static void skl_nhlt_trim_space(char *trim) { char *s = trim; int cnt; int i; cnt = 0; for (i = 0; s[i]; i++) { if (!isspace(s[i])) s[cnt++] = s[i]; } s[cnt] = '\0'; } int skl_nhlt_update_topology_bin(struct skl_dev *skl) { struct nhlt_acpi_table *nhlt = (struct nhlt_acpi_table *)skl->nhlt; struct hdac_bus *bus = skl_to_bus(skl); struct device *dev = bus->dev; dev_dbg(dev, "oem_id %.6s, oem_table_id %.8s oem_revision %d\n", nhlt->header.oem_id, nhlt->header.oem_table_id, nhlt->header.oem_revision); snprintf(skl->tplg_name, sizeof(skl->tplg_name), "%x-%.6s-%.8s-%d%s", skl->pci_id, nhlt->header.oem_id, nhlt->header.oem_table_id, nhlt->header.oem_revision, "-tplg.bin"); skl_nhlt_trim_space(skl->tplg_name); return 0; } static ssize_t platform_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pci_dev *pci = to_pci_dev(dev); struct hdac_bus *bus = pci_get_drvdata(pci); struct skl_dev *skl = bus_to_skl(bus); struct nhlt_acpi_table *nhlt = (struct nhlt_acpi_table *)skl->nhlt; char platform_id[32]; sprintf(platform_id, "%x-%.6s-%.8s-%d", skl->pci_id, nhlt->header.oem_id, nhlt->header.oem_table_id, nhlt->header.oem_revision); skl_nhlt_trim_space(platform_id); return sysfs_emit(buf, "%s\n", platform_id); } static DEVICE_ATTR_RO(platform_id); int skl_nhlt_create_sysfs(struct skl_dev *skl) { struct device *dev = &skl->pci->dev; if (sysfs_create_file(&dev->kobj, &dev_attr_platform_id.attr)) dev_warn(dev, "Error creating sysfs entry\n"); return 0; } void skl_nhlt_remove_sysfs(struct skl_dev *skl) { struct device *dev = &skl->pci->dev; if (skl->nhlt) sysfs_remove_file(&dev->kobj, &dev_attr_platform_id.attr); } /* * Queries NHLT for all the fmt configuration for a particular endpoint and * stores all possible rates supported in a rate table for the corresponding * sclk/sclkfs. */ static void skl_get_ssp_clks(struct skl_dev *skl, struct skl_ssp_clk *ssp_clks, struct nhlt_fmt *fmt, u8 id) { struct skl_i2s_config_blob_ext *i2s_config_ext; struct skl_i2s_config_blob_legacy *i2s_config; struct skl_clk_parent_src *parent; struct skl_ssp_clk *sclk, *sclkfs; struct nhlt_fmt_cfg *fmt_cfg; struct wav_fmt_ext *wav_fmt; unsigned long rate; int rate_index = 0; u16 channels, bps; u8 clk_src; int i, j; u32 fs; sclk = &ssp_clks[SKL_SCLK_OFS]; sclkfs = &ssp_clks[SKL_SCLKFS_OFS]; if (fmt->fmt_count == 0) return; fmt_cfg = (struct nhlt_fmt_cfg *)fmt->fmt_config; for (i = 0; i < fmt->fmt_count; i++) { struct nhlt_fmt_cfg *saved_fmt_cfg = fmt_cfg; bool present = false; wav_fmt = &saved_fmt_cfg->fmt_ext; channels = wav_fmt->fmt.channels; bps = wav_fmt->fmt.bits_per_sample; fs = wav_fmt->fmt.samples_per_sec; /* * In case of TDM configuration on a ssp, there can * be more than one blob in which channel masks are * different for each usecase for a specific rate and bps. * But the sclk rate will be generated for the total * number of channels used for that endpoint. * * So for the given fs and bps, choose blob which has * the superset of all channels for that endpoint and * derive the rate. */ for (j = i; j < fmt->fmt_count; j++) { struct nhlt_fmt_cfg *tmp_fmt_cfg = fmt_cfg; wav_fmt = &tmp_fmt_cfg->fmt_ext; if ((fs == wav_fmt->fmt.samples_per_sec) && (bps == wav_fmt->fmt.bits_per_sample)) { channels = max_t(u16, channels, wav_fmt->fmt.channels); saved_fmt_cfg = tmp_fmt_cfg; } /* Move to the next nhlt_fmt_cfg */ tmp_fmt_cfg = (struct nhlt_fmt_cfg *)(tmp_fmt_cfg->config.caps + tmp_fmt_cfg->config.size); } rate = channels * bps * fs; /* check if the rate is added already to the given SSP's sclk */ for (j = 0; (j < SKL_MAX_CLK_RATES) && (sclk[id].rate_cfg[j].rate != 0); j++) { if (sclk[id].rate_cfg[j].rate == rate) { present = true; break; } } /* Fill rate and parent for sclk/sclkfs */ if (!present) { struct nhlt_fmt_cfg *first_fmt_cfg; first_fmt_cfg = (struct nhlt_fmt_cfg *)fmt->fmt_config; i2s_config_ext = (struct skl_i2s_config_blob_ext *) first_fmt_cfg->config.caps; /* MCLK Divider Source Select */ if (is_legacy_blob(i2s_config_ext->hdr.sig)) { i2s_config = ext_to_legacy_blob(i2s_config_ext); clk_src = get_clk_src(i2s_config->mclk, SKL_MNDSS_DIV_CLK_SRC_MASK); } else { clk_src = get_clk_src(i2s_config_ext->mclk, SKL_MNDSS_DIV_CLK_SRC_MASK); } parent = skl_get_parent_clk(clk_src); /* Move to the next nhlt_fmt_cfg */ fmt_cfg = (struct nhlt_fmt_cfg *)(fmt_cfg->config.caps + fmt_cfg->config.size); /* * Do not copy the config data if there is no parent * clock available for this clock source select */ if (!parent) continue; sclk[id].rate_cfg[rate_index].rate = rate; sclk[id].rate_cfg[rate_index].config = saved_fmt_cfg; sclkfs[id].rate_cfg[rate_index].rate = rate; sclkfs[id].rate_cfg[rate_index].config = saved_fmt_cfg; sclk[id].parent_name = parent->name; sclkfs[id].parent_name = parent->name; rate_index++; } } } static void skl_get_mclk(struct skl_dev *skl, struct skl_ssp_clk *mclk, struct nhlt_fmt *fmt, u8 id) { struct skl_i2s_config_blob_ext *i2s_config_ext; struct skl_i2s_config_blob_legacy *i2s_config; struct nhlt_fmt_cfg *fmt_cfg; struct skl_clk_parent_src *parent; u32 clkdiv, div_ratio; u8 clk_src; fmt_cfg = (struct nhlt_fmt_cfg *)fmt->fmt_config; i2s_config_ext = (struct skl_i2s_config_blob_ext *)fmt_cfg->config.caps; /* MCLK Divider Source Select and divider */ if (is_legacy_blob(i2s_config_ext->hdr.sig)) { i2s_config = ext_to_legacy_blob(i2s_config_ext); clk_src = get_clk_src(i2s_config->mclk, SKL_MCLK_DIV_CLK_SRC_MASK); clkdiv = i2s_config->mclk.mdivr & SKL_MCLK_DIV_RATIO_MASK; } else { clk_src = get_clk_src(i2s_config_ext->mclk, SKL_MCLK_DIV_CLK_SRC_MASK); clkdiv = i2s_config_ext->mclk.mdivr[0] & SKL_MCLK_DIV_RATIO_MASK; } /* bypass divider */ div_ratio = 1; if (clkdiv != SKL_MCLK_DIV_RATIO_MASK) /* Divider is 2 + clkdiv */ div_ratio = clkdiv + 2; /* Calculate MCLK rate from source using div value */ parent = skl_get_parent_clk(clk_src); if (!parent) return; mclk[id].rate_cfg[0].rate = parent->rate/div_ratio; mclk[id].rate_cfg[0].config = fmt_cfg; mclk[id].parent_name = parent->name; } void skl_get_clks(struct skl_dev *skl, struct skl_ssp_clk *ssp_clks) { struct nhlt_acpi_table *nhlt = (struct nhlt_acpi_table *)skl->nhlt; struct nhlt_endpoint *epnt; struct nhlt_fmt *fmt; int i; u8 id; epnt = (struct nhlt_endpoint *)nhlt->desc; for (i = 0; i < nhlt->endpoint_count; i++) { if (epnt->linktype == NHLT_LINK_SSP) { id = epnt->virtual_bus_id; fmt = (struct nhlt_fmt *)(epnt->config.caps + epnt->config.size); skl_get_ssp_clks(skl, ssp_clks, fmt, id); skl_get_mclk(skl, ssp_clks, fmt, id); } epnt = (struct nhlt_endpoint *)((u8 *)epnt + epnt->length); } }
linux-master
sound/soc/intel/skylake/skl-nhlt.c
// SPDX-License-Identifier: GPL-2.0-only /* * skl-topology.c - Implements Platform component ALSA controls/widget * handlers. * * Copyright (C) 2014-2015 Intel Corp * Author: Jeeja KP <[email protected]> * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/slab.h> #include <linux/types.h> #include <linux/firmware.h> #include <linux/uuid.h> #include <sound/intel-nhlt.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-topology.h> #include <uapi/sound/snd_sst_tokens.h> #include <uapi/sound/skl-tplg-interface.h> #include "skl-sst-dsp.h" #include "skl-sst-ipc.h" #include "skl-topology.h" #include "skl.h" #include "../common/sst-dsp.h" #include "../common/sst-dsp-priv.h" #define SKL_CH_FIXUP_MASK (1 << 0) #define SKL_RATE_FIXUP_MASK (1 << 1) #define SKL_FMT_FIXUP_MASK (1 << 2) #define SKL_IN_DIR_BIT_MASK BIT(0) #define SKL_PIN_COUNT_MASK GENMASK(7, 4) static const int mic_mono_list[] = { 0, 1, 2, 3, }; static const int mic_stereo_list[][SKL_CH_STEREO] = { {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}, }; static const int mic_trio_list[][SKL_CH_TRIO] = { {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, }; static const int mic_quatro_list[][SKL_CH_QUATRO] = { {0, 1, 2, 3}, }; #define CHECK_HW_PARAMS(ch, freq, bps, prm_ch, prm_freq, prm_bps) \ ((ch == prm_ch) && (bps == prm_bps) && (freq == prm_freq)) void skl_tplg_d0i3_get(struct skl_dev *skl, enum d0i3_capability caps) { struct skl_d0i3_data *d0i3 = &skl->d0i3; switch (caps) { case SKL_D0I3_NONE: d0i3->non_d0i3++; break; case SKL_D0I3_STREAMING: d0i3->streaming++; break; case SKL_D0I3_NON_STREAMING: d0i3->non_streaming++; break; } } void skl_tplg_d0i3_put(struct skl_dev *skl, enum d0i3_capability caps) { struct skl_d0i3_data *d0i3 = &skl->d0i3; switch (caps) { case SKL_D0I3_NONE: d0i3->non_d0i3--; break; case SKL_D0I3_STREAMING: d0i3->streaming--; break; case SKL_D0I3_NON_STREAMING: d0i3->non_streaming--; break; } } /* * SKL DSP driver modelling uses only few DAPM widgets so for rest we will * ignore. This helpers checks if the SKL driver handles this widget type */ static int is_skl_dsp_widget_type(struct snd_soc_dapm_widget *w, struct device *dev) { if (w->dapm->dev != dev) return false; switch (w->id) { case snd_soc_dapm_dai_link: case snd_soc_dapm_dai_in: case snd_soc_dapm_aif_in: case snd_soc_dapm_aif_out: case snd_soc_dapm_dai_out: case snd_soc_dapm_switch: case snd_soc_dapm_output: case snd_soc_dapm_mux: return false; default: return true; } } static void skl_dump_mconfig(struct skl_dev *skl, struct skl_module_cfg *mcfg) { struct skl_module_iface *iface = &mcfg->module->formats[mcfg->fmt_idx]; dev_dbg(skl->dev, "Dumping config\n"); dev_dbg(skl->dev, "Input Format:\n"); dev_dbg(skl->dev, "channels = %d\n", iface->inputs[0].fmt.channels); dev_dbg(skl->dev, "s_freq = %d\n", iface->inputs[0].fmt.s_freq); dev_dbg(skl->dev, "ch_cfg = %d\n", iface->inputs[0].fmt.ch_cfg); dev_dbg(skl->dev, "valid bit depth = %d\n", iface->inputs[0].fmt.valid_bit_depth); dev_dbg(skl->dev, "Output Format:\n"); dev_dbg(skl->dev, "channels = %d\n", iface->outputs[0].fmt.channels); dev_dbg(skl->dev, "s_freq = %d\n", iface->outputs[0].fmt.s_freq); dev_dbg(skl->dev, "valid bit depth = %d\n", iface->outputs[0].fmt.valid_bit_depth); dev_dbg(skl->dev, "ch_cfg = %d\n", iface->outputs[0].fmt.ch_cfg); } static void skl_tplg_update_chmap(struct skl_module_fmt *fmt, int chs) { int slot_map = 0xFFFFFFFF; int start_slot = 0; int i; for (i = 0; i < chs; i++) { /* * For 2 channels with starting slot as 0, slot map will * look like 0xFFFFFF10. */ slot_map &= (~(0xF << (4 * i)) | (start_slot << (4 * i))); start_slot++; } fmt->ch_map = slot_map; } static void skl_tplg_update_params(struct skl_module_fmt *fmt, struct skl_pipe_params *params, int fixup) { if (fixup & SKL_RATE_FIXUP_MASK) fmt->s_freq = params->s_freq; if (fixup & SKL_CH_FIXUP_MASK) { fmt->channels = params->ch; skl_tplg_update_chmap(fmt, fmt->channels); } if (fixup & SKL_FMT_FIXUP_MASK) { fmt->valid_bit_depth = skl_get_bit_depth(params->s_fmt); /* * 16 bit is 16 bit container whereas 24 bit is in 32 bit * container so update bit depth accordingly */ switch (fmt->valid_bit_depth) { case SKL_DEPTH_16BIT: fmt->bit_depth = fmt->valid_bit_depth; break; default: fmt->bit_depth = SKL_DEPTH_32BIT; break; } } } /* * A pipeline may have modules which impact the pcm parameters, like SRC, * channel converter, format converter. * We need to calculate the output params by applying the 'fixup' * Topology will tell driver which type of fixup is to be applied by * supplying the fixup mask, so based on that we calculate the output * * Now In FE the pcm hw_params is source/target format. Same is applicable * for BE with its hw_params invoked. * here based on FE, BE pipeline and direction we calculate the input and * outfix and then apply that for a module */ static void skl_tplg_update_params_fixup(struct skl_module_cfg *m_cfg, struct skl_pipe_params *params, bool is_fe) { int in_fixup, out_fixup; struct skl_module_fmt *in_fmt, *out_fmt; /* Fixups will be applied to pin 0 only */ in_fmt = &m_cfg->module->formats[m_cfg->fmt_idx].inputs[0].fmt; out_fmt = &m_cfg->module->formats[m_cfg->fmt_idx].outputs[0].fmt; if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) { if (is_fe) { in_fixup = m_cfg->params_fixup; out_fixup = (~m_cfg->converter) & m_cfg->params_fixup; } else { out_fixup = m_cfg->params_fixup; in_fixup = (~m_cfg->converter) & m_cfg->params_fixup; } } else { if (is_fe) { out_fixup = m_cfg->params_fixup; in_fixup = (~m_cfg->converter) & m_cfg->params_fixup; } else { in_fixup = m_cfg->params_fixup; out_fixup = (~m_cfg->converter) & m_cfg->params_fixup; } } skl_tplg_update_params(in_fmt, params, in_fixup); skl_tplg_update_params(out_fmt, params, out_fixup); } /* * A module needs input and output buffers, which are dependent upon pcm * params, so once we have calculate params, we need buffer calculation as * well. */ static void skl_tplg_update_buffer_size(struct skl_dev *skl, struct skl_module_cfg *mcfg) { int multiplier = 1; struct skl_module_fmt *in_fmt, *out_fmt; struct skl_module_res *res; /* Since fixups is applied to pin 0 only, ibs, obs needs * change for pin 0 only */ res = &mcfg->module->resources[mcfg->res_idx]; in_fmt = &mcfg->module->formats[mcfg->fmt_idx].inputs[0].fmt; out_fmt = &mcfg->module->formats[mcfg->fmt_idx].outputs[0].fmt; if (mcfg->m_type == SKL_MODULE_TYPE_SRCINT) multiplier = 5; res->ibs = DIV_ROUND_UP(in_fmt->s_freq, 1000) * in_fmt->channels * (in_fmt->bit_depth >> 3) * multiplier; res->obs = DIV_ROUND_UP(out_fmt->s_freq, 1000) * out_fmt->channels * (out_fmt->bit_depth >> 3) * multiplier; } static u8 skl_tplg_be_dev_type(int dev_type) { int ret; switch (dev_type) { case SKL_DEVICE_BT: ret = NHLT_DEVICE_BT; break; case SKL_DEVICE_DMIC: ret = NHLT_DEVICE_DMIC; break; case SKL_DEVICE_I2S: ret = NHLT_DEVICE_I2S; break; default: ret = NHLT_DEVICE_INVALID; break; } return ret; } static int skl_tplg_update_be_blob(struct snd_soc_dapm_widget *w, struct skl_dev *skl) { struct skl_module_cfg *m_cfg = w->priv; int link_type, dir; u32 ch, s_freq, s_fmt, s_cont; struct nhlt_specific_cfg *cfg; u8 dev_type = skl_tplg_be_dev_type(m_cfg->dev_type); int fmt_idx = m_cfg->fmt_idx; struct skl_module_iface *m_iface = &m_cfg->module->formats[fmt_idx]; /* check if we already have blob */ if (m_cfg->formats_config[SKL_PARAM_INIT].caps_size > 0) return 0; dev_dbg(skl->dev, "Applying default cfg blob\n"); switch (m_cfg->dev_type) { case SKL_DEVICE_DMIC: link_type = NHLT_LINK_DMIC; dir = SNDRV_PCM_STREAM_CAPTURE; s_freq = m_iface->inputs[0].fmt.s_freq; s_fmt = m_iface->inputs[0].fmt.valid_bit_depth; s_cont = m_iface->inputs[0].fmt.bit_depth; ch = m_iface->inputs[0].fmt.channels; break; case SKL_DEVICE_I2S: link_type = NHLT_LINK_SSP; if (m_cfg->hw_conn_type == SKL_CONN_SOURCE) { dir = SNDRV_PCM_STREAM_PLAYBACK; s_freq = m_iface->outputs[0].fmt.s_freq; s_fmt = m_iface->outputs[0].fmt.valid_bit_depth; s_cont = m_iface->outputs[0].fmt.bit_depth; ch = m_iface->outputs[0].fmt.channels; } else { dir = SNDRV_PCM_STREAM_CAPTURE; s_freq = m_iface->inputs[0].fmt.s_freq; s_fmt = m_iface->inputs[0].fmt.valid_bit_depth; s_cont = m_iface->inputs[0].fmt.bit_depth; ch = m_iface->inputs[0].fmt.channels; } break; default: return -EINVAL; } /* update the blob based on virtual bus_id and default params */ cfg = intel_nhlt_get_endpoint_blob(skl->dev, skl->nhlt, m_cfg->vbus_id, link_type, s_fmt, s_cont, ch, s_freq, dir, dev_type); if (cfg) { m_cfg->formats_config[SKL_PARAM_INIT].caps_size = cfg->size; m_cfg->formats_config[SKL_PARAM_INIT].caps = (u32 *)&cfg->caps; } else { dev_err(skl->dev, "Blob NULL for id %x type %d dirn %d\n", m_cfg->vbus_id, link_type, dir); dev_err(skl->dev, "PCM: ch %d, freq %d, fmt %d/%d\n", ch, s_freq, s_fmt, s_cont); return -EIO; } return 0; } static void skl_tplg_update_module_params(struct snd_soc_dapm_widget *w, struct skl_dev *skl) { struct skl_module_cfg *m_cfg = w->priv; struct skl_pipe_params *params = m_cfg->pipe->p_params; int p_conn_type = m_cfg->pipe->conn_type; bool is_fe; if (!m_cfg->params_fixup) return; dev_dbg(skl->dev, "Mconfig for widget=%s BEFORE updation\n", w->name); skl_dump_mconfig(skl, m_cfg); if (p_conn_type == SKL_PIPE_CONN_TYPE_FE) is_fe = true; else is_fe = false; skl_tplg_update_params_fixup(m_cfg, params, is_fe); skl_tplg_update_buffer_size(skl, m_cfg); dev_dbg(skl->dev, "Mconfig for widget=%s AFTER updation\n", w->name); skl_dump_mconfig(skl, m_cfg); } /* * some modules can have multiple params set from user control and * need to be set after module is initialized. If set_param flag is * set module params will be done after module is initialised. */ static int skl_tplg_set_module_params(struct snd_soc_dapm_widget *w, struct skl_dev *skl) { int i, ret; struct skl_module_cfg *mconfig = w->priv; const struct snd_kcontrol_new *k; struct soc_bytes_ext *sb; struct skl_algo_data *bc; struct skl_specific_cfg *sp_cfg; if (mconfig->formats_config[SKL_PARAM_SET].caps_size > 0 && mconfig->formats_config[SKL_PARAM_SET].set_params == SKL_PARAM_SET) { sp_cfg = &mconfig->formats_config[SKL_PARAM_SET]; ret = skl_set_module_params(skl, sp_cfg->caps, sp_cfg->caps_size, sp_cfg->param_id, mconfig); if (ret < 0) return ret; } for (i = 0; i < w->num_kcontrols; i++) { k = &w->kcontrol_news[i]; if (k->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) { sb = (void *) k->private_value; bc = (struct skl_algo_data *)sb->dobj.private; if (bc->set_params == SKL_PARAM_SET) { ret = skl_set_module_params(skl, (u32 *)bc->params, bc->size, bc->param_id, mconfig); if (ret < 0) return ret; } } } return 0; } /* * some module param can set from user control and this is required as * when module is initailzed. if module param is required in init it is * identifed by set_param flag. if set_param flag is not set, then this * parameter needs to set as part of module init. */ static int skl_tplg_set_module_init_data(struct snd_soc_dapm_widget *w) { const struct snd_kcontrol_new *k; struct soc_bytes_ext *sb; struct skl_algo_data *bc; struct skl_module_cfg *mconfig = w->priv; int i; for (i = 0; i < w->num_kcontrols; i++) { k = &w->kcontrol_news[i]; if (k->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) { sb = (struct soc_bytes_ext *)k->private_value; bc = (struct skl_algo_data *)sb->dobj.private; if (bc->set_params != SKL_PARAM_INIT) continue; mconfig->formats_config[SKL_PARAM_INIT].caps = (u32 *)bc->params; mconfig->formats_config[SKL_PARAM_INIT].caps_size = bc->size; break; } } return 0; } static int skl_tplg_module_prepare(struct skl_dev *skl, struct skl_pipe *pipe, struct snd_soc_dapm_widget *w, struct skl_module_cfg *mcfg) { switch (mcfg->dev_type) { case SKL_DEVICE_HDAHOST: return skl_pcm_host_dma_prepare(skl->dev, pipe->p_params); case SKL_DEVICE_HDALINK: return skl_pcm_link_dma_prepare(skl->dev, pipe->p_params); } return 0; } /* * Inside a pipe instance, we can have various modules. These modules need * to instantiated in DSP by invoking INIT_MODULE IPC, which is achieved by * skl_init_module() routine, so invoke that for all modules in a pipeline */ static int skl_tplg_init_pipe_modules(struct skl_dev *skl, struct skl_pipe *pipe) { struct skl_pipe_module *w_module; struct snd_soc_dapm_widget *w; struct skl_module_cfg *mconfig; u8 cfg_idx; int ret = 0; list_for_each_entry(w_module, &pipe->w_list, node) { guid_t *uuid_mod; w = w_module->w; mconfig = w->priv; /* check if module ids are populated */ if (mconfig->id.module_id < 0) { dev_err(skl->dev, "module %pUL id not populated\n", (guid_t *)mconfig->guid); return -EIO; } cfg_idx = mconfig->pipe->cur_config_idx; mconfig->fmt_idx = mconfig->mod_cfg[cfg_idx].fmt_idx; mconfig->res_idx = mconfig->mod_cfg[cfg_idx].res_idx; if (mconfig->module->loadable && skl->dsp->fw_ops.load_mod) { ret = skl->dsp->fw_ops.load_mod(skl->dsp, mconfig->id.module_id, mconfig->guid); if (ret < 0) return ret; } /* prepare the DMA if the module is gateway cpr */ ret = skl_tplg_module_prepare(skl, pipe, w, mconfig); if (ret < 0) return ret; /* update blob if blob is null for be with default value */ skl_tplg_update_be_blob(w, skl); /* * apply fix/conversion to module params based on * FE/BE params */ skl_tplg_update_module_params(w, skl); uuid_mod = (guid_t *)mconfig->guid; mconfig->id.pvt_id = skl_get_pvt_id(skl, uuid_mod, mconfig->id.instance_id); if (mconfig->id.pvt_id < 0) return ret; skl_tplg_set_module_init_data(w); ret = skl_dsp_get_core(skl->dsp, mconfig->core_id); if (ret < 0) { dev_err(skl->dev, "Failed to wake up core %d ret=%d\n", mconfig->core_id, ret); return ret; } ret = skl_init_module(skl, mconfig); if (ret < 0) { skl_put_pvt_id(skl, uuid_mod, &mconfig->id.pvt_id); goto err; } ret = skl_tplg_set_module_params(w, skl); if (ret < 0) goto err; } return 0; err: skl_dsp_put_core(skl->dsp, mconfig->core_id); return ret; } static int skl_tplg_unload_pipe_modules(struct skl_dev *skl, struct skl_pipe *pipe) { int ret = 0; struct skl_pipe_module *w_module; struct skl_module_cfg *mconfig; list_for_each_entry(w_module, &pipe->w_list, node) { guid_t *uuid_mod; mconfig = w_module->w->priv; uuid_mod = (guid_t *)mconfig->guid; if (mconfig->module->loadable && skl->dsp->fw_ops.unload_mod) { ret = skl->dsp->fw_ops.unload_mod(skl->dsp, mconfig->id.module_id); if (ret < 0) return -EIO; } skl_put_pvt_id(skl, uuid_mod, &mconfig->id.pvt_id); ret = skl_dsp_put_core(skl->dsp, mconfig->core_id); if (ret < 0) { /* don't return; continue with other modules */ dev_err(skl->dev, "Failed to sleep core %d ret=%d\n", mconfig->core_id, ret); } } /* no modules to unload in this path, so return */ return ret; } static void skl_tplg_set_pipe_config_idx(struct skl_pipe *pipe, int idx) { pipe->cur_config_idx = idx; pipe->memory_pages = pipe->configs[idx].mem_pages; } /* * Here, we select pipe format based on the pipe type and pipe * direction to determine the current config index for the pipeline. * The config index is then used to select proper module resources. * Intermediate pipes currently have a fixed format hence we select the * 0th configuratation by default for such pipes. */ static int skl_tplg_get_pipe_config(struct skl_dev *skl, struct skl_module_cfg *mconfig) { struct skl_pipe *pipe = mconfig->pipe; struct skl_pipe_params *params = pipe->p_params; struct skl_path_config *pconfig = &pipe->configs[0]; struct skl_pipe_fmt *fmt = NULL; bool in_fmt = false; int i; if (pipe->nr_cfgs == 0) { skl_tplg_set_pipe_config_idx(pipe, 0); return 0; } if (pipe->conn_type == SKL_PIPE_CONN_TYPE_NONE || pipe->nr_cfgs == 1) { dev_dbg(skl->dev, "No conn_type or just 1 pathcfg, taking 0th for %d\n", pipe->ppl_id); skl_tplg_set_pipe_config_idx(pipe, 0); return 0; } if ((pipe->conn_type == SKL_PIPE_CONN_TYPE_FE && pipe->direction == SNDRV_PCM_STREAM_PLAYBACK) || (pipe->conn_type == SKL_PIPE_CONN_TYPE_BE && pipe->direction == SNDRV_PCM_STREAM_CAPTURE)) in_fmt = true; for (i = 0; i < pipe->nr_cfgs; i++) { pconfig = &pipe->configs[i]; if (in_fmt) fmt = &pconfig->in_fmt; else fmt = &pconfig->out_fmt; if (CHECK_HW_PARAMS(params->ch, params->s_freq, params->s_fmt, fmt->channels, fmt->freq, fmt->bps)) { skl_tplg_set_pipe_config_idx(pipe, i); dev_dbg(skl->dev, "Using pipe config: %d\n", i); return 0; } } dev_err(skl->dev, "Invalid pipe config: %d %d %d for pipe: %d\n", params->ch, params->s_freq, params->s_fmt, pipe->ppl_id); return -EINVAL; } /* * Mixer module represents a pipeline. So in the Pre-PMU event of mixer we * need create the pipeline. So we do following: * - Create the pipeline * - Initialize the modules in pipeline * - finally bind all modules together */ static int skl_tplg_mixer_dapm_pre_pmu_event(struct snd_soc_dapm_widget *w, struct skl_dev *skl) { int ret; struct skl_module_cfg *mconfig = w->priv; struct skl_pipe_module *w_module; struct skl_pipe *s_pipe = mconfig->pipe; struct skl_module_cfg *src_module = NULL, *dst_module, *module; struct skl_module_deferred_bind *modules; ret = skl_tplg_get_pipe_config(skl, mconfig); if (ret < 0) return ret; /* * Create a list of modules for pipe. * This list contains modules from source to sink */ ret = skl_create_pipeline(skl, mconfig->pipe); if (ret < 0) return ret; /* Init all pipe modules from source to sink */ ret = skl_tplg_init_pipe_modules(skl, s_pipe); if (ret < 0) return ret; /* Bind modules from source to sink */ list_for_each_entry(w_module, &s_pipe->w_list, node) { dst_module = w_module->w->priv; if (src_module == NULL) { src_module = dst_module; continue; } ret = skl_bind_modules(skl, src_module, dst_module); if (ret < 0) return ret; src_module = dst_module; } /* * When the destination module is initialized, check for these modules * in deferred bind list. If found, bind them. */ list_for_each_entry(w_module, &s_pipe->w_list, node) { if (list_empty(&skl->bind_list)) break; list_for_each_entry(modules, &skl->bind_list, node) { module = w_module->w->priv; if (modules->dst == module) skl_bind_modules(skl, modules->src, modules->dst); } } return 0; } static int skl_fill_sink_instance_id(struct skl_dev *skl, u32 *params, int size, struct skl_module_cfg *mcfg) { int i, pvt_id; if (mcfg->m_type == SKL_MODULE_TYPE_KPB) { struct skl_kpb_params *kpb_params = (struct skl_kpb_params *)params; struct skl_mod_inst_map *inst = kpb_params->u.map; for (i = 0; i < kpb_params->num_modules; i++) { pvt_id = skl_get_pvt_instance_id_map(skl, inst->mod_id, inst->inst_id); if (pvt_id < 0) return -EINVAL; inst->inst_id = pvt_id; inst++; } } return 0; } /* * Some modules require params to be set after the module is bound to * all pins connected. * * The module provider initializes set_param flag for such modules and we * send params after binding */ static int skl_tplg_set_module_bind_params(struct snd_soc_dapm_widget *w, struct skl_module_cfg *mcfg, struct skl_dev *skl) { int i, ret; struct skl_module_cfg *mconfig = w->priv; const struct snd_kcontrol_new *k; struct soc_bytes_ext *sb; struct skl_algo_data *bc; struct skl_specific_cfg *sp_cfg; u32 *params; /* * check all out/in pins are in bind state. * if so set the module param */ for (i = 0; i < mcfg->module->max_output_pins; i++) { if (mcfg->m_out_pin[i].pin_state != SKL_PIN_BIND_DONE) return 0; } for (i = 0; i < mcfg->module->max_input_pins; i++) { if (mcfg->m_in_pin[i].pin_state != SKL_PIN_BIND_DONE) return 0; } if (mconfig->formats_config[SKL_PARAM_BIND].caps_size > 0 && mconfig->formats_config[SKL_PARAM_BIND].set_params == SKL_PARAM_BIND) { sp_cfg = &mconfig->formats_config[SKL_PARAM_BIND]; ret = skl_set_module_params(skl, sp_cfg->caps, sp_cfg->caps_size, sp_cfg->param_id, mconfig); if (ret < 0) return ret; } for (i = 0; i < w->num_kcontrols; i++) { k = &w->kcontrol_news[i]; if (k->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) { sb = (void *) k->private_value; bc = (struct skl_algo_data *)sb->dobj.private; if (bc->set_params == SKL_PARAM_BIND) { params = kmemdup(bc->params, bc->max, GFP_KERNEL); if (!params) return -ENOMEM; skl_fill_sink_instance_id(skl, params, bc->max, mconfig); ret = skl_set_module_params(skl, params, bc->max, bc->param_id, mconfig); kfree(params); if (ret < 0) return ret; } } } return 0; } static int skl_get_module_id(struct skl_dev *skl, guid_t *uuid) { struct uuid_module *module; list_for_each_entry(module, &skl->uuid_list, list) { if (guid_equal(uuid, &module->uuid)) return module->id; } return -EINVAL; } static int skl_tplg_find_moduleid_from_uuid(struct skl_dev *skl, const struct snd_kcontrol_new *k) { struct soc_bytes_ext *sb = (void *) k->private_value; struct skl_algo_data *bc = (struct skl_algo_data *)sb->dobj.private; struct skl_kpb_params *uuid_params, *params; struct hdac_bus *bus = skl_to_bus(skl); int i, size, module_id; if (bc->set_params == SKL_PARAM_BIND && bc->max) { uuid_params = (struct skl_kpb_params *)bc->params; size = struct_size(params, u.map, uuid_params->num_modules); params = devm_kzalloc(bus->dev, size, GFP_KERNEL); if (!params) return -ENOMEM; params->num_modules = uuid_params->num_modules; for (i = 0; i < uuid_params->num_modules; i++) { module_id = skl_get_module_id(skl, &uuid_params->u.map_uuid[i].mod_uuid); if (module_id < 0) { devm_kfree(bus->dev, params); return -EINVAL; } params->u.map[i].mod_id = module_id; params->u.map[i].inst_id = uuid_params->u.map_uuid[i].inst_id; } devm_kfree(bus->dev, bc->params); bc->params = (char *)params; bc->max = size; } return 0; } /* * Retrieve the module id from UUID mentioned in the * post bind params */ void skl_tplg_add_moduleid_in_bind_params(struct skl_dev *skl, struct snd_soc_dapm_widget *w) { struct skl_module_cfg *mconfig = w->priv; int i; /* * Post bind params are used for only for KPB * to set copier instances to drain the data * in fast mode */ if (mconfig->m_type != SKL_MODULE_TYPE_KPB) return; for (i = 0; i < w->num_kcontrols; i++) if ((w->kcontrol_news[i].access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) && (skl_tplg_find_moduleid_from_uuid(skl, &w->kcontrol_news[i]) < 0)) dev_err(skl->dev, "%s: invalid kpb post bind params\n", __func__); } static int skl_tplg_module_add_deferred_bind(struct skl_dev *skl, struct skl_module_cfg *src, struct skl_module_cfg *dst) { struct skl_module_deferred_bind *m_list, *modules; int i; /* only supported for module with static pin connection */ for (i = 0; i < dst->module->max_input_pins; i++) { struct skl_module_pin *pin = &dst->m_in_pin[i]; if (pin->is_dynamic) continue; if ((pin->id.module_id == src->id.module_id) && (pin->id.instance_id == src->id.instance_id)) { if (!list_empty(&skl->bind_list)) { list_for_each_entry(modules, &skl->bind_list, node) { if (modules->src == src && modules->dst == dst) return 0; } } m_list = kzalloc(sizeof(*m_list), GFP_KERNEL); if (!m_list) return -ENOMEM; m_list->src = src; m_list->dst = dst; list_add(&m_list->node, &skl->bind_list); } } return 0; } static int skl_tplg_bind_sinks(struct snd_soc_dapm_widget *w, struct skl_dev *skl, struct snd_soc_dapm_widget *src_w, struct skl_module_cfg *src_mconfig) { struct snd_soc_dapm_path *p; struct snd_soc_dapm_widget *sink = NULL, *next_sink = NULL; struct skl_module_cfg *sink_mconfig; int ret; snd_soc_dapm_widget_for_each_sink_path(w, p) { if (!p->connect) continue; dev_dbg(skl->dev, "%s: src widget=%s\n", __func__, w->name); dev_dbg(skl->dev, "%s: sink widget=%s\n", __func__, p->sink->name); next_sink = p->sink; if (!is_skl_dsp_widget_type(p->sink, skl->dev)) return skl_tplg_bind_sinks(p->sink, skl, src_w, src_mconfig); /* * here we will check widgets in sink pipelines, so that * can be any widgets type and we are only interested if * they are ones used for SKL so check that first */ if ((p->sink->priv != NULL) && is_skl_dsp_widget_type(p->sink, skl->dev)) { sink = p->sink; sink_mconfig = sink->priv; /* * Modules other than PGA leaf can be connected * directly or via switch to a module in another * pipeline. EX: reference path * when the path is enabled, the dst module that needs * to be bound may not be initialized. if the module is * not initialized, add these modules in the deferred * bind list and when the dst module is initialised, * bind this module to the dst_module in deferred list. */ if (((src_mconfig->m_state == SKL_MODULE_INIT_DONE) && (sink_mconfig->m_state == SKL_MODULE_UNINIT))) { ret = skl_tplg_module_add_deferred_bind(skl, src_mconfig, sink_mconfig); if (ret < 0) return ret; } if (src_mconfig->m_state == SKL_MODULE_UNINIT || sink_mconfig->m_state == SKL_MODULE_UNINIT) continue; /* Bind source to sink, mixin is always source */ ret = skl_bind_modules(skl, src_mconfig, sink_mconfig); if (ret) return ret; /* set module params after bind */ skl_tplg_set_module_bind_params(src_w, src_mconfig, skl); skl_tplg_set_module_bind_params(sink, sink_mconfig, skl); /* Start sinks pipe first */ if (sink_mconfig->pipe->state != SKL_PIPE_STARTED) { if (sink_mconfig->pipe->conn_type != SKL_PIPE_CONN_TYPE_FE) ret = skl_run_pipe(skl, sink_mconfig->pipe); if (ret) return ret; } } } if (!sink && next_sink) return skl_tplg_bind_sinks(next_sink, skl, src_w, src_mconfig); return 0; } /* * A PGA represents a module in a pipeline. So in the Pre-PMU event of PGA * we need to do following: * - Bind to sink pipeline * Since the sink pipes can be running and we don't get mixer event on * connect for already running mixer, we need to find the sink pipes * here and bind to them. This way dynamic connect works. * - Start sink pipeline, if not running * - Then run current pipe */ static int skl_tplg_pga_dapm_pre_pmu_event(struct snd_soc_dapm_widget *w, struct skl_dev *skl) { struct skl_module_cfg *src_mconfig; int ret = 0; src_mconfig = w->priv; /* * find which sink it is connected to, bind with the sink, * if sink is not started, start sink pipe first, then start * this pipe */ ret = skl_tplg_bind_sinks(w, skl, w, src_mconfig); if (ret) return ret; /* Start source pipe last after starting all sinks */ if (src_mconfig->pipe->conn_type != SKL_PIPE_CONN_TYPE_FE) return skl_run_pipe(skl, src_mconfig->pipe); return 0; } static struct snd_soc_dapm_widget *skl_get_src_dsp_widget( struct snd_soc_dapm_widget *w, struct skl_dev *skl) { struct snd_soc_dapm_path *p; struct snd_soc_dapm_widget *src_w = NULL; snd_soc_dapm_widget_for_each_source_path(w, p) { src_w = p->source; if (!p->connect) continue; dev_dbg(skl->dev, "sink widget=%s\n", w->name); dev_dbg(skl->dev, "src widget=%s\n", p->source->name); /* * here we will check widgets in sink pipelines, so that can * be any widgets type and we are only interested if they are * ones used for SKL so check that first */ if ((p->source->priv != NULL) && is_skl_dsp_widget_type(p->source, skl->dev)) { return p->source; } } if (src_w != NULL) return skl_get_src_dsp_widget(src_w, skl); return NULL; } /* * in the Post-PMU event of mixer we need to do following: * - Check if this pipe is running * - if not, then * - bind this pipeline to its source pipeline * if source pipe is already running, this means it is a dynamic * connection and we need to bind only to that pipe * - start this pipeline */ static int skl_tplg_mixer_dapm_post_pmu_event(struct snd_soc_dapm_widget *w, struct skl_dev *skl) { int ret = 0; struct snd_soc_dapm_widget *source, *sink; struct skl_module_cfg *src_mconfig, *sink_mconfig; int src_pipe_started = 0; sink = w; sink_mconfig = sink->priv; /* * If source pipe is already started, that means source is driving * one more sink before this sink got connected, Since source is * started, bind this sink to source and start this pipe. */ source = skl_get_src_dsp_widget(w, skl); if (source != NULL) { src_mconfig = source->priv; sink_mconfig = sink->priv; src_pipe_started = 1; /* * check pipe state, then no need to bind or start the * pipe */ if (src_mconfig->pipe->state != SKL_PIPE_STARTED) src_pipe_started = 0; } if (src_pipe_started) { ret = skl_bind_modules(skl, src_mconfig, sink_mconfig); if (ret) return ret; /* set module params after bind */ skl_tplg_set_module_bind_params(source, src_mconfig, skl); skl_tplg_set_module_bind_params(sink, sink_mconfig, skl); if (sink_mconfig->pipe->conn_type != SKL_PIPE_CONN_TYPE_FE) ret = skl_run_pipe(skl, sink_mconfig->pipe); } return ret; } /* * in the Pre-PMD event of mixer we need to do following: * - Stop the pipe * - find the source connections and remove that from dapm_path_list * - unbind with source pipelines if still connected */ static int skl_tplg_mixer_dapm_pre_pmd_event(struct snd_soc_dapm_widget *w, struct skl_dev *skl) { struct skl_module_cfg *src_mconfig, *sink_mconfig; int ret = 0, i; sink_mconfig = w->priv; /* Stop the pipe */ ret = skl_stop_pipe(skl, sink_mconfig->pipe); if (ret) return ret; for (i = 0; i < sink_mconfig->module->max_input_pins; i++) { if (sink_mconfig->m_in_pin[i].pin_state == SKL_PIN_BIND_DONE) { src_mconfig = sink_mconfig->m_in_pin[i].tgt_mcfg; if (!src_mconfig) continue; ret = skl_unbind_modules(skl, src_mconfig, sink_mconfig); } } return ret; } /* * in the Post-PMD event of mixer we need to do following: * - Unbind the modules within the pipeline * - Delete the pipeline (modules are not required to be explicitly * deleted, pipeline delete is enough here */ static int skl_tplg_mixer_dapm_post_pmd_event(struct snd_soc_dapm_widget *w, struct skl_dev *skl) { struct skl_module_cfg *mconfig = w->priv; struct skl_pipe_module *w_module; struct skl_module_cfg *src_module = NULL, *dst_module; struct skl_pipe *s_pipe = mconfig->pipe; struct skl_module_deferred_bind *modules, *tmp; if (s_pipe->state == SKL_PIPE_INVALID) return -EINVAL; list_for_each_entry(w_module, &s_pipe->w_list, node) { if (list_empty(&skl->bind_list)) break; src_module = w_module->w->priv; list_for_each_entry_safe(modules, tmp, &skl->bind_list, node) { /* * When the destination module is deleted, Unbind the * modules from deferred bind list. */ if (modules->dst == src_module) { skl_unbind_modules(skl, modules->src, modules->dst); } /* * When the source module is deleted, remove this entry * from the deferred bind list. */ if (modules->src == src_module) { list_del(&modules->node); modules->src = NULL; modules->dst = NULL; kfree(modules); } } } list_for_each_entry(w_module, &s_pipe->w_list, node) { dst_module = w_module->w->priv; if (src_module == NULL) { src_module = dst_module; continue; } skl_unbind_modules(skl, src_module, dst_module); src_module = dst_module; } skl_delete_pipe(skl, mconfig->pipe); list_for_each_entry(w_module, &s_pipe->w_list, node) { src_module = w_module->w->priv; src_module->m_state = SKL_MODULE_UNINIT; } return skl_tplg_unload_pipe_modules(skl, s_pipe); } /* * in the Post-PMD event of PGA we need to do following: * - Stop the pipeline * - In source pipe is connected, unbind with source pipelines */ static int skl_tplg_pga_dapm_post_pmd_event(struct snd_soc_dapm_widget *w, struct skl_dev *skl) { struct skl_module_cfg *src_mconfig, *sink_mconfig; int ret = 0, i; src_mconfig = w->priv; /* Stop the pipe since this is a mixin module */ ret = skl_stop_pipe(skl, src_mconfig->pipe); if (ret) return ret; for (i = 0; i < src_mconfig->module->max_output_pins; i++) { if (src_mconfig->m_out_pin[i].pin_state == SKL_PIN_BIND_DONE) { sink_mconfig = src_mconfig->m_out_pin[i].tgt_mcfg; if (!sink_mconfig) continue; /* * This is a connecter and if path is found that means * unbind between source and sink has not happened yet */ ret = skl_unbind_modules(skl, src_mconfig, sink_mconfig); } } return ret; } /* * In modelling, we assume there will be ONLY one mixer in a pipeline. If a * second one is required that is created as another pipe entity. * The mixer is responsible for pipe management and represent a pipeline * instance */ static int skl_tplg_mixer_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct skl_dev *skl = get_skl_ctx(dapm->dev); switch (event) { case SND_SOC_DAPM_PRE_PMU: return skl_tplg_mixer_dapm_pre_pmu_event(w, skl); case SND_SOC_DAPM_POST_PMU: return skl_tplg_mixer_dapm_post_pmu_event(w, skl); case SND_SOC_DAPM_PRE_PMD: return skl_tplg_mixer_dapm_pre_pmd_event(w, skl); case SND_SOC_DAPM_POST_PMD: return skl_tplg_mixer_dapm_post_pmd_event(w, skl); } return 0; } /* * In modelling, we assumed rest of the modules in pipeline are PGA. But we * are interested in last PGA (leaf PGA) in a pipeline to disconnect with * the sink when it is running (two FE to one BE or one FE to two BE) * scenarios */ static int skl_tplg_pga_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct skl_dev *skl = get_skl_ctx(dapm->dev); switch (event) { case SND_SOC_DAPM_PRE_PMU: return skl_tplg_pga_dapm_pre_pmu_event(w, skl); case SND_SOC_DAPM_POST_PMD: return skl_tplg_pga_dapm_post_pmd_event(w, skl); } return 0; } static int skl_tplg_multi_config_set_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol, bool is_set) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct hdac_bus *bus = snd_soc_component_get_drvdata(component); struct skl_dev *skl = bus_to_skl(bus); struct skl_pipeline *ppl; struct skl_pipe *pipe = NULL; struct soc_enum *ec = (struct soc_enum *)kcontrol->private_value; u32 *pipe_id; if (!ec) return -EINVAL; if (is_set && ucontrol->value.enumerated.item[0] > ec->items) return -EINVAL; pipe_id = ec->dobj.private; list_for_each_entry(ppl, &skl->ppl_list, node) { if (ppl->pipe->ppl_id == *pipe_id) { pipe = ppl->pipe; break; } } if (!pipe) return -EIO; if (is_set) skl_tplg_set_pipe_config_idx(pipe, ucontrol->value.enumerated.item[0]); else ucontrol->value.enumerated.item[0] = pipe->cur_config_idx; return 0; } static int skl_tplg_multi_config_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { return skl_tplg_multi_config_set_get(kcontrol, ucontrol, false); } static int skl_tplg_multi_config_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { return skl_tplg_multi_config_set_get(kcontrol, ucontrol, true); } static int skl_tplg_multi_config_get_dmic(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { return skl_tplg_multi_config_set_get(kcontrol, ucontrol, false); } static int skl_tplg_multi_config_set_dmic(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { return skl_tplg_multi_config_set_get(kcontrol, ucontrol, true); } static int skl_tplg_tlv_control_get(struct snd_kcontrol *kcontrol, unsigned int __user *data, unsigned int size) { struct soc_bytes_ext *sb = (struct soc_bytes_ext *)kcontrol->private_value; struct skl_algo_data *bc = (struct skl_algo_data *)sb->dobj.private; struct snd_soc_dapm_widget *w = snd_soc_dapm_kcontrol_widget(kcontrol); struct skl_module_cfg *mconfig = w->priv; struct skl_dev *skl = get_skl_ctx(w->dapm->dev); if (w->power) skl_get_module_params(skl, (u32 *)bc->params, bc->size, bc->param_id, mconfig); /* decrement size for TLV header */ size -= 2 * sizeof(u32); /* check size as we don't want to send kernel data */ if (size > bc->max) size = bc->max; if (bc->params) { if (copy_to_user(data, &bc->param_id, sizeof(u32))) return -EFAULT; if (copy_to_user(data + 1, &size, sizeof(u32))) return -EFAULT; if (copy_to_user(data + 2, bc->params, size)) return -EFAULT; } return 0; } #define SKL_PARAM_VENDOR_ID 0xff static int skl_tplg_tlv_control_set(struct snd_kcontrol *kcontrol, const unsigned int __user *data, unsigned int size) { struct snd_soc_dapm_widget *w = snd_soc_dapm_kcontrol_widget(kcontrol); struct skl_module_cfg *mconfig = w->priv; struct soc_bytes_ext *sb = (struct soc_bytes_ext *)kcontrol->private_value; struct skl_algo_data *ac = (struct skl_algo_data *)sb->dobj.private; struct skl_dev *skl = get_skl_ctx(w->dapm->dev); if (ac->params) { if (size > ac->max) return -EINVAL; ac->size = size; if (copy_from_user(ac->params, data, size)) return -EFAULT; if (w->power) return skl_set_module_params(skl, (u32 *)ac->params, ac->size, ac->param_id, mconfig); } return 0; } static int skl_tplg_mic_control_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget *w = snd_soc_dapm_kcontrol_widget(kcontrol); struct skl_module_cfg *mconfig = w->priv; struct soc_enum *ec = (struct soc_enum *)kcontrol->private_value; u32 ch_type = *((u32 *)ec->dobj.private); if (mconfig->dmic_ch_type == ch_type) ucontrol->value.enumerated.item[0] = mconfig->dmic_ch_combo_index; else ucontrol->value.enumerated.item[0] = 0; return 0; } static int skl_fill_mic_sel_params(struct skl_module_cfg *mconfig, struct skl_mic_sel_config *mic_cfg, struct device *dev) { struct skl_specific_cfg *sp_cfg = &mconfig->formats_config[SKL_PARAM_INIT]; sp_cfg->caps_size = sizeof(struct skl_mic_sel_config); sp_cfg->set_params = SKL_PARAM_SET; sp_cfg->param_id = 0x00; if (!sp_cfg->caps) { sp_cfg->caps = devm_kzalloc(dev, sp_cfg->caps_size, GFP_KERNEL); if (!sp_cfg->caps) return -ENOMEM; } mic_cfg->mic_switch = SKL_MIC_SEL_SWITCH; mic_cfg->flags = 0; memcpy(sp_cfg->caps, mic_cfg, sp_cfg->caps_size); return 0; } static int skl_tplg_mic_control_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget *w = snd_soc_dapm_kcontrol_widget(kcontrol); struct skl_module_cfg *mconfig = w->priv; struct skl_mic_sel_config mic_cfg = {0}; struct soc_enum *ec = (struct soc_enum *)kcontrol->private_value; u32 ch_type = *((u32 *)ec->dobj.private); const int *list; u8 in_ch, out_ch, index; mconfig->dmic_ch_type = ch_type; mconfig->dmic_ch_combo_index = ucontrol->value.enumerated.item[0]; /* enum control index 0 is INVALID, so no channels to be set */ if (mconfig->dmic_ch_combo_index == 0) return 0; /* No valid channel selection map for index 0, so offset by 1 */ index = mconfig->dmic_ch_combo_index - 1; switch (ch_type) { case SKL_CH_MONO: if (mconfig->dmic_ch_combo_index > ARRAY_SIZE(mic_mono_list)) return -EINVAL; list = &mic_mono_list[index]; break; case SKL_CH_STEREO: if (mconfig->dmic_ch_combo_index > ARRAY_SIZE(mic_stereo_list)) return -EINVAL; list = mic_stereo_list[index]; break; case SKL_CH_TRIO: if (mconfig->dmic_ch_combo_index > ARRAY_SIZE(mic_trio_list)) return -EINVAL; list = mic_trio_list[index]; break; case SKL_CH_QUATRO: if (mconfig->dmic_ch_combo_index > ARRAY_SIZE(mic_quatro_list)) return -EINVAL; list = mic_quatro_list[index]; break; default: dev_err(w->dapm->dev, "Invalid channel %d for mic_select module\n", ch_type); return -EINVAL; } /* channel type enum map to number of chanels for that type */ for (out_ch = 0; out_ch < ch_type; out_ch++) { in_ch = list[out_ch]; mic_cfg.blob[out_ch][in_ch] = SKL_DEFAULT_MIC_SEL_GAIN; } return skl_fill_mic_sel_params(mconfig, &mic_cfg, w->dapm->dev); } /* * Fill the dma id for host and link. In case of passthrough * pipeline, this will both host and link in the same * pipeline, so need to copy the link and host based on dev_type */ static void skl_tplg_fill_dma_id(struct skl_module_cfg *mcfg, struct skl_pipe_params *params) { struct skl_pipe *pipe = mcfg->pipe; if (pipe->passthru) { switch (mcfg->dev_type) { case SKL_DEVICE_HDALINK: pipe->p_params->link_dma_id = params->link_dma_id; pipe->p_params->link_index = params->link_index; pipe->p_params->link_bps = params->link_bps; break; case SKL_DEVICE_HDAHOST: pipe->p_params->host_dma_id = params->host_dma_id; pipe->p_params->host_bps = params->host_bps; break; default: break; } pipe->p_params->s_fmt = params->s_fmt; pipe->p_params->ch = params->ch; pipe->p_params->s_freq = params->s_freq; pipe->p_params->stream = params->stream; pipe->p_params->format = params->format; } else { memcpy(pipe->p_params, params, sizeof(*params)); } } /* * The FE params are passed by hw_params of the DAI. * On hw_params, the params are stored in Gateway module of the FE and we * need to calculate the format in DSP module configuration, that * conversion is done here */ int skl_tplg_update_pipe_params(struct device *dev, struct skl_module_cfg *mconfig, struct skl_pipe_params *params) { struct skl_module_res *res; struct skl_dev *skl = get_skl_ctx(dev); struct skl_module_fmt *format = NULL; u8 cfg_idx = mconfig->pipe->cur_config_idx; res = &mconfig->module->resources[mconfig->res_idx]; skl_tplg_fill_dma_id(mconfig, params); mconfig->fmt_idx = mconfig->mod_cfg[cfg_idx].fmt_idx; mconfig->res_idx = mconfig->mod_cfg[cfg_idx].res_idx; if (skl->nr_modules) return 0; if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) format = &mconfig->module->formats[mconfig->fmt_idx].inputs[0].fmt; else format = &mconfig->module->formats[mconfig->fmt_idx].outputs[0].fmt; /* set the hw_params */ format->s_freq = params->s_freq; format->channels = params->ch; format->valid_bit_depth = skl_get_bit_depth(params->s_fmt); /* * 16 bit is 16 bit container whereas 24 bit is in 32 bit * container so update bit depth accordingly */ switch (format->valid_bit_depth) { case SKL_DEPTH_16BIT: format->bit_depth = format->valid_bit_depth; break; case SKL_DEPTH_24BIT: case SKL_DEPTH_32BIT: format->bit_depth = SKL_DEPTH_32BIT; break; default: dev_err(dev, "Invalid bit depth %x for pipe\n", format->valid_bit_depth); return -EINVAL; } if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) { res->ibs = (format->s_freq / 1000) * (format->channels) * (format->bit_depth >> 3); } else { res->obs = (format->s_freq / 1000) * (format->channels) * (format->bit_depth >> 3); } return 0; } /* * Query the module config for the FE DAI * This is used to find the hw_params set for that DAI and apply to FE * pipeline */ struct skl_module_cfg * skl_tplg_fe_get_cpr_module(struct snd_soc_dai *dai, int stream) { struct snd_soc_dapm_widget *w = snd_soc_dai_get_widget(dai, stream); struct snd_soc_dapm_path *p = NULL; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { snd_soc_dapm_widget_for_each_sink_path(w, p) { if (p->connect && p->sink->power && !is_skl_dsp_widget_type(p->sink, dai->dev)) continue; if (p->sink->priv) { dev_dbg(dai->dev, "set params for %s\n", p->sink->name); return p->sink->priv; } } } else { snd_soc_dapm_widget_for_each_source_path(w, p) { if (p->connect && p->source->power && !is_skl_dsp_widget_type(p->source, dai->dev)) continue; if (p->source->priv) { dev_dbg(dai->dev, "set params for %s\n", p->source->name); return p->source->priv; } } } return NULL; } static struct skl_module_cfg *skl_get_mconfig_pb_cpr( struct snd_soc_dai *dai, struct snd_soc_dapm_widget *w) { struct snd_soc_dapm_path *p; struct skl_module_cfg *mconfig = NULL; snd_soc_dapm_widget_for_each_source_path(w, p) { if (w->endpoints[SND_SOC_DAPM_DIR_OUT] > 0) { if (p->connect && (p->sink->id == snd_soc_dapm_aif_out) && p->source->priv) { mconfig = p->source->priv; return mconfig; } mconfig = skl_get_mconfig_pb_cpr(dai, p->source); if (mconfig) return mconfig; } } return mconfig; } static struct skl_module_cfg *skl_get_mconfig_cap_cpr( struct snd_soc_dai *dai, struct snd_soc_dapm_widget *w) { struct snd_soc_dapm_path *p; struct skl_module_cfg *mconfig = NULL; snd_soc_dapm_widget_for_each_sink_path(w, p) { if (w->endpoints[SND_SOC_DAPM_DIR_IN] > 0) { if (p->connect && (p->source->id == snd_soc_dapm_aif_in) && p->sink->priv) { mconfig = p->sink->priv; return mconfig; } mconfig = skl_get_mconfig_cap_cpr(dai, p->sink); if (mconfig) return mconfig; } } return mconfig; } struct skl_module_cfg * skl_tplg_be_get_cpr_module(struct snd_soc_dai *dai, int stream) { struct snd_soc_dapm_widget *w = snd_soc_dai_get_widget(dai, stream); struct skl_module_cfg *mconfig; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { mconfig = skl_get_mconfig_pb_cpr(dai, w); } else { mconfig = skl_get_mconfig_cap_cpr(dai, w); } return mconfig; } static u8 skl_tplg_be_link_type(int dev_type) { int ret; switch (dev_type) { case SKL_DEVICE_BT: ret = NHLT_LINK_SSP; break; case SKL_DEVICE_DMIC: ret = NHLT_LINK_DMIC; break; case SKL_DEVICE_I2S: ret = NHLT_LINK_SSP; break; case SKL_DEVICE_HDALINK: ret = NHLT_LINK_HDA; break; default: ret = NHLT_LINK_INVALID; break; } return ret; } /* * Fill the BE gateway parameters * The BE gateway expects a blob of parameters which are kept in the ACPI * NHLT blob, so query the blob for interface type (i2s/pdm) and instance. * The port can have multiple settings so pick based on the pipeline * parameters */ static int skl_tplg_be_fill_pipe_params(struct snd_soc_dai *dai, struct skl_module_cfg *mconfig, struct skl_pipe_params *params) { struct nhlt_specific_cfg *cfg; struct skl_pipe *pipe = mconfig->pipe; struct skl_pipe_params save = *pipe->p_params; struct skl_pipe_fmt *pipe_fmt; struct skl_dev *skl = get_skl_ctx(dai->dev); int link_type = skl_tplg_be_link_type(mconfig->dev_type); u8 dev_type = skl_tplg_be_dev_type(mconfig->dev_type); int ret; skl_tplg_fill_dma_id(mconfig, params); if (link_type == NHLT_LINK_HDA) return 0; *pipe->p_params = *params; ret = skl_tplg_get_pipe_config(skl, mconfig); if (ret) goto err; dev_dbg(skl->dev, "%s using pipe config: %d\n", __func__, pipe->cur_config_idx); if (pipe->direction == SNDRV_PCM_STREAM_PLAYBACK) pipe_fmt = &pipe->configs[pipe->cur_config_idx].out_fmt; else pipe_fmt = &pipe->configs[pipe->cur_config_idx].in_fmt; /* update the blob based on virtual bus_id*/ cfg = intel_nhlt_get_endpoint_blob(dai->dev, skl->nhlt, mconfig->vbus_id, link_type, pipe_fmt->bps, params->s_cont, pipe_fmt->channels, pipe_fmt->freq, pipe->direction, dev_type); if (cfg) { mconfig->formats_config[SKL_PARAM_INIT].caps_size = cfg->size; mconfig->formats_config[SKL_PARAM_INIT].caps = (u32 *)&cfg->caps; } else { dev_err(dai->dev, "Blob NULL for id:%d type:%d dirn:%d ch:%d, freq:%d, fmt:%d\n", mconfig->vbus_id, link_type, params->stream, params->ch, params->s_freq, params->s_fmt); ret = -EINVAL; goto err; } return 0; err: *pipe->p_params = save; return ret; } static int skl_tplg_be_set_src_pipe_params(struct snd_soc_dai *dai, struct snd_soc_dapm_widget *w, struct skl_pipe_params *params) { struct snd_soc_dapm_path *p; int ret = -EIO; snd_soc_dapm_widget_for_each_source_path(w, p) { if (p->connect && is_skl_dsp_widget_type(p->source, dai->dev) && p->source->priv) { ret = skl_tplg_be_fill_pipe_params(dai, p->source->priv, params); if (ret < 0) return ret; } else { ret = skl_tplg_be_set_src_pipe_params(dai, p->source, params); if (ret < 0) return ret; } } return ret; } static int skl_tplg_be_set_sink_pipe_params(struct snd_soc_dai *dai, struct snd_soc_dapm_widget *w, struct skl_pipe_params *params) { struct snd_soc_dapm_path *p; int ret = -EIO; snd_soc_dapm_widget_for_each_sink_path(w, p) { if (p->connect && is_skl_dsp_widget_type(p->sink, dai->dev) && p->sink->priv) { ret = skl_tplg_be_fill_pipe_params(dai, p->sink->priv, params); if (ret < 0) return ret; } else { ret = skl_tplg_be_set_sink_pipe_params( dai, p->sink, params); if (ret < 0) return ret; } } return ret; } /* * BE hw_params can be a source parameters (capture) or sink parameters * (playback). Based on sink and source we need to either find the source * list or the sink list and set the pipeline parameters */ int skl_tplg_be_update_params(struct snd_soc_dai *dai, struct skl_pipe_params *params) { struct snd_soc_dapm_widget *w = snd_soc_dai_get_widget(dai, params->stream); if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) { return skl_tplg_be_set_src_pipe_params(dai, w, params); } else { return skl_tplg_be_set_sink_pipe_params(dai, w, params); } } static const struct snd_soc_tplg_widget_events skl_tplg_widget_ops[] = { {SKL_MIXER_EVENT, skl_tplg_mixer_event}, {SKL_VMIXER_EVENT, skl_tplg_mixer_event}, {SKL_PGA_EVENT, skl_tplg_pga_event}, }; static const struct snd_soc_tplg_bytes_ext_ops skl_tlv_ops[] = { {SKL_CONTROL_TYPE_BYTE_TLV, skl_tplg_tlv_control_get, skl_tplg_tlv_control_set}, }; static const struct snd_soc_tplg_kcontrol_ops skl_tplg_kcontrol_ops[] = { { .id = SKL_CONTROL_TYPE_MIC_SELECT, .get = skl_tplg_mic_control_get, .put = skl_tplg_mic_control_set, }, { .id = SKL_CONTROL_TYPE_MULTI_IO_SELECT, .get = skl_tplg_multi_config_get, .put = skl_tplg_multi_config_set, }, { .id = SKL_CONTROL_TYPE_MULTI_IO_SELECT_DMIC, .get = skl_tplg_multi_config_get_dmic, .put = skl_tplg_multi_config_set_dmic, } }; static int skl_tplg_fill_pipe_cfg(struct device *dev, struct skl_pipe *pipe, u32 tkn, u32 tkn_val, int conf_idx, int dir) { struct skl_pipe_fmt *fmt; struct skl_path_config *config; switch (dir) { case SKL_DIR_IN: fmt = &pipe->configs[conf_idx].in_fmt; break; case SKL_DIR_OUT: fmt = &pipe->configs[conf_idx].out_fmt; break; default: dev_err(dev, "Invalid direction: %d\n", dir); return -EINVAL; } config = &pipe->configs[conf_idx]; switch (tkn) { case SKL_TKN_U32_CFG_FREQ: fmt->freq = tkn_val; break; case SKL_TKN_U8_CFG_CHAN: fmt->channels = tkn_val; break; case SKL_TKN_U8_CFG_BPS: fmt->bps = tkn_val; break; case SKL_TKN_U32_PATH_MEM_PGS: config->mem_pages = tkn_val; break; default: dev_err(dev, "Invalid token config: %d\n", tkn); return -EINVAL; } return 0; } static int skl_tplg_fill_pipe_tkn(struct device *dev, struct skl_pipe *pipe, u32 tkn, u32 tkn_val) { switch (tkn) { case SKL_TKN_U32_PIPE_CONN_TYPE: pipe->conn_type = tkn_val; break; case SKL_TKN_U32_PIPE_PRIORITY: pipe->pipe_priority = tkn_val; break; case SKL_TKN_U32_PIPE_MEM_PGS: pipe->memory_pages = tkn_val; break; case SKL_TKN_U32_PMODE: pipe->lp_mode = tkn_val; break; case SKL_TKN_U32_PIPE_DIRECTION: pipe->direction = tkn_val; break; case SKL_TKN_U32_NUM_CONFIGS: pipe->nr_cfgs = tkn_val; break; default: dev_err(dev, "Token not handled %d\n", tkn); return -EINVAL; } return 0; } /* * Add pipeline by parsing the relevant tokens * Return an existing pipe if the pipe already exists. */ static int skl_tplg_add_pipe(struct device *dev, struct skl_module_cfg *mconfig, struct skl_dev *skl, struct snd_soc_tplg_vendor_value_elem *tkn_elem) { struct skl_pipeline *ppl; struct skl_pipe *pipe; struct skl_pipe_params *params; list_for_each_entry(ppl, &skl->ppl_list, node) { if (ppl->pipe->ppl_id == tkn_elem->value) { mconfig->pipe = ppl->pipe; return -EEXIST; } } ppl = devm_kzalloc(dev, sizeof(*ppl), GFP_KERNEL); if (!ppl) return -ENOMEM; pipe = devm_kzalloc(dev, sizeof(*pipe), GFP_KERNEL); if (!pipe) return -ENOMEM; params = devm_kzalloc(dev, sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; pipe->p_params = params; pipe->ppl_id = tkn_elem->value; INIT_LIST_HEAD(&pipe->w_list); ppl->pipe = pipe; list_add(&ppl->node, &skl->ppl_list); mconfig->pipe = pipe; mconfig->pipe->state = SKL_PIPE_INVALID; return 0; } static int skl_tplg_get_uuid(struct device *dev, guid_t *guid, struct snd_soc_tplg_vendor_uuid_elem *uuid_tkn) { if (uuid_tkn->token == SKL_TKN_UUID) { import_guid(guid, uuid_tkn->uuid); return 0; } dev_err(dev, "Not an UUID token %d\n", uuid_tkn->token); return -EINVAL; } static int skl_tplg_fill_pin(struct device *dev, struct snd_soc_tplg_vendor_value_elem *tkn_elem, struct skl_module_pin *m_pin, int pin_index) { int ret; switch (tkn_elem->token) { case SKL_TKN_U32_PIN_MOD_ID: m_pin[pin_index].id.module_id = tkn_elem->value; break; case SKL_TKN_U32_PIN_INST_ID: m_pin[pin_index].id.instance_id = tkn_elem->value; break; case SKL_TKN_UUID: ret = skl_tplg_get_uuid(dev, &m_pin[pin_index].id.mod_uuid, (struct snd_soc_tplg_vendor_uuid_elem *)tkn_elem); if (ret < 0) return ret; break; default: dev_err(dev, "%d Not a pin token\n", tkn_elem->token); return -EINVAL; } return 0; } /* * Parse for pin config specific tokens to fill up the * module private data */ static int skl_tplg_fill_pins_info(struct device *dev, struct skl_module_cfg *mconfig, struct snd_soc_tplg_vendor_value_elem *tkn_elem, int dir, int pin_count) { int ret; struct skl_module_pin *m_pin; switch (dir) { case SKL_DIR_IN: m_pin = mconfig->m_in_pin; break; case SKL_DIR_OUT: m_pin = mconfig->m_out_pin; break; default: dev_err(dev, "Invalid direction value\n"); return -EINVAL; } ret = skl_tplg_fill_pin(dev, tkn_elem, m_pin, pin_count); if (ret < 0) return ret; m_pin[pin_count].in_use = false; m_pin[pin_count].pin_state = SKL_PIN_UNBIND; return 0; } /* * Fill up input/output module config format based * on the direction */ static int skl_tplg_fill_fmt(struct device *dev, struct skl_module_fmt *dst_fmt, u32 tkn, u32 value) { switch (tkn) { case SKL_TKN_U32_FMT_CH: dst_fmt->channels = value; break; case SKL_TKN_U32_FMT_FREQ: dst_fmt->s_freq = value; break; case SKL_TKN_U32_FMT_BIT_DEPTH: dst_fmt->bit_depth = value; break; case SKL_TKN_U32_FMT_SAMPLE_SIZE: dst_fmt->valid_bit_depth = value; break; case SKL_TKN_U32_FMT_CH_CONFIG: dst_fmt->ch_cfg = value; break; case SKL_TKN_U32_FMT_INTERLEAVE: dst_fmt->interleaving_style = value; break; case SKL_TKN_U32_FMT_SAMPLE_TYPE: dst_fmt->sample_type = value; break; case SKL_TKN_U32_FMT_CH_MAP: dst_fmt->ch_map = value; break; default: dev_err(dev, "Invalid token %d\n", tkn); return -EINVAL; } return 0; } static int skl_tplg_widget_fill_fmt(struct device *dev, struct skl_module_iface *fmt, u32 tkn, u32 val, u32 dir, int fmt_idx) { struct skl_module_fmt *dst_fmt; if (!fmt) return -EINVAL; switch (dir) { case SKL_DIR_IN: dst_fmt = &fmt->inputs[fmt_idx].fmt; break; case SKL_DIR_OUT: dst_fmt = &fmt->outputs[fmt_idx].fmt; break; default: dev_err(dev, "Invalid direction: %d\n", dir); return -EINVAL; } return skl_tplg_fill_fmt(dev, dst_fmt, tkn, val); } static void skl_tplg_fill_pin_dynamic_val( struct skl_module_pin *mpin, u32 pin_count, u32 value) { int i; for (i = 0; i < pin_count; i++) mpin[i].is_dynamic = value; } /* * Resource table in the manifest has pin specific resources * like pin and pin buffer size */ static int skl_tplg_manifest_pin_res_tkn(struct device *dev, struct snd_soc_tplg_vendor_value_elem *tkn_elem, struct skl_module_res *res, int pin_idx, int dir) { struct skl_module_pin_resources *m_pin; switch (dir) { case SKL_DIR_IN: m_pin = &res->input[pin_idx]; break; case SKL_DIR_OUT: m_pin = &res->output[pin_idx]; break; default: dev_err(dev, "Invalid pin direction: %d\n", dir); return -EINVAL; } switch (tkn_elem->token) { case SKL_TKN_MM_U32_RES_PIN_ID: m_pin->pin_index = tkn_elem->value; break; case SKL_TKN_MM_U32_PIN_BUF: m_pin->buf_size = tkn_elem->value; break; default: dev_err(dev, "Invalid token: %d\n", tkn_elem->token); return -EINVAL; } return 0; } /* * Fill module specific resources from the manifest's resource * table like CPS, DMA size, mem_pages. */ static int skl_tplg_fill_res_tkn(struct device *dev, struct snd_soc_tplg_vendor_value_elem *tkn_elem, struct skl_module_res *res, int pin_idx, int dir) { int ret, tkn_count = 0; if (!res) return -EINVAL; switch (tkn_elem->token) { case SKL_TKN_MM_U32_DMA_SIZE: res->dma_buffer_size = tkn_elem->value; break; case SKL_TKN_MM_U32_CPC: res->cpc = tkn_elem->value; break; case SKL_TKN_U32_MEM_PAGES: res->is_pages = tkn_elem->value; break; case SKL_TKN_U32_OBS: res->obs = tkn_elem->value; break; case SKL_TKN_U32_IBS: res->ibs = tkn_elem->value; break; case SKL_TKN_MM_U32_RES_PIN_ID: case SKL_TKN_MM_U32_PIN_BUF: ret = skl_tplg_manifest_pin_res_tkn(dev, tkn_elem, res, pin_idx, dir); if (ret < 0) return ret; break; case SKL_TKN_MM_U32_CPS: case SKL_TKN_U32_MAX_MCPS: /* ignore unused tokens */ break; default: dev_err(dev, "Not a res type token: %d", tkn_elem->token); return -EINVAL; } tkn_count++; return tkn_count; } /* * Parse tokens to fill up the module private data */ static int skl_tplg_get_token(struct device *dev, struct snd_soc_tplg_vendor_value_elem *tkn_elem, struct skl_dev *skl, struct skl_module_cfg *mconfig) { int tkn_count = 0; int ret; static int is_pipe_exists; static int pin_index, dir, conf_idx; struct skl_module_iface *iface = NULL; struct skl_module_res *res = NULL; int res_idx = mconfig->res_idx; int fmt_idx = mconfig->fmt_idx; /* * If the manifest structure contains no modules, fill all * the module data to 0th index. * res_idx and fmt_idx are default set to 0. */ if (skl->nr_modules == 0) { res = &mconfig->module->resources[res_idx]; iface = &mconfig->module->formats[fmt_idx]; } if (tkn_elem->token > SKL_TKN_MAX) return -EINVAL; switch (tkn_elem->token) { case SKL_TKN_U8_IN_QUEUE_COUNT: mconfig->module->max_input_pins = tkn_elem->value; break; case SKL_TKN_U8_OUT_QUEUE_COUNT: mconfig->module->max_output_pins = tkn_elem->value; break; case SKL_TKN_U8_DYN_IN_PIN: if (!mconfig->m_in_pin) mconfig->m_in_pin = devm_kcalloc(dev, MAX_IN_QUEUE, sizeof(*mconfig->m_in_pin), GFP_KERNEL); if (!mconfig->m_in_pin) return -ENOMEM; skl_tplg_fill_pin_dynamic_val(mconfig->m_in_pin, MAX_IN_QUEUE, tkn_elem->value); break; case SKL_TKN_U8_DYN_OUT_PIN: if (!mconfig->m_out_pin) mconfig->m_out_pin = devm_kcalloc(dev, MAX_IN_QUEUE, sizeof(*mconfig->m_in_pin), GFP_KERNEL); if (!mconfig->m_out_pin) return -ENOMEM; skl_tplg_fill_pin_dynamic_val(mconfig->m_out_pin, MAX_OUT_QUEUE, tkn_elem->value); break; case SKL_TKN_U8_TIME_SLOT: mconfig->time_slot = tkn_elem->value; break; case SKL_TKN_U8_CORE_ID: mconfig->core_id = tkn_elem->value; break; case SKL_TKN_U8_MOD_TYPE: mconfig->m_type = tkn_elem->value; break; case SKL_TKN_U8_DEV_TYPE: mconfig->dev_type = tkn_elem->value; break; case SKL_TKN_U8_HW_CONN_TYPE: mconfig->hw_conn_type = tkn_elem->value; break; case SKL_TKN_U16_MOD_INST_ID: mconfig->id.instance_id = tkn_elem->value; break; case SKL_TKN_U32_MEM_PAGES: case SKL_TKN_U32_MAX_MCPS: case SKL_TKN_U32_OBS: case SKL_TKN_U32_IBS: ret = skl_tplg_fill_res_tkn(dev, tkn_elem, res, pin_index, dir); if (ret < 0) return ret; break; case SKL_TKN_U32_VBUS_ID: mconfig->vbus_id = tkn_elem->value; break; case SKL_TKN_U32_PARAMS_FIXUP: mconfig->params_fixup = tkn_elem->value; break; case SKL_TKN_U32_CONVERTER: mconfig->converter = tkn_elem->value; break; case SKL_TKN_U32_D0I3_CAPS: mconfig->d0i3_caps = tkn_elem->value; break; case SKL_TKN_U32_PIPE_ID: ret = skl_tplg_add_pipe(dev, mconfig, skl, tkn_elem); if (ret < 0) { if (ret == -EEXIST) { is_pipe_exists = 1; break; } return is_pipe_exists; } break; case SKL_TKN_U32_PIPE_CONFIG_ID: conf_idx = tkn_elem->value; break; case SKL_TKN_U32_PIPE_CONN_TYPE: case SKL_TKN_U32_PIPE_PRIORITY: case SKL_TKN_U32_PIPE_MEM_PGS: case SKL_TKN_U32_PMODE: case SKL_TKN_U32_PIPE_DIRECTION: case SKL_TKN_U32_NUM_CONFIGS: if (is_pipe_exists) { ret = skl_tplg_fill_pipe_tkn(dev, mconfig->pipe, tkn_elem->token, tkn_elem->value); if (ret < 0) return ret; } break; case SKL_TKN_U32_PATH_MEM_PGS: case SKL_TKN_U32_CFG_FREQ: case SKL_TKN_U8_CFG_CHAN: case SKL_TKN_U8_CFG_BPS: if (mconfig->pipe->nr_cfgs) { ret = skl_tplg_fill_pipe_cfg(dev, mconfig->pipe, tkn_elem->token, tkn_elem->value, conf_idx, dir); if (ret < 0) return ret; } break; case SKL_TKN_CFG_MOD_RES_ID: mconfig->mod_cfg[conf_idx].res_idx = tkn_elem->value; break; case SKL_TKN_CFG_MOD_FMT_ID: mconfig->mod_cfg[conf_idx].fmt_idx = tkn_elem->value; break; /* * SKL_TKN_U32_DIR_PIN_COUNT token has the value for both * direction and the pin count. The first four bits represent * direction and next four the pin count. */ case SKL_TKN_U32_DIR_PIN_COUNT: dir = tkn_elem->value & SKL_IN_DIR_BIT_MASK; pin_index = (tkn_elem->value & SKL_PIN_COUNT_MASK) >> 4; break; case SKL_TKN_U32_FMT_CH: case SKL_TKN_U32_FMT_FREQ: case SKL_TKN_U32_FMT_BIT_DEPTH: case SKL_TKN_U32_FMT_SAMPLE_SIZE: case SKL_TKN_U32_FMT_CH_CONFIG: case SKL_TKN_U32_FMT_INTERLEAVE: case SKL_TKN_U32_FMT_SAMPLE_TYPE: case SKL_TKN_U32_FMT_CH_MAP: ret = skl_tplg_widget_fill_fmt(dev, iface, tkn_elem->token, tkn_elem->value, dir, pin_index); if (ret < 0) return ret; break; case SKL_TKN_U32_PIN_MOD_ID: case SKL_TKN_U32_PIN_INST_ID: case SKL_TKN_UUID: ret = skl_tplg_fill_pins_info(dev, mconfig, tkn_elem, dir, pin_index); if (ret < 0) return ret; break; case SKL_TKN_U32_FMT_CFG_IDX: if (tkn_elem->value > SKL_MAX_PARAMS_TYPES) return -EINVAL; mconfig->fmt_cfg_idx = tkn_elem->value; break; case SKL_TKN_U32_CAPS_SIZE: mconfig->formats_config[mconfig->fmt_cfg_idx].caps_size = tkn_elem->value; break; case SKL_TKN_U32_CAPS_SET_PARAMS: mconfig->formats_config[mconfig->fmt_cfg_idx].set_params = tkn_elem->value; break; case SKL_TKN_U32_CAPS_PARAMS_ID: mconfig->formats_config[mconfig->fmt_cfg_idx].param_id = tkn_elem->value; break; case SKL_TKN_U32_PROC_DOMAIN: mconfig->domain = tkn_elem->value; break; case SKL_TKN_U32_DMA_BUF_SIZE: mconfig->dma_buffer_size = tkn_elem->value; break; case SKL_TKN_U8_IN_PIN_TYPE: case SKL_TKN_U8_OUT_PIN_TYPE: case SKL_TKN_U8_CONN_TYPE: break; default: dev_err(dev, "Token %d not handled\n", tkn_elem->token); return -EINVAL; } tkn_count++; return tkn_count; } /* * Parse the vendor array for specific tokens to construct * module private data */ static int skl_tplg_get_tokens(struct device *dev, char *pvt_data, struct skl_dev *skl, struct skl_module_cfg *mconfig, int block_size) { struct snd_soc_tplg_vendor_array *array; struct snd_soc_tplg_vendor_value_elem *tkn_elem; int tkn_count = 0, ret; int off = 0, tuple_size = 0; bool is_module_guid = true; if (block_size <= 0) return -EINVAL; while (tuple_size < block_size) { array = (struct snd_soc_tplg_vendor_array *)(pvt_data + off); off += array->size; switch (array->type) { case SND_SOC_TPLG_TUPLE_TYPE_STRING: dev_warn(dev, "no string tokens expected for skl tplg\n"); continue; case SND_SOC_TPLG_TUPLE_TYPE_UUID: if (is_module_guid) { ret = skl_tplg_get_uuid(dev, (guid_t *)mconfig->guid, array->uuid); is_module_guid = false; } else { ret = skl_tplg_get_token(dev, array->value, skl, mconfig); } if (ret < 0) return ret; tuple_size += sizeof(*array->uuid); continue; default: tkn_elem = array->value; tkn_count = 0; break; } while (tkn_count <= (array->num_elems - 1)) { ret = skl_tplg_get_token(dev, tkn_elem, skl, mconfig); if (ret < 0) return ret; tkn_count = tkn_count + ret; tkn_elem++; } tuple_size += tkn_count * sizeof(*tkn_elem); } return off; } /* * Every data block is preceded by a descriptor to read the number * of data blocks, they type of the block and it's size */ static int skl_tplg_get_desc_blocks(struct device *dev, struct snd_soc_tplg_vendor_array *array) { struct snd_soc_tplg_vendor_value_elem *tkn_elem; tkn_elem = array->value; switch (tkn_elem->token) { case SKL_TKN_U8_NUM_BLOCKS: case SKL_TKN_U8_BLOCK_TYPE: case SKL_TKN_U16_BLOCK_SIZE: return tkn_elem->value; default: dev_err(dev, "Invalid descriptor token %d\n", tkn_elem->token); break; } return -EINVAL; } /* Functions to parse private data from configuration file format v4 */ /* * Add pipeline from topology binary into driver pipeline list * * If already added we return that instance * Otherwise we create a new instance and add into driver list */ static int skl_tplg_add_pipe_v4(struct device *dev, struct skl_module_cfg *mconfig, struct skl_dev *skl, struct skl_dfw_v4_pipe *dfw_pipe) { struct skl_pipeline *ppl; struct skl_pipe *pipe; struct skl_pipe_params *params; list_for_each_entry(ppl, &skl->ppl_list, node) { if (ppl->pipe->ppl_id == dfw_pipe->pipe_id) { mconfig->pipe = ppl->pipe; return 0; } } ppl = devm_kzalloc(dev, sizeof(*ppl), GFP_KERNEL); if (!ppl) return -ENOMEM; pipe = devm_kzalloc(dev, sizeof(*pipe), GFP_KERNEL); if (!pipe) return -ENOMEM; params = devm_kzalloc(dev, sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; pipe->ppl_id = dfw_pipe->pipe_id; pipe->memory_pages = dfw_pipe->memory_pages; pipe->pipe_priority = dfw_pipe->pipe_priority; pipe->conn_type = dfw_pipe->conn_type; pipe->state = SKL_PIPE_INVALID; pipe->p_params = params; INIT_LIST_HEAD(&pipe->w_list); ppl->pipe = pipe; list_add(&ppl->node, &skl->ppl_list); mconfig->pipe = pipe; return 0; } static void skl_fill_module_pin_info_v4(struct skl_dfw_v4_module_pin *dfw_pin, struct skl_module_pin *m_pin, bool is_dynamic, int max_pin) { int i; for (i = 0; i < max_pin; i++) { m_pin[i].id.module_id = dfw_pin[i].module_id; m_pin[i].id.instance_id = dfw_pin[i].instance_id; m_pin[i].in_use = false; m_pin[i].is_dynamic = is_dynamic; m_pin[i].pin_state = SKL_PIN_UNBIND; } } static void skl_tplg_fill_fmt_v4(struct skl_module_pin_fmt *dst_fmt, struct skl_dfw_v4_module_fmt *src_fmt, int pins) { int i; for (i = 0; i < pins; i++) { dst_fmt[i].fmt.channels = src_fmt[i].channels; dst_fmt[i].fmt.s_freq = src_fmt[i].freq; dst_fmt[i].fmt.bit_depth = src_fmt[i].bit_depth; dst_fmt[i].fmt.valid_bit_depth = src_fmt[i].valid_bit_depth; dst_fmt[i].fmt.ch_cfg = src_fmt[i].ch_cfg; dst_fmt[i].fmt.ch_map = src_fmt[i].ch_map; dst_fmt[i].fmt.interleaving_style = src_fmt[i].interleaving_style; dst_fmt[i].fmt.sample_type = src_fmt[i].sample_type; } } static int skl_tplg_get_pvt_data_v4(struct snd_soc_tplg_dapm_widget *tplg_w, struct skl_dev *skl, struct device *dev, struct skl_module_cfg *mconfig) { struct skl_dfw_v4_module *dfw = (struct skl_dfw_v4_module *)tplg_w->priv.data; int ret; int idx = mconfig->fmt_cfg_idx; dev_dbg(dev, "Parsing Skylake v4 widget topology data\n"); ret = guid_parse(dfw->uuid, (guid_t *)mconfig->guid); if (ret) return ret; mconfig->id.module_id = -1; mconfig->id.instance_id = dfw->instance_id; mconfig->module->resources[0].cpc = dfw->max_mcps / 1000; mconfig->module->resources[0].ibs = dfw->ibs; mconfig->module->resources[0].obs = dfw->obs; mconfig->core_id = dfw->core_id; mconfig->module->max_input_pins = dfw->max_in_queue; mconfig->module->max_output_pins = dfw->max_out_queue; mconfig->module->loadable = dfw->is_loadable; skl_tplg_fill_fmt_v4(mconfig->module->formats[0].inputs, dfw->in_fmt, MAX_IN_QUEUE); skl_tplg_fill_fmt_v4(mconfig->module->formats[0].outputs, dfw->out_fmt, MAX_OUT_QUEUE); mconfig->params_fixup = dfw->params_fixup; mconfig->converter = dfw->converter; mconfig->m_type = dfw->module_type; mconfig->vbus_id = dfw->vbus_id; mconfig->module->resources[0].is_pages = dfw->mem_pages; ret = skl_tplg_add_pipe_v4(dev, mconfig, skl, &dfw->pipe); if (ret) return ret; mconfig->dev_type = dfw->dev_type; mconfig->hw_conn_type = dfw->hw_conn_type; mconfig->time_slot = dfw->time_slot; mconfig->formats_config[idx].caps_size = dfw->caps.caps_size; mconfig->m_in_pin = devm_kcalloc(dev, MAX_IN_QUEUE, sizeof(*mconfig->m_in_pin), GFP_KERNEL); if (!mconfig->m_in_pin) return -ENOMEM; mconfig->m_out_pin = devm_kcalloc(dev, MAX_OUT_QUEUE, sizeof(*mconfig->m_out_pin), GFP_KERNEL); if (!mconfig->m_out_pin) return -ENOMEM; skl_fill_module_pin_info_v4(dfw->in_pin, mconfig->m_in_pin, dfw->is_dynamic_in_pin, mconfig->module->max_input_pins); skl_fill_module_pin_info_v4(dfw->out_pin, mconfig->m_out_pin, dfw->is_dynamic_out_pin, mconfig->module->max_output_pins); if (mconfig->formats_config[idx].caps_size) { mconfig->formats_config[idx].set_params = dfw->caps.set_params; mconfig->formats_config[idx].param_id = dfw->caps.param_id; mconfig->formats_config[idx].caps = devm_kzalloc(dev, mconfig->formats_config[idx].caps_size, GFP_KERNEL); if (!mconfig->formats_config[idx].caps) return -ENOMEM; memcpy(mconfig->formats_config[idx].caps, dfw->caps.caps, dfw->caps.caps_size); } return 0; } static int skl_tplg_get_caps_data(struct device *dev, char *data, struct skl_module_cfg *mconfig) { int idx = mconfig->fmt_cfg_idx; if (mconfig->formats_config[idx].caps_size > 0) { mconfig->formats_config[idx].caps = devm_kzalloc(dev, mconfig->formats_config[idx].caps_size, GFP_KERNEL); if (!mconfig->formats_config[idx].caps) return -ENOMEM; memcpy(mconfig->formats_config[idx].caps, data, mconfig->formats_config[idx].caps_size); } return mconfig->formats_config[idx].caps_size; } /* * Parse the private data for the token and corresponding value. * The private data can have multiple data blocks. So, a data block * is preceded by a descriptor for number of blocks and a descriptor * for the type and size of the suceeding data block. */ static int skl_tplg_get_pvt_data(struct snd_soc_tplg_dapm_widget *tplg_w, struct skl_dev *skl, struct device *dev, struct skl_module_cfg *mconfig) { struct snd_soc_tplg_vendor_array *array; int num_blocks, block_size, block_type, off = 0; char *data; int ret; /* * v4 configuration files have a valid UUID at the start of * the widget's private data. */ if (uuid_is_valid((char *)tplg_w->priv.data)) return skl_tplg_get_pvt_data_v4(tplg_w, skl, dev, mconfig); /* Read the NUM_DATA_BLOCKS descriptor */ array = (struct snd_soc_tplg_vendor_array *)tplg_w->priv.data; ret = skl_tplg_get_desc_blocks(dev, array); if (ret < 0) return ret; num_blocks = ret; off += array->size; /* Read the BLOCK_TYPE and BLOCK_SIZE descriptor */ while (num_blocks > 0) { array = (struct snd_soc_tplg_vendor_array *) (tplg_w->priv.data + off); ret = skl_tplg_get_desc_blocks(dev, array); if (ret < 0) return ret; block_type = ret; off += array->size; array = (struct snd_soc_tplg_vendor_array *) (tplg_w->priv.data + off); ret = skl_tplg_get_desc_blocks(dev, array); if (ret < 0) return ret; block_size = ret; off += array->size; data = (tplg_w->priv.data + off); if (block_type == SKL_TYPE_TUPLE) { ret = skl_tplg_get_tokens(dev, data, skl, mconfig, block_size); } else { ret = skl_tplg_get_caps_data(dev, data, mconfig); } if (ret < 0) return ret; --num_blocks; off += ret; } return 0; } static void skl_clear_pin_config(struct snd_soc_component *component, struct snd_soc_dapm_widget *w) { int i; struct skl_module_cfg *mconfig; struct skl_pipe *pipe; if (!strncmp(w->dapm->component->name, component->name, strlen(component->name))) { mconfig = w->priv; pipe = mconfig->pipe; for (i = 0; i < mconfig->module->max_input_pins; i++) { mconfig->m_in_pin[i].in_use = false; mconfig->m_in_pin[i].pin_state = SKL_PIN_UNBIND; } for (i = 0; i < mconfig->module->max_output_pins; i++) { mconfig->m_out_pin[i].in_use = false; mconfig->m_out_pin[i].pin_state = SKL_PIN_UNBIND; } pipe->state = SKL_PIPE_INVALID; mconfig->m_state = SKL_MODULE_UNINIT; } } void skl_cleanup_resources(struct skl_dev *skl) { struct snd_soc_component *soc_component = skl->component; struct snd_soc_dapm_widget *w; struct snd_soc_card *card; if (soc_component == NULL) return; card = soc_component->card; if (!snd_soc_card_is_instantiated(card)) return; list_for_each_entry(w, &card->widgets, list) { if (is_skl_dsp_widget_type(w, skl->dev) && w->priv != NULL) skl_clear_pin_config(soc_component, w); } skl_clear_module_cnt(skl->dsp); } /* * Topology core widget load callback * * This is used to save the private data for each widget which gives * information to the driver about module and pipeline parameters which DSP * FW expects like ids, resource values, formats etc */ static int skl_tplg_widget_load(struct snd_soc_component *cmpnt, int index, struct snd_soc_dapm_widget *w, struct snd_soc_tplg_dapm_widget *tplg_w) { int ret; struct hdac_bus *bus = snd_soc_component_get_drvdata(cmpnt); struct skl_dev *skl = bus_to_skl(bus); struct skl_module_cfg *mconfig; if (!tplg_w->priv.size) goto bind_event; mconfig = devm_kzalloc(bus->dev, sizeof(*mconfig), GFP_KERNEL); if (!mconfig) return -ENOMEM; if (skl->nr_modules == 0) { mconfig->module = devm_kzalloc(bus->dev, sizeof(*mconfig->module), GFP_KERNEL); if (!mconfig->module) return -ENOMEM; } w->priv = mconfig; /* * module binary can be loaded later, so set it to query when * module is load for a use case */ mconfig->id.module_id = -1; /* To provide backward compatibility, set default as SKL_PARAM_INIT */ mconfig->fmt_cfg_idx = SKL_PARAM_INIT; /* Parse private data for tuples */ ret = skl_tplg_get_pvt_data(tplg_w, skl, bus->dev, mconfig); if (ret < 0) return ret; skl_debug_init_module(skl->debugfs, w, mconfig); bind_event: if (tplg_w->event_type == 0) { dev_dbg(bus->dev, "ASoC: No event handler required\n"); return 0; } ret = snd_soc_tplg_widget_bind_event(w, skl_tplg_widget_ops, ARRAY_SIZE(skl_tplg_widget_ops), tplg_w->event_type); if (ret) { dev_err(bus->dev, "%s: No matching event handlers found for %d\n", __func__, tplg_w->event_type); return -EINVAL; } return 0; } static int skl_init_algo_data(struct device *dev, struct soc_bytes_ext *be, struct snd_soc_tplg_bytes_control *bc) { struct skl_algo_data *ac; struct skl_dfw_algo_data *dfw_ac = (struct skl_dfw_algo_data *)bc->priv.data; ac = devm_kzalloc(dev, sizeof(*ac), GFP_KERNEL); if (!ac) return -ENOMEM; /* Fill private data */ ac->max = dfw_ac->max; ac->param_id = dfw_ac->param_id; ac->set_params = dfw_ac->set_params; ac->size = dfw_ac->max; if (ac->max) { ac->params = devm_kzalloc(dev, ac->max, GFP_KERNEL); if (!ac->params) return -ENOMEM; memcpy(ac->params, dfw_ac->params, ac->max); } be->dobj.private = ac; return 0; } static int skl_init_enum_data(struct device *dev, struct soc_enum *se, struct snd_soc_tplg_enum_control *ec) { void *data; if (ec->priv.size) { data = devm_kzalloc(dev, sizeof(ec->priv.size), GFP_KERNEL); if (!data) return -ENOMEM; memcpy(data, ec->priv.data, ec->priv.size); se->dobj.private = data; } return 0; } static int skl_tplg_control_load(struct snd_soc_component *cmpnt, int index, struct snd_kcontrol_new *kctl, struct snd_soc_tplg_ctl_hdr *hdr) { struct soc_bytes_ext *sb; struct snd_soc_tplg_bytes_control *tplg_bc; struct snd_soc_tplg_enum_control *tplg_ec; struct hdac_bus *bus = snd_soc_component_get_drvdata(cmpnt); struct soc_enum *se; switch (hdr->ops.info) { case SND_SOC_TPLG_CTL_BYTES: tplg_bc = container_of(hdr, struct snd_soc_tplg_bytes_control, hdr); if (kctl->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) { sb = (struct soc_bytes_ext *)kctl->private_value; if (tplg_bc->priv.size) return skl_init_algo_data( bus->dev, sb, tplg_bc); } break; case SND_SOC_TPLG_CTL_ENUM: tplg_ec = container_of(hdr, struct snd_soc_tplg_enum_control, hdr); if (kctl->access & SNDRV_CTL_ELEM_ACCESS_READ) { se = (struct soc_enum *)kctl->private_value; if (tplg_ec->priv.size) skl_init_enum_data(bus->dev, se, tplg_ec); } /* * now that the control initializations are done, remove * write permission for the DMIC configuration enums to * avoid conflicts between NHLT settings and user interaction */ if (hdr->ops.get == SKL_CONTROL_TYPE_MULTI_IO_SELECT_DMIC) kctl->access = SNDRV_CTL_ELEM_ACCESS_READ; break; default: dev_dbg(bus->dev, "Control load not supported %d:%d:%d\n", hdr->ops.get, hdr->ops.put, hdr->ops.info); break; } return 0; } static int skl_tplg_fill_str_mfest_tkn(struct device *dev, struct snd_soc_tplg_vendor_string_elem *str_elem, struct skl_dev *skl) { int tkn_count = 0; static int ref_count; switch (str_elem->token) { case SKL_TKN_STR_LIB_NAME: if (ref_count > skl->lib_count - 1) { ref_count = 0; return -EINVAL; } strncpy(skl->lib_info[ref_count].name, str_elem->string, ARRAY_SIZE(skl->lib_info[ref_count].name)); ref_count++; break; default: dev_err(dev, "Not a string token %d\n", str_elem->token); break; } tkn_count++; return tkn_count; } static int skl_tplg_get_str_tkn(struct device *dev, struct snd_soc_tplg_vendor_array *array, struct skl_dev *skl) { int tkn_count = 0, ret; struct snd_soc_tplg_vendor_string_elem *str_elem; str_elem = (struct snd_soc_tplg_vendor_string_elem *)array->value; while (tkn_count < array->num_elems) { ret = skl_tplg_fill_str_mfest_tkn(dev, str_elem, skl); str_elem++; if (ret < 0) return ret; tkn_count = tkn_count + ret; } return tkn_count; } static int skl_tplg_manifest_fill_fmt(struct device *dev, struct skl_module_iface *fmt, struct snd_soc_tplg_vendor_value_elem *tkn_elem, u32 dir, int fmt_idx) { struct skl_module_pin_fmt *dst_fmt; struct skl_module_fmt *mod_fmt; int ret; if (!fmt) return -EINVAL; switch (dir) { case SKL_DIR_IN: dst_fmt = &fmt->inputs[fmt_idx]; break; case SKL_DIR_OUT: dst_fmt = &fmt->outputs[fmt_idx]; break; default: dev_err(dev, "Invalid direction: %d\n", dir); return -EINVAL; } mod_fmt = &dst_fmt->fmt; switch (tkn_elem->token) { case SKL_TKN_MM_U32_INTF_PIN_ID: dst_fmt->id = tkn_elem->value; break; default: ret = skl_tplg_fill_fmt(dev, mod_fmt, tkn_elem->token, tkn_elem->value); if (ret < 0) return ret; break; } return 0; } static int skl_tplg_fill_mod_info(struct device *dev, struct snd_soc_tplg_vendor_value_elem *tkn_elem, struct skl_module *mod) { if (!mod) return -EINVAL; switch (tkn_elem->token) { case SKL_TKN_U8_IN_PIN_TYPE: mod->input_pin_type = tkn_elem->value; break; case SKL_TKN_U8_OUT_PIN_TYPE: mod->output_pin_type = tkn_elem->value; break; case SKL_TKN_U8_IN_QUEUE_COUNT: mod->max_input_pins = tkn_elem->value; break; case SKL_TKN_U8_OUT_QUEUE_COUNT: mod->max_output_pins = tkn_elem->value; break; case SKL_TKN_MM_U8_NUM_RES: mod->nr_resources = tkn_elem->value; break; case SKL_TKN_MM_U8_NUM_INTF: mod->nr_interfaces = tkn_elem->value; break; default: dev_err(dev, "Invalid mod info token %d", tkn_elem->token); return -EINVAL; } return 0; } static int skl_tplg_get_int_tkn(struct device *dev, struct snd_soc_tplg_vendor_value_elem *tkn_elem, struct skl_dev *skl) { int tkn_count = 0, ret; static int mod_idx, res_val_idx, intf_val_idx, dir, pin_idx; struct skl_module_res *res = NULL; struct skl_module_iface *fmt = NULL; struct skl_module *mod = NULL; static struct skl_astate_param *astate_table; static int astate_cfg_idx, count; int i; size_t size; if (skl->modules) { mod = skl->modules[mod_idx]; res = &mod->resources[res_val_idx]; fmt = &mod->formats[intf_val_idx]; } switch (tkn_elem->token) { case SKL_TKN_U32_LIB_COUNT: skl->lib_count = tkn_elem->value; break; case SKL_TKN_U8_NUM_MOD: skl->nr_modules = tkn_elem->value; skl->modules = devm_kcalloc(dev, skl->nr_modules, sizeof(*skl->modules), GFP_KERNEL); if (!skl->modules) return -ENOMEM; for (i = 0; i < skl->nr_modules; i++) { skl->modules[i] = devm_kzalloc(dev, sizeof(struct skl_module), GFP_KERNEL); if (!skl->modules[i]) return -ENOMEM; } break; case SKL_TKN_MM_U8_MOD_IDX: mod_idx = tkn_elem->value; break; case SKL_TKN_U32_ASTATE_COUNT: if (astate_table != NULL) { dev_err(dev, "More than one entry for A-State count"); return -EINVAL; } if (tkn_elem->value > SKL_MAX_ASTATE_CFG) { dev_err(dev, "Invalid A-State count %d\n", tkn_elem->value); return -EINVAL; } size = struct_size(skl->cfg.astate_cfg, astate_table, tkn_elem->value); skl->cfg.astate_cfg = devm_kzalloc(dev, size, GFP_KERNEL); if (!skl->cfg.astate_cfg) return -ENOMEM; astate_table = skl->cfg.astate_cfg->astate_table; count = skl->cfg.astate_cfg->count = tkn_elem->value; break; case SKL_TKN_U32_ASTATE_IDX: if (tkn_elem->value >= count) { dev_err(dev, "Invalid A-State index %d\n", tkn_elem->value); return -EINVAL; } astate_cfg_idx = tkn_elem->value; break; case SKL_TKN_U32_ASTATE_KCPS: astate_table[astate_cfg_idx].kcps = tkn_elem->value; break; case SKL_TKN_U32_ASTATE_CLK_SRC: astate_table[astate_cfg_idx].clk_src = tkn_elem->value; break; case SKL_TKN_U8_IN_PIN_TYPE: case SKL_TKN_U8_OUT_PIN_TYPE: case SKL_TKN_U8_IN_QUEUE_COUNT: case SKL_TKN_U8_OUT_QUEUE_COUNT: case SKL_TKN_MM_U8_NUM_RES: case SKL_TKN_MM_U8_NUM_INTF: ret = skl_tplg_fill_mod_info(dev, tkn_elem, mod); if (ret < 0) return ret; break; case SKL_TKN_U32_DIR_PIN_COUNT: dir = tkn_elem->value & SKL_IN_DIR_BIT_MASK; pin_idx = (tkn_elem->value & SKL_PIN_COUNT_MASK) >> 4; break; case SKL_TKN_MM_U32_RES_ID: if (!res) return -EINVAL; res->id = tkn_elem->value; res_val_idx = tkn_elem->value; break; case SKL_TKN_MM_U32_FMT_ID: if (!fmt) return -EINVAL; fmt->fmt_idx = tkn_elem->value; intf_val_idx = tkn_elem->value; break; case SKL_TKN_MM_U32_CPS: case SKL_TKN_MM_U32_DMA_SIZE: case SKL_TKN_MM_U32_CPC: case SKL_TKN_U32_MEM_PAGES: case SKL_TKN_U32_OBS: case SKL_TKN_U32_IBS: case SKL_TKN_MM_U32_RES_PIN_ID: case SKL_TKN_MM_U32_PIN_BUF: ret = skl_tplg_fill_res_tkn(dev, tkn_elem, res, pin_idx, dir); if (ret < 0) return ret; break; case SKL_TKN_MM_U32_NUM_IN_FMT: if (!fmt) return -EINVAL; res->nr_input_pins = tkn_elem->value; break; case SKL_TKN_MM_U32_NUM_OUT_FMT: if (!fmt) return -EINVAL; res->nr_output_pins = tkn_elem->value; break; case SKL_TKN_U32_FMT_CH: case SKL_TKN_U32_FMT_FREQ: case SKL_TKN_U32_FMT_BIT_DEPTH: case SKL_TKN_U32_FMT_SAMPLE_SIZE: case SKL_TKN_U32_FMT_CH_CONFIG: case SKL_TKN_U32_FMT_INTERLEAVE: case SKL_TKN_U32_FMT_SAMPLE_TYPE: case SKL_TKN_U32_FMT_CH_MAP: case SKL_TKN_MM_U32_INTF_PIN_ID: ret = skl_tplg_manifest_fill_fmt(dev, fmt, tkn_elem, dir, pin_idx); if (ret < 0) return ret; break; default: dev_err(dev, "Not a manifest token %d\n", tkn_elem->token); return -EINVAL; } tkn_count++; return tkn_count; } /* * Fill the manifest structure by parsing the tokens based on the * type. */ static int skl_tplg_get_manifest_tkn(struct device *dev, char *pvt_data, struct skl_dev *skl, int block_size) { int tkn_count = 0, ret; int off = 0, tuple_size = 0; u8 uuid_index = 0; struct snd_soc_tplg_vendor_array *array; struct snd_soc_tplg_vendor_value_elem *tkn_elem; if (block_size <= 0) return -EINVAL; while (tuple_size < block_size) { array = (struct snd_soc_tplg_vendor_array *)(pvt_data + off); off += array->size; switch (array->type) { case SND_SOC_TPLG_TUPLE_TYPE_STRING: ret = skl_tplg_get_str_tkn(dev, array, skl); if (ret < 0) return ret; tkn_count = ret; tuple_size += tkn_count * sizeof(struct snd_soc_tplg_vendor_string_elem); continue; case SND_SOC_TPLG_TUPLE_TYPE_UUID: if (array->uuid->token != SKL_TKN_UUID) { dev_err(dev, "Not an UUID token: %d\n", array->uuid->token); return -EINVAL; } if (uuid_index >= skl->nr_modules) { dev_err(dev, "Too many UUID tokens\n"); return -EINVAL; } import_guid(&skl->modules[uuid_index++]->uuid, array->uuid->uuid); tuple_size += sizeof(*array->uuid); continue; default: tkn_elem = array->value; tkn_count = 0; break; } while (tkn_count <= array->num_elems - 1) { ret = skl_tplg_get_int_tkn(dev, tkn_elem, skl); if (ret < 0) return ret; tkn_count = tkn_count + ret; tkn_elem++; } tuple_size += (tkn_count * sizeof(*tkn_elem)); tkn_count = 0; } return off; } /* * Parse manifest private data for tokens. The private data block is * preceded by descriptors for type and size of data block. */ static int skl_tplg_get_manifest_data(struct snd_soc_tplg_manifest *manifest, struct device *dev, struct skl_dev *skl) { struct snd_soc_tplg_vendor_array *array; int num_blocks, block_size = 0, block_type, off = 0; char *data; int ret; /* Read the NUM_DATA_BLOCKS descriptor */ array = (struct snd_soc_tplg_vendor_array *)manifest->priv.data; ret = skl_tplg_get_desc_blocks(dev, array); if (ret < 0) return ret; num_blocks = ret; off += array->size; /* Read the BLOCK_TYPE and BLOCK_SIZE descriptor */ while (num_blocks > 0) { array = (struct snd_soc_tplg_vendor_array *) (manifest->priv.data + off); ret = skl_tplg_get_desc_blocks(dev, array); if (ret < 0) return ret; block_type = ret; off += array->size; array = (struct snd_soc_tplg_vendor_array *) (manifest->priv.data + off); ret = skl_tplg_get_desc_blocks(dev, array); if (ret < 0) return ret; block_size = ret; off += array->size; data = (manifest->priv.data + off); if (block_type == SKL_TYPE_TUPLE) { ret = skl_tplg_get_manifest_tkn(dev, data, skl, block_size); if (ret < 0) return ret; --num_blocks; } else { return -EINVAL; } off += ret; } return 0; } static int skl_manifest_load(struct snd_soc_component *cmpnt, int index, struct snd_soc_tplg_manifest *manifest) { struct hdac_bus *bus = snd_soc_component_get_drvdata(cmpnt); struct skl_dev *skl = bus_to_skl(bus); /* proceed only if we have private data defined */ if (manifest->priv.size == 0) return 0; skl_tplg_get_manifest_data(manifest, bus->dev, skl); if (skl->lib_count > SKL_MAX_LIB) { dev_err(bus->dev, "Exceeding max Library count. Got:%d\n", skl->lib_count); return -EINVAL; } return 0; } static int skl_tplg_complete(struct snd_soc_component *component) { struct snd_soc_dobj *dobj; struct snd_soc_acpi_mach *mach; struct snd_ctl_elem_value *val; int i; val = kmalloc(sizeof(*val), GFP_KERNEL); if (!val) return -ENOMEM; mach = dev_get_platdata(component->card->dev); list_for_each_entry(dobj, &component->dobj_list, list) { struct snd_kcontrol *kcontrol = dobj->control.kcontrol; struct soc_enum *se; char **texts; char chan_text[4]; if (dobj->type != SND_SOC_DOBJ_ENUM || !kcontrol || kcontrol->put != skl_tplg_multi_config_set_dmic) continue; se = (struct soc_enum *)kcontrol->private_value; texts = dobj->control.dtexts; sprintf(chan_text, "c%d", mach->mach_params.dmic_num); for (i = 0; i < se->items; i++) { if (strstr(texts[i], chan_text)) { memset(val, 0, sizeof(*val)); val->value.enumerated.item[0] = i; kcontrol->put(kcontrol, val); } } } kfree(val); return 0; } static struct snd_soc_tplg_ops skl_tplg_ops = { .widget_load = skl_tplg_widget_load, .control_load = skl_tplg_control_load, .bytes_ext_ops = skl_tlv_ops, .bytes_ext_ops_count = ARRAY_SIZE(skl_tlv_ops), .io_ops = skl_tplg_kcontrol_ops, .io_ops_count = ARRAY_SIZE(skl_tplg_kcontrol_ops), .manifest = skl_manifest_load, .dai_load = skl_dai_load, .complete = skl_tplg_complete, }; /* * A pipe can have multiple modules, each of them will be a DAPM widget as * well. While managing a pipeline we need to get the list of all the * widgets in a pipelines, so this helper - skl_tplg_create_pipe_widget_list() * helps to get the SKL type widgets in that pipeline */ static int skl_tplg_create_pipe_widget_list(struct snd_soc_component *component) { struct snd_soc_dapm_widget *w; struct skl_module_cfg *mcfg = NULL; struct skl_pipe_module *p_module = NULL; struct skl_pipe *pipe; list_for_each_entry(w, &component->card->widgets, list) { if (is_skl_dsp_widget_type(w, component->dev) && w->priv) { mcfg = w->priv; pipe = mcfg->pipe; p_module = devm_kzalloc(component->dev, sizeof(*p_module), GFP_KERNEL); if (!p_module) return -ENOMEM; p_module->w = w; list_add_tail(&p_module->node, &pipe->w_list); } } return 0; } static void skl_tplg_set_pipe_type(struct skl_dev *skl, struct skl_pipe *pipe) { struct skl_pipe_module *w_module; struct snd_soc_dapm_widget *w; struct skl_module_cfg *mconfig; bool host_found = false, link_found = false; list_for_each_entry(w_module, &pipe->w_list, node) { w = w_module->w; mconfig = w->priv; if (mconfig->dev_type == SKL_DEVICE_HDAHOST) host_found = true; else if (mconfig->dev_type != SKL_DEVICE_NONE) link_found = true; } if (host_found && link_found) pipe->passthru = true; else pipe->passthru = false; } /* * SKL topology init routine */ int skl_tplg_init(struct snd_soc_component *component, struct hdac_bus *bus) { int ret; const struct firmware *fw; struct skl_dev *skl = bus_to_skl(bus); struct skl_pipeline *ppl; ret = request_firmware(&fw, skl->tplg_name, bus->dev); if (ret < 0) { char alt_tplg_name[64]; snprintf(alt_tplg_name, sizeof(alt_tplg_name), "%s-tplg.bin", skl->mach->drv_name); dev_info(bus->dev, "tplg fw %s load failed with %d, trying alternative tplg name %s", skl->tplg_name, ret, alt_tplg_name); ret = request_firmware(&fw, alt_tplg_name, bus->dev); if (!ret) goto component_load; dev_info(bus->dev, "tplg %s failed with %d, falling back to dfw_sst.bin", alt_tplg_name, ret); ret = request_firmware(&fw, "dfw_sst.bin", bus->dev); if (ret < 0) { dev_err(bus->dev, "Fallback tplg fw %s load failed with %d\n", "dfw_sst.bin", ret); return ret; } } component_load: ret = snd_soc_tplg_component_load(component, &skl_tplg_ops, fw); if (ret < 0) { dev_err(bus->dev, "tplg component load failed%d\n", ret); goto err; } ret = skl_tplg_create_pipe_widget_list(component); if (ret < 0) { dev_err(bus->dev, "tplg create pipe widget list failed%d\n", ret); goto err; } list_for_each_entry(ppl, &skl->ppl_list, node) skl_tplg_set_pipe_type(skl, ppl->pipe); err: release_firmware(fw); return ret; } void skl_tplg_exit(struct snd_soc_component *component, struct hdac_bus *bus) { struct skl_dev *skl = bus_to_skl(bus); struct skl_pipeline *ppl, *tmp; list_for_each_entry_safe(ppl, tmp, &skl->ppl_list, node) list_del(&ppl->node); /* clean up topology */ snd_soc_tplg_component_remove(component); }
linux-master
sound/soc/intel/skylake/skl-topology.c
// SPDX-License-Identifier: GPL-2.0-only /* * skl-pcm.c -ASoC HDA Platform driver file implementing PCM functionality * * Copyright (C) 2014-2015 Intel Corp * Author: Jeeja KP <[email protected]> * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/pci.h> #include <linux/pm_runtime.h> #include <linux/delay.h> #include <sound/hdaudio.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include "skl.h" #include "skl-topology.h" #include "skl-sst-dsp.h" #include "skl-sst-ipc.h" #define HDA_MONO 1 #define HDA_STEREO 2 #define HDA_QUAD 4 #define HDA_MAX 8 static const struct snd_pcm_hardware azx_pcm_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */ SNDRV_PCM_INFO_HAS_LINK_ATIME | SNDRV_PCM_INFO_NO_PERIOD_WAKEUP), .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S24_LE, .rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_8000, .rate_min = 8000, .rate_max = 48000, .channels_min = 1, .channels_max = 8, .buffer_bytes_max = AZX_MAX_BUF_SIZE, .period_bytes_min = 128, .period_bytes_max = AZX_MAX_BUF_SIZE / 2, .periods_min = 2, .periods_max = AZX_MAX_FRAG, .fifo_size = 0, }; static inline struct hdac_ext_stream *get_hdac_ext_stream(struct snd_pcm_substream *substream) { return substream->runtime->private_data; } static struct hdac_bus *get_bus_ctx(struct snd_pcm_substream *substream) { struct hdac_ext_stream *stream = get_hdac_ext_stream(substream); struct hdac_stream *hstream = hdac_stream(stream); struct hdac_bus *bus = hstream->bus; return bus; } static int skl_substream_alloc_pages(struct hdac_bus *bus, struct snd_pcm_substream *substream, size_t size) { struct hdac_ext_stream *stream = get_hdac_ext_stream(substream); hdac_stream(stream)->bufsize = 0; hdac_stream(stream)->period_bytes = 0; hdac_stream(stream)->format_val = 0; return 0; } static void skl_set_pcm_constrains(struct hdac_bus *bus, struct snd_pcm_runtime *runtime) { snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); /* avoid wrap-around with wall-clock */ snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME, 20, 178000000); } static enum hdac_ext_stream_type skl_get_host_stream_type(struct hdac_bus *bus) { if (bus->ppcap) return HDAC_EXT_STREAM_TYPE_HOST; else return HDAC_EXT_STREAM_TYPE_COUPLED; } /* * check if the stream opened is marked as ignore_suspend by machine, if so * then enable suspend_active refcount * * The count supend_active does not need lock as it is used in open/close * and suspend context */ static void skl_set_suspend_active(struct snd_pcm_substream *substream, struct snd_soc_dai *dai, bool enable) { struct hdac_bus *bus = dev_get_drvdata(dai->dev); struct snd_soc_dapm_widget *w; struct skl_dev *skl = bus_to_skl(bus); w = snd_soc_dai_get_widget(dai, substream->stream); if (w->ignore_suspend && enable) skl->supend_active++; else if (w->ignore_suspend && !enable) skl->supend_active--; } int skl_pcm_host_dma_prepare(struct device *dev, struct skl_pipe_params *params) { struct hdac_bus *bus = dev_get_drvdata(dev); struct skl_dev *skl = bus_to_skl(bus); unsigned int format_val; struct hdac_stream *hstream; struct hdac_ext_stream *stream; int err; hstream = snd_hdac_get_stream(bus, params->stream, params->host_dma_id + 1); if (!hstream) return -EINVAL; stream = stream_to_hdac_ext_stream(hstream); snd_hdac_ext_stream_decouple(bus, stream, true); format_val = snd_hdac_calc_stream_format(params->s_freq, params->ch, params->format, params->host_bps, 0); dev_dbg(dev, "format_val=%d, rate=%d, ch=%d, format=%d\n", format_val, params->s_freq, params->ch, params->format); snd_hdac_stream_reset(hdac_stream(stream)); err = snd_hdac_stream_set_params(hdac_stream(stream), format_val); if (err < 0) return err; /* * The recommended SDxFMT programming sequence for BXT * platforms is to couple the stream before writing the format */ if (HDA_CONTROLLER_IS_APL(skl->pci)) { snd_hdac_ext_stream_decouple(bus, stream, false); err = snd_hdac_stream_setup(hdac_stream(stream)); snd_hdac_ext_stream_decouple(bus, stream, true); } else { err = snd_hdac_stream_setup(hdac_stream(stream)); } if (err < 0) return err; hdac_stream(stream)->prepared = 1; return 0; } int skl_pcm_link_dma_prepare(struct device *dev, struct skl_pipe_params *params) { struct hdac_bus *bus = dev_get_drvdata(dev); unsigned int format_val; struct hdac_stream *hstream; struct hdac_ext_stream *stream; struct hdac_ext_link *link; unsigned char stream_tag; hstream = snd_hdac_get_stream(bus, params->stream, params->link_dma_id + 1); if (!hstream) return -EINVAL; stream = stream_to_hdac_ext_stream(hstream); snd_hdac_ext_stream_decouple(bus, stream, true); format_val = snd_hdac_calc_stream_format(params->s_freq, params->ch, params->format, params->link_bps, 0); dev_dbg(dev, "format_val=%d, rate=%d, ch=%d, format=%d\n", format_val, params->s_freq, params->ch, params->format); snd_hdac_ext_stream_reset(stream); snd_hdac_ext_stream_setup(stream, format_val); stream_tag = hstream->stream_tag; if (stream->hstream.direction == SNDRV_PCM_STREAM_PLAYBACK) { list_for_each_entry(link, &bus->hlink_list, list) { if (link->index == params->link_index) snd_hdac_ext_bus_link_set_stream_id(link, stream_tag); } } stream->link_prepared = 1; return 0; } static int skl_pcm_open(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct hdac_bus *bus = dev_get_drvdata(dai->dev); struct hdac_ext_stream *stream; struct snd_pcm_runtime *runtime = substream->runtime; struct skl_dma_params *dma_params; struct skl_dev *skl = get_skl_ctx(dai->dev); struct skl_module_cfg *mconfig; dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name); stream = snd_hdac_ext_stream_assign(bus, substream, skl_get_host_stream_type(bus)); if (stream == NULL) return -EBUSY; skl_set_pcm_constrains(bus, runtime); /* * disable WALLCLOCK timestamps for capture streams * until we figure out how to handle digital inputs */ if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */ runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME; } runtime->private_data = stream; dma_params = kzalloc(sizeof(*dma_params), GFP_KERNEL); if (!dma_params) return -ENOMEM; dma_params->stream_tag = hdac_stream(stream)->stream_tag; snd_soc_dai_set_dma_data(dai, substream, dma_params); dev_dbg(dai->dev, "stream tag set in dma params=%d\n", dma_params->stream_tag); skl_set_suspend_active(substream, dai, true); snd_pcm_set_sync(substream); mconfig = skl_tplg_fe_get_cpr_module(dai, substream->stream); if (!mconfig) return -EINVAL; skl_tplg_d0i3_get(skl, mconfig->d0i3_caps); return 0; } static int skl_pcm_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct skl_dev *skl = get_skl_ctx(dai->dev); struct skl_module_cfg *mconfig; int ret; dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name); mconfig = skl_tplg_fe_get_cpr_module(dai, substream->stream); /* * In case of XRUN recovery or in the case when the application * calls prepare another time, reset the FW pipe to clean state */ if (mconfig && (substream->runtime->state == SNDRV_PCM_STATE_XRUN || mconfig->pipe->state == SKL_PIPE_CREATED || mconfig->pipe->state == SKL_PIPE_PAUSED)) { ret = skl_reset_pipe(skl, mconfig->pipe); if (ret < 0) return ret; ret = skl_pcm_host_dma_prepare(dai->dev, mconfig->pipe->p_params); if (ret < 0) return ret; } return 0; } static int skl_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct hdac_bus *bus = dev_get_drvdata(dai->dev); struct hdac_ext_stream *stream = get_hdac_ext_stream(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct skl_pipe_params p_params = {0}; struct skl_module_cfg *m_cfg; int ret, dma_id; dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name); ret = skl_substream_alloc_pages(bus, substream, params_buffer_bytes(params)); if (ret < 0) return ret; dev_dbg(dai->dev, "format_val, rate=%d, ch=%d, format=%d\n", runtime->rate, runtime->channels, runtime->format); dma_id = hdac_stream(stream)->stream_tag - 1; dev_dbg(dai->dev, "dma_id=%d\n", dma_id); p_params.s_fmt = snd_pcm_format_width(params_format(params)); p_params.s_cont = snd_pcm_format_physical_width(params_format(params)); p_params.ch = params_channels(params); p_params.s_freq = params_rate(params); p_params.host_dma_id = dma_id; p_params.stream = substream->stream; p_params.format = params_format(params); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) p_params.host_bps = dai->driver->playback.sig_bits; else p_params.host_bps = dai->driver->capture.sig_bits; m_cfg = skl_tplg_fe_get_cpr_module(dai, p_params.stream); if (m_cfg) skl_tplg_update_pipe_params(dai->dev, m_cfg, &p_params); return 0; } static void skl_pcm_close(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct hdac_ext_stream *stream = get_hdac_ext_stream(substream); struct hdac_bus *bus = dev_get_drvdata(dai->dev); struct skl_dma_params *dma_params = NULL; struct skl_dev *skl = bus_to_skl(bus); struct skl_module_cfg *mconfig; dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name); snd_hdac_ext_stream_release(stream, skl_get_host_stream_type(bus)); dma_params = snd_soc_dai_get_dma_data(dai, substream); /* * now we should set this to NULL as we are freeing by the * dma_params */ snd_soc_dai_set_dma_data(dai, substream, NULL); skl_set_suspend_active(substream, dai, false); /* * check if close is for "Reference Pin" and set back the * CGCTL.MISCBDCGE if disabled by driver */ if (!strncmp(dai->name, "Reference Pin", 13) && skl->miscbdcg_disabled) { skl->enable_miscbdcge(dai->dev, true); skl->miscbdcg_disabled = false; } mconfig = skl_tplg_fe_get_cpr_module(dai, substream->stream); if (mconfig) skl_tplg_d0i3_put(skl, mconfig->d0i3_caps); kfree(dma_params); } static int skl_pcm_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct hdac_ext_stream *stream = get_hdac_ext_stream(substream); struct skl_dev *skl = get_skl_ctx(dai->dev); struct skl_module_cfg *mconfig; int ret; dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name); mconfig = skl_tplg_fe_get_cpr_module(dai, substream->stream); if (mconfig) { ret = skl_reset_pipe(skl, mconfig->pipe); if (ret < 0) dev_err(dai->dev, "%s:Reset failed ret =%d", __func__, ret); } snd_hdac_stream_cleanup(hdac_stream(stream)); hdac_stream(stream)->prepared = 0; return 0; } static int skl_be_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct skl_pipe_params p_params = {0}; p_params.s_fmt = snd_pcm_format_width(params_format(params)); p_params.s_cont = snd_pcm_format_physical_width(params_format(params)); p_params.ch = params_channels(params); p_params.s_freq = params_rate(params); p_params.stream = substream->stream; return skl_tplg_be_update_params(dai, &p_params); } static int skl_decoupled_trigger(struct snd_pcm_substream *substream, int cmd) { struct hdac_bus *bus = get_bus_ctx(substream); struct hdac_ext_stream *stream; int start; unsigned long cookie; struct hdac_stream *hstr; stream = get_hdac_ext_stream(substream); hstr = hdac_stream(stream); if (!hstr->prepared) return -EPIPE; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: start = 1; break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: start = 0; break; default: return -EINVAL; } spin_lock_irqsave(&bus->reg_lock, cookie); if (start) { snd_hdac_stream_start(hdac_stream(stream)); snd_hdac_stream_timecounter_init(hstr, 0); } else { snd_hdac_stream_stop(hdac_stream(stream)); } spin_unlock_irqrestore(&bus->reg_lock, cookie); return 0; } static int skl_pcm_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct skl_dev *skl = get_skl_ctx(dai->dev); struct skl_module_cfg *mconfig; struct hdac_bus *bus = get_bus_ctx(substream); struct hdac_ext_stream *stream = get_hdac_ext_stream(substream); struct hdac_stream *hstream = hdac_stream(stream); struct snd_soc_dapm_widget *w; int ret; mconfig = skl_tplg_fe_get_cpr_module(dai, substream->stream); if (!mconfig) return -EIO; w = snd_soc_dai_get_widget(dai, substream->stream); switch (cmd) { case SNDRV_PCM_TRIGGER_RESUME: if (!w->ignore_suspend) { /* * enable DMA Resume enable bit for the stream, set the * dpib & lpib position to resume before starting the * DMA */ snd_hdac_stream_drsm_enable(bus, true, hstream->index); snd_hdac_stream_set_dpibr(bus, hstream, hstream->lpib); snd_hdac_stream_set_lpib(hstream, hstream->lpib); } fallthrough; case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: /* * Start HOST DMA and Start FE Pipe.This is to make sure that * there are no underrun/overrun in the case when the FE * pipeline is started but there is a delay in starting the * DMA channel on the host. */ ret = skl_decoupled_trigger(substream, cmd); if (ret < 0) return ret; return skl_run_pipe(skl, mconfig->pipe); case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: /* * Stop FE Pipe first and stop DMA. This is to make sure that * there are no underrun/overrun in the case if there is a delay * between the two operations. */ ret = skl_stop_pipe(skl, mconfig->pipe); if (ret < 0) return ret; ret = skl_decoupled_trigger(substream, cmd); if ((cmd == SNDRV_PCM_TRIGGER_SUSPEND) && !w->ignore_suspend) { /* save the dpib and lpib positions */ hstream->dpib = readl(bus->remap_addr + AZX_REG_VS_SDXDPIB_XBASE + (AZX_REG_VS_SDXDPIB_XINTERVAL * hstream->index)); hstream->lpib = snd_hdac_stream_get_pos_lpib(hstream); snd_hdac_ext_stream_decouple(bus, stream, false); } break; default: return -EINVAL; } return 0; } static int skl_link_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct hdac_bus *bus = dev_get_drvdata(dai->dev); struct hdac_ext_stream *link_dev; struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct skl_pipe_params p_params = {0}; struct hdac_ext_link *link; int stream_tag; link_dev = snd_hdac_ext_stream_assign(bus, substream, HDAC_EXT_STREAM_TYPE_LINK); if (!link_dev) return -EBUSY; snd_soc_dai_set_dma_data(dai, substream, (void *)link_dev); link = snd_hdac_ext_bus_get_hlink_by_name(bus, codec_dai->component->name); if (!link) return -EINVAL; stream_tag = hdac_stream(link_dev)->stream_tag; /* set the hdac_stream in the codec dai */ snd_soc_dai_set_stream(codec_dai, hdac_stream(link_dev), substream->stream); p_params.s_fmt = snd_pcm_format_width(params_format(params)); p_params.s_cont = snd_pcm_format_physical_width(params_format(params)); p_params.ch = params_channels(params); p_params.s_freq = params_rate(params); p_params.stream = substream->stream; p_params.link_dma_id = stream_tag - 1; p_params.link_index = link->index; p_params.format = params_format(params); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) p_params.link_bps = codec_dai->driver->playback.sig_bits; else p_params.link_bps = codec_dai->driver->capture.sig_bits; return skl_tplg_be_update_params(dai, &p_params); } static int skl_link_pcm_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct skl_dev *skl = get_skl_ctx(dai->dev); struct skl_module_cfg *mconfig = NULL; /* In case of XRUN recovery, reset the FW pipe to clean state */ mconfig = skl_tplg_be_get_cpr_module(dai, substream->stream); if (mconfig && !mconfig->pipe->passthru && (substream->runtime->state == SNDRV_PCM_STATE_XRUN)) skl_reset_pipe(skl, mconfig->pipe); return 0; } static int skl_link_pcm_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct hdac_ext_stream *link_dev = snd_soc_dai_get_dma_data(dai, substream); struct hdac_bus *bus = get_bus_ctx(substream); struct hdac_ext_stream *stream = get_hdac_ext_stream(substream); dev_dbg(dai->dev, "In %s cmd=%d\n", __func__, cmd); switch (cmd) { case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: snd_hdac_ext_stream_start(link_dev); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: snd_hdac_ext_stream_clear(link_dev); if (cmd == SNDRV_PCM_TRIGGER_SUSPEND) snd_hdac_ext_stream_decouple(bus, stream, false); break; default: return -EINVAL; } return 0; } static int skl_link_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct hdac_bus *bus = dev_get_drvdata(dai->dev); struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct hdac_ext_stream *link_dev = snd_soc_dai_get_dma_data(dai, substream); struct hdac_ext_link *link; unsigned char stream_tag; dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name); link_dev->link_prepared = 0; link = snd_hdac_ext_bus_get_hlink_by_name(bus, asoc_rtd_to_codec(rtd, 0)->component->name); if (!link) return -EINVAL; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { stream_tag = hdac_stream(link_dev)->stream_tag; snd_hdac_ext_bus_link_clear_stream_id(link, stream_tag); } snd_hdac_ext_stream_release(link_dev, HDAC_EXT_STREAM_TYPE_LINK); return 0; } static const struct snd_soc_dai_ops skl_pcm_dai_ops = { .startup = skl_pcm_open, .shutdown = skl_pcm_close, .prepare = skl_pcm_prepare, .hw_params = skl_pcm_hw_params, .hw_free = skl_pcm_hw_free, .trigger = skl_pcm_trigger, }; static const struct snd_soc_dai_ops skl_dmic_dai_ops = { .hw_params = skl_be_hw_params, }; static const struct snd_soc_dai_ops skl_be_ssp_dai_ops = { .hw_params = skl_be_hw_params, }; static const struct snd_soc_dai_ops skl_link_dai_ops = { .prepare = skl_link_pcm_prepare, .hw_params = skl_link_hw_params, .hw_free = skl_link_hw_free, .trigger = skl_link_pcm_trigger, }; static struct snd_soc_dai_driver skl_fe_dai[] = { { .name = "System Pin", .ops = &skl_pcm_dai_ops, .playback = { .stream_name = "System Playback", .channels_min = HDA_MONO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_8000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .sig_bits = 32, }, .capture = { .stream_name = "System Capture", .channels_min = HDA_MONO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, .sig_bits = 32, }, }, { .name = "System Pin2", .ops = &skl_pcm_dai_ops, .playback = { .stream_name = "Headset Playback", .channels_min = HDA_MONO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_8000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, }, { .name = "Echoref Pin", .ops = &skl_pcm_dai_ops, .capture = { .stream_name = "Echoreference Capture", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_8000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, }, { .name = "Reference Pin", .ops = &skl_pcm_dai_ops, .capture = { .stream_name = "Reference Capture", .channels_min = HDA_MONO, .channels_max = HDA_QUAD, .rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, .sig_bits = 32, }, }, { .name = "Deepbuffer Pin", .ops = &skl_pcm_dai_ops, .playback = { .stream_name = "Deepbuffer Playback", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, .sig_bits = 32, }, }, { .name = "LowLatency Pin", .ops = &skl_pcm_dai_ops, .playback = { .stream_name = "Low Latency Playback", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, .sig_bits = 32, }, }, { .name = "DMIC Pin", .ops = &skl_pcm_dai_ops, .capture = { .stream_name = "DMIC Capture", .channels_min = HDA_MONO, .channels_max = HDA_QUAD, .rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, .sig_bits = 32, }, }, { .name = "HDMI1 Pin", .ops = &skl_pcm_dai_ops, .playback = { .stream_name = "HDMI1 Playback", .channels_min = HDA_STEREO, .channels_max = 8, .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .sig_bits = 32, }, }, { .name = "HDMI2 Pin", .ops = &skl_pcm_dai_ops, .playback = { .stream_name = "HDMI2 Playback", .channels_min = HDA_STEREO, .channels_max = 8, .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .sig_bits = 32, }, }, { .name = "HDMI3 Pin", .ops = &skl_pcm_dai_ops, .playback = { .stream_name = "HDMI3 Playback", .channels_min = HDA_STEREO, .channels_max = 8, .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .sig_bits = 32, }, }, }; /* BE CPU Dais */ static struct snd_soc_dai_driver skl_platform_dai[] = { { .name = "SSP0 Pin", .ops = &skl_be_ssp_dai_ops, .playback = { .stream_name = "ssp0 Tx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .capture = { .stream_name = "ssp0 Rx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, }, { .name = "SSP1 Pin", .ops = &skl_be_ssp_dai_ops, .playback = { .stream_name = "ssp1 Tx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .capture = { .stream_name = "ssp1 Rx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, }, { .name = "SSP2 Pin", .ops = &skl_be_ssp_dai_ops, .playback = { .stream_name = "ssp2 Tx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .capture = { .stream_name = "ssp2 Rx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, }, { .name = "SSP3 Pin", .ops = &skl_be_ssp_dai_ops, .playback = { .stream_name = "ssp3 Tx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .capture = { .stream_name = "ssp3 Rx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, }, { .name = "SSP4 Pin", .ops = &skl_be_ssp_dai_ops, .playback = { .stream_name = "ssp4 Tx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .capture = { .stream_name = "ssp4 Rx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, }, { .name = "SSP5 Pin", .ops = &skl_be_ssp_dai_ops, .playback = { .stream_name = "ssp5 Tx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .capture = { .stream_name = "ssp5 Rx", .channels_min = HDA_STEREO, .channels_max = HDA_STEREO, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, }, { .name = "iDisp1 Pin", .ops = &skl_link_dai_ops, .playback = { .stream_name = "iDisp1 Tx", .channels_min = HDA_STEREO, .channels_max = 8, .rates = SNDRV_PCM_RATE_8000|SNDRV_PCM_RATE_16000|SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S24_LE, }, }, { .name = "iDisp2 Pin", .ops = &skl_link_dai_ops, .playback = { .stream_name = "iDisp2 Tx", .channels_min = HDA_STEREO, .channels_max = 8, .rates = SNDRV_PCM_RATE_8000|SNDRV_PCM_RATE_16000| SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S24_LE, }, }, { .name = "iDisp3 Pin", .ops = &skl_link_dai_ops, .playback = { .stream_name = "iDisp3 Tx", .channels_min = HDA_STEREO, .channels_max = 8, .rates = SNDRV_PCM_RATE_8000|SNDRV_PCM_RATE_16000| SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S24_LE, }, }, { .name = "DMIC01 Pin", .ops = &skl_dmic_dai_ops, .capture = { .stream_name = "DMIC01 Rx", .channels_min = HDA_MONO, .channels_max = HDA_QUAD, .rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, }, }, { .name = "DMIC16k Pin", .ops = &skl_dmic_dai_ops, .capture = { .stream_name = "DMIC16k Rx", .channels_min = HDA_MONO, .channels_max = HDA_QUAD, .rates = SNDRV_PCM_RATE_16000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, }, { .name = "Analog CPU DAI", .ops = &skl_link_dai_ops, .playback = { .stream_name = "Analog CPU Playback", .channels_min = HDA_MONO, .channels_max = HDA_MAX, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, .capture = { .stream_name = "Analog CPU Capture", .channels_min = HDA_MONO, .channels_max = HDA_MAX, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, }, { .name = "Alt Analog CPU DAI", .ops = &skl_link_dai_ops, .playback = { .stream_name = "Alt Analog CPU Playback", .channels_min = HDA_MONO, .channels_max = HDA_MAX, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, .capture = { .stream_name = "Alt Analog CPU Capture", .channels_min = HDA_MONO, .channels_max = HDA_MAX, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, }, { .name = "Digital CPU DAI", .ops = &skl_link_dai_ops, .playback = { .stream_name = "Digital CPU Playback", .channels_min = HDA_MONO, .channels_max = HDA_MAX, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, .capture = { .stream_name = "Digital CPU Capture", .channels_min = HDA_MONO, .channels_max = HDA_MAX, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, }, }; int skl_dai_load(struct snd_soc_component *cmp, int index, struct snd_soc_dai_driver *dai_drv, struct snd_soc_tplg_pcm *pcm, struct snd_soc_dai *dai) { dai_drv->ops = &skl_pcm_dai_ops; return 0; } static int skl_platform_soc_open(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai_link *dai_link = rtd->dai_link; dev_dbg(asoc_rtd_to_cpu(rtd, 0)->dev, "In %s:%s\n", __func__, dai_link->cpus->dai_name); snd_soc_set_runtime_hwparams(substream, &azx_pcm_hw); return 0; } static int skl_coupled_trigger(struct snd_pcm_substream *substream, int cmd) { struct hdac_bus *bus = get_bus_ctx(substream); struct hdac_ext_stream *stream; struct snd_pcm_substream *s; bool start; int sbits = 0; unsigned long cookie; struct hdac_stream *hstr; stream = get_hdac_ext_stream(substream); hstr = hdac_stream(stream); dev_dbg(bus->dev, "In %s cmd=%d\n", __func__, cmd); if (!hstr->prepared) return -EPIPE; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: start = true; break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: start = false; break; default: return -EINVAL; } snd_pcm_group_for_each_entry(s, substream) { if (s->pcm->card != substream->pcm->card) continue; stream = get_hdac_ext_stream(s); sbits |= 1 << hdac_stream(stream)->index; snd_pcm_trigger_done(s, substream); } spin_lock_irqsave(&bus->reg_lock, cookie); /* first, set SYNC bits of corresponding streams */ snd_hdac_stream_sync_trigger(hstr, true, sbits, AZX_REG_SSYNC); snd_pcm_group_for_each_entry(s, substream) { if (s->pcm->card != substream->pcm->card) continue; stream = get_hdac_ext_stream(s); if (start) snd_hdac_stream_start(hdac_stream(stream)); else snd_hdac_stream_stop(hdac_stream(stream)); } spin_unlock_irqrestore(&bus->reg_lock, cookie); snd_hdac_stream_sync(hstr, start, sbits); spin_lock_irqsave(&bus->reg_lock, cookie); /* reset SYNC bits */ snd_hdac_stream_sync_trigger(hstr, false, sbits, AZX_REG_SSYNC); if (start) snd_hdac_stream_timecounter_init(hstr, sbits); spin_unlock_irqrestore(&bus->reg_lock, cookie); return 0; } static int skl_platform_soc_trigger(struct snd_soc_component *component, struct snd_pcm_substream *substream, int cmd) { struct hdac_bus *bus = get_bus_ctx(substream); if (!bus->ppcap) return skl_coupled_trigger(substream, cmd); return 0; } static snd_pcm_uframes_t skl_platform_soc_pointer( struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct hdac_ext_stream *hstream = get_hdac_ext_stream(substream); struct hdac_bus *bus = get_bus_ctx(substream); unsigned int pos; /* * Use DPIB for Playback stream as the periodic DMA Position-in- * Buffer Writes may be scheduled at the same time or later than * the MSI and does not guarantee to reflect the Position of the * last buffer that was transferred. Whereas DPIB register in * HAD space reflects the actual data that is transferred. * Use the position buffer for capture, as DPIB write gets * completed earlier than the actual data written to the DDR. * * For capture stream following workaround is required to fix the * incorrect position reporting. * * 1. Wait for 20us before reading the DMA position in buffer once * the interrupt is generated for stream completion as update happens * on the HDA frame boundary i.e. 20.833uSec. * 2. Read DPIB register to flush the DMA position value. This dummy * read is required to flush DMA position value. * 3. Read the DMA Position-in-Buffer. This value now will be equal to * or greater than period boundary. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { pos = readl(bus->remap_addr + AZX_REG_VS_SDXDPIB_XBASE + (AZX_REG_VS_SDXDPIB_XINTERVAL * hdac_stream(hstream)->index)); } else { udelay(20); readl(bus->remap_addr + AZX_REG_VS_SDXDPIB_XBASE + (AZX_REG_VS_SDXDPIB_XINTERVAL * hdac_stream(hstream)->index)); pos = snd_hdac_stream_get_pos_posbuf(hdac_stream(hstream)); } if (pos >= hdac_stream(hstream)->bufsize) pos = 0; return bytes_to_frames(substream->runtime, pos); } static u64 skl_adjust_codec_delay(struct snd_pcm_substream *substream, u64 nsec) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); u64 codec_frames, codec_nsecs; if (!codec_dai->driver->ops->delay) return nsec; codec_frames = codec_dai->driver->ops->delay(substream, codec_dai); codec_nsecs = div_u64(codec_frames * 1000000000LL, substream->runtime->rate); if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) return nsec + codec_nsecs; return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0; } static int skl_platform_soc_get_time_info( struct snd_soc_component *component, struct snd_pcm_substream *substream, struct timespec64 *system_ts, struct timespec64 *audio_ts, struct snd_pcm_audio_tstamp_config *audio_tstamp_config, struct snd_pcm_audio_tstamp_report *audio_tstamp_report) { struct hdac_ext_stream *sstream = get_hdac_ext_stream(substream); struct hdac_stream *hstr = hdac_stream(sstream); u64 nsec; if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) && (audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) { snd_pcm_gettime(substream->runtime, system_ts); nsec = timecounter_read(&hstr->tc); if (audio_tstamp_config->report_delay) nsec = skl_adjust_codec_delay(substream, nsec); *audio_ts = ns_to_timespec64(nsec); audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK; audio_tstamp_report->accuracy_report = 1; /* rest of struct is valid */ audio_tstamp_report->accuracy = 42; /* 24MHzWallClk == 42ns resolution */ } else { audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT; } return 0; } #define MAX_PREALLOC_SIZE (32 * 1024 * 1024) static int skl_platform_soc_new(struct snd_soc_component *component, struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dai *dai = asoc_rtd_to_cpu(rtd, 0); struct hdac_bus *bus = dev_get_drvdata(dai->dev); struct snd_pcm *pcm = rtd->pcm; unsigned int size; struct skl_dev *skl = bus_to_skl(bus); if (dai->driver->playback.channels_min || dai->driver->capture.channels_min) { /* buffer pre-allocation */ size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024; if (size > MAX_PREALLOC_SIZE) size = MAX_PREALLOC_SIZE; snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_SG, &skl->pci->dev, size, MAX_PREALLOC_SIZE); } return 0; } static int skl_get_module_info(struct skl_dev *skl, struct skl_module_cfg *mconfig) { struct skl_module_inst_id *pin_id; guid_t *uuid_mod, *uuid_tplg; struct skl_module *skl_module; struct uuid_module *module; int i, ret = -EIO; uuid_mod = (guid_t *)mconfig->guid; if (list_empty(&skl->uuid_list)) { dev_err(skl->dev, "Module list is empty\n"); return -EIO; } for (i = 0; i < skl->nr_modules; i++) { skl_module = skl->modules[i]; uuid_tplg = &skl_module->uuid; if (guid_equal(uuid_mod, uuid_tplg)) { mconfig->module = skl_module; ret = 0; break; } } if (skl->nr_modules && ret) return ret; ret = -EIO; list_for_each_entry(module, &skl->uuid_list, list) { if (guid_equal(uuid_mod, &module->uuid)) { mconfig->id.module_id = module->id; mconfig->module->loadable = module->is_loadable; ret = 0; } for (i = 0; i < MAX_IN_QUEUE; i++) { pin_id = &mconfig->m_in_pin[i].id; if (guid_equal(&pin_id->mod_uuid, &module->uuid)) pin_id->module_id = module->id; } for (i = 0; i < MAX_OUT_QUEUE; i++) { pin_id = &mconfig->m_out_pin[i].id; if (guid_equal(&pin_id->mod_uuid, &module->uuid)) pin_id->module_id = module->id; } } return ret; } static int skl_populate_modules(struct skl_dev *skl) { struct skl_pipeline *p; struct skl_pipe_module *m; struct snd_soc_dapm_widget *w; struct skl_module_cfg *mconfig; int ret = 0; list_for_each_entry(p, &skl->ppl_list, node) { list_for_each_entry(m, &p->pipe->w_list, node) { w = m->w; mconfig = w->priv; ret = skl_get_module_info(skl, mconfig); if (ret < 0) { dev_err(skl->dev, "query module info failed\n"); return ret; } skl_tplg_add_moduleid_in_bind_params(skl, w); } } return ret; } static int skl_platform_soc_probe(struct snd_soc_component *component) { struct hdac_bus *bus = dev_get_drvdata(component->dev); struct skl_dev *skl = bus_to_skl(bus); const struct skl_dsp_ops *ops; int ret; ret = pm_runtime_resume_and_get(component->dev); if (ret < 0 && ret != -EACCES) return ret; if (bus->ppcap) { skl->component = component; /* init debugfs */ skl->debugfs = skl_debugfs_init(skl); ret = skl_tplg_init(component, bus); if (ret < 0) { dev_err(component->dev, "Failed to init topology!\n"); return ret; } /* load the firmwares, since all is set */ ops = skl_get_dsp_ops(skl->pci->device); if (!ops) return -EIO; /* * Disable dynamic clock and power gating during firmware * and library download */ skl->enable_miscbdcge(component->dev, false); skl->clock_power_gating(component->dev, false); ret = ops->init_fw(component->dev, skl); skl->enable_miscbdcge(component->dev, true); skl->clock_power_gating(component->dev, true); if (ret < 0) { dev_err(component->dev, "Failed to boot first fw: %d\n", ret); return ret; } skl_populate_modules(skl); skl->update_d0i3c = skl_update_d0i3c; if (skl->cfg.astate_cfg != NULL) { skl_dsp_set_astate_cfg(skl, skl->cfg.astate_cfg->count, skl->cfg.astate_cfg); } } pm_runtime_mark_last_busy(component->dev); pm_runtime_put_autosuspend(component->dev); return 0; } static void skl_platform_soc_remove(struct snd_soc_component *component) { struct hdac_bus *bus = dev_get_drvdata(component->dev); struct skl_dev *skl = bus_to_skl(bus); skl_tplg_exit(component, bus); skl_debugfs_exit(skl); } static const struct snd_soc_component_driver skl_component = { .name = "pcm", .probe = skl_platform_soc_probe, .remove = skl_platform_soc_remove, .open = skl_platform_soc_open, .trigger = skl_platform_soc_trigger, .pointer = skl_platform_soc_pointer, .get_time_info = skl_platform_soc_get_time_info, .pcm_construct = skl_platform_soc_new, .module_get_upon_open = 1, /* increment refcount when a pcm is opened */ }; int skl_platform_register(struct device *dev) { int ret; struct snd_soc_dai_driver *dais; int num_dais = ARRAY_SIZE(skl_platform_dai); struct hdac_bus *bus = dev_get_drvdata(dev); struct skl_dev *skl = bus_to_skl(bus); skl->dais = kmemdup(skl_platform_dai, sizeof(skl_platform_dai), GFP_KERNEL); if (!skl->dais) { ret = -ENOMEM; goto err; } if (!skl->use_tplg_pcm) { dais = krealloc(skl->dais, sizeof(skl_fe_dai) + sizeof(skl_platform_dai), GFP_KERNEL); if (!dais) { ret = -ENOMEM; goto err; } skl->dais = dais; memcpy(&skl->dais[ARRAY_SIZE(skl_platform_dai)], skl_fe_dai, sizeof(skl_fe_dai)); num_dais += ARRAY_SIZE(skl_fe_dai); } ret = devm_snd_soc_register_component(dev, &skl_component, skl->dais, num_dais); if (ret) dev_err(dev, "soc component registration failed %d\n", ret); err: return ret; } int skl_platform_unregister(struct device *dev) { struct hdac_bus *bus = dev_get_drvdata(dev); struct skl_dev *skl = bus_to_skl(bus); struct skl_module_deferred_bind *modules, *tmp; list_for_each_entry_safe(modules, tmp, &skl->bind_list, node) { list_del(&modules->node); kfree(modules); } kfree(skl->dais); return 0; }
linux-master
sound/soc/intel/skylake/skl-pcm.c
// SPDX-License-Identifier: GPL-2.0-only /* * bxt-sst.c - DSP library functions for BXT platform * * Copyright (C) 2015-16 Intel Corp * Author:Rafal Redzimski <[email protected]> * Jeeja KP <[email protected]> */ #include <linux/module.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/device.h> #include "../common/sst-dsp.h" #include "../common/sst-dsp-priv.h" #include "skl.h" #define BXT_BASEFW_TIMEOUT 3000 #define BXT_ROM_INIT_TIMEOUT 70 #define BXT_IPC_PURGE_FW 0x01004000 #define BXT_ROM_INIT 0x5 #define BXT_ADSP_SRAM0_BASE 0x80000 /* Firmware status window */ #define BXT_ADSP_FW_STATUS BXT_ADSP_SRAM0_BASE #define BXT_ADSP_ERROR_CODE (BXT_ADSP_FW_STATUS + 0x4) #define BXT_ADSP_SRAM1_BASE 0xA0000 #define BXT_INSTANCE_ID 0 #define BXT_BASE_FW_MODULE_ID 0 #define BXT_ADSP_FW_BIN_HDR_OFFSET 0x2000 /* Delay before scheduling D0i3 entry */ #define BXT_D0I3_DELAY 5000 static unsigned int bxt_get_errorcode(struct sst_dsp *ctx) { return sst_dsp_shim_read(ctx, BXT_ADSP_ERROR_CODE); } static int bxt_load_library(struct sst_dsp *ctx, struct skl_lib_info *linfo, int lib_count) { struct snd_dma_buffer dmab; struct skl_dev *skl = ctx->thread_context; struct firmware stripped_fw; int ret = 0, i, dma_id, stream_tag; /* library indices start from 1 to N. 0 represents base FW */ for (i = 1; i < lib_count; i++) { ret = skl_prepare_lib_load(skl, &skl->lib_info[i], &stripped_fw, BXT_ADSP_FW_BIN_HDR_OFFSET, i); if (ret < 0) goto load_library_failed; stream_tag = ctx->dsp_ops.prepare(ctx->dev, 0x40, stripped_fw.size, &dmab); if (stream_tag <= 0) { dev_err(ctx->dev, "Lib prepare DMA err: %x\n", stream_tag); ret = stream_tag; goto load_library_failed; } dma_id = stream_tag - 1; memcpy(dmab.area, stripped_fw.data, stripped_fw.size); ctx->dsp_ops.trigger(ctx->dev, true, stream_tag); ret = skl_sst_ipc_load_library(&skl->ipc, dma_id, i, true); if (ret < 0) dev_err(ctx->dev, "IPC Load Lib for %s fail: %d\n", linfo[i].name, ret); ctx->dsp_ops.trigger(ctx->dev, false, stream_tag); ctx->dsp_ops.cleanup(ctx->dev, &dmab, stream_tag); } return ret; load_library_failed: skl_release_library(linfo, lib_count); return ret; } /* * First boot sequence has some extra steps. Core 0 waits for power * status on core 1, so power up core 1 also momentarily, keep it in * reset/stall and then turn it off */ static int sst_bxt_prepare_fw(struct sst_dsp *ctx, const void *fwdata, u32 fwsize) { int stream_tag, ret; stream_tag = ctx->dsp_ops.prepare(ctx->dev, 0x40, fwsize, &ctx->dmab); if (stream_tag <= 0) { dev_err(ctx->dev, "Failed to prepare DMA FW loading err: %x\n", stream_tag); return stream_tag; } ctx->dsp_ops.stream_tag = stream_tag; memcpy(ctx->dmab.area, fwdata, fwsize); /* Step 1: Power up core 0 and core1 */ ret = skl_dsp_core_power_up(ctx, SKL_DSP_CORE0_MASK | SKL_DSP_CORE_MASK(1)); if (ret < 0) { dev_err(ctx->dev, "dsp core0/1 power up failed\n"); goto base_fw_load_failed; } /* Step 2: Purge FW request */ sst_dsp_shim_write(ctx, SKL_ADSP_REG_HIPCI, SKL_ADSP_REG_HIPCI_BUSY | (BXT_IPC_PURGE_FW | ((stream_tag - 1) << 9))); /* Step 3: Unset core0 reset state & unstall/run core0 */ ret = skl_dsp_start_core(ctx, SKL_DSP_CORE0_MASK); if (ret < 0) { dev_err(ctx->dev, "Start dsp core failed ret: %d\n", ret); ret = -EIO; goto base_fw_load_failed; } /* Step 4: Wait for DONE Bit */ ret = sst_dsp_register_poll(ctx, SKL_ADSP_REG_HIPCIE, SKL_ADSP_REG_HIPCIE_DONE, SKL_ADSP_REG_HIPCIE_DONE, BXT_INIT_TIMEOUT, "HIPCIE Done"); if (ret < 0) { dev_err(ctx->dev, "Timeout for Purge Request%d\n", ret); goto base_fw_load_failed; } /* Step 5: power down core1 */ ret = skl_dsp_core_power_down(ctx, SKL_DSP_CORE_MASK(1)); if (ret < 0) { dev_err(ctx->dev, "dsp core1 power down failed\n"); goto base_fw_load_failed; } /* Step 6: Enable Interrupt */ skl_ipc_int_enable(ctx); skl_ipc_op_int_enable(ctx); /* Step 7: Wait for ROM init */ ret = sst_dsp_register_poll(ctx, BXT_ADSP_FW_STATUS, SKL_FW_STS_MASK, SKL_FW_INIT, BXT_ROM_INIT_TIMEOUT, "ROM Load"); if (ret < 0) { dev_err(ctx->dev, "Timeout for ROM init, ret:%d\n", ret); goto base_fw_load_failed; } return ret; base_fw_load_failed: ctx->dsp_ops.cleanup(ctx->dev, &ctx->dmab, stream_tag); skl_dsp_core_power_down(ctx, SKL_DSP_CORE_MASK(1)); skl_dsp_disable_core(ctx, SKL_DSP_CORE0_MASK); return ret; } static int sst_transfer_fw_host_dma(struct sst_dsp *ctx) { int ret; ctx->dsp_ops.trigger(ctx->dev, true, ctx->dsp_ops.stream_tag); ret = sst_dsp_register_poll(ctx, BXT_ADSP_FW_STATUS, SKL_FW_STS_MASK, BXT_ROM_INIT, BXT_BASEFW_TIMEOUT, "Firmware boot"); ctx->dsp_ops.trigger(ctx->dev, false, ctx->dsp_ops.stream_tag); ctx->dsp_ops.cleanup(ctx->dev, &ctx->dmab, ctx->dsp_ops.stream_tag); return ret; } static int bxt_load_base_firmware(struct sst_dsp *ctx) { struct firmware stripped_fw; struct skl_dev *skl = ctx->thread_context; int ret, i; if (ctx->fw == NULL) { ret = request_firmware(&ctx->fw, ctx->fw_name, ctx->dev); if (ret < 0) { dev_err(ctx->dev, "Request firmware failed %d\n", ret); return ret; } } /* prase uuids on first boot */ if (skl->is_first_boot) { ret = snd_skl_parse_uuids(ctx, ctx->fw, BXT_ADSP_FW_BIN_HDR_OFFSET, 0); if (ret < 0) goto sst_load_base_firmware_failed; } stripped_fw.data = ctx->fw->data; stripped_fw.size = ctx->fw->size; skl_dsp_strip_extended_manifest(&stripped_fw); for (i = 0; i < BXT_FW_ROM_INIT_RETRY; i++) { ret = sst_bxt_prepare_fw(ctx, stripped_fw.data, stripped_fw.size); if (ret == 0) break; } if (ret < 0) { dev_err(ctx->dev, "Error code=0x%x: FW status=0x%x\n", sst_dsp_shim_read(ctx, BXT_ADSP_ERROR_CODE), sst_dsp_shim_read(ctx, BXT_ADSP_FW_STATUS)); dev_err(ctx->dev, "Core En/ROM load fail:%d\n", ret); goto sst_load_base_firmware_failed; } ret = sst_transfer_fw_host_dma(ctx); if (ret < 0) { dev_err(ctx->dev, "Transfer firmware failed %d\n", ret); dev_info(ctx->dev, "Error code=0x%x: FW status=0x%x\n", sst_dsp_shim_read(ctx, BXT_ADSP_ERROR_CODE), sst_dsp_shim_read(ctx, BXT_ADSP_FW_STATUS)); skl_dsp_disable_core(ctx, SKL_DSP_CORE0_MASK); } else { dev_dbg(ctx->dev, "Firmware download successful\n"); ret = wait_event_timeout(skl->boot_wait, skl->boot_complete, msecs_to_jiffies(SKL_IPC_BOOT_MSECS)); if (ret == 0) { dev_err(ctx->dev, "DSP boot fail, FW Ready timeout\n"); skl_dsp_disable_core(ctx, SKL_DSP_CORE0_MASK); ret = -EIO; } else { ret = 0; skl->fw_loaded = true; } } return ret; sst_load_base_firmware_failed: release_firmware(ctx->fw); ctx->fw = NULL; return ret; } /* * Decide the D0i3 state that can be targeted based on the usecase * ref counts and DSP state * * Decision Matrix: (X= dont care; state = target state) * * DSP state != SKL_DSP_RUNNING ; state = no d0i3 * * DSP state == SKL_DSP_RUNNING , the following matrix applies * non_d0i3 >0; streaming =X; non_streaming =X; state = no d0i3 * non_d0i3 =X; streaming =0; non_streaming =0; state = no d0i3 * non_d0i3 =0; streaming >0; non_streaming =X; state = streaming d0i3 * non_d0i3 =0; streaming =0; non_streaming =X; state = non-streaming d0i3 */ static int bxt_d0i3_target_state(struct sst_dsp *ctx) { struct skl_dev *skl = ctx->thread_context; struct skl_d0i3_data *d0i3 = &skl->d0i3; if (skl->cores.state[SKL_DSP_CORE0_ID] != SKL_DSP_RUNNING) return SKL_DSP_D0I3_NONE; if (d0i3->non_d0i3) return SKL_DSP_D0I3_NONE; else if (d0i3->streaming) return SKL_DSP_D0I3_STREAMING; else if (d0i3->non_streaming) return SKL_DSP_D0I3_NON_STREAMING; else return SKL_DSP_D0I3_NONE; } static void bxt_set_dsp_D0i3(struct work_struct *work) { int ret; struct skl_ipc_d0ix_msg msg; struct skl_dev *skl = container_of(work, struct skl_dev, d0i3.work.work); struct sst_dsp *ctx = skl->dsp; struct skl_d0i3_data *d0i3 = &skl->d0i3; int target_state; dev_dbg(ctx->dev, "In %s:\n", __func__); /* D0i3 entry allowed only if core 0 alone is running */ if (skl_dsp_get_enabled_cores(ctx) != SKL_DSP_CORE0_MASK) { dev_warn(ctx->dev, "D0i3 allowed when only core0 running:Exit\n"); return; } target_state = bxt_d0i3_target_state(ctx); if (target_state == SKL_DSP_D0I3_NONE) return; msg.instance_id = 0; msg.module_id = 0; msg.wake = 1; msg.streaming = 0; if (target_state == SKL_DSP_D0I3_STREAMING) msg.streaming = 1; ret = skl_ipc_set_d0ix(&skl->ipc, &msg); if (ret < 0) { dev_err(ctx->dev, "Failed to set DSP to D0i3 state\n"); return; } /* Set Vendor specific register D0I3C.I3 to enable D0i3*/ if (skl->update_d0i3c) skl->update_d0i3c(skl->dev, true); d0i3->state = target_state; skl->cores.state[SKL_DSP_CORE0_ID] = SKL_DSP_RUNNING_D0I3; } static int bxt_schedule_dsp_D0i3(struct sst_dsp *ctx) { struct skl_dev *skl = ctx->thread_context; struct skl_d0i3_data *d0i3 = &skl->d0i3; /* Schedule D0i3 only if the usecase ref counts are appropriate */ if (bxt_d0i3_target_state(ctx) != SKL_DSP_D0I3_NONE) { dev_dbg(ctx->dev, "%s: Schedule D0i3\n", __func__); schedule_delayed_work(&d0i3->work, msecs_to_jiffies(BXT_D0I3_DELAY)); } return 0; } static int bxt_set_dsp_D0i0(struct sst_dsp *ctx) { int ret; struct skl_ipc_d0ix_msg msg; struct skl_dev *skl = ctx->thread_context; dev_dbg(ctx->dev, "In %s:\n", __func__); /* First Cancel any pending attempt to put DSP to D0i3 */ cancel_delayed_work_sync(&skl->d0i3.work); /* If DSP is currently in D0i3, bring it to D0i0 */ if (skl->cores.state[SKL_DSP_CORE0_ID] != SKL_DSP_RUNNING_D0I3) return 0; dev_dbg(ctx->dev, "Set DSP to D0i0\n"); msg.instance_id = 0; msg.module_id = 0; msg.streaming = 0; msg.wake = 0; if (skl->d0i3.state == SKL_DSP_D0I3_STREAMING) msg.streaming = 1; /* Clear Vendor specific register D0I3C.I3 to disable D0i3*/ if (skl->update_d0i3c) skl->update_d0i3c(skl->dev, false); ret = skl_ipc_set_d0ix(&skl->ipc, &msg); if (ret < 0) { dev_err(ctx->dev, "Failed to set DSP to D0i0\n"); return ret; } skl->cores.state[SKL_DSP_CORE0_ID] = SKL_DSP_RUNNING; skl->d0i3.state = SKL_DSP_D0I3_NONE; return 0; } static int bxt_set_dsp_D0(struct sst_dsp *ctx, unsigned int core_id) { struct skl_dev *skl = ctx->thread_context; int ret; struct skl_ipc_dxstate_info dx; unsigned int core_mask = SKL_DSP_CORE_MASK(core_id); if (skl->fw_loaded == false) { skl->boot_complete = false; ret = bxt_load_base_firmware(ctx); if (ret < 0) { dev_err(ctx->dev, "reload fw failed: %d\n", ret); return ret; } if (skl->lib_count > 1) { ret = bxt_load_library(ctx, skl->lib_info, skl->lib_count); if (ret < 0) { dev_err(ctx->dev, "reload libs failed: %d\n", ret); return ret; } } skl->cores.state[core_id] = SKL_DSP_RUNNING; return ret; } /* If core 0 is being turned on, turn on core 1 as well */ if (core_id == SKL_DSP_CORE0_ID) ret = skl_dsp_core_power_up(ctx, core_mask | SKL_DSP_CORE_MASK(1)); else ret = skl_dsp_core_power_up(ctx, core_mask); if (ret < 0) goto err; if (core_id == SKL_DSP_CORE0_ID) { /* * Enable interrupt after SPA is set and before * DSP is unstalled */ skl_ipc_int_enable(ctx); skl_ipc_op_int_enable(ctx); skl->boot_complete = false; } ret = skl_dsp_start_core(ctx, core_mask); if (ret < 0) goto err; if (core_id == SKL_DSP_CORE0_ID) { ret = wait_event_timeout(skl->boot_wait, skl->boot_complete, msecs_to_jiffies(SKL_IPC_BOOT_MSECS)); /* If core 1 was turned on for booting core 0, turn it off */ skl_dsp_core_power_down(ctx, SKL_DSP_CORE_MASK(1)); if (ret == 0) { dev_err(ctx->dev, "%s: DSP boot timeout\n", __func__); dev_err(ctx->dev, "Error code=0x%x: FW status=0x%x\n", sst_dsp_shim_read(ctx, BXT_ADSP_ERROR_CODE), sst_dsp_shim_read(ctx, BXT_ADSP_FW_STATUS)); dev_err(ctx->dev, "Failed to set core0 to D0 state\n"); ret = -EIO; goto err; } } /* Tell FW if additional core in now On */ if (core_id != SKL_DSP_CORE0_ID) { dx.core_mask = core_mask; dx.dx_mask = core_mask; ret = skl_ipc_set_dx(&skl->ipc, BXT_INSTANCE_ID, BXT_BASE_FW_MODULE_ID, &dx); if (ret < 0) { dev_err(ctx->dev, "IPC set_dx for core %d fail: %d\n", core_id, ret); goto err; } } skl->cores.state[core_id] = SKL_DSP_RUNNING; return 0; err: if (core_id == SKL_DSP_CORE0_ID) core_mask |= SKL_DSP_CORE_MASK(1); skl_dsp_disable_core(ctx, core_mask); return ret; } static int bxt_set_dsp_D3(struct sst_dsp *ctx, unsigned int core_id) { int ret; struct skl_ipc_dxstate_info dx; struct skl_dev *skl = ctx->thread_context; unsigned int core_mask = SKL_DSP_CORE_MASK(core_id); dx.core_mask = core_mask; dx.dx_mask = SKL_IPC_D3_MASK; dev_dbg(ctx->dev, "core mask=%x dx_mask=%x\n", dx.core_mask, dx.dx_mask); ret = skl_ipc_set_dx(&skl->ipc, BXT_INSTANCE_ID, BXT_BASE_FW_MODULE_ID, &dx); if (ret < 0) { dev_err(ctx->dev, "Failed to set DSP to D3:core id = %d;Continue reset\n", core_id); /* * In case of D3 failure, re-download the firmware, so set * fw_loaded to false. */ skl->fw_loaded = false; } if (core_id == SKL_DSP_CORE0_ID) { /* disable Interrupt */ skl_ipc_op_int_disable(ctx); skl_ipc_int_disable(ctx); } ret = skl_dsp_disable_core(ctx, core_mask); if (ret < 0) { dev_err(ctx->dev, "Failed to disable core %d\n", ret); return ret; } skl->cores.state[core_id] = SKL_DSP_RESET; return 0; } static const struct skl_dsp_fw_ops bxt_fw_ops = { .set_state_D0 = bxt_set_dsp_D0, .set_state_D3 = bxt_set_dsp_D3, .set_state_D0i3 = bxt_schedule_dsp_D0i3, .set_state_D0i0 = bxt_set_dsp_D0i0, .load_fw = bxt_load_base_firmware, .get_fw_errcode = bxt_get_errorcode, .load_library = bxt_load_library, }; static struct sst_ops skl_ops = { .irq_handler = skl_dsp_sst_interrupt, .write = sst_shim32_write, .read = sst_shim32_read, .free = skl_dsp_free, }; static struct sst_dsp_device skl_dev = { .thread = skl_dsp_irq_thread_handler, .ops = &skl_ops, }; int bxt_sst_dsp_init(struct device *dev, void __iomem *mmio_base, int irq, const char *fw_name, struct skl_dsp_loader_ops dsp_ops, struct skl_dev **dsp) { struct skl_dev *skl; struct sst_dsp *sst; int ret; ret = skl_sst_ctx_init(dev, irq, fw_name, dsp_ops, dsp, &skl_dev); if (ret < 0) { dev_err(dev, "%s: no device\n", __func__); return ret; } skl = *dsp; sst = skl->dsp; sst->fw_ops = bxt_fw_ops; sst->addr.lpe = mmio_base; sst->addr.shim = mmio_base; sst->addr.sram0_base = BXT_ADSP_SRAM0_BASE; sst->addr.sram1_base = BXT_ADSP_SRAM1_BASE; sst->addr.w0_stat_sz = SKL_ADSP_W0_STAT_SZ; sst->addr.w0_up_sz = SKL_ADSP_W0_UP_SZ; sst_dsp_mailbox_init(sst, (BXT_ADSP_SRAM0_BASE + SKL_ADSP_W0_STAT_SZ), SKL_ADSP_W0_UP_SZ, BXT_ADSP_SRAM1_BASE, SKL_ADSP_W1_SZ); ret = skl_ipc_init(dev, skl); if (ret) { skl_dsp_free(sst); return ret; } /* set the D0i3 check */ skl->ipc.ops.check_dsp_lp_on = skl_ipc_check_D0i0; skl->boot_complete = false; init_waitqueue_head(&skl->boot_wait); INIT_DELAYED_WORK(&skl->d0i3.work, bxt_set_dsp_D0i3); skl->d0i3.state = SKL_DSP_D0I3_NONE; return skl_dsp_acquire_irq(sst); } EXPORT_SYMBOL_GPL(bxt_sst_dsp_init); int bxt_sst_init_fw(struct device *dev, struct skl_dev *skl) { int ret; struct sst_dsp *sst = skl->dsp; ret = sst->fw_ops.load_fw(sst); if (ret < 0) { dev_err(dev, "Load base fw failed: %x\n", ret); return ret; } skl_dsp_init_core_state(sst); if (skl->lib_count > 1) { ret = sst->fw_ops.load_library(sst, skl->lib_info, skl->lib_count); if (ret < 0) { dev_err(dev, "Load Library failed : %x\n", ret); return ret; } } skl->is_first_boot = false; return 0; } EXPORT_SYMBOL_GPL(bxt_sst_init_fw); void bxt_sst_dsp_cleanup(struct device *dev, struct skl_dev *skl) { skl_release_library(skl->lib_info, skl->lib_count); if (skl->dsp->fw) release_firmware(skl->dsp->fw); skl_freeup_uuid_list(skl); skl_ipc_free(&skl->ipc); skl->dsp->ops->free(skl->dsp); } EXPORT_SYMBOL_GPL(bxt_sst_dsp_cleanup); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel Broxton IPC driver");
linux-master
sound/soc/intel/skylake/bxt-sst.c
// SPDX-License-Identifier: GPL-2.0-only /* * skl-sst-ipc.c - Intel skl IPC Support * * Copyright (C) 2014-15, Intel Corporation. */ #include <linux/device.h> #include "../common/sst-dsp.h" #include "../common/sst-dsp-priv.h" #include "skl.h" #include "skl-sst-dsp.h" #include "skl-sst-ipc.h" #include "sound/hdaudio_ext.h" #define IPC_IXC_STATUS_BITS 24 /* Global Message - Generic */ #define IPC_GLB_TYPE_SHIFT 24 #define IPC_GLB_TYPE_MASK (0xf << IPC_GLB_TYPE_SHIFT) #define IPC_GLB_TYPE(x) ((x) << IPC_GLB_TYPE_SHIFT) /* Global Message - Reply */ #define IPC_GLB_REPLY_STATUS_SHIFT 24 #define IPC_GLB_REPLY_STATUS_MASK ((0x1 << IPC_GLB_REPLY_STATUS_SHIFT) - 1) #define IPC_GLB_REPLY_STATUS(x) ((x) << IPC_GLB_REPLY_STATUS_SHIFT) #define IPC_GLB_REPLY_TYPE_SHIFT 29 #define IPC_GLB_REPLY_TYPE_MASK 0x1F #define IPC_GLB_REPLY_TYPE(x) (((x) >> IPC_GLB_REPLY_TYPE_SHIFT) \ & IPC_GLB_RPLY_TYPE_MASK) #define IPC_TIMEOUT_MSECS 3000 #define IPC_EMPTY_LIST_SIZE 8 #define IPC_MSG_TARGET_SHIFT 30 #define IPC_MSG_TARGET_MASK 0x1 #define IPC_MSG_TARGET(x) (((x) & IPC_MSG_TARGET_MASK) \ << IPC_MSG_TARGET_SHIFT) #define IPC_MSG_DIR_SHIFT 29 #define IPC_MSG_DIR_MASK 0x1 #define IPC_MSG_DIR(x) (((x) & IPC_MSG_DIR_MASK) \ << IPC_MSG_DIR_SHIFT) /* Global Notification Message */ #define IPC_GLB_NOTIFY_TYPE_SHIFT 16 #define IPC_GLB_NOTIFY_TYPE_MASK 0xFF #define IPC_GLB_NOTIFY_TYPE(x) (((x) >> IPC_GLB_NOTIFY_TYPE_SHIFT) \ & IPC_GLB_NOTIFY_TYPE_MASK) #define IPC_GLB_NOTIFY_MSG_TYPE_SHIFT 24 #define IPC_GLB_NOTIFY_MSG_TYPE_MASK 0x1F #define IPC_GLB_NOTIFY_MSG_TYPE(x) (((x) >> IPC_GLB_NOTIFY_MSG_TYPE_SHIFT) \ & IPC_GLB_NOTIFY_MSG_TYPE_MASK) #define IPC_GLB_NOTIFY_RSP_SHIFT 29 #define IPC_GLB_NOTIFY_RSP_MASK 0x1 #define IPC_GLB_NOTIFY_RSP_TYPE(x) (((x) >> IPC_GLB_NOTIFY_RSP_SHIFT) \ & IPC_GLB_NOTIFY_RSP_MASK) /* Pipeline operations */ /* Create pipeline message */ #define IPC_PPL_MEM_SIZE_SHIFT 0 #define IPC_PPL_MEM_SIZE_MASK 0x7FF #define IPC_PPL_MEM_SIZE(x) (((x) & IPC_PPL_MEM_SIZE_MASK) \ << IPC_PPL_MEM_SIZE_SHIFT) #define IPC_PPL_TYPE_SHIFT 11 #define IPC_PPL_TYPE_MASK 0x1F #define IPC_PPL_TYPE(x) (((x) & IPC_PPL_TYPE_MASK) \ << IPC_PPL_TYPE_SHIFT) #define IPC_INSTANCE_ID_SHIFT 16 #define IPC_INSTANCE_ID_MASK 0xFF #define IPC_INSTANCE_ID(x) (((x) & IPC_INSTANCE_ID_MASK) \ << IPC_INSTANCE_ID_SHIFT) #define IPC_PPL_LP_MODE_SHIFT 0 #define IPC_PPL_LP_MODE_MASK 0x1 #define IPC_PPL_LP_MODE(x) (((x) & IPC_PPL_LP_MODE_MASK) \ << IPC_PPL_LP_MODE_SHIFT) /* Set pipeline state message */ #define IPC_PPL_STATE_SHIFT 0 #define IPC_PPL_STATE_MASK 0x1F #define IPC_PPL_STATE(x) (((x) & IPC_PPL_STATE_MASK) \ << IPC_PPL_STATE_SHIFT) /* Module operations primary register */ #define IPC_MOD_ID_SHIFT 0 #define IPC_MOD_ID_MASK 0xFFFF #define IPC_MOD_ID(x) (((x) & IPC_MOD_ID_MASK) \ << IPC_MOD_ID_SHIFT) #define IPC_MOD_INSTANCE_ID_SHIFT 16 #define IPC_MOD_INSTANCE_ID_MASK 0xFF #define IPC_MOD_INSTANCE_ID(x) (((x) & IPC_MOD_INSTANCE_ID_MASK) \ << IPC_MOD_INSTANCE_ID_SHIFT) /* Init instance message extension register */ #define IPC_PARAM_BLOCK_SIZE_SHIFT 0 #define IPC_PARAM_BLOCK_SIZE_MASK 0xFFFF #define IPC_PARAM_BLOCK_SIZE(x) (((x) & IPC_PARAM_BLOCK_SIZE_MASK) \ << IPC_PARAM_BLOCK_SIZE_SHIFT) #define IPC_PPL_INSTANCE_ID_SHIFT 16 #define IPC_PPL_INSTANCE_ID_MASK 0xFF #define IPC_PPL_INSTANCE_ID(x) (((x) & IPC_PPL_INSTANCE_ID_MASK) \ << IPC_PPL_INSTANCE_ID_SHIFT) #define IPC_CORE_ID_SHIFT 24 #define IPC_CORE_ID_MASK 0x1F #define IPC_CORE_ID(x) (((x) & IPC_CORE_ID_MASK) \ << IPC_CORE_ID_SHIFT) #define IPC_DOMAIN_SHIFT 28 #define IPC_DOMAIN_MASK 0x1 #define IPC_DOMAIN(x) (((x) & IPC_DOMAIN_MASK) \ << IPC_DOMAIN_SHIFT) /* Bind/Unbind message extension register */ #define IPC_DST_MOD_ID_SHIFT 0 #define IPC_DST_MOD_ID(x) (((x) & IPC_MOD_ID_MASK) \ << IPC_DST_MOD_ID_SHIFT) #define IPC_DST_MOD_INSTANCE_ID_SHIFT 16 #define IPC_DST_MOD_INSTANCE_ID(x) (((x) & IPC_MOD_INSTANCE_ID_MASK) \ << IPC_DST_MOD_INSTANCE_ID_SHIFT) #define IPC_DST_QUEUE_SHIFT 24 #define IPC_DST_QUEUE_MASK 0x7 #define IPC_DST_QUEUE(x) (((x) & IPC_DST_QUEUE_MASK) \ << IPC_DST_QUEUE_SHIFT) #define IPC_SRC_QUEUE_SHIFT 27 #define IPC_SRC_QUEUE_MASK 0x7 #define IPC_SRC_QUEUE(x) (((x) & IPC_SRC_QUEUE_MASK) \ << IPC_SRC_QUEUE_SHIFT) /* Load Module count */ #define IPC_LOAD_MODULE_SHIFT 0 #define IPC_LOAD_MODULE_MASK 0xFF #define IPC_LOAD_MODULE_CNT(x) (((x) & IPC_LOAD_MODULE_MASK) \ << IPC_LOAD_MODULE_SHIFT) /* Save pipeline messgae extension register */ #define IPC_DMA_ID_SHIFT 0 #define IPC_DMA_ID_MASK 0x1F #define IPC_DMA_ID(x) (((x) & IPC_DMA_ID_MASK) \ << IPC_DMA_ID_SHIFT) /* Large Config message extension register */ #define IPC_DATA_OFFSET_SZ_SHIFT 0 #define IPC_DATA_OFFSET_SZ_MASK 0xFFFFF #define IPC_DATA_OFFSET_SZ(x) (((x) & IPC_DATA_OFFSET_SZ_MASK) \ << IPC_DATA_OFFSET_SZ_SHIFT) #define IPC_DATA_OFFSET_SZ_CLEAR ~(IPC_DATA_OFFSET_SZ_MASK \ << IPC_DATA_OFFSET_SZ_SHIFT) #define IPC_LARGE_PARAM_ID_SHIFT 20 #define IPC_LARGE_PARAM_ID_MASK 0xFF #define IPC_LARGE_PARAM_ID(x) (((x) & IPC_LARGE_PARAM_ID_MASK) \ << IPC_LARGE_PARAM_ID_SHIFT) #define IPC_FINAL_BLOCK_SHIFT 28 #define IPC_FINAL_BLOCK_MASK 0x1 #define IPC_FINAL_BLOCK(x) (((x) & IPC_FINAL_BLOCK_MASK) \ << IPC_FINAL_BLOCK_SHIFT) #define IPC_INITIAL_BLOCK_SHIFT 29 #define IPC_INITIAL_BLOCK_MASK 0x1 #define IPC_INITIAL_BLOCK(x) (((x) & IPC_INITIAL_BLOCK_MASK) \ << IPC_INITIAL_BLOCK_SHIFT) #define IPC_INITIAL_BLOCK_CLEAR ~(IPC_INITIAL_BLOCK_MASK \ << IPC_INITIAL_BLOCK_SHIFT) /* Set D0ix IPC extension register */ #define IPC_D0IX_WAKE_SHIFT 0 #define IPC_D0IX_WAKE_MASK 0x1 #define IPC_D0IX_WAKE(x) (((x) & IPC_D0IX_WAKE_MASK) \ << IPC_D0IX_WAKE_SHIFT) #define IPC_D0IX_STREAMING_SHIFT 1 #define IPC_D0IX_STREAMING_MASK 0x1 #define IPC_D0IX_STREAMING(x) (((x) & IPC_D0IX_STREAMING_MASK) \ << IPC_D0IX_STREAMING_SHIFT) enum skl_ipc_msg_target { IPC_FW_GEN_MSG = 0, IPC_MOD_MSG = 1 }; enum skl_ipc_msg_direction { IPC_MSG_REQUEST = 0, IPC_MSG_REPLY = 1 }; /* Global Message Types */ enum skl_ipc_glb_type { IPC_GLB_GET_FW_VERSION = 0, /* Retrieves firmware version */ IPC_GLB_LOAD_MULTIPLE_MODS = 15, IPC_GLB_UNLOAD_MULTIPLE_MODS = 16, IPC_GLB_CREATE_PPL = 17, IPC_GLB_DELETE_PPL = 18, IPC_GLB_SET_PPL_STATE = 19, IPC_GLB_GET_PPL_STATE = 20, IPC_GLB_GET_PPL_CONTEXT_SIZE = 21, IPC_GLB_SAVE_PPL = 22, IPC_GLB_RESTORE_PPL = 23, IPC_GLB_LOAD_LIBRARY = 24, IPC_GLB_NOTIFY = 26, IPC_GLB_MAX_IPC_MSG_NUMBER = 31 /* Maximum message number */ }; enum skl_ipc_glb_reply { IPC_GLB_REPLY_SUCCESS = 0, IPC_GLB_REPLY_UNKNOWN_MSG_TYPE = 1, IPC_GLB_REPLY_ERROR_INVALID_PARAM = 2, IPC_GLB_REPLY_BUSY = 3, IPC_GLB_REPLY_PENDING = 4, IPC_GLB_REPLY_FAILURE = 5, IPC_GLB_REPLY_INVALID_REQUEST = 6, IPC_GLB_REPLY_OUT_OF_MEMORY = 7, IPC_GLB_REPLY_OUT_OF_MIPS = 8, IPC_GLB_REPLY_INVALID_RESOURCE_ID = 9, IPC_GLB_REPLY_INVALID_RESOURCE_STATE = 10, IPC_GLB_REPLY_MOD_MGMT_ERROR = 100, IPC_GLB_REPLY_MOD_LOAD_CL_FAILED = 101, IPC_GLB_REPLY_MOD_LOAD_INVALID_HASH = 102, IPC_GLB_REPLY_MOD_UNLOAD_INST_EXIST = 103, IPC_GLB_REPLY_MOD_NOT_INITIALIZED = 104, IPC_GLB_REPLY_INVALID_CONFIG_PARAM_ID = 120, IPC_GLB_REPLY_INVALID_CONFIG_DATA_LEN = 121, IPC_GLB_REPLY_GATEWAY_NOT_INITIALIZED = 140, IPC_GLB_REPLY_GATEWAY_NOT_EXIST = 141, IPC_GLB_REPLY_SCLK_ALREADY_RUNNING = 150, IPC_GLB_REPLY_MCLK_ALREADY_RUNNING = 151, IPC_GLB_REPLY_PPL_NOT_INITIALIZED = 160, IPC_GLB_REPLY_PPL_NOT_EXIST = 161, IPC_GLB_REPLY_PPL_SAVE_FAILED = 162, IPC_GLB_REPLY_PPL_RESTORE_FAILED = 163, IPC_MAX_STATUS = ((1<<IPC_IXC_STATUS_BITS)-1) }; enum skl_ipc_notification_type { IPC_GLB_NOTIFY_GLITCH = 0, IPC_GLB_NOTIFY_OVERRUN = 1, IPC_GLB_NOTIFY_UNDERRUN = 2, IPC_GLB_NOTIFY_END_STREAM = 3, IPC_GLB_NOTIFY_PHRASE_DETECTED = 4, IPC_GLB_NOTIFY_RESOURCE_EVENT = 5, IPC_GLB_NOTIFY_LOG_BUFFER_STATUS = 6, IPC_GLB_NOTIFY_TIMESTAMP_CAPTURED = 7, IPC_GLB_NOTIFY_FW_READY = 8 }; /* Module Message Types */ enum skl_ipc_module_msg { IPC_MOD_INIT_INSTANCE = 0, IPC_MOD_CONFIG_GET = 1, IPC_MOD_CONFIG_SET = 2, IPC_MOD_LARGE_CONFIG_GET = 3, IPC_MOD_LARGE_CONFIG_SET = 4, IPC_MOD_BIND = 5, IPC_MOD_UNBIND = 6, IPC_MOD_SET_DX = 7, IPC_MOD_SET_D0IX = 8 }; void skl_ipc_tx_data_copy(struct ipc_message *msg, char *tx_data, size_t tx_size) { if (tx_size) memcpy(msg->tx.data, tx_data, tx_size); } static bool skl_ipc_is_dsp_busy(struct sst_dsp *dsp) { u32 hipci; hipci = sst_dsp_shim_read_unlocked(dsp, SKL_ADSP_REG_HIPCI); return (hipci & SKL_ADSP_REG_HIPCI_BUSY); } /* Lock to be held by caller */ static void skl_ipc_tx_msg(struct sst_generic_ipc *ipc, struct ipc_message *msg) { struct skl_ipc_header *header = (struct skl_ipc_header *)(&msg->tx.header); if (msg->tx.size) sst_dsp_outbox_write(ipc->dsp, msg->tx.data, msg->tx.size); sst_dsp_shim_write_unlocked(ipc->dsp, SKL_ADSP_REG_HIPCIE, header->extension); sst_dsp_shim_write_unlocked(ipc->dsp, SKL_ADSP_REG_HIPCI, header->primary | SKL_ADSP_REG_HIPCI_BUSY); } int skl_ipc_check_D0i0(struct sst_dsp *dsp, bool state) { int ret; /* check D0i3 support */ if (!dsp->fw_ops.set_state_D0i0) return 0; /* Attempt D0i0 or D0i3 based on state */ if (state) ret = dsp->fw_ops.set_state_D0i0(dsp); else ret = dsp->fw_ops.set_state_D0i3(dsp); return ret; } static struct ipc_message *skl_ipc_reply_get_msg(struct sst_generic_ipc *ipc, u64 ipc_header) { struct ipc_message *msg = NULL; struct skl_ipc_header *header = (struct skl_ipc_header *)(&ipc_header); if (list_empty(&ipc->rx_list)) { dev_err(ipc->dev, "ipc: rx list is empty but received 0x%x\n", header->primary); goto out; } msg = list_first_entry(&ipc->rx_list, struct ipc_message, list); list_del(&msg->list); out: return msg; } int skl_ipc_process_notification(struct sst_generic_ipc *ipc, struct skl_ipc_header header) { struct skl_dev *skl = container_of(ipc, struct skl_dev, ipc); if (IPC_GLB_NOTIFY_MSG_TYPE(header.primary)) { switch (IPC_GLB_NOTIFY_TYPE(header.primary)) { case IPC_GLB_NOTIFY_UNDERRUN: dev_err(ipc->dev, "FW Underrun %x\n", header.primary); break; case IPC_GLB_NOTIFY_RESOURCE_EVENT: dev_err(ipc->dev, "MCPS Budget Violation: %x\n", header.primary); break; case IPC_GLB_NOTIFY_FW_READY: skl->boot_complete = true; wake_up(&skl->boot_wait); break; case IPC_GLB_NOTIFY_PHRASE_DETECTED: dev_dbg(ipc->dev, "***** Phrase Detected **********\n"); /* * Per HW recomendation, After phrase detection, * clear the CGCTL.MISCBDCGE. * * This will be set back on stream closure */ skl->enable_miscbdcge(ipc->dev, false); skl->miscbdcg_disabled = true; break; default: dev_err(ipc->dev, "ipc: Unhandled error msg=%x\n", header.primary); break; } } return 0; } struct skl_ipc_err_map { const char *msg; enum skl_ipc_glb_reply reply; int err; }; static struct skl_ipc_err_map skl_err_map[] = { {"DSP out of memory", IPC_GLB_REPLY_OUT_OF_MEMORY, -ENOMEM}, {"DSP busy", IPC_GLB_REPLY_BUSY, -EBUSY}, {"SCLK already running", IPC_GLB_REPLY_SCLK_ALREADY_RUNNING, IPC_GLB_REPLY_SCLK_ALREADY_RUNNING}, {"MCLK already running", IPC_GLB_REPLY_MCLK_ALREADY_RUNNING, IPC_GLB_REPLY_MCLK_ALREADY_RUNNING}, }; static int skl_ipc_set_reply_error_code(struct sst_generic_ipc *ipc, u32 reply) { int i; for (i = 0; i < ARRAY_SIZE(skl_err_map); i++) { if (skl_err_map[i].reply == reply) break; } if (i == ARRAY_SIZE(skl_err_map)) { dev_err(ipc->dev, "ipc FW reply: %d FW Error Code: %u\n", reply, ipc->dsp->fw_ops.get_fw_errcode(ipc->dsp)); return -EINVAL; } if (skl_err_map[i].err < 0) dev_err(ipc->dev, "ipc FW reply: %s FW Error Code: %u\n", skl_err_map[i].msg, ipc->dsp->fw_ops.get_fw_errcode(ipc->dsp)); else dev_info(ipc->dev, "ipc FW reply: %s FW Error Code: %u\n", skl_err_map[i].msg, ipc->dsp->fw_ops.get_fw_errcode(ipc->dsp)); return skl_err_map[i].err; } void skl_ipc_process_reply(struct sst_generic_ipc *ipc, struct skl_ipc_header header) { struct ipc_message *msg; u32 reply = header.primary & IPC_GLB_REPLY_STATUS_MASK; u64 *ipc_header = (u64 *)(&header); struct skl_dev *skl = container_of(ipc, struct skl_dev, ipc); unsigned long flags; spin_lock_irqsave(&ipc->dsp->spinlock, flags); msg = skl_ipc_reply_get_msg(ipc, *ipc_header); spin_unlock_irqrestore(&ipc->dsp->spinlock, flags); if (msg == NULL) { dev_dbg(ipc->dev, "ipc: rx list is empty\n"); return; } msg->rx.header = *ipc_header; /* first process the header */ if (reply == IPC_GLB_REPLY_SUCCESS) { dev_dbg(ipc->dev, "ipc FW reply %x: success\n", header.primary); /* copy the rx data from the mailbox */ sst_dsp_inbox_read(ipc->dsp, msg->rx.data, msg->rx.size); switch (IPC_GLB_NOTIFY_MSG_TYPE(header.primary)) { case IPC_GLB_LOAD_MULTIPLE_MODS: case IPC_GLB_LOAD_LIBRARY: skl->mod_load_complete = true; skl->mod_load_status = true; wake_up(&skl->mod_load_wait); break; default: break; } } else { msg->errno = skl_ipc_set_reply_error_code(ipc, reply); switch (IPC_GLB_NOTIFY_MSG_TYPE(header.primary)) { case IPC_GLB_LOAD_MULTIPLE_MODS: case IPC_GLB_LOAD_LIBRARY: skl->mod_load_complete = true; skl->mod_load_status = false; wake_up(&skl->mod_load_wait); break; default: break; } } spin_lock_irqsave(&ipc->dsp->spinlock, flags); sst_ipc_tx_msg_reply_complete(ipc, msg); spin_unlock_irqrestore(&ipc->dsp->spinlock, flags); } irqreturn_t skl_dsp_irq_thread_handler(int irq, void *context) { struct sst_dsp *dsp = context; struct skl_dev *skl = dsp->thread_context; struct sst_generic_ipc *ipc = &skl->ipc; struct skl_ipc_header header = {0}; u32 hipcie, hipct, hipcte; int ipc_irq = 0; if (dsp->intr_status & SKL_ADSPIS_CL_DMA) skl_cldma_process_intr(dsp); /* Here we handle IPC interrupts only */ if (!(dsp->intr_status & SKL_ADSPIS_IPC)) return IRQ_NONE; hipcie = sst_dsp_shim_read_unlocked(dsp, SKL_ADSP_REG_HIPCIE); hipct = sst_dsp_shim_read_unlocked(dsp, SKL_ADSP_REG_HIPCT); hipcte = sst_dsp_shim_read_unlocked(dsp, SKL_ADSP_REG_HIPCTE); /* reply message from DSP */ if (hipcie & SKL_ADSP_REG_HIPCIE_DONE) { sst_dsp_shim_update_bits(dsp, SKL_ADSP_REG_HIPCCTL, SKL_ADSP_REG_HIPCCTL_DONE, 0); /* clear DONE bit - tell DSP we have completed the operation */ sst_dsp_shim_update_bits_forced(dsp, SKL_ADSP_REG_HIPCIE, SKL_ADSP_REG_HIPCIE_DONE, SKL_ADSP_REG_HIPCIE_DONE); ipc_irq = 1; /* unmask Done interrupt */ sst_dsp_shim_update_bits(dsp, SKL_ADSP_REG_HIPCCTL, SKL_ADSP_REG_HIPCCTL_DONE, SKL_ADSP_REG_HIPCCTL_DONE); } /* New message from DSP */ if (hipct & SKL_ADSP_REG_HIPCT_BUSY) { header.primary = hipct; header.extension = hipcte; dev_dbg(dsp->dev, "IPC irq: Firmware respond primary:%x\n", header.primary); dev_dbg(dsp->dev, "IPC irq: Firmware respond extension:%x\n", header.extension); if (IPC_GLB_NOTIFY_RSP_TYPE(header.primary)) { /* Handle Immediate reply from DSP Core */ skl_ipc_process_reply(ipc, header); } else { dev_dbg(dsp->dev, "IPC irq: Notification from firmware\n"); skl_ipc_process_notification(ipc, header); } /* clear busy interrupt */ sst_dsp_shim_update_bits_forced(dsp, SKL_ADSP_REG_HIPCT, SKL_ADSP_REG_HIPCT_BUSY, SKL_ADSP_REG_HIPCT_BUSY); ipc_irq = 1; } if (ipc_irq == 0) return IRQ_NONE; skl_ipc_int_enable(dsp); /* continue to send any remaining messages... */ schedule_work(&ipc->kwork); return IRQ_HANDLED; } void skl_ipc_int_enable(struct sst_dsp *ctx) { sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_IPC, SKL_ADSPIC_IPC); } void skl_ipc_int_disable(struct sst_dsp *ctx) { sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_IPC, 0); } void skl_ipc_op_int_enable(struct sst_dsp *ctx) { /* enable IPC DONE interrupt */ sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_HIPCCTL, SKL_ADSP_REG_HIPCCTL_DONE, SKL_ADSP_REG_HIPCCTL_DONE); /* Enable IPC BUSY interrupt */ sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_HIPCCTL, SKL_ADSP_REG_HIPCCTL_BUSY, SKL_ADSP_REG_HIPCCTL_BUSY); } void skl_ipc_op_int_disable(struct sst_dsp *ctx) { /* disable IPC DONE interrupt */ sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_HIPCCTL, SKL_ADSP_REG_HIPCCTL_DONE, 0); /* Disable IPC BUSY interrupt */ sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_HIPCCTL, SKL_ADSP_REG_HIPCCTL_BUSY, 0); } bool skl_ipc_int_status(struct sst_dsp *ctx) { return sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_ADSPIS) & SKL_ADSPIS_IPC; } int skl_ipc_init(struct device *dev, struct skl_dev *skl) { struct sst_generic_ipc *ipc; int err; ipc = &skl->ipc; ipc->dsp = skl->dsp; ipc->dev = dev; ipc->tx_data_max_size = SKL_ADSP_W1_SZ; ipc->rx_data_max_size = SKL_ADSP_W0_UP_SZ; err = sst_ipc_init(ipc); if (err) return err; ipc->ops.tx_msg = skl_ipc_tx_msg; ipc->ops.tx_data_copy = skl_ipc_tx_data_copy; ipc->ops.is_dsp_busy = skl_ipc_is_dsp_busy; return 0; } void skl_ipc_free(struct sst_generic_ipc *ipc) { /* Disable IPC DONE interrupt */ sst_dsp_shim_update_bits(ipc->dsp, SKL_ADSP_REG_HIPCCTL, SKL_ADSP_REG_HIPCCTL_DONE, 0); /* Disable IPC BUSY interrupt */ sst_dsp_shim_update_bits(ipc->dsp, SKL_ADSP_REG_HIPCCTL, SKL_ADSP_REG_HIPCCTL_BUSY, 0); sst_ipc_fini(ipc); } int skl_ipc_create_pipeline(struct sst_generic_ipc *ipc, u16 ppl_mem_size, u8 ppl_type, u8 instance_id, u8 lp_mode) { struct skl_ipc_header header = {0}; struct sst_ipc_message request = {0}; int ret; header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_GLB_CREATE_PPL); header.primary |= IPC_INSTANCE_ID(instance_id); header.primary |= IPC_PPL_TYPE(ppl_type); header.primary |= IPC_PPL_MEM_SIZE(ppl_mem_size); header.extension = IPC_PPL_LP_MODE(lp_mode); request.header = *(u64 *)(&header); dev_dbg(ipc->dev, "In %s header=%d\n", __func__, header.primary); ret = sst_ipc_tx_message_wait(ipc, request, NULL); if (ret < 0) { dev_err(ipc->dev, "ipc: create pipeline fail, err: %d\n", ret); return ret; } return ret; } EXPORT_SYMBOL_GPL(skl_ipc_create_pipeline); int skl_ipc_delete_pipeline(struct sst_generic_ipc *ipc, u8 instance_id) { struct skl_ipc_header header = {0}; struct sst_ipc_message request = {0}; int ret; header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_GLB_DELETE_PPL); header.primary |= IPC_INSTANCE_ID(instance_id); request.header = *(u64 *)(&header); dev_dbg(ipc->dev, "In %s header=%d\n", __func__, header.primary); ret = sst_ipc_tx_message_wait(ipc, request, NULL); if (ret < 0) { dev_err(ipc->dev, "ipc: delete pipeline failed, err %d\n", ret); return ret; } return 0; } EXPORT_SYMBOL_GPL(skl_ipc_delete_pipeline); int skl_ipc_set_pipeline_state(struct sst_generic_ipc *ipc, u8 instance_id, enum skl_ipc_pipeline_state state) { struct skl_ipc_header header = {0}; struct sst_ipc_message request = {0}; int ret; header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_GLB_SET_PPL_STATE); header.primary |= IPC_INSTANCE_ID(instance_id); header.primary |= IPC_PPL_STATE(state); request.header = *(u64 *)(&header); dev_dbg(ipc->dev, "In %s header=%d\n", __func__, header.primary); ret = sst_ipc_tx_message_wait(ipc, request, NULL); if (ret < 0) { dev_err(ipc->dev, "ipc: set pipeline state failed, err: %d\n", ret); return ret; } return ret; } EXPORT_SYMBOL_GPL(skl_ipc_set_pipeline_state); int skl_ipc_save_pipeline(struct sst_generic_ipc *ipc, u8 instance_id, int dma_id) { struct skl_ipc_header header = {0}; struct sst_ipc_message request = {0}; int ret; header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_GLB_SAVE_PPL); header.primary |= IPC_INSTANCE_ID(instance_id); header.extension = IPC_DMA_ID(dma_id); request.header = *(u64 *)(&header); dev_dbg(ipc->dev, "In %s header=%d\n", __func__, header.primary); ret = sst_ipc_tx_message_wait(ipc, request, NULL); if (ret < 0) { dev_err(ipc->dev, "ipc: save pipeline failed, err: %d\n", ret); return ret; } return ret; } EXPORT_SYMBOL_GPL(skl_ipc_save_pipeline); int skl_ipc_restore_pipeline(struct sst_generic_ipc *ipc, u8 instance_id) { struct skl_ipc_header header = {0}; struct sst_ipc_message request = {0}; int ret; header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_GLB_RESTORE_PPL); header.primary |= IPC_INSTANCE_ID(instance_id); request.header = *(u64 *)(&header); dev_dbg(ipc->dev, "In %s header=%d\n", __func__, header.primary); ret = sst_ipc_tx_message_wait(ipc, request, NULL); if (ret < 0) { dev_err(ipc->dev, "ipc: restore pipeline failed, err: %d\n", ret); return ret; } return ret; } EXPORT_SYMBOL_GPL(skl_ipc_restore_pipeline); int skl_ipc_set_dx(struct sst_generic_ipc *ipc, u8 instance_id, u16 module_id, struct skl_ipc_dxstate_info *dx) { struct skl_ipc_header header = {0}; struct sst_ipc_message request; int ret; header.primary = IPC_MSG_TARGET(IPC_MOD_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_MOD_SET_DX); header.primary |= IPC_MOD_INSTANCE_ID(instance_id); header.primary |= IPC_MOD_ID(module_id); request.header = *(u64 *)(&header); request.data = dx; request.size = sizeof(*dx); dev_dbg(ipc->dev, "In %s primary =%x ext=%x\n", __func__, header.primary, header.extension); ret = sst_ipc_tx_message_wait(ipc, request, NULL); if (ret < 0) { dev_err(ipc->dev, "ipc: set dx failed, err %d\n", ret); return ret; } return ret; } EXPORT_SYMBOL_GPL(skl_ipc_set_dx); int skl_ipc_init_instance(struct sst_generic_ipc *ipc, struct skl_ipc_init_instance_msg *msg, void *param_data) { struct skl_ipc_header header = {0}; struct sst_ipc_message request; int ret; u32 *buffer = (u32 *)param_data; /* param_block_size must be in dwords */ u16 param_block_size = msg->param_data_size / sizeof(u32); print_hex_dump_debug("Param data:", DUMP_PREFIX_NONE, 16, 4, buffer, param_block_size, false); header.primary = IPC_MSG_TARGET(IPC_MOD_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_MOD_INIT_INSTANCE); header.primary |= IPC_MOD_INSTANCE_ID(msg->instance_id); header.primary |= IPC_MOD_ID(msg->module_id); header.extension = IPC_CORE_ID(msg->core_id); header.extension |= IPC_PPL_INSTANCE_ID(msg->ppl_instance_id); header.extension |= IPC_PARAM_BLOCK_SIZE(param_block_size); header.extension |= IPC_DOMAIN(msg->domain); request.header = *(u64 *)(&header); request.data = param_data; request.size = msg->param_data_size; dev_dbg(ipc->dev, "In %s primary =%x ext=%x\n", __func__, header.primary, header.extension); ret = sst_ipc_tx_message_wait(ipc, request, NULL); if (ret < 0) { dev_err(ipc->dev, "ipc: init instance failed\n"); return ret; } return ret; } EXPORT_SYMBOL_GPL(skl_ipc_init_instance); int skl_ipc_bind_unbind(struct sst_generic_ipc *ipc, struct skl_ipc_bind_unbind_msg *msg) { struct skl_ipc_header header = {0}; struct sst_ipc_message request = {0}; u8 bind_unbind = msg->bind ? IPC_MOD_BIND : IPC_MOD_UNBIND; int ret; header.primary = IPC_MSG_TARGET(IPC_MOD_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(bind_unbind); header.primary |= IPC_MOD_INSTANCE_ID(msg->instance_id); header.primary |= IPC_MOD_ID(msg->module_id); header.extension = IPC_DST_MOD_ID(msg->dst_module_id); header.extension |= IPC_DST_MOD_INSTANCE_ID(msg->dst_instance_id); header.extension |= IPC_DST_QUEUE(msg->dst_queue); header.extension |= IPC_SRC_QUEUE(msg->src_queue); request.header = *(u64 *)(&header); dev_dbg(ipc->dev, "In %s hdr=%x ext=%x\n", __func__, header.primary, header.extension); ret = sst_ipc_tx_message_wait(ipc, request, NULL); if (ret < 0) { dev_err(ipc->dev, "ipc: bind/unbind failed\n"); return ret; } return ret; } EXPORT_SYMBOL_GPL(skl_ipc_bind_unbind); /* * In order to load a module we need to send IPC to initiate that. DMA will * performed to load the module memory. The FW supports multiple module load * at single shot, so we can send IPC with N modules represented by * module_cnt */ int skl_ipc_load_modules(struct sst_generic_ipc *ipc, u8 module_cnt, void *data) { struct skl_ipc_header header = {0}; struct sst_ipc_message request; int ret; header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_GLB_LOAD_MULTIPLE_MODS); header.primary |= IPC_LOAD_MODULE_CNT(module_cnt); request.header = *(u64 *)(&header); request.data = data; request.size = sizeof(u16) * module_cnt; ret = sst_ipc_tx_message_nowait(ipc, request); if (ret < 0) dev_err(ipc->dev, "ipc: load modules failed :%d\n", ret); return ret; } EXPORT_SYMBOL_GPL(skl_ipc_load_modules); int skl_ipc_unload_modules(struct sst_generic_ipc *ipc, u8 module_cnt, void *data) { struct skl_ipc_header header = {0}; struct sst_ipc_message request; int ret; header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_GLB_UNLOAD_MULTIPLE_MODS); header.primary |= IPC_LOAD_MODULE_CNT(module_cnt); request.header = *(u64 *)(&header); request.data = data; request.size = sizeof(u16) * module_cnt; ret = sst_ipc_tx_message_wait(ipc, request, NULL); if (ret < 0) dev_err(ipc->dev, "ipc: unload modules failed :%d\n", ret); return ret; } EXPORT_SYMBOL_GPL(skl_ipc_unload_modules); int skl_ipc_set_large_config(struct sst_generic_ipc *ipc, struct skl_ipc_large_config_msg *msg, u32 *param) { struct skl_ipc_header header = {0}; struct sst_ipc_message request; int ret = 0; size_t sz_remaining, tx_size, data_offset; header.primary = IPC_MSG_TARGET(IPC_MOD_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_MOD_LARGE_CONFIG_SET); header.primary |= IPC_MOD_INSTANCE_ID(msg->instance_id); header.primary |= IPC_MOD_ID(msg->module_id); header.extension = IPC_DATA_OFFSET_SZ(msg->param_data_size); header.extension |= IPC_LARGE_PARAM_ID(msg->large_param_id); header.extension |= IPC_FINAL_BLOCK(0); header.extension |= IPC_INITIAL_BLOCK(1); sz_remaining = msg->param_data_size; data_offset = 0; while (sz_remaining != 0) { tx_size = sz_remaining > SKL_ADSP_W1_SZ ? SKL_ADSP_W1_SZ : sz_remaining; if (tx_size == sz_remaining) header.extension |= IPC_FINAL_BLOCK(1); dev_dbg(ipc->dev, "In %s primary=%#x ext=%#x\n", __func__, header.primary, header.extension); dev_dbg(ipc->dev, "transmitting offset: %#x, size: %#x\n", (unsigned)data_offset, (unsigned)tx_size); request.header = *(u64 *)(&header); request.data = ((char *)param) + data_offset; request.size = tx_size; ret = sst_ipc_tx_message_wait(ipc, request, NULL); if (ret < 0) { dev_err(ipc->dev, "ipc: set large config fail, err: %d\n", ret); return ret; } sz_remaining -= tx_size; data_offset = msg->param_data_size - sz_remaining; /* clear the fields */ header.extension &= IPC_INITIAL_BLOCK_CLEAR; header.extension &= IPC_DATA_OFFSET_SZ_CLEAR; /* fill the fields */ header.extension |= IPC_INITIAL_BLOCK(0); header.extension |= IPC_DATA_OFFSET_SZ(data_offset); } return ret; } EXPORT_SYMBOL_GPL(skl_ipc_set_large_config); int skl_ipc_get_large_config(struct sst_generic_ipc *ipc, struct skl_ipc_large_config_msg *msg, u32 **payload, size_t *bytes) { struct skl_ipc_header header = {0}; struct sst_ipc_message request, reply = {0}; unsigned int *buf; int ret; reply.data = kzalloc(SKL_ADSP_W1_SZ, GFP_KERNEL); if (!reply.data) return -ENOMEM; header.primary = IPC_MSG_TARGET(IPC_MOD_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_MOD_LARGE_CONFIG_GET); header.primary |= IPC_MOD_INSTANCE_ID(msg->instance_id); header.primary |= IPC_MOD_ID(msg->module_id); header.extension = IPC_DATA_OFFSET_SZ(msg->param_data_size); header.extension |= IPC_LARGE_PARAM_ID(msg->large_param_id); header.extension |= IPC_FINAL_BLOCK(1); header.extension |= IPC_INITIAL_BLOCK(1); request.header = *(u64 *)&header; request.data = *payload; request.size = *bytes; reply.size = SKL_ADSP_W1_SZ; ret = sst_ipc_tx_message_wait(ipc, request, &reply); if (ret < 0) dev_err(ipc->dev, "ipc: get large config fail, err: %d\n", ret); reply.size = (reply.header >> 32) & IPC_DATA_OFFSET_SZ_MASK; buf = krealloc(reply.data, reply.size, GFP_KERNEL); if (!buf) return -ENOMEM; *payload = buf; *bytes = reply.size; return ret; } EXPORT_SYMBOL_GPL(skl_ipc_get_large_config); int skl_sst_ipc_load_library(struct sst_generic_ipc *ipc, u8 dma_id, u8 table_id, bool wait) { struct skl_ipc_header header = {0}; struct sst_ipc_message request = {0}; int ret = 0; header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_GLB_LOAD_LIBRARY); header.primary |= IPC_MOD_INSTANCE_ID(table_id); header.primary |= IPC_MOD_ID(dma_id); request.header = *(u64 *)(&header); if (wait) ret = sst_ipc_tx_message_wait(ipc, request, NULL); else ret = sst_ipc_tx_message_nowait(ipc, request); if (ret < 0) dev_err(ipc->dev, "ipc: load lib failed\n"); return ret; } EXPORT_SYMBOL_GPL(skl_sst_ipc_load_library); int skl_ipc_set_d0ix(struct sst_generic_ipc *ipc, struct skl_ipc_d0ix_msg *msg) { struct skl_ipc_header header = {0}; struct sst_ipc_message request = {0}; int ret; header.primary = IPC_MSG_TARGET(IPC_MOD_MSG); header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST); header.primary |= IPC_GLB_TYPE(IPC_MOD_SET_D0IX); header.primary |= IPC_MOD_INSTANCE_ID(msg->instance_id); header.primary |= IPC_MOD_ID(msg->module_id); header.extension = IPC_D0IX_WAKE(msg->wake); header.extension |= IPC_D0IX_STREAMING(msg->streaming); request.header = *(u64 *)(&header); dev_dbg(ipc->dev, "In %s primary=%x ext=%x\n", __func__, header.primary, header.extension); /* * Use the nopm IPC here as we dont want it checking for D0iX */ ret = sst_ipc_tx_message_nopm(ipc, request, NULL); if (ret < 0) dev_err(ipc->dev, "ipc: set d0ix failed, err %d\n", ret); return ret; } EXPORT_SYMBOL_GPL(skl_ipc_set_d0ix);
linux-master
sound/soc/intel/skylake/skl-sst-ipc.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2015-17 Intel Corporation /* * skl-ssp-clk.c - ASoC skylake ssp clock driver */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <sound/intel-nhlt.h> #include "skl.h" #include "skl-ssp-clk.h" #include "skl-topology.h" #define to_skl_clk(_hw) container_of(_hw, struct skl_clk, hw) struct skl_clk_parent { struct clk_hw *hw; struct clk_lookup *lookup; }; struct skl_clk { struct clk_hw hw; struct clk_lookup *lookup; unsigned long rate; struct skl_clk_pdata *pdata; u32 id; }; struct skl_clk_data { struct skl_clk_parent parent[SKL_MAX_CLK_SRC]; struct skl_clk *clk[SKL_MAX_CLK_CNT]; u8 avail_clk_cnt; }; static int skl_get_clk_type(u32 index) { switch (index) { case 0 ... (SKL_SCLK_OFS - 1): return SKL_MCLK; case SKL_SCLK_OFS ... (SKL_SCLKFS_OFS - 1): return SKL_SCLK; case SKL_SCLKFS_OFS ... (SKL_MAX_CLK_CNT - 1): return SKL_SCLK_FS; default: return -EINVAL; } } static int skl_get_vbus_id(u32 index, u8 clk_type) { switch (clk_type) { case SKL_MCLK: return index; case SKL_SCLK: return index - SKL_SCLK_OFS; case SKL_SCLK_FS: return index - SKL_SCLKFS_OFS; default: return -EINVAL; } } static void skl_fill_clk_ipc(struct skl_clk_rate_cfg_table *rcfg, u8 clk_type) { struct nhlt_fmt_cfg *fmt_cfg; union skl_clk_ctrl_ipc *ipc; struct wav_fmt *wfmt; if (!rcfg) return; ipc = &rcfg->dma_ctl_ipc; if (clk_type == SKL_SCLK_FS) { fmt_cfg = (struct nhlt_fmt_cfg *)rcfg->config; wfmt = &fmt_cfg->fmt_ext.fmt; /* Remove TLV Header size */ ipc->sclk_fs.hdr.size = sizeof(struct skl_dmactrl_sclkfs_cfg) - sizeof(struct skl_tlv_hdr); ipc->sclk_fs.sampling_frequency = wfmt->samples_per_sec; ipc->sclk_fs.bit_depth = wfmt->bits_per_sample; ipc->sclk_fs.valid_bit_depth = fmt_cfg->fmt_ext.sample.valid_bits_per_sample; ipc->sclk_fs.number_of_channels = wfmt->channels; } else { ipc->mclk.hdr.type = DMA_CLK_CONTROLS; /* Remove TLV Header size */ ipc->mclk.hdr.size = sizeof(struct skl_dmactrl_mclk_cfg) - sizeof(struct skl_tlv_hdr); } } /* Sends dma control IPC to turn the clock ON/OFF */ static int skl_send_clk_dma_control(struct skl_dev *skl, struct skl_clk_rate_cfg_table *rcfg, u32 vbus_id, u8 clk_type, bool enable) { struct nhlt_specific_cfg *sp_cfg; u32 i2s_config_size, node_id = 0; struct nhlt_fmt_cfg *fmt_cfg; union skl_clk_ctrl_ipc *ipc; void *i2s_config = NULL; u8 *data, size; int ret; if (!rcfg) return -EIO; ipc = &rcfg->dma_ctl_ipc; fmt_cfg = (struct nhlt_fmt_cfg *)rcfg->config; sp_cfg = &fmt_cfg->config; if (clk_type == SKL_SCLK_FS) { ipc->sclk_fs.hdr.type = enable ? DMA_TRANSMITION_START : DMA_TRANSMITION_STOP; data = (u8 *)&ipc->sclk_fs; size = sizeof(struct skl_dmactrl_sclkfs_cfg); } else { /* 1 to enable mclk, 0 to enable sclk */ if (clk_type == SKL_SCLK) ipc->mclk.mclk = 0; else ipc->mclk.mclk = 1; ipc->mclk.keep_running = enable; ipc->mclk.warm_up_over = enable; ipc->mclk.clk_stop_over = !enable; data = (u8 *)&ipc->mclk; size = sizeof(struct skl_dmactrl_mclk_cfg); } i2s_config_size = sp_cfg->size + size; i2s_config = kzalloc(i2s_config_size, GFP_KERNEL); if (!i2s_config) return -ENOMEM; /* copy blob */ memcpy(i2s_config, sp_cfg->caps, sp_cfg->size); /* copy additional dma controls information */ memcpy(i2s_config + sp_cfg->size, data, size); node_id = ((SKL_DMA_I2S_LINK_INPUT_CLASS << 8) | (vbus_id << 4)); ret = skl_dsp_set_dma_control(skl, (u32 *)i2s_config, i2s_config_size, node_id); kfree(i2s_config); return ret; } static struct skl_clk_rate_cfg_table *skl_get_rate_cfg( struct skl_clk_rate_cfg_table *rcfg, unsigned long rate) { int i; for (i = 0; (i < SKL_MAX_CLK_RATES) && rcfg[i].rate; i++) { if (rcfg[i].rate == rate) return &rcfg[i]; } return NULL; } static int skl_clk_change_status(struct skl_clk *clkdev, bool enable) { struct skl_clk_rate_cfg_table *rcfg; int vbus_id, clk_type; clk_type = skl_get_clk_type(clkdev->id); if (clk_type < 0) return clk_type; vbus_id = skl_get_vbus_id(clkdev->id, clk_type); if (vbus_id < 0) return vbus_id; rcfg = skl_get_rate_cfg(clkdev->pdata->ssp_clks[clkdev->id].rate_cfg, clkdev->rate); if (!rcfg) return -EINVAL; return skl_send_clk_dma_control(clkdev->pdata->pvt_data, rcfg, vbus_id, clk_type, enable); } static int skl_clk_prepare(struct clk_hw *hw) { struct skl_clk *clkdev = to_skl_clk(hw); return skl_clk_change_status(clkdev, true); } static void skl_clk_unprepare(struct clk_hw *hw) { struct skl_clk *clkdev = to_skl_clk(hw); skl_clk_change_status(clkdev, false); } static int skl_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct skl_clk *clkdev = to_skl_clk(hw); struct skl_clk_rate_cfg_table *rcfg; int clk_type; if (!rate) return -EINVAL; rcfg = skl_get_rate_cfg(clkdev->pdata->ssp_clks[clkdev->id].rate_cfg, rate); if (!rcfg) return -EINVAL; clk_type = skl_get_clk_type(clkdev->id); if (clk_type < 0) return clk_type; skl_fill_clk_ipc(rcfg, clk_type); clkdev->rate = rate; return 0; } static unsigned long skl_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct skl_clk *clkdev = to_skl_clk(hw); if (clkdev->rate) return clkdev->rate; return 0; } /* Not supported by clk driver. Implemented to satisfy clk fw */ static long skl_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { return rate; } /* * prepare/unprepare are used instead of enable/disable as IPC will be sent * in non-atomic context. */ static const struct clk_ops skl_clk_ops = { .prepare = skl_clk_prepare, .unprepare = skl_clk_unprepare, .set_rate = skl_clk_set_rate, .round_rate = skl_clk_round_rate, .recalc_rate = skl_clk_recalc_rate, }; static void unregister_parent_src_clk(struct skl_clk_parent *pclk, unsigned int id) { while (id--) { clkdev_drop(pclk[id].lookup); clk_hw_unregister_fixed_rate(pclk[id].hw); } } static void unregister_src_clk(struct skl_clk_data *dclk) { while (dclk->avail_clk_cnt--) clkdev_drop(dclk->clk[dclk->avail_clk_cnt]->lookup); } static int skl_register_parent_clks(struct device *dev, struct skl_clk_parent *parent, struct skl_clk_parent_src *pclk) { int i, ret; for (i = 0; i < SKL_MAX_CLK_SRC; i++) { /* Register Parent clock */ parent[i].hw = clk_hw_register_fixed_rate(dev, pclk[i].name, pclk[i].parent_name, 0, pclk[i].rate); if (IS_ERR(parent[i].hw)) { ret = PTR_ERR(parent[i].hw); goto err; } parent[i].lookup = clkdev_hw_create(parent[i].hw, pclk[i].name, NULL); if (!parent[i].lookup) { clk_hw_unregister_fixed_rate(parent[i].hw); ret = -ENOMEM; goto err; } } return 0; err: unregister_parent_src_clk(parent, i); return ret; } /* Assign fmt_config to clk_data */ static struct skl_clk *register_skl_clk(struct device *dev, struct skl_ssp_clk *clk, struct skl_clk_pdata *clk_pdata, int id) { struct clk_init_data init; struct skl_clk *clkdev; int ret; clkdev = devm_kzalloc(dev, sizeof(*clkdev), GFP_KERNEL); if (!clkdev) return ERR_PTR(-ENOMEM); init.name = clk->name; init.ops = &skl_clk_ops; init.flags = CLK_SET_RATE_GATE; init.parent_names = &clk->parent_name; init.num_parents = 1; clkdev->hw.init = &init; clkdev->pdata = clk_pdata; clkdev->id = id; ret = devm_clk_hw_register(dev, &clkdev->hw); if (ret) { clkdev = ERR_PTR(ret); return clkdev; } clkdev->lookup = clkdev_hw_create(&clkdev->hw, init.name, NULL); if (!clkdev->lookup) clkdev = ERR_PTR(-ENOMEM); return clkdev; } static int skl_clk_dev_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device *parent_dev = dev->parent; struct skl_clk_parent_src *parent_clks; struct skl_clk_pdata *clk_pdata; struct skl_clk_data *data; struct skl_ssp_clk *clks; int ret, i; clk_pdata = dev_get_platdata(&pdev->dev); parent_clks = clk_pdata->parent_clks; clks = clk_pdata->ssp_clks; if (!parent_clks || !clks) return -EIO; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; /* Register Parent clock */ ret = skl_register_parent_clks(parent_dev, data->parent, parent_clks); if (ret < 0) return ret; for (i = 0; i < clk_pdata->num_clks; i++) { /* * Only register valid clocks * i.e. for which nhlt entry is present. */ if (clks[i].rate_cfg[0].rate == 0) continue; data->clk[data->avail_clk_cnt] = register_skl_clk(dev, &clks[i], clk_pdata, i); if (IS_ERR(data->clk[data->avail_clk_cnt])) { ret = PTR_ERR(data->clk[data->avail_clk_cnt]); goto err_unreg_skl_clk; } data->avail_clk_cnt++; } platform_set_drvdata(pdev, data); return 0; err_unreg_skl_clk: unregister_src_clk(data); unregister_parent_src_clk(data->parent, SKL_MAX_CLK_SRC); return ret; } static void skl_clk_dev_remove(struct platform_device *pdev) { struct skl_clk_data *data; data = platform_get_drvdata(pdev); unregister_src_clk(data); unregister_parent_src_clk(data->parent, SKL_MAX_CLK_SRC); } static struct platform_driver skl_clk_driver = { .driver = { .name = "skl-ssp-clk", }, .probe = skl_clk_dev_probe, .remove_new = skl_clk_dev_remove, }; module_platform_driver(skl_clk_driver); MODULE_DESCRIPTION("Skylake clock driver"); MODULE_AUTHOR("Jaikrishna Nemallapudi <[email protected]>"); MODULE_AUTHOR("Subhransu S. Prusty <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:skl-ssp-clk");
linux-master
sound/soc/intel/skylake/skl-ssp-clk.c
// SPDX-License-Identifier: GPL-2.0-only /* * cnl-sst.c - DSP library functions for CNL platform * * Copyright (C) 2016-17, Intel Corporation. * * Author: Guneshwor Singh <[email protected]> * * Modified from: * HDA DSP library functions for SKL platform * Copyright (C) 2014-15, Intel Corporation. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/module.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/device.h> #include "../common/sst-dsp.h" #include "../common/sst-dsp-priv.h" #include "../common/sst-ipc.h" #include "cnl-sst-dsp.h" #include "skl.h" #define CNL_FW_ROM_INIT 0x1 #define CNL_FW_INIT 0x5 #define CNL_IPC_PURGE 0x01004000 #define CNL_INIT_TIMEOUT 300 #define CNL_BASEFW_TIMEOUT 3000 #define CNL_ADSP_SRAM0_BASE 0x80000 /* Firmware status window */ #define CNL_ADSP_FW_STATUS CNL_ADSP_SRAM0_BASE #define CNL_ADSP_ERROR_CODE (CNL_ADSP_FW_STATUS + 0x4) #define CNL_INSTANCE_ID 0 #define CNL_BASE_FW_MODULE_ID 0 #define CNL_ADSP_FW_HDR_OFFSET 0x2000 #define CNL_ROM_CTRL_DMA_ID 0x9 static int cnl_prepare_fw(struct sst_dsp *ctx, const void *fwdata, u32 fwsize) { int ret, stream_tag; stream_tag = ctx->dsp_ops.prepare(ctx->dev, 0x40, fwsize, &ctx->dmab); if (stream_tag <= 0) { dev_err(ctx->dev, "dma prepare failed: 0%#x\n", stream_tag); return stream_tag; } ctx->dsp_ops.stream_tag = stream_tag; memcpy(ctx->dmab.area, fwdata, fwsize); ret = skl_dsp_core_power_up(ctx, SKL_DSP_CORE0_MASK); if (ret < 0) { dev_err(ctx->dev, "dsp core0 power up failed\n"); ret = -EIO; goto base_fw_load_failed; } /* purge FW request */ sst_dsp_shim_write(ctx, CNL_ADSP_REG_HIPCIDR, CNL_ADSP_REG_HIPCIDR_BUSY | (CNL_IPC_PURGE | ((stream_tag - 1) << CNL_ROM_CTRL_DMA_ID))); ret = skl_dsp_start_core(ctx, SKL_DSP_CORE0_MASK); if (ret < 0) { dev_err(ctx->dev, "Start dsp core failed ret: %d\n", ret); ret = -EIO; goto base_fw_load_failed; } ret = sst_dsp_register_poll(ctx, CNL_ADSP_REG_HIPCIDA, CNL_ADSP_REG_HIPCIDA_DONE, CNL_ADSP_REG_HIPCIDA_DONE, BXT_INIT_TIMEOUT, "HIPCIDA Done"); if (ret < 0) { dev_err(ctx->dev, "timeout for purge request: %d\n", ret); goto base_fw_load_failed; } /* enable interrupt */ cnl_ipc_int_enable(ctx); cnl_ipc_op_int_enable(ctx); ret = sst_dsp_register_poll(ctx, CNL_ADSP_FW_STATUS, CNL_FW_STS_MASK, CNL_FW_ROM_INIT, CNL_INIT_TIMEOUT, "rom load"); if (ret < 0) { dev_err(ctx->dev, "rom init timeout, ret: %d\n", ret); goto base_fw_load_failed; } return 0; base_fw_load_failed: ctx->dsp_ops.cleanup(ctx->dev, &ctx->dmab, stream_tag); cnl_dsp_disable_core(ctx, SKL_DSP_CORE0_MASK); return ret; } static int sst_transfer_fw_host_dma(struct sst_dsp *ctx) { int ret; ctx->dsp_ops.trigger(ctx->dev, true, ctx->dsp_ops.stream_tag); ret = sst_dsp_register_poll(ctx, CNL_ADSP_FW_STATUS, CNL_FW_STS_MASK, CNL_FW_INIT, CNL_BASEFW_TIMEOUT, "firmware boot"); ctx->dsp_ops.trigger(ctx->dev, false, ctx->dsp_ops.stream_tag); ctx->dsp_ops.cleanup(ctx->dev, &ctx->dmab, ctx->dsp_ops.stream_tag); return ret; } static int cnl_load_base_firmware(struct sst_dsp *ctx) { struct firmware stripped_fw; struct skl_dev *cnl = ctx->thread_context; int ret, i; if (!ctx->fw) { ret = request_firmware(&ctx->fw, ctx->fw_name, ctx->dev); if (ret < 0) { dev_err(ctx->dev, "request firmware failed: %d\n", ret); goto cnl_load_base_firmware_failed; } } /* parse uuids if first boot */ if (cnl->is_first_boot) { ret = snd_skl_parse_uuids(ctx, ctx->fw, CNL_ADSP_FW_HDR_OFFSET, 0); if (ret < 0) goto cnl_load_base_firmware_failed; } stripped_fw.data = ctx->fw->data; stripped_fw.size = ctx->fw->size; skl_dsp_strip_extended_manifest(&stripped_fw); for (i = 0; i < BXT_FW_ROM_INIT_RETRY; i++) { ret = cnl_prepare_fw(ctx, stripped_fw.data, stripped_fw.size); if (!ret) break; dev_dbg(ctx->dev, "prepare firmware failed: %d\n", ret); } if (ret < 0) goto cnl_load_base_firmware_failed; ret = sst_transfer_fw_host_dma(ctx); if (ret < 0) { dev_err(ctx->dev, "transfer firmware failed: %d\n", ret); cnl_dsp_disable_core(ctx, SKL_DSP_CORE0_MASK); goto cnl_load_base_firmware_failed; } ret = wait_event_timeout(cnl->boot_wait, cnl->boot_complete, msecs_to_jiffies(SKL_IPC_BOOT_MSECS)); if (ret == 0) { dev_err(ctx->dev, "FW ready timed-out\n"); cnl_dsp_disable_core(ctx, SKL_DSP_CORE0_MASK); ret = -EIO; goto cnl_load_base_firmware_failed; } cnl->fw_loaded = true; return 0; cnl_load_base_firmware_failed: dev_err(ctx->dev, "firmware load failed: %d\n", ret); release_firmware(ctx->fw); ctx->fw = NULL; return ret; } static int cnl_set_dsp_D0(struct sst_dsp *ctx, unsigned int core_id) { struct skl_dev *cnl = ctx->thread_context; unsigned int core_mask = SKL_DSP_CORE_MASK(core_id); struct skl_ipc_dxstate_info dx; int ret; if (!cnl->fw_loaded) { cnl->boot_complete = false; ret = cnl_load_base_firmware(ctx); if (ret < 0) { dev_err(ctx->dev, "fw reload failed: %d\n", ret); return ret; } cnl->cores.state[core_id] = SKL_DSP_RUNNING; return ret; } ret = cnl_dsp_enable_core(ctx, core_mask); if (ret < 0) { dev_err(ctx->dev, "enable dsp core %d failed: %d\n", core_id, ret); goto err; } if (core_id == SKL_DSP_CORE0_ID) { /* enable interrupt */ cnl_ipc_int_enable(ctx); cnl_ipc_op_int_enable(ctx); cnl->boot_complete = false; ret = wait_event_timeout(cnl->boot_wait, cnl->boot_complete, msecs_to_jiffies(SKL_IPC_BOOT_MSECS)); if (ret == 0) { dev_err(ctx->dev, "dsp boot timeout, status=%#x error=%#x\n", sst_dsp_shim_read(ctx, CNL_ADSP_FW_STATUS), sst_dsp_shim_read(ctx, CNL_ADSP_ERROR_CODE)); ret = -ETIMEDOUT; goto err; } } else { dx.core_mask = core_mask; dx.dx_mask = core_mask; ret = skl_ipc_set_dx(&cnl->ipc, CNL_INSTANCE_ID, CNL_BASE_FW_MODULE_ID, &dx); if (ret < 0) { dev_err(ctx->dev, "set_dx failed, core: %d ret: %d\n", core_id, ret); goto err; } } cnl->cores.state[core_id] = SKL_DSP_RUNNING; return 0; err: cnl_dsp_disable_core(ctx, core_mask); return ret; } static int cnl_set_dsp_D3(struct sst_dsp *ctx, unsigned int core_id) { struct skl_dev *cnl = ctx->thread_context; unsigned int core_mask = SKL_DSP_CORE_MASK(core_id); struct skl_ipc_dxstate_info dx; int ret; dx.core_mask = core_mask; dx.dx_mask = SKL_IPC_D3_MASK; ret = skl_ipc_set_dx(&cnl->ipc, CNL_INSTANCE_ID, CNL_BASE_FW_MODULE_ID, &dx); if (ret < 0) { dev_err(ctx->dev, "dsp core %d to d3 failed; continue reset\n", core_id); cnl->fw_loaded = false; } /* disable interrupts if core 0 */ if (core_id == SKL_DSP_CORE0_ID) { skl_ipc_op_int_disable(ctx); skl_ipc_int_disable(ctx); } ret = cnl_dsp_disable_core(ctx, core_mask); if (ret < 0) { dev_err(ctx->dev, "disable dsp core %d failed: %d\n", core_id, ret); return ret; } cnl->cores.state[core_id] = SKL_DSP_RESET; return ret; } static unsigned int cnl_get_errno(struct sst_dsp *ctx) { return sst_dsp_shim_read(ctx, CNL_ADSP_ERROR_CODE); } static const struct skl_dsp_fw_ops cnl_fw_ops = { .set_state_D0 = cnl_set_dsp_D0, .set_state_D3 = cnl_set_dsp_D3, .load_fw = cnl_load_base_firmware, .get_fw_errcode = cnl_get_errno, }; static struct sst_ops cnl_ops = { .irq_handler = cnl_dsp_sst_interrupt, .write = sst_shim32_write, .read = sst_shim32_read, .free = cnl_dsp_free, }; #define CNL_IPC_GLB_NOTIFY_RSP_SHIFT 29 #define CNL_IPC_GLB_NOTIFY_RSP_MASK 0x1 #define CNL_IPC_GLB_NOTIFY_RSP_TYPE(x) (((x) >> CNL_IPC_GLB_NOTIFY_RSP_SHIFT) \ & CNL_IPC_GLB_NOTIFY_RSP_MASK) static irqreturn_t cnl_dsp_irq_thread_handler(int irq, void *context) { struct sst_dsp *dsp = context; struct skl_dev *cnl = dsp->thread_context; struct sst_generic_ipc *ipc = &cnl->ipc; struct skl_ipc_header header = {0}; u32 hipcida, hipctdr, hipctdd; int ipc_irq = 0; /* here we handle ipc interrupts only */ if (!(dsp->intr_status & CNL_ADSPIS_IPC)) return IRQ_NONE; hipcida = sst_dsp_shim_read_unlocked(dsp, CNL_ADSP_REG_HIPCIDA); hipctdr = sst_dsp_shim_read_unlocked(dsp, CNL_ADSP_REG_HIPCTDR); hipctdd = sst_dsp_shim_read_unlocked(dsp, CNL_ADSP_REG_HIPCTDD); /* reply message from dsp */ if (hipcida & CNL_ADSP_REG_HIPCIDA_DONE) { sst_dsp_shim_update_bits(dsp, CNL_ADSP_REG_HIPCCTL, CNL_ADSP_REG_HIPCCTL_DONE, 0); /* clear done bit - tell dsp operation is complete */ sst_dsp_shim_update_bits_forced(dsp, CNL_ADSP_REG_HIPCIDA, CNL_ADSP_REG_HIPCIDA_DONE, CNL_ADSP_REG_HIPCIDA_DONE); ipc_irq = 1; /* unmask done interrupt */ sst_dsp_shim_update_bits(dsp, CNL_ADSP_REG_HIPCCTL, CNL_ADSP_REG_HIPCCTL_DONE, CNL_ADSP_REG_HIPCCTL_DONE); } /* new message from dsp */ if (hipctdr & CNL_ADSP_REG_HIPCTDR_BUSY) { header.primary = hipctdr; header.extension = hipctdd; dev_dbg(dsp->dev, "IPC irq: Firmware respond primary:%x", header.primary); dev_dbg(dsp->dev, "IPC irq: Firmware respond extension:%x", header.extension); if (CNL_IPC_GLB_NOTIFY_RSP_TYPE(header.primary)) { /* Handle Immediate reply from DSP Core */ skl_ipc_process_reply(ipc, header); } else { dev_dbg(dsp->dev, "IPC irq: Notification from firmware\n"); skl_ipc_process_notification(ipc, header); } /* clear busy interrupt */ sst_dsp_shim_update_bits_forced(dsp, CNL_ADSP_REG_HIPCTDR, CNL_ADSP_REG_HIPCTDR_BUSY, CNL_ADSP_REG_HIPCTDR_BUSY); /* set done bit to ack dsp */ sst_dsp_shim_update_bits_forced(dsp, CNL_ADSP_REG_HIPCTDA, CNL_ADSP_REG_HIPCTDA_DONE, CNL_ADSP_REG_HIPCTDA_DONE); ipc_irq = 1; } if (ipc_irq == 0) return IRQ_NONE; cnl_ipc_int_enable(dsp); /* continue to send any remaining messages */ schedule_work(&ipc->kwork); return IRQ_HANDLED; } static struct sst_dsp_device cnl_dev = { .thread = cnl_dsp_irq_thread_handler, .ops = &cnl_ops, }; static void cnl_ipc_tx_msg(struct sst_generic_ipc *ipc, struct ipc_message *msg) { struct skl_ipc_header *header = (struct skl_ipc_header *)(&msg->tx.header); if (msg->tx.size) sst_dsp_outbox_write(ipc->dsp, msg->tx.data, msg->tx.size); sst_dsp_shim_write_unlocked(ipc->dsp, CNL_ADSP_REG_HIPCIDD, header->extension); sst_dsp_shim_write_unlocked(ipc->dsp, CNL_ADSP_REG_HIPCIDR, header->primary | CNL_ADSP_REG_HIPCIDR_BUSY); } static bool cnl_ipc_is_dsp_busy(struct sst_dsp *dsp) { u32 hipcidr; hipcidr = sst_dsp_shim_read_unlocked(dsp, CNL_ADSP_REG_HIPCIDR); return (hipcidr & CNL_ADSP_REG_HIPCIDR_BUSY); } static int cnl_ipc_init(struct device *dev, struct skl_dev *cnl) { struct sst_generic_ipc *ipc; int err; ipc = &cnl->ipc; ipc->dsp = cnl->dsp; ipc->dev = dev; ipc->tx_data_max_size = CNL_ADSP_W1_SZ; ipc->rx_data_max_size = CNL_ADSP_W0_UP_SZ; err = sst_ipc_init(ipc); if (err) return err; /* * overriding tx_msg and is_dsp_busy since * ipc registers are different for cnl */ ipc->ops.tx_msg = cnl_ipc_tx_msg; ipc->ops.tx_data_copy = skl_ipc_tx_data_copy; ipc->ops.is_dsp_busy = cnl_ipc_is_dsp_busy; return 0; } int cnl_sst_dsp_init(struct device *dev, void __iomem *mmio_base, int irq, const char *fw_name, struct skl_dsp_loader_ops dsp_ops, struct skl_dev **dsp) { struct skl_dev *cnl; struct sst_dsp *sst; int ret; ret = skl_sst_ctx_init(dev, irq, fw_name, dsp_ops, dsp, &cnl_dev); if (ret < 0) { dev_err(dev, "%s: no device\n", __func__); return ret; } cnl = *dsp; sst = cnl->dsp; sst->fw_ops = cnl_fw_ops; sst->addr.lpe = mmio_base; sst->addr.shim = mmio_base; sst->addr.sram0_base = CNL_ADSP_SRAM0_BASE; sst->addr.sram1_base = CNL_ADSP_SRAM1_BASE; sst->addr.w0_stat_sz = CNL_ADSP_W0_STAT_SZ; sst->addr.w0_up_sz = CNL_ADSP_W0_UP_SZ; sst_dsp_mailbox_init(sst, (CNL_ADSP_SRAM0_BASE + CNL_ADSP_W0_STAT_SZ), CNL_ADSP_W0_UP_SZ, CNL_ADSP_SRAM1_BASE, CNL_ADSP_W1_SZ); ret = cnl_ipc_init(dev, cnl); if (ret) { skl_dsp_free(sst); return ret; } cnl->boot_complete = false; init_waitqueue_head(&cnl->boot_wait); return skl_dsp_acquire_irq(sst); } EXPORT_SYMBOL_GPL(cnl_sst_dsp_init); int cnl_sst_init_fw(struct device *dev, struct skl_dev *skl) { int ret; struct sst_dsp *sst = skl->dsp; ret = skl->dsp->fw_ops.load_fw(sst); if (ret < 0) { dev_err(dev, "load base fw failed: %d", ret); return ret; } skl_dsp_init_core_state(sst); skl->is_first_boot = false; return 0; } EXPORT_SYMBOL_GPL(cnl_sst_init_fw); void cnl_sst_dsp_cleanup(struct device *dev, struct skl_dev *skl) { if (skl->dsp->fw) release_firmware(skl->dsp->fw); skl_freeup_uuid_list(skl); cnl_ipc_free(&skl->ipc); skl->dsp->ops->free(skl->dsp); } EXPORT_SYMBOL_GPL(cnl_sst_dsp_cleanup); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel Cannonlake IPC driver");
linux-master
sound/soc/intel/skylake/cnl-sst.c
// SPDX-License-Identifier: GPL-2.0-only /* * skl-sst.c - HDA DSP library functions for SKL platform * * Copyright (C) 2014-15, Intel Corporation. * Author:Rafal Redzimski <[email protected]> * Jeeja KP <[email protected]> * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/module.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/uuid.h> #include "../common/sst-dsp.h" #include "../common/sst-dsp-priv.h" #include "../common/sst-ipc.h" #include "skl.h" #define SKL_BASEFW_TIMEOUT 300 #define SKL_INIT_TIMEOUT 1000 /* Intel HD Audio SRAM Window 0*/ #define SKL_ADSP_SRAM0_BASE 0x8000 /* Firmware status window */ #define SKL_ADSP_FW_STATUS SKL_ADSP_SRAM0_BASE #define SKL_ADSP_ERROR_CODE (SKL_ADSP_FW_STATUS + 0x4) #define SKL_NUM_MODULES 1 static bool skl_check_fw_status(struct sst_dsp *ctx, u32 status) { u32 cur_sts; cur_sts = sst_dsp_shim_read(ctx, SKL_ADSP_FW_STATUS) & SKL_FW_STS_MASK; return (cur_sts == status); } static int skl_transfer_firmware(struct sst_dsp *ctx, const void *basefw, u32 base_fw_size) { int ret = 0; ret = ctx->cl_dev.ops.cl_copy_to_dmabuf(ctx, basefw, base_fw_size, true); if (ret < 0) return ret; ret = sst_dsp_register_poll(ctx, SKL_ADSP_FW_STATUS, SKL_FW_STS_MASK, SKL_FW_RFW_START, SKL_BASEFW_TIMEOUT, "Firmware boot"); ctx->cl_dev.ops.cl_stop_dma(ctx); return ret; } #define SKL_ADSP_FW_BIN_HDR_OFFSET 0x284 static int skl_load_base_firmware(struct sst_dsp *ctx) { int ret = 0, i; struct skl_dev *skl = ctx->thread_context; struct firmware stripped_fw; u32 reg; skl->boot_complete = false; init_waitqueue_head(&skl->boot_wait); if (ctx->fw == NULL) { ret = request_firmware(&ctx->fw, ctx->fw_name, ctx->dev); if (ret < 0) { dev_err(ctx->dev, "Request firmware failed %d\n", ret); return -EIO; } } /* prase uuids on first boot */ if (skl->is_first_boot) { ret = snd_skl_parse_uuids(ctx, ctx->fw, SKL_ADSP_FW_BIN_HDR_OFFSET, 0); if (ret < 0) { dev_err(ctx->dev, "UUID parsing err: %d\n", ret); release_firmware(ctx->fw); skl_dsp_disable_core(ctx, SKL_DSP_CORE0_MASK); return ret; } } /* check for extended manifest */ stripped_fw.data = ctx->fw->data; stripped_fw.size = ctx->fw->size; skl_dsp_strip_extended_manifest(&stripped_fw); ret = skl_dsp_boot(ctx); if (ret < 0) { dev_err(ctx->dev, "Boot dsp core failed ret: %d\n", ret); goto skl_load_base_firmware_failed; } ret = skl_cldma_prepare(ctx); if (ret < 0) { dev_err(ctx->dev, "CL dma prepare failed : %d\n", ret); goto skl_load_base_firmware_failed; } /* enable Interrupt */ skl_ipc_int_enable(ctx); skl_ipc_op_int_enable(ctx); /* check ROM Status */ for (i = SKL_INIT_TIMEOUT; i > 0; --i) { if (skl_check_fw_status(ctx, SKL_FW_INIT)) { dev_dbg(ctx->dev, "ROM loaded, we can continue with FW loading\n"); break; } mdelay(1); } if (!i) { reg = sst_dsp_shim_read(ctx, SKL_ADSP_FW_STATUS); dev_err(ctx->dev, "Timeout waiting for ROM init done, reg:0x%x\n", reg); ret = -EIO; goto transfer_firmware_failed; } ret = skl_transfer_firmware(ctx, stripped_fw.data, stripped_fw.size); if (ret < 0) { dev_err(ctx->dev, "Transfer firmware failed%d\n", ret); goto transfer_firmware_failed; } else { ret = wait_event_timeout(skl->boot_wait, skl->boot_complete, msecs_to_jiffies(SKL_IPC_BOOT_MSECS)); if (ret == 0) { dev_err(ctx->dev, "DSP boot failed, FW Ready timed-out\n"); ret = -EIO; goto transfer_firmware_failed; } dev_dbg(ctx->dev, "Download firmware successful%d\n", ret); skl->fw_loaded = true; } return 0; transfer_firmware_failed: ctx->cl_dev.ops.cl_cleanup_controller(ctx); skl_load_base_firmware_failed: skl_dsp_disable_core(ctx, SKL_DSP_CORE0_MASK); release_firmware(ctx->fw); ctx->fw = NULL; return ret; } static int skl_set_dsp_D0(struct sst_dsp *ctx, unsigned int core_id) { int ret; struct skl_ipc_dxstate_info dx; struct skl_dev *skl = ctx->thread_context; unsigned int core_mask = SKL_DSP_CORE_MASK(core_id); /* If core0 is being turned on, we need to load the FW */ if (core_id == SKL_DSP_CORE0_ID) { ret = skl_load_base_firmware(ctx); if (ret < 0) { dev_err(ctx->dev, "unable to load firmware\n"); return ret; } /* load libs as they are also lost on D3 */ if (skl->lib_count > 1) { ret = ctx->fw_ops.load_library(ctx, skl->lib_info, skl->lib_count); if (ret < 0) { dev_err(ctx->dev, "reload libs failed: %d\n", ret); return ret; } } } /* * If any core other than core 0 is being moved to D0, enable the * core and send the set dx IPC for the core. */ if (core_id != SKL_DSP_CORE0_ID) { ret = skl_dsp_enable_core(ctx, core_mask); if (ret < 0) return ret; dx.core_mask = core_mask; dx.dx_mask = core_mask; ret = skl_ipc_set_dx(&skl->ipc, SKL_INSTANCE_ID, SKL_BASE_FW_MODULE_ID, &dx); if (ret < 0) { dev_err(ctx->dev, "Failed to set dsp to D0:core id= %d\n", core_id); skl_dsp_disable_core(ctx, core_mask); } } skl->cores.state[core_id] = SKL_DSP_RUNNING; return 0; } static int skl_set_dsp_D3(struct sst_dsp *ctx, unsigned int core_id) { int ret; struct skl_ipc_dxstate_info dx; struct skl_dev *skl = ctx->thread_context; unsigned int core_mask = SKL_DSP_CORE_MASK(core_id); dx.core_mask = core_mask; dx.dx_mask = SKL_IPC_D3_MASK; ret = skl_ipc_set_dx(&skl->ipc, SKL_INSTANCE_ID, SKL_BASE_FW_MODULE_ID, &dx); if (ret < 0) dev_err(ctx->dev, "set Dx core %d fail: %d\n", core_id, ret); if (core_id == SKL_DSP_CORE0_ID) { /* disable Interrupt */ ctx->cl_dev.ops.cl_cleanup_controller(ctx); skl_cldma_int_disable(ctx); skl_ipc_op_int_disable(ctx); skl_ipc_int_disable(ctx); } ret = skl_dsp_disable_core(ctx, core_mask); if (ret < 0) return ret; skl->cores.state[core_id] = SKL_DSP_RESET; return ret; } static unsigned int skl_get_errorcode(struct sst_dsp *ctx) { return sst_dsp_shim_read(ctx, SKL_ADSP_ERROR_CODE); } /* * since get/set_module are called from DAPM context, * we don't need lock for usage count */ static int skl_get_module(struct sst_dsp *ctx, u16 mod_id) { struct skl_module_table *module; list_for_each_entry(module, &ctx->module_list, list) { if (module->mod_info->mod_id == mod_id) return ++module->usage_cnt; } return -EINVAL; } static int skl_put_module(struct sst_dsp *ctx, u16 mod_id) { struct skl_module_table *module; list_for_each_entry(module, &ctx->module_list, list) { if (module->mod_info->mod_id == mod_id) return --module->usage_cnt; } return -EINVAL; } static struct skl_module_table *skl_fill_module_table(struct sst_dsp *ctx, char *mod_name, int mod_id) { const struct firmware *fw; struct skl_module_table *skl_module; unsigned int size; int ret; ret = request_firmware(&fw, mod_name, ctx->dev); if (ret < 0) { dev_err(ctx->dev, "Request Module %s failed :%d\n", mod_name, ret); return NULL; } skl_module = devm_kzalloc(ctx->dev, sizeof(*skl_module), GFP_KERNEL); if (skl_module == NULL) { release_firmware(fw); return NULL; } size = sizeof(*skl_module->mod_info); skl_module->mod_info = devm_kzalloc(ctx->dev, size, GFP_KERNEL); if (skl_module->mod_info == NULL) { release_firmware(fw); return NULL; } skl_module->mod_info->mod_id = mod_id; skl_module->mod_info->fw = fw; list_add(&skl_module->list, &ctx->module_list); return skl_module; } /* get a module from it's unique ID */ static struct skl_module_table *skl_module_get_from_id( struct sst_dsp *ctx, u16 mod_id) { struct skl_module_table *module; if (list_empty(&ctx->module_list)) { dev_err(ctx->dev, "Module list is empty\n"); return NULL; } list_for_each_entry(module, &ctx->module_list, list) { if (module->mod_info->mod_id == mod_id) return module; } return NULL; } static int skl_transfer_module(struct sst_dsp *ctx, const void *data, u32 size, u16 mod_id, u8 table_id, bool is_module) { int ret, bytes_left, curr_pos; struct skl_dev *skl = ctx->thread_context; skl->mod_load_complete = false; bytes_left = ctx->cl_dev.ops.cl_copy_to_dmabuf(ctx, data, size, false); if (bytes_left < 0) return bytes_left; /* check is_module flag to load module or library */ if (is_module) ret = skl_ipc_load_modules(&skl->ipc, SKL_NUM_MODULES, &mod_id); else ret = skl_sst_ipc_load_library(&skl->ipc, 0, table_id, false); if (ret < 0) { dev_err(ctx->dev, "Failed to Load %s with err %d\n", is_module ? "module" : "lib", ret); goto out; } /* * if bytes_left > 0 then wait for BDL complete interrupt and * copy the next chunk till bytes_left is 0. if bytes_left is * zero, then wait for load module IPC reply */ while (bytes_left > 0) { curr_pos = size - bytes_left; ret = skl_cldma_wait_interruptible(ctx); if (ret < 0) goto out; bytes_left = ctx->cl_dev.ops.cl_copy_to_dmabuf(ctx, data + curr_pos, bytes_left, false); } ret = wait_event_timeout(skl->mod_load_wait, skl->mod_load_complete, msecs_to_jiffies(SKL_IPC_BOOT_MSECS)); if (ret == 0 || !skl->mod_load_status) { dev_err(ctx->dev, "Module Load failed\n"); ret = -EIO; } out: ctx->cl_dev.ops.cl_stop_dma(ctx); return ret; } static int skl_load_library(struct sst_dsp *ctx, struct skl_lib_info *linfo, int lib_count) { struct skl_dev *skl = ctx->thread_context; struct firmware stripped_fw; int ret, i; /* library indices start from 1 to N. 0 represents base FW */ for (i = 1; i < lib_count; i++) { ret = skl_prepare_lib_load(skl, &skl->lib_info[i], &stripped_fw, SKL_ADSP_FW_BIN_HDR_OFFSET, i); if (ret < 0) goto load_library_failed; ret = skl_transfer_module(ctx, stripped_fw.data, stripped_fw.size, 0, i, false); if (ret < 0) goto load_library_failed; } return 0; load_library_failed: skl_release_library(linfo, lib_count); return ret; } static int skl_load_module(struct sst_dsp *ctx, u16 mod_id, u8 *guid) { struct skl_module_table *module_entry = NULL; int ret = 0; char mod_name[64]; /* guid str = 32 chars + 4 hyphens */ snprintf(mod_name, sizeof(mod_name), "intel/dsp_fw_%pUL.bin", guid); module_entry = skl_module_get_from_id(ctx, mod_id); if (module_entry == NULL) { module_entry = skl_fill_module_table(ctx, mod_name, mod_id); if (module_entry == NULL) { dev_err(ctx->dev, "Failed to Load module\n"); return -EINVAL; } } if (!module_entry->usage_cnt) { ret = skl_transfer_module(ctx, module_entry->mod_info->fw->data, module_entry->mod_info->fw->size, mod_id, 0, true); if (ret < 0) { dev_err(ctx->dev, "Failed to Load module\n"); return ret; } } ret = skl_get_module(ctx, mod_id); return ret; } static int skl_unload_module(struct sst_dsp *ctx, u16 mod_id) { int usage_cnt; struct skl_dev *skl = ctx->thread_context; int ret = 0; usage_cnt = skl_put_module(ctx, mod_id); if (usage_cnt < 0) { dev_err(ctx->dev, "Module bad usage cnt!:%d\n", usage_cnt); return -EIO; } /* if module is used by others return, no need to unload */ if (usage_cnt > 0) return 0; ret = skl_ipc_unload_modules(&skl->ipc, SKL_NUM_MODULES, &mod_id); if (ret < 0) { dev_err(ctx->dev, "Failed to UnLoad module\n"); skl_get_module(ctx, mod_id); return ret; } return ret; } void skl_clear_module_cnt(struct sst_dsp *ctx) { struct skl_module_table *module; if (list_empty(&ctx->module_list)) return; list_for_each_entry(module, &ctx->module_list, list) { module->usage_cnt = 0; } } EXPORT_SYMBOL_GPL(skl_clear_module_cnt); static void skl_clear_module_table(struct sst_dsp *ctx) { struct skl_module_table *module, *tmp; if (list_empty(&ctx->module_list)) return; list_for_each_entry_safe(module, tmp, &ctx->module_list, list) { list_del(&module->list); release_firmware(module->mod_info->fw); } } static const struct skl_dsp_fw_ops skl_fw_ops = { .set_state_D0 = skl_set_dsp_D0, .set_state_D3 = skl_set_dsp_D3, .load_fw = skl_load_base_firmware, .get_fw_errcode = skl_get_errorcode, .load_library = skl_load_library, .load_mod = skl_load_module, .unload_mod = skl_unload_module, }; static struct sst_ops skl_ops = { .irq_handler = skl_dsp_sst_interrupt, .write = sst_shim32_write, .read = sst_shim32_read, .free = skl_dsp_free, }; static struct sst_dsp_device skl_dev = { .thread = skl_dsp_irq_thread_handler, .ops = &skl_ops, }; int skl_sst_dsp_init(struct device *dev, void __iomem *mmio_base, int irq, const char *fw_name, struct skl_dsp_loader_ops dsp_ops, struct skl_dev **dsp) { struct skl_dev *skl; struct sst_dsp *sst; int ret; ret = skl_sst_ctx_init(dev, irq, fw_name, dsp_ops, dsp, &skl_dev); if (ret < 0) { dev_err(dev, "%s: no device\n", __func__); return ret; } skl = *dsp; sst = skl->dsp; sst->addr.lpe = mmio_base; sst->addr.shim = mmio_base; sst->addr.sram0_base = SKL_ADSP_SRAM0_BASE; sst->addr.sram1_base = SKL_ADSP_SRAM1_BASE; sst->addr.w0_stat_sz = SKL_ADSP_W0_STAT_SZ; sst->addr.w0_up_sz = SKL_ADSP_W0_UP_SZ; sst_dsp_mailbox_init(sst, (SKL_ADSP_SRAM0_BASE + SKL_ADSP_W0_STAT_SZ), SKL_ADSP_W0_UP_SZ, SKL_ADSP_SRAM1_BASE, SKL_ADSP_W1_SZ); ret = skl_ipc_init(dev, skl); if (ret) { skl_dsp_free(sst); return ret; } sst->fw_ops = skl_fw_ops; return skl_dsp_acquire_irq(sst); } EXPORT_SYMBOL_GPL(skl_sst_dsp_init); int skl_sst_init_fw(struct device *dev, struct skl_dev *skl) { int ret; struct sst_dsp *sst = skl->dsp; ret = sst->fw_ops.load_fw(sst); if (ret < 0) { dev_err(dev, "Load base fw failed : %d\n", ret); return ret; } skl_dsp_init_core_state(sst); if (skl->lib_count > 1) { ret = sst->fw_ops.load_library(sst, skl->lib_info, skl->lib_count); if (ret < 0) { dev_err(dev, "Load Library failed : %x\n", ret); return ret; } } skl->is_first_boot = false; return 0; } EXPORT_SYMBOL_GPL(skl_sst_init_fw); void skl_sst_dsp_cleanup(struct device *dev, struct skl_dev *skl) { if (skl->dsp->fw) release_firmware(skl->dsp->fw); skl_clear_module_table(skl->dsp); skl_freeup_uuid_list(skl); skl_ipc_free(&skl->ipc); skl->dsp->ops->free(skl->dsp); if (skl->boot_complete) { skl->dsp->cl_dev.ops.cl_cleanup_controller(skl->dsp); skl_cldma_int_disable(skl->dsp); } } EXPORT_SYMBOL_GPL(skl_sst_dsp_cleanup); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel Skylake IPC driver");
linux-master
sound/soc/intel/skylake/skl-sst.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2020 Intel Corporation. All rights reserved. // // Author: Cezary Rojewski <[email protected]> // #include <linux/dma-mapping.h> #include <linux/firmware.h> #include <linux/slab.h> #include "core.h" #include "registers.h" /* FW load (200ms) plus operational delays */ #define FW_READY_TIMEOUT_MS 250 #define FW_SIGNATURE "$SST" #define FW_SIGNATURE_SIZE 4 struct catpt_fw_hdr { char signature[FW_SIGNATURE_SIZE]; u32 file_size; u32 modules; u32 file_format; u32 reserved[4]; } __packed; struct catpt_fw_mod_hdr { char signature[FW_SIGNATURE_SIZE]; u32 mod_size; u32 blocks; u16 slot; u16 module_id; u32 entry_point; u32 persistent_size; u32 scratch_size; } __packed; enum catpt_ram_type { CATPT_RAM_TYPE_IRAM = 1, CATPT_RAM_TYPE_DRAM = 2, /* DRAM with module's initial state */ CATPT_RAM_TYPE_INSTANCE = 3, }; struct catpt_fw_block_hdr { u32 ram_type; u32 size; u32 ram_offset; u32 rsvd; } __packed; void catpt_sram_init(struct resource *sram, u32 start, u32 size) { sram->start = start; sram->end = start + size - 1; } void catpt_sram_free(struct resource *sram) { struct resource *res, *save; for (res = sram->child; res;) { save = res->sibling; release_resource(res); kfree(res); res = save; } } struct resource * catpt_request_region(struct resource *root, resource_size_t size) { struct resource *res = root->child; resource_size_t addr = root->start; for (;;) { if (res->start - addr >= size) break; addr = res->end + 1; res = res->sibling; if (!res) return NULL; } return __request_region(root, addr, size, NULL, 0); } int catpt_store_streams_context(struct catpt_dev *cdev, struct dma_chan *chan) { struct catpt_stream_runtime *stream; list_for_each_entry(stream, &cdev->stream_list, node) { u32 off, size; int ret; off = stream->persistent->start; size = resource_size(stream->persistent); dev_dbg(cdev->dev, "storing stream %d ctx: off 0x%08x size %d\n", stream->info.stream_hw_id, off, size); ret = catpt_dma_memcpy_fromdsp(cdev, chan, cdev->dxbuf_paddr + off, cdev->lpe_base + off, ALIGN(size, 4)); if (ret) { dev_err(cdev->dev, "memcpy fromdsp failed: %d\n", ret); return ret; } } return 0; } int catpt_store_module_states(struct catpt_dev *cdev, struct dma_chan *chan) { int i; for (i = 0; i < ARRAY_SIZE(cdev->modules); i++) { struct catpt_module_type *type; u32 off; int ret; type = &cdev->modules[i]; if (!type->loaded || !type->state_size) continue; off = type->state_offset; dev_dbg(cdev->dev, "storing mod %d state: off 0x%08x size %d\n", i, off, type->state_size); ret = catpt_dma_memcpy_fromdsp(cdev, chan, cdev->dxbuf_paddr + off, cdev->lpe_base + off, ALIGN(type->state_size, 4)); if (ret) { dev_err(cdev->dev, "memcpy fromdsp failed: %d\n", ret); return ret; } } return 0; } int catpt_store_memdumps(struct catpt_dev *cdev, struct dma_chan *chan) { int i; for (i = 0; i < cdev->dx_ctx.num_meminfo; i++) { struct catpt_save_meminfo *info; u32 off; int ret; info = &cdev->dx_ctx.meminfo[i]; if (info->source != CATPT_DX_TYPE_MEMORY_DUMP) continue; off = catpt_to_host_offset(info->offset); if (off < cdev->dram.start || off > cdev->dram.end) continue; dev_dbg(cdev->dev, "storing memdump: off 0x%08x size %d\n", off, info->size); ret = catpt_dma_memcpy_fromdsp(cdev, chan, cdev->dxbuf_paddr + off, cdev->lpe_base + off, ALIGN(info->size, 4)); if (ret) { dev_err(cdev->dev, "memcpy fromdsp failed: %d\n", ret); return ret; } } return 0; } static int catpt_restore_streams_context(struct catpt_dev *cdev, struct dma_chan *chan) { struct catpt_stream_runtime *stream; list_for_each_entry(stream, &cdev->stream_list, node) { u32 off, size; int ret; off = stream->persistent->start; size = resource_size(stream->persistent); dev_dbg(cdev->dev, "restoring stream %d ctx: off 0x%08x size %d\n", stream->info.stream_hw_id, off, size); ret = catpt_dma_memcpy_todsp(cdev, chan, cdev->lpe_base + off, cdev->dxbuf_paddr + off, ALIGN(size, 4)); if (ret) { dev_err(cdev->dev, "memcpy fromdsp failed: %d\n", ret); return ret; } } return 0; } static int catpt_restore_memdumps(struct catpt_dev *cdev, struct dma_chan *chan) { int i; for (i = 0; i < cdev->dx_ctx.num_meminfo; i++) { struct catpt_save_meminfo *info; u32 off; int ret; info = &cdev->dx_ctx.meminfo[i]; if (info->source != CATPT_DX_TYPE_MEMORY_DUMP) continue; off = catpt_to_host_offset(info->offset); if (off < cdev->dram.start || off > cdev->dram.end) continue; dev_dbg(cdev->dev, "restoring memdump: off 0x%08x size %d\n", off, info->size); ret = catpt_dma_memcpy_todsp(cdev, chan, cdev->lpe_base + off, cdev->dxbuf_paddr + off, ALIGN(info->size, 4)); if (ret) { dev_err(cdev->dev, "restore block failed: %d\n", ret); return ret; } } return 0; } static int catpt_restore_fwimage(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t paddr, struct catpt_fw_block_hdr *blk) { struct resource r1, r2, common; int i; print_hex_dump_debug(__func__, DUMP_PREFIX_OFFSET, 8, 4, blk, sizeof(*blk), false); r1.start = cdev->dram.start + blk->ram_offset; r1.end = r1.start + blk->size - 1; /* advance to data area */ paddr += sizeof(*blk); for (i = 0; i < cdev->dx_ctx.num_meminfo; i++) { struct catpt_save_meminfo *info; u32 off; int ret; info = &cdev->dx_ctx.meminfo[i]; if (info->source != CATPT_DX_TYPE_FW_IMAGE) continue; off = catpt_to_host_offset(info->offset); if (off < cdev->dram.start || off > cdev->dram.end) continue; r2.start = off; r2.end = r2.start + info->size - 1; if (!resource_intersection(&r2, &r1, &common)) continue; /* calculate start offset of common data area */ off = common.start - r1.start; dev_dbg(cdev->dev, "restoring fwimage: %pr\n", &common); ret = catpt_dma_memcpy_todsp(cdev, chan, common.start, paddr + off, resource_size(&common)); if (ret) { dev_err(cdev->dev, "memcpy todsp failed: %d\n", ret); return ret; } } return 0; } static int catpt_load_block(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t paddr, struct catpt_fw_block_hdr *blk, bool alloc) { struct resource *sram, *res; dma_addr_t dst_addr; int ret; print_hex_dump_debug(__func__, DUMP_PREFIX_OFFSET, 8, 4, blk, sizeof(*blk), false); switch (blk->ram_type) { case CATPT_RAM_TYPE_IRAM: sram = &cdev->iram; break; default: sram = &cdev->dram; break; } dst_addr = sram->start + blk->ram_offset; if (alloc) { res = __request_region(sram, dst_addr, blk->size, NULL, 0); if (!res) return -EBUSY; } /* advance to data area */ paddr += sizeof(*blk); ret = catpt_dma_memcpy_todsp(cdev, chan, dst_addr, paddr, blk->size); if (ret) { dev_err(cdev->dev, "memcpy error: %d\n", ret); __release_region(sram, dst_addr, blk->size); } return ret; } static int catpt_restore_basefw(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t paddr, struct catpt_fw_mod_hdr *basefw) { u32 offset = sizeof(*basefw); int ret, i; print_hex_dump_debug(__func__, DUMP_PREFIX_OFFSET, 8, 4, basefw, sizeof(*basefw), false); /* restore basefw image */ for (i = 0; i < basefw->blocks; i++) { struct catpt_fw_block_hdr *blk; blk = (struct catpt_fw_block_hdr *)((u8 *)basefw + offset); switch (blk->ram_type) { case CATPT_RAM_TYPE_IRAM: ret = catpt_load_block(cdev, chan, paddr + offset, blk, false); break; default: ret = catpt_restore_fwimage(cdev, chan, paddr + offset, blk); break; } if (ret) { dev_err(cdev->dev, "restore block failed: %d\n", ret); return ret; } offset += sizeof(*blk) + blk->size; } /* then proceed with memory dumps */ ret = catpt_restore_memdumps(cdev, chan); if (ret) dev_err(cdev->dev, "restore memdumps failed: %d\n", ret); return ret; } static int catpt_restore_module(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t paddr, struct catpt_fw_mod_hdr *mod) { u32 offset = sizeof(*mod); int i; print_hex_dump_debug(__func__, DUMP_PREFIX_OFFSET, 8, 4, mod, sizeof(*mod), false); for (i = 0; i < mod->blocks; i++) { struct catpt_fw_block_hdr *blk; int ret; blk = (struct catpt_fw_block_hdr *)((u8 *)mod + offset); switch (blk->ram_type) { case CATPT_RAM_TYPE_INSTANCE: /* restore module state */ ret = catpt_dma_memcpy_todsp(cdev, chan, cdev->lpe_base + blk->ram_offset, cdev->dxbuf_paddr + blk->ram_offset, ALIGN(blk->size, 4)); break; default: ret = catpt_load_block(cdev, chan, paddr + offset, blk, false); break; } if (ret) { dev_err(cdev->dev, "restore block failed: %d\n", ret); return ret; } offset += sizeof(*blk) + blk->size; } return 0; } static int catpt_load_module(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t paddr, struct catpt_fw_mod_hdr *mod) { struct catpt_module_type *type; u32 offset = sizeof(*mod); int i; print_hex_dump_debug(__func__, DUMP_PREFIX_OFFSET, 8, 4, mod, sizeof(*mod), false); type = &cdev->modules[mod->module_id]; for (i = 0; i < mod->blocks; i++) { struct catpt_fw_block_hdr *blk; int ret; blk = (struct catpt_fw_block_hdr *)((u8 *)mod + offset); ret = catpt_load_block(cdev, chan, paddr + offset, blk, true); if (ret) { dev_err(cdev->dev, "load block failed: %d\n", ret); return ret; } /* * Save state window coordinates - these will be * used to capture module state on D0 exit. */ if (blk->ram_type == CATPT_RAM_TYPE_INSTANCE) { type->state_offset = blk->ram_offset; type->state_size = blk->size; } offset += sizeof(*blk) + blk->size; } /* init module type static info */ type->loaded = true; /* DSP expects address from module header substracted by 4 */ type->entry_point = mod->entry_point - 4; type->persistent_size = mod->persistent_size; type->scratch_size = mod->scratch_size; return 0; } static int catpt_restore_firmware(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t paddr, struct catpt_fw_hdr *fw) { u32 offset = sizeof(*fw); int i; print_hex_dump_debug(__func__, DUMP_PREFIX_OFFSET, 8, 4, fw, sizeof(*fw), false); for (i = 0; i < fw->modules; i++) { struct catpt_fw_mod_hdr *mod; int ret; mod = (struct catpt_fw_mod_hdr *)((u8 *)fw + offset); if (strncmp(fw->signature, mod->signature, FW_SIGNATURE_SIZE)) { dev_err(cdev->dev, "module signature mismatch\n"); return -EINVAL; } if (mod->module_id > CATPT_MODID_LAST) return -EINVAL; switch (mod->module_id) { case CATPT_MODID_BASE_FW: ret = catpt_restore_basefw(cdev, chan, paddr + offset, mod); break; default: ret = catpt_restore_module(cdev, chan, paddr + offset, mod); break; } if (ret) { dev_err(cdev->dev, "restore module failed: %d\n", ret); return ret; } offset += sizeof(*mod) + mod->mod_size; } return 0; } static int catpt_load_firmware(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t paddr, struct catpt_fw_hdr *fw) { u32 offset = sizeof(*fw); int i; print_hex_dump_debug(__func__, DUMP_PREFIX_OFFSET, 8, 4, fw, sizeof(*fw), false); for (i = 0; i < fw->modules; i++) { struct catpt_fw_mod_hdr *mod; int ret; mod = (struct catpt_fw_mod_hdr *)((u8 *)fw + offset); if (strncmp(fw->signature, mod->signature, FW_SIGNATURE_SIZE)) { dev_err(cdev->dev, "module signature mismatch\n"); return -EINVAL; } if (mod->module_id > CATPT_MODID_LAST) return -EINVAL; ret = catpt_load_module(cdev, chan, paddr + offset, mod); if (ret) { dev_err(cdev->dev, "load module failed: %d\n", ret); return ret; } offset += sizeof(*mod) + mod->mod_size; } return 0; } static int catpt_load_image(struct catpt_dev *cdev, struct dma_chan *chan, const char *name, const char *signature, bool restore) { struct catpt_fw_hdr *fw; struct firmware *img; dma_addr_t paddr; void *vaddr; int ret; ret = request_firmware((const struct firmware **)&img, name, cdev->dev); if (ret) return ret; fw = (struct catpt_fw_hdr *)img->data; if (strncmp(fw->signature, signature, FW_SIGNATURE_SIZE)) { dev_err(cdev->dev, "firmware signature mismatch\n"); ret = -EINVAL; goto release_fw; } vaddr = dma_alloc_coherent(cdev->dev, img->size, &paddr, GFP_KERNEL); if (!vaddr) { ret = -ENOMEM; goto release_fw; } memcpy(vaddr, img->data, img->size); fw = (struct catpt_fw_hdr *)vaddr; if (restore) ret = catpt_restore_firmware(cdev, chan, paddr, fw); else ret = catpt_load_firmware(cdev, chan, paddr, fw); dma_free_coherent(cdev->dev, img->size, vaddr, paddr); release_fw: release_firmware(img); return ret; } static int catpt_load_images(struct catpt_dev *cdev, bool restore) { static const char *const names[] = { "intel/IntcSST1.bin", "intel/IntcSST2.bin", }; struct dma_chan *chan; int ret; chan = catpt_dma_request_config_chan(cdev); if (IS_ERR(chan)) return PTR_ERR(chan); ret = catpt_load_image(cdev, chan, names[cdev->spec->core_id - 1], FW_SIGNATURE, restore); if (ret) goto release_dma_chan; if (!restore) goto release_dma_chan; ret = catpt_restore_streams_context(cdev, chan); if (ret) dev_err(cdev->dev, "restore streams ctx failed: %d\n", ret); release_dma_chan: dma_release_channel(chan); return ret; } int catpt_boot_firmware(struct catpt_dev *cdev, bool restore) { int ret; catpt_dsp_stall(cdev, true); ret = catpt_load_images(cdev, restore); if (ret) { dev_err(cdev->dev, "load binaries failed: %d\n", ret); return ret; } reinit_completion(&cdev->fw_ready); catpt_dsp_stall(cdev, false); ret = wait_for_completion_timeout(&cdev->fw_ready, msecs_to_jiffies(FW_READY_TIMEOUT_MS)); if (!ret) { dev_err(cdev->dev, "firmware ready timeout\n"); return -ETIMEDOUT; } /* update sram pg & clock once done booting */ catpt_dsp_update_srampge(cdev, &cdev->dram, cdev->spec->dram_mask); catpt_dsp_update_srampge(cdev, &cdev->iram, cdev->spec->iram_mask); return catpt_dsp_update_lpclock(cdev); } int catpt_first_boot_firmware(struct catpt_dev *cdev) { struct resource *res; int ret; ret = catpt_boot_firmware(cdev, false); if (ret) { dev_err(cdev->dev, "basefw boot failed: %d\n", ret); return ret; } /* restrict FW Core dump area */ __request_region(&cdev->dram, 0, 0x200, NULL, 0); /* restrict entire area following BASE_FW - highest offset in DRAM */ for (res = cdev->dram.child; res->sibling; res = res->sibling) ; __request_region(&cdev->dram, res->end + 1, cdev->dram.end - res->end, NULL, 0); ret = catpt_ipc_get_mixer_stream_info(cdev, &cdev->mixer); if (ret) return CATPT_IPC_ERROR(ret); ret = catpt_arm_stream_templates(cdev); if (ret) { dev_err(cdev->dev, "arm templates failed: %d\n", ret); return ret; } /* update dram pg for scratch and restricted regions */ catpt_dsp_update_srampge(cdev, &cdev->dram, cdev->spec->dram_mask); return 0; }
linux-master
sound/soc/intel/catpt/loader.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2020 Intel Corporation. All rights reserved. // // Author: Cezary Rojewski <[email protected]> // #include <linux/devcoredump.h> #include <linux/dma-mapping.h> #include <linux/firmware.h> #include <linux/pci.h> #include <linux/pxa2xx_ssp.h> #include "core.h" #include "messages.h" #include "registers.h" static bool catpt_dma_filter(struct dma_chan *chan, void *param) { return param == chan->device->dev; } /* * Either engine 0 or 1 can be used for image loading. * Align with Windows driver equivalent and stick to engine 1. */ #define CATPT_DMA_DEVID 1 #define CATPT_DMA_DSP_ADDR_MASK GENMASK(31, 20) struct dma_chan *catpt_dma_request_config_chan(struct catpt_dev *cdev) { struct dma_slave_config config; struct dma_chan *chan; dma_cap_mask_t mask; int ret; dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); chan = dma_request_channel(mask, catpt_dma_filter, cdev->dev); if (!chan) { dev_err(cdev->dev, "request channel failed\n"); return ERR_PTR(-ENODEV); } memset(&config, 0, sizeof(config)); config.direction = DMA_MEM_TO_DEV; config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.src_maxburst = 16; config.dst_maxburst = 16; ret = dmaengine_slave_config(chan, &config); if (ret) { dev_err(cdev->dev, "slave config failed: %d\n", ret); dma_release_channel(chan); return ERR_PTR(ret); } return chan; } static int catpt_dma_memcpy(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t dst_addr, dma_addr_t src_addr, size_t size) { struct dma_async_tx_descriptor *desc; enum dma_status status; int ret; desc = dmaengine_prep_dma_memcpy(chan, dst_addr, src_addr, size, DMA_CTRL_ACK); if (!desc) { dev_err(cdev->dev, "prep dma memcpy failed\n"); return -EIO; } /* enable demand mode for dma channel */ catpt_updatel_shim(cdev, HMDC, CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id), CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id)); ret = dma_submit_error(dmaengine_submit(desc)); if (ret) { dev_err(cdev->dev, "submit tx failed: %d\n", ret); goto clear_hdda; } status = dma_wait_for_async_tx(desc); ret = (status == DMA_COMPLETE) ? 0 : -EPROTO; clear_hdda: /* regardless of status, disable access to HOST memory in demand mode */ catpt_updatel_shim(cdev, HMDC, CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id), 0); return ret; } int catpt_dma_memcpy_todsp(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t dst_addr, dma_addr_t src_addr, size_t size) { return catpt_dma_memcpy(cdev, chan, dst_addr | CATPT_DMA_DSP_ADDR_MASK, src_addr, size); } int catpt_dma_memcpy_fromdsp(struct catpt_dev *cdev, struct dma_chan *chan, dma_addr_t dst_addr, dma_addr_t src_addr, size_t size) { return catpt_dma_memcpy(cdev, chan, dst_addr, src_addr | CATPT_DMA_DSP_ADDR_MASK, size); } int catpt_dmac_probe(struct catpt_dev *cdev) { struct dw_dma_chip *dmac; int ret; dmac = devm_kzalloc(cdev->dev, sizeof(*dmac), GFP_KERNEL); if (!dmac) return -ENOMEM; dmac->regs = cdev->lpe_ba + cdev->spec->host_dma_offset[CATPT_DMA_DEVID]; dmac->dev = cdev->dev; dmac->irq = cdev->irq; ret = dma_coerce_mask_and_coherent(cdev->dev, DMA_BIT_MASK(31)); if (ret) return ret; /* * Caller is responsible for putting device in D0 to allow * for I/O and memory access before probing DW. */ ret = dw_dma_probe(dmac); if (ret) return ret; cdev->dmac = dmac; return 0; } void catpt_dmac_remove(struct catpt_dev *cdev) { /* * As do_dma_remove() juggles with pm_runtime_get_xxx() and * pm_runtime_put_xxx() while both ADSP and DW 'devices' are part of * the same module, caller makes sure pm_runtime_disable() is invoked * before removing DW to prevent postmortem resume and suspend. */ dw_dma_remove(cdev->dmac); } static void catpt_dsp_set_srampge(struct catpt_dev *cdev, struct resource *sram, unsigned long mask, unsigned long new) { unsigned long old; u32 off = sram->start; u32 b = __ffs(mask); old = catpt_readl_pci(cdev, VDRTCTL0) & mask; dev_dbg(cdev->dev, "SRAMPGE [0x%08lx] 0x%08lx -> 0x%08lx", mask, old, new); if (old == new) return; catpt_updatel_pci(cdev, VDRTCTL0, mask, new); /* wait for SRAM power gating to propagate */ udelay(60); /* * Dummy read as the very first access after block enable * to prevent byte loss in future operations. */ for_each_clear_bit_from(b, &new, fls_long(mask)) { u8 buf[4]; /* newly enabled: new bit=0 while old bit=1 */ if (test_bit(b, &old)) { dev_dbg(cdev->dev, "sanitize block %ld: off 0x%08x\n", b - __ffs(mask), off); memcpy_fromio(buf, cdev->lpe_ba + off, sizeof(buf)); } off += CATPT_MEMBLOCK_SIZE; } } void catpt_dsp_update_srampge(struct catpt_dev *cdev, struct resource *sram, unsigned long mask) { struct resource *res; unsigned long new = 0; /* flag all busy blocks */ for (res = sram->child; res; res = res->sibling) { u32 h, l; h = (res->end - sram->start) / CATPT_MEMBLOCK_SIZE; l = (res->start - sram->start) / CATPT_MEMBLOCK_SIZE; new |= GENMASK(h, l); } /* offset value given mask's start and invert it as ON=b0 */ new = ~(new << __ffs(mask)) & mask; /* disable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0); catpt_dsp_set_srampge(cdev, sram, mask, new); /* enable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, CATPT_VDRTCTL2_DCLCGE); } int catpt_dsp_stall(struct catpt_dev *cdev, bool stall) { u32 reg, val; val = stall ? CATPT_CS_STALL : 0; catpt_updatel_shim(cdev, CS1, CATPT_CS_STALL, val); return catpt_readl_poll_shim(cdev, CS1, reg, (reg & CATPT_CS_STALL) == val, 500, 10000); } static int catpt_dsp_reset(struct catpt_dev *cdev, bool reset) { u32 reg, val; val = reset ? CATPT_CS_RST : 0; catpt_updatel_shim(cdev, CS1, CATPT_CS_RST, val); return catpt_readl_poll_shim(cdev, CS1, reg, (reg & CATPT_CS_RST) == val, 500, 10000); } void lpt_dsp_pll_shutdown(struct catpt_dev *cdev, bool enable) { u32 val; val = enable ? LPT_VDRTCTL0_APLLSE : 0; catpt_updatel_pci(cdev, VDRTCTL0, LPT_VDRTCTL0_APLLSE, val); } void wpt_dsp_pll_shutdown(struct catpt_dev *cdev, bool enable) { u32 val; val = enable ? WPT_VDRTCTL2_APLLSE : 0; catpt_updatel_pci(cdev, VDRTCTL2, WPT_VDRTCTL2_APLLSE, val); } static int catpt_dsp_select_lpclock(struct catpt_dev *cdev, bool lp, bool waiti) { u32 mask, reg, val; int ret; mutex_lock(&cdev->clk_mutex); val = lp ? CATPT_CS_LPCS : 0; reg = catpt_readl_shim(cdev, CS1) & CATPT_CS_LPCS; dev_dbg(cdev->dev, "LPCS [0x%08lx] 0x%08x -> 0x%08x", CATPT_CS_LPCS, reg, val); if (reg == val) { mutex_unlock(&cdev->clk_mutex); return 0; } if (waiti) { /* wait for DSP to signal WAIT state */ ret = catpt_readl_poll_shim(cdev, ISD, reg, (reg & CATPT_ISD_DCPWM), 500, 10000); if (ret) { dev_warn(cdev->dev, "await WAITI timeout\n"); /* no signal - only high clock selection allowed */ if (lp) { mutex_unlock(&cdev->clk_mutex); return 0; } } } ret = catpt_readl_poll_shim(cdev, CLKCTL, reg, !(reg & CATPT_CLKCTL_CFCIP), 500, 10000); if (ret) dev_warn(cdev->dev, "clock change still in progress\n"); /* default to DSP core & audio fabric high clock */ val |= CATPT_CS_DCS_HIGH; mask = CATPT_CS_LPCS | CATPT_CS_DCS; catpt_updatel_shim(cdev, CS1, mask, val); ret = catpt_readl_poll_shim(cdev, CLKCTL, reg, !(reg & CATPT_CLKCTL_CFCIP), 500, 10000); if (ret) dev_warn(cdev->dev, "clock change still in progress\n"); /* update PLL accordingly */ cdev->spec->pll_shutdown(cdev, lp); mutex_unlock(&cdev->clk_mutex); return 0; } int catpt_dsp_update_lpclock(struct catpt_dev *cdev) { struct catpt_stream_runtime *stream; list_for_each_entry(stream, &cdev->stream_list, node) if (stream->prepared) return catpt_dsp_select_lpclock(cdev, false, true); return catpt_dsp_select_lpclock(cdev, true, true); } /* bring registers to their defaults as HW won't reset itself */ static void catpt_dsp_set_regs_defaults(struct catpt_dev *cdev) { int i; catpt_writel_shim(cdev, CS1, CATPT_CS_DEFAULT); catpt_writel_shim(cdev, ISC, CATPT_ISC_DEFAULT); catpt_writel_shim(cdev, ISD, CATPT_ISD_DEFAULT); catpt_writel_shim(cdev, IMC, CATPT_IMC_DEFAULT); catpt_writel_shim(cdev, IMD, CATPT_IMD_DEFAULT); catpt_writel_shim(cdev, IPCC, CATPT_IPCC_DEFAULT); catpt_writel_shim(cdev, IPCD, CATPT_IPCD_DEFAULT); catpt_writel_shim(cdev, CLKCTL, CATPT_CLKCTL_DEFAULT); catpt_writel_shim(cdev, CS2, CATPT_CS2_DEFAULT); catpt_writel_shim(cdev, LTRC, CATPT_LTRC_DEFAULT); catpt_writel_shim(cdev, HMDC, CATPT_HMDC_DEFAULT); for (i = 0; i < CATPT_SSP_COUNT; i++) { catpt_writel_ssp(cdev, i, SSCR0, CATPT_SSC0_DEFAULT); catpt_writel_ssp(cdev, i, SSCR1, CATPT_SSC1_DEFAULT); catpt_writel_ssp(cdev, i, SSSR, CATPT_SSS_DEFAULT); catpt_writel_ssp(cdev, i, SSITR, CATPT_SSIT_DEFAULT); catpt_writel_ssp(cdev, i, SSDR, CATPT_SSD_DEFAULT); catpt_writel_ssp(cdev, i, SSTO, CATPT_SSTO_DEFAULT); catpt_writel_ssp(cdev, i, SSPSP, CATPT_SSPSP_DEFAULT); catpt_writel_ssp(cdev, i, SSTSA, CATPT_SSTSA_DEFAULT); catpt_writel_ssp(cdev, i, SSRSA, CATPT_SSRSA_DEFAULT); catpt_writel_ssp(cdev, i, SSTSS, CATPT_SSTSS_DEFAULT); catpt_writel_ssp(cdev, i, SSCR2, CATPT_SSCR2_DEFAULT); catpt_writel_ssp(cdev, i, SSPSP2, CATPT_SSPSP2_DEFAULT); } } int catpt_dsp_power_down(struct catpt_dev *cdev) { u32 mask, val; /* disable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0); catpt_dsp_reset(cdev, true); /* set 24Mhz clock for both SSPs */ catpt_updatel_shim(cdev, CS1, CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1), CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1)); catpt_dsp_select_lpclock(cdev, true, false); /* disable MCLK */ catpt_updatel_shim(cdev, CLKCTL, CATPT_CLKCTL_SMOS, 0); catpt_dsp_set_regs_defaults(cdev); /* switch clock gating */ mask = CATPT_VDRTCTL2_CGEALL & (~CATPT_VDRTCTL2_DCLCGE); val = mask & (~CATPT_VDRTCTL2_DTCGE); catpt_updatel_pci(cdev, VDRTCTL2, mask, val); /* enable DTCGE separatelly */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DTCGE, CATPT_VDRTCTL2_DTCGE); /* SRAM power gating all */ catpt_dsp_set_srampge(cdev, &cdev->dram, cdev->spec->dram_mask, cdev->spec->dram_mask); catpt_dsp_set_srampge(cdev, &cdev->iram, cdev->spec->iram_mask, cdev->spec->iram_mask); mask = cdev->spec->d3srampgd_bit | cdev->spec->d3pgd_bit; catpt_updatel_pci(cdev, VDRTCTL0, mask, cdev->spec->d3pgd_bit); catpt_updatel_pci(cdev, PMCS, PCI_PM_CTRL_STATE_MASK, PCI_D3hot); /* give hw time to drop off */ udelay(50); /* enable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, CATPT_VDRTCTL2_DCLCGE); udelay(50); return 0; } int catpt_dsp_power_up(struct catpt_dev *cdev) { u32 mask, val; /* disable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0); /* switch clock gating */ mask = CATPT_VDRTCTL2_CGEALL & (~CATPT_VDRTCTL2_DCLCGE); val = mask & (~CATPT_VDRTCTL2_DTCGE); catpt_updatel_pci(cdev, VDRTCTL2, mask, val); catpt_updatel_pci(cdev, PMCS, PCI_PM_CTRL_STATE_MASK, PCI_D0); /* SRAM power gating none */ mask = cdev->spec->d3srampgd_bit | cdev->spec->d3pgd_bit; catpt_updatel_pci(cdev, VDRTCTL0, mask, mask); catpt_dsp_set_srampge(cdev, &cdev->dram, cdev->spec->dram_mask, 0); catpt_dsp_set_srampge(cdev, &cdev->iram, cdev->spec->iram_mask, 0); catpt_dsp_set_regs_defaults(cdev); /* restore MCLK */ catpt_updatel_shim(cdev, CLKCTL, CATPT_CLKCTL_SMOS, CATPT_CLKCTL_SMOS); catpt_dsp_select_lpclock(cdev, false, false); /* set 24Mhz clock for both SSPs */ catpt_updatel_shim(cdev, CS1, CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1), CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1)); catpt_dsp_reset(cdev, false); /* enable core clock gating */ catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, CATPT_VDRTCTL2_DCLCGE); /* generate int deassert msg to fix inversed int logic */ catpt_updatel_shim(cdev, IMC, CATPT_IMC_IPCDB | CATPT_IMC_IPCCD, 0); return 0; } #define CATPT_DUMP_MAGIC 0xcd42 #define CATPT_DUMP_SECTION_ID_FILE 0x00 #define CATPT_DUMP_SECTION_ID_IRAM 0x01 #define CATPT_DUMP_SECTION_ID_DRAM 0x02 #define CATPT_DUMP_SECTION_ID_REGS 0x03 #define CATPT_DUMP_HASH_SIZE 20 struct catpt_dump_section_hdr { u16 magic; u8 core_id; u8 section_id; u32 size; }; int catpt_coredump(struct catpt_dev *cdev) { struct catpt_dump_section_hdr *hdr; size_t dump_size, regs_size; u8 *dump, *pos; const char *eof; char *info; int i; regs_size = CATPT_SHIM_REGS_SIZE; regs_size += CATPT_DMA_COUNT * CATPT_DMA_REGS_SIZE; regs_size += CATPT_SSP_COUNT * CATPT_SSP_REGS_SIZE; dump_size = resource_size(&cdev->dram); dump_size += resource_size(&cdev->iram); dump_size += regs_size; /* account for header of each section and hash chunk */ dump_size += 4 * sizeof(*hdr) + CATPT_DUMP_HASH_SIZE; dump = vzalloc(dump_size); if (!dump) return -ENOMEM; pos = dump; hdr = (struct catpt_dump_section_hdr *)pos; hdr->magic = CATPT_DUMP_MAGIC; hdr->core_id = cdev->spec->core_id; hdr->section_id = CATPT_DUMP_SECTION_ID_FILE; hdr->size = dump_size - sizeof(*hdr); pos += sizeof(*hdr); info = cdev->ipc.config.fw_info; eof = info + FW_INFO_SIZE_MAX; /* navigate to fifth info segment (fw hash) */ for (i = 0; i < 4 && info < eof; i++, info++) { /* info segments are separated by space each */ info = strnchr(info, eof - info, ' '); if (!info) break; } if (i == 4 && info) memcpy(pos, info, min_t(u32, eof - info, CATPT_DUMP_HASH_SIZE)); pos += CATPT_DUMP_HASH_SIZE; hdr = (struct catpt_dump_section_hdr *)pos; hdr->magic = CATPT_DUMP_MAGIC; hdr->core_id = cdev->spec->core_id; hdr->section_id = CATPT_DUMP_SECTION_ID_IRAM; hdr->size = resource_size(&cdev->iram); pos += sizeof(*hdr); memcpy_fromio(pos, cdev->lpe_ba + cdev->iram.start, hdr->size); pos += hdr->size; hdr = (struct catpt_dump_section_hdr *)pos; hdr->magic = CATPT_DUMP_MAGIC; hdr->core_id = cdev->spec->core_id; hdr->section_id = CATPT_DUMP_SECTION_ID_DRAM; hdr->size = resource_size(&cdev->dram); pos += sizeof(*hdr); memcpy_fromio(pos, cdev->lpe_ba + cdev->dram.start, hdr->size); pos += hdr->size; hdr = (struct catpt_dump_section_hdr *)pos; hdr->magic = CATPT_DUMP_MAGIC; hdr->core_id = cdev->spec->core_id; hdr->section_id = CATPT_DUMP_SECTION_ID_REGS; hdr->size = regs_size; pos += sizeof(*hdr); memcpy_fromio(pos, catpt_shim_addr(cdev), CATPT_SHIM_REGS_SIZE); pos += CATPT_SHIM_REGS_SIZE; for (i = 0; i < CATPT_SSP_COUNT; i++) { memcpy_fromio(pos, catpt_ssp_addr(cdev, i), CATPT_SSP_REGS_SIZE); pos += CATPT_SSP_REGS_SIZE; } for (i = 0; i < CATPT_DMA_COUNT; i++) { memcpy_fromio(pos, catpt_dma_addr(cdev, i), CATPT_DMA_REGS_SIZE); pos += CATPT_DMA_REGS_SIZE; } dev_coredumpv(cdev->dev, dump, dump_size, GFP_KERNEL); return 0; }
linux-master
sound/soc/intel/catpt/dsp.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2020 Intel Corporation. All rights reserved. // // Author: Cezary Rojewski <[email protected]> // #include <linux/pm_runtime.h> #include "core.h" static ssize_t fw_version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct catpt_dev *cdev = dev_get_drvdata(dev); struct catpt_fw_version version; int ret; ret = pm_runtime_resume_and_get(cdev->dev); if (ret < 0 && ret != -EACCES) return ret; ret = catpt_ipc_get_fw_version(cdev, &version); pm_runtime_mark_last_busy(cdev->dev); pm_runtime_put_autosuspend(cdev->dev); if (ret) return CATPT_IPC_ERROR(ret); return sysfs_emit(buf, "%d.%d.%d.%d\n", version.type, version.major, version.minor, version.build); } static DEVICE_ATTR_RO(fw_version); static ssize_t fw_info_show(struct device *dev, struct device_attribute *attr, char *buf) { struct catpt_dev *cdev = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", cdev->ipc.config.fw_info); } static DEVICE_ATTR_RO(fw_info); static struct attribute *catpt_attrs[] = { &dev_attr_fw_version.attr, &dev_attr_fw_info.attr, NULL }; static const struct attribute_group catpt_attr_group = { .attrs = catpt_attrs, }; const struct attribute_group *catpt_attr_groups[] = { &catpt_attr_group, NULL };
linux-master
sound/soc/intel/catpt/sysfs.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2020 Intel Corporation. All rights reserved. // // Author: Cezary Rojewski <[email protected]> // #include <linux/pm_runtime.h> #include <sound/soc.h> #include <sound/pcm_params.h> #include <uapi/sound/tlv.h> #include "core.h" #include "messages.h" struct catpt_stream_template { enum catpt_path_id path_id; enum catpt_stream_type type; u32 persistent_size; u8 num_entries; struct catpt_module_entry entries[]; }; static struct catpt_stream_template system_pb = { .path_id = CATPT_PATH_SSP0_OUT, .type = CATPT_STRM_TYPE_SYSTEM, .num_entries = 1, .entries = {{ CATPT_MODID_PCM_SYSTEM, 0 }}, }; static struct catpt_stream_template system_cp = { .path_id = CATPT_PATH_SSP0_IN, .type = CATPT_STRM_TYPE_CAPTURE, .num_entries = 1, .entries = {{ CATPT_MODID_PCM_CAPTURE, 0 }}, }; static struct catpt_stream_template offload_pb = { .path_id = CATPT_PATH_SSP0_OUT, .type = CATPT_STRM_TYPE_RENDER, .num_entries = 1, .entries = {{ CATPT_MODID_PCM, 0 }}, }; static struct catpt_stream_template loopback_cp = { .path_id = CATPT_PATH_SSP0_OUT, .type = CATPT_STRM_TYPE_LOOPBACK, .num_entries = 1, .entries = {{ CATPT_MODID_PCM_REFERENCE, 0 }}, }; static struct catpt_stream_template bluetooth_pb = { .path_id = CATPT_PATH_SSP1_OUT, .type = CATPT_STRM_TYPE_BLUETOOTH_RENDER, .num_entries = 1, .entries = {{ CATPT_MODID_BLUETOOTH_RENDER, 0 }}, }; static struct catpt_stream_template bluetooth_cp = { .path_id = CATPT_PATH_SSP1_IN, .type = CATPT_STRM_TYPE_BLUETOOTH_CAPTURE, .num_entries = 1, .entries = {{ CATPT_MODID_BLUETOOTH_CAPTURE, 0 }}, }; static struct catpt_stream_template *catpt_topology[] = { [CATPT_STRM_TYPE_RENDER] = &offload_pb, [CATPT_STRM_TYPE_SYSTEM] = &system_pb, [CATPT_STRM_TYPE_CAPTURE] = &system_cp, [CATPT_STRM_TYPE_LOOPBACK] = &loopback_cp, [CATPT_STRM_TYPE_BLUETOOTH_RENDER] = &bluetooth_pb, [CATPT_STRM_TYPE_BLUETOOTH_CAPTURE] = &bluetooth_cp, }; static struct catpt_stream_template * catpt_get_stream_template(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtm = asoc_substream_to_rtd(substream); struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtm, 0); enum catpt_stream_type type; type = cpu_dai->driver->id; /* account for capture in bidirectional dais */ switch (type) { case CATPT_STRM_TYPE_SYSTEM: if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) type = CATPT_STRM_TYPE_CAPTURE; break; case CATPT_STRM_TYPE_BLUETOOTH_RENDER: if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) type = CATPT_STRM_TYPE_BLUETOOTH_CAPTURE; break; default: break; } return catpt_topology[type]; } struct catpt_stream_runtime * catpt_stream_find(struct catpt_dev *cdev, u8 stream_hw_id) { struct catpt_stream_runtime *pos, *result = NULL; spin_lock(&cdev->list_lock); list_for_each_entry(pos, &cdev->stream_list, node) { if (pos->info.stream_hw_id == stream_hw_id) { result = pos; break; } } spin_unlock(&cdev->list_lock); return result; } static u32 catpt_stream_read_position(struct catpt_dev *cdev, struct catpt_stream_runtime *stream) { u32 pos; memcpy_fromio(&pos, cdev->lpe_ba + stream->info.read_pos_regaddr, sizeof(pos)); return pos; } static u32 catpt_stream_volume(struct catpt_dev *cdev, struct catpt_stream_runtime *stream, u32 channel) { u32 volume, offset; if (channel >= CATPT_CHANNELS_MAX) channel = 0; offset = stream->info.volume_regaddr[channel]; memcpy_fromio(&volume, cdev->lpe_ba + offset, sizeof(volume)); return volume; } static u32 catpt_mixer_volume(struct catpt_dev *cdev, struct catpt_mixer_stream_info *info, u32 channel) { u32 volume, offset; if (channel >= CATPT_CHANNELS_MAX) channel = 0; offset = info->volume_regaddr[channel]; memcpy_fromio(&volume, cdev->lpe_ba + offset, sizeof(volume)); return volume; } static void catpt_arrange_page_table(struct snd_pcm_substream *substream, struct snd_dma_buffer *pgtbl) { struct snd_pcm_runtime *rtm = substream->runtime; struct snd_dma_buffer *databuf = snd_pcm_get_dma_buf(substream); int i, pages; pages = snd_sgbuf_aligned_pages(rtm->dma_bytes); for (i = 0; i < pages; i++) { u32 pfn, offset; u32 *page_table; pfn = PFN_DOWN(snd_sgbuf_get_addr(databuf, i * PAGE_SIZE)); /* incrementing by 2 on even and 3 on odd */ offset = ((i << 2) + i) >> 1; page_table = (u32 *)(pgtbl->area + offset); if (i & 1) *page_table |= (pfn << 4); else *page_table |= pfn; } } static u32 catpt_get_channel_map(enum catpt_channel_config config) { switch (config) { case CATPT_CHANNEL_CONFIG_MONO: return GENMASK(31, 4) | CATPT_CHANNEL_CENTER; case CATPT_CHANNEL_CONFIG_STEREO: return GENMASK(31, 8) | CATPT_CHANNEL_LEFT | (CATPT_CHANNEL_RIGHT << 4); case CATPT_CHANNEL_CONFIG_2_POINT_1: return GENMASK(31, 12) | CATPT_CHANNEL_LEFT | (CATPT_CHANNEL_RIGHT << 4) | (CATPT_CHANNEL_LFE << 8); case CATPT_CHANNEL_CONFIG_3_POINT_0: return GENMASK(31, 12) | CATPT_CHANNEL_LEFT | (CATPT_CHANNEL_CENTER << 4) | (CATPT_CHANNEL_RIGHT << 8); case CATPT_CHANNEL_CONFIG_3_POINT_1: return GENMASK(31, 16) | CATPT_CHANNEL_LEFT | (CATPT_CHANNEL_CENTER << 4) | (CATPT_CHANNEL_RIGHT << 8) | (CATPT_CHANNEL_LFE << 12); case CATPT_CHANNEL_CONFIG_QUATRO: return GENMASK(31, 16) | CATPT_CHANNEL_LEFT | (CATPT_CHANNEL_RIGHT << 4) | (CATPT_CHANNEL_LEFT_SURROUND << 8) | (CATPT_CHANNEL_RIGHT_SURROUND << 12); case CATPT_CHANNEL_CONFIG_4_POINT_0: return GENMASK(31, 16) | CATPT_CHANNEL_LEFT | (CATPT_CHANNEL_CENTER << 4) | (CATPT_CHANNEL_RIGHT << 8) | (CATPT_CHANNEL_CENTER_SURROUND << 12); case CATPT_CHANNEL_CONFIG_5_POINT_0: return GENMASK(31, 20) | CATPT_CHANNEL_LEFT | (CATPT_CHANNEL_CENTER << 4) | (CATPT_CHANNEL_RIGHT << 8) | (CATPT_CHANNEL_LEFT_SURROUND << 12) | (CATPT_CHANNEL_RIGHT_SURROUND << 16); case CATPT_CHANNEL_CONFIG_5_POINT_1: return GENMASK(31, 24) | CATPT_CHANNEL_CENTER | (CATPT_CHANNEL_LEFT << 4) | (CATPT_CHANNEL_RIGHT << 8) | (CATPT_CHANNEL_LEFT_SURROUND << 12) | (CATPT_CHANNEL_RIGHT_SURROUND << 16) | (CATPT_CHANNEL_LFE << 20); case CATPT_CHANNEL_CONFIG_DUAL_MONO: return GENMASK(31, 8) | CATPT_CHANNEL_LEFT | (CATPT_CHANNEL_LEFT << 4); default: return U32_MAX; } } static enum catpt_channel_config catpt_get_channel_config(u32 num_channels) { switch (num_channels) { case 6: return CATPT_CHANNEL_CONFIG_5_POINT_1; case 5: return CATPT_CHANNEL_CONFIG_5_POINT_0; case 4: return CATPT_CHANNEL_CONFIG_QUATRO; case 3: return CATPT_CHANNEL_CONFIG_2_POINT_1; case 1: return CATPT_CHANNEL_CONFIG_MONO; case 2: default: return CATPT_CHANNEL_CONFIG_STEREO; } } static int catpt_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct catpt_stream_template *template; struct catpt_stream_runtime *stream; struct catpt_dev *cdev = dev_get_drvdata(dai->dev); struct resource *res; int ret; template = catpt_get_stream_template(substream); stream = kzalloc(sizeof(*stream), GFP_KERNEL); if (!stream) return -ENOMEM; ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, cdev->dev, PAGE_SIZE, &stream->pgtbl); if (ret) goto err_pgtbl; res = catpt_request_region(&cdev->dram, template->persistent_size); if (!res) { ret = -EBUSY; goto err_request; } catpt_dsp_update_srampge(cdev, &cdev->dram, cdev->spec->dram_mask); stream->template = template; stream->persistent = res; stream->substream = substream; INIT_LIST_HEAD(&stream->node); snd_soc_dai_set_dma_data(dai, substream, stream); spin_lock(&cdev->list_lock); list_add_tail(&stream->node, &cdev->stream_list); spin_unlock(&cdev->list_lock); return 0; err_request: snd_dma_free_pages(&stream->pgtbl); err_pgtbl: kfree(stream); return ret; } static void catpt_dai_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct catpt_stream_runtime *stream; struct catpt_dev *cdev = dev_get_drvdata(dai->dev); stream = snd_soc_dai_get_dma_data(dai, substream); spin_lock(&cdev->list_lock); list_del(&stream->node); spin_unlock(&cdev->list_lock); release_resource(stream->persistent); kfree(stream->persistent); catpt_dsp_update_srampge(cdev, &cdev->dram, cdev->spec->dram_mask); snd_dma_free_pages(&stream->pgtbl); kfree(stream); snd_soc_dai_set_dma_data(dai, substream, NULL); } static int catpt_set_dspvol(struct catpt_dev *cdev, u8 stream_id, long *ctlvol); static int catpt_dai_apply_usettings(struct snd_soc_dai *dai, struct catpt_stream_runtime *stream) { struct snd_soc_component *component = dai->component; struct snd_kcontrol *pos; struct catpt_dev *cdev = dev_get_drvdata(dai->dev); const char *name; int ret; u32 id = stream->info.stream_hw_id; /* only selected streams have individual controls */ switch (id) { case CATPT_PIN_ID_OFFLOAD1: name = "Media0 Playback Volume"; break; case CATPT_PIN_ID_OFFLOAD2: name = "Media1 Playback Volume"; break; case CATPT_PIN_ID_CAPTURE1: name = "Mic Capture Volume"; break; case CATPT_PIN_ID_REFERENCE: name = "Loopback Mute"; break; default: return 0; } list_for_each_entry(pos, &component->card->snd_card->controls, list) { if (pos->private_data == component && !strncmp(name, pos->id.name, sizeof(pos->id.name))) break; } if (list_entry_is_head(pos, &component->card->snd_card->controls, list)) return -ENOENT; if (stream->template->type != CATPT_STRM_TYPE_LOOPBACK) return catpt_set_dspvol(cdev, id, (long *)pos->private_value); ret = catpt_ipc_mute_loopback(cdev, id, *(bool *)pos->private_value); if (ret) return CATPT_IPC_ERROR(ret); return 0; } static int catpt_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_pcm_runtime *rtm = substream->runtime; struct snd_dma_buffer *dmab; struct catpt_stream_runtime *stream; struct catpt_audio_format afmt; struct catpt_ring_info rinfo; struct catpt_dev *cdev = dev_get_drvdata(dai->dev); int ret; stream = snd_soc_dai_get_dma_data(dai, substream); if (stream->allocated) return 0; memset(&afmt, 0, sizeof(afmt)); afmt.sample_rate = params_rate(params); afmt.bit_depth = params_physical_width(params); afmt.valid_bit_depth = params_width(params); afmt.num_channels = params_channels(params); afmt.channel_config = catpt_get_channel_config(afmt.num_channels); afmt.channel_map = catpt_get_channel_map(afmt.channel_config); afmt.interleaving = CATPT_INTERLEAVING_PER_CHANNEL; dmab = snd_pcm_get_dma_buf(substream); catpt_arrange_page_table(substream, &stream->pgtbl); memset(&rinfo, 0, sizeof(rinfo)); rinfo.page_table_addr = stream->pgtbl.addr; rinfo.num_pages = DIV_ROUND_UP(rtm->dma_bytes, PAGE_SIZE); rinfo.size = rtm->dma_bytes; rinfo.offset = 0; rinfo.ring_first_page_pfn = PFN_DOWN(snd_sgbuf_get_addr(dmab, 0)); ret = catpt_ipc_alloc_stream(cdev, stream->template->path_id, stream->template->type, &afmt, &rinfo, stream->template->num_entries, stream->template->entries, stream->persistent, cdev->scratch, &stream->info); if (ret) return CATPT_IPC_ERROR(ret); ret = catpt_dai_apply_usettings(dai, stream); if (ret) return ret; stream->allocated = true; return 0; } static int catpt_dai_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct catpt_stream_runtime *stream; struct catpt_dev *cdev = dev_get_drvdata(dai->dev); stream = snd_soc_dai_get_dma_data(dai, substream); if (!stream->allocated) return 0; catpt_ipc_reset_stream(cdev, stream->info.stream_hw_id); catpt_ipc_free_stream(cdev, stream->info.stream_hw_id); stream->allocated = false; return 0; } static int catpt_dai_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct catpt_stream_runtime *stream; struct catpt_dev *cdev = dev_get_drvdata(dai->dev); int ret; stream = snd_soc_dai_get_dma_data(dai, substream); if (stream->prepared) return 0; ret = catpt_ipc_reset_stream(cdev, stream->info.stream_hw_id); if (ret) return CATPT_IPC_ERROR(ret); ret = catpt_ipc_pause_stream(cdev, stream->info.stream_hw_id); if (ret) return CATPT_IPC_ERROR(ret); stream->prepared = true; return 0; } static int catpt_dai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct snd_pcm_runtime *runtime = substream->runtime; struct catpt_stream_runtime *stream; struct catpt_dev *cdev = dev_get_drvdata(dai->dev); snd_pcm_uframes_t pos; int ret; stream = snd_soc_dai_get_dma_data(dai, substream); switch (cmd) { case SNDRV_PCM_TRIGGER_START: /* only offload is set_write_pos driven */ if (stream->template->type != CATPT_STRM_TYPE_RENDER) goto resume_stream; pos = frames_to_bytes(runtime, runtime->start_threshold); /* * Dsp operates on buffer halves, thus max 2x set_write_pos * (entire buffer filled) prior to stream start. */ ret = catpt_ipc_set_write_pos(cdev, stream->info.stream_hw_id, pos, false, false); if (ret) return CATPT_IPC_ERROR(ret); fallthrough; case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: resume_stream: catpt_dsp_update_lpclock(cdev); ret = catpt_ipc_resume_stream(cdev, stream->info.stream_hw_id); if (ret) return CATPT_IPC_ERROR(ret); break; case SNDRV_PCM_TRIGGER_STOP: stream->prepared = false; fallthrough; case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: ret = catpt_ipc_pause_stream(cdev, stream->info.stream_hw_id); catpt_dsp_update_lpclock(cdev); if (ret) return CATPT_IPC_ERROR(ret); break; default: break; } return 0; } void catpt_stream_update_position(struct catpt_dev *cdev, struct catpt_stream_runtime *stream, struct catpt_notify_position *pos) { struct snd_pcm_substream *substream = stream->substream; struct snd_pcm_runtime *r = substream->runtime; snd_pcm_uframes_t dsppos, newpos; int ret; dsppos = bytes_to_frames(r, pos->stream_position); if (!stream->prepared) goto exit; /* only offload is set_write_pos driven */ if (stream->template->type != CATPT_STRM_TYPE_RENDER) goto exit; if (dsppos >= r->buffer_size / 2) newpos = r->buffer_size / 2; else newpos = 0; /* * Dsp operates on buffer halves, thus on every notify position * (buffer half consumed) update wp to allow stream progression. */ ret = catpt_ipc_set_write_pos(cdev, stream->info.stream_hw_id, frames_to_bytes(r, newpos), false, false); if (ret) { dev_err(cdev->dev, "update position for stream %d failed: %d\n", stream->info.stream_hw_id, ret); return; } exit: snd_pcm_period_elapsed(substream); } /* 200 ms for 2 32-bit channels at 48kHz (native format) */ #define CATPT_BUFFER_MAX_SIZE 76800 #define CATPT_PCM_PERIODS_MAX 4 #define CATPT_PCM_PERIODS_MIN 2 static const struct snd_pcm_hardware catpt_pcm_hardware = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_NO_PERIOD_WAKEUP, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .period_bytes_min = PAGE_SIZE, .period_bytes_max = CATPT_BUFFER_MAX_SIZE / CATPT_PCM_PERIODS_MIN, .periods_min = CATPT_PCM_PERIODS_MIN, .periods_max = CATPT_PCM_PERIODS_MAX, .buffer_bytes_max = CATPT_BUFFER_MAX_SIZE, }; static int catpt_component_pcm_construct(struct snd_soc_component *component, struct snd_soc_pcm_runtime *rtm) { struct catpt_dev *cdev = dev_get_drvdata(component->dev); snd_pcm_set_managed_buffer_all(rtm->pcm, SNDRV_DMA_TYPE_DEV_SG, cdev->dev, catpt_pcm_hardware.buffer_bytes_max, catpt_pcm_hardware.buffer_bytes_max); return 0; } static int catpt_component_open(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtm = asoc_substream_to_rtd(substream); if (!rtm->dai_link->no_pcm) snd_soc_set_runtime_hwparams(substream, &catpt_pcm_hardware); return 0; } static snd_pcm_uframes_t catpt_component_pointer(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtm = asoc_substream_to_rtd(substream); struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtm, 0); struct catpt_stream_runtime *stream; struct catpt_dev *cdev = dev_get_drvdata(component->dev); u32 pos; if (rtm->dai_link->no_pcm) return 0; stream = snd_soc_dai_get_dma_data(cpu_dai, substream); pos = catpt_stream_read_position(cdev, stream); return bytes_to_frames(substream->runtime, pos); } static const struct snd_soc_dai_ops catpt_fe_dai_ops = { .startup = catpt_dai_startup, .shutdown = catpt_dai_shutdown, .hw_params = catpt_dai_hw_params, .hw_free = catpt_dai_hw_free, .prepare = catpt_dai_prepare, .trigger = catpt_dai_trigger, }; static int catpt_dai_pcm_new(struct snd_soc_pcm_runtime *rtm, struct snd_soc_dai *dai) { struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtm, 0); struct catpt_ssp_device_format devfmt; struct catpt_dev *cdev = dev_get_drvdata(dai->dev); int ret; devfmt.iface = dai->driver->id; devfmt.channels = codec_dai->driver->capture.channels_max; switch (devfmt.iface) { case CATPT_SSP_IFACE_0: devfmt.mclk = CATPT_MCLK_FREQ_24_MHZ; switch (devfmt.channels) { case 4: devfmt.mode = CATPT_SSP_MODE_TDM_PROVIDER; devfmt.clock_divider = 4; break; case 2: default: devfmt.mode = CATPT_SSP_MODE_I2S_PROVIDER; devfmt.clock_divider = 9; break; } break; case CATPT_SSP_IFACE_1: devfmt.mclk = CATPT_MCLK_OFF; devfmt.mode = CATPT_SSP_MODE_I2S_CONSUMER; devfmt.clock_divider = 0; break; } /* see if this is a new configuration */ if (!memcmp(&cdev->devfmt[devfmt.iface], &devfmt, sizeof(devfmt))) return 0; ret = pm_runtime_resume_and_get(cdev->dev); if (ret < 0 && ret != -EACCES) return ret; ret = catpt_ipc_set_device_format(cdev, &devfmt); pm_runtime_mark_last_busy(cdev->dev); pm_runtime_put_autosuspend(cdev->dev); if (ret) return CATPT_IPC_ERROR(ret); /* store device format set for given SSP */ memcpy(&cdev->devfmt[devfmt.iface], &devfmt, sizeof(devfmt)); return 0; } static const struct snd_soc_dai_ops catpt_dai_ops = { .pcm_new = catpt_dai_pcm_new, }; static struct snd_soc_dai_driver dai_drivers[] = { /* FE DAIs */ { .name = "System Pin", .id = CATPT_STRM_TYPE_SYSTEM, .ops = &catpt_fe_dai_ops, .playback = { .stream_name = "System Playback", .channels_min = 2, .channels_max = 2, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, }, .capture = { .stream_name = "Analog Capture", .channels_min = 2, .channels_max = 4, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, }, }, { .name = "Offload0 Pin", .id = CATPT_STRM_TYPE_RENDER, .ops = &catpt_fe_dai_ops, .playback = { .stream_name = "Offload0 Playback", .channels_min = 2, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, }, }, { .name = "Offload1 Pin", .id = CATPT_STRM_TYPE_RENDER, .ops = &catpt_fe_dai_ops, .playback = { .stream_name = "Offload1 Playback", .channels_min = 2, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, }, }, { .name = "Loopback Pin", .id = CATPT_STRM_TYPE_LOOPBACK, .ops = &catpt_fe_dai_ops, .capture = { .stream_name = "Loopback Capture", .channels_min = 2, .channels_max = 2, .rates = SNDRV_PCM_RATE_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, }, }, { .name = "Bluetooth Pin", .id = CATPT_STRM_TYPE_BLUETOOTH_RENDER, .ops = &catpt_fe_dai_ops, .playback = { .stream_name = "Bluetooth Playback", .channels_min = 1, .channels_max = 1, .rates = SNDRV_PCM_RATE_8000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .capture = { .stream_name = "Bluetooth Capture", .channels_min = 1, .channels_max = 1, .rates = SNDRV_PCM_RATE_8000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, }, /* BE DAIs */ { .name = "ssp0-port", .id = CATPT_SSP_IFACE_0, .playback = { .channels_min = 1, .channels_max = 8, }, .capture = { .channels_min = 1, .channels_max = 8, }, .ops = &catpt_dai_ops, }, { .name = "ssp1-port", .id = CATPT_SSP_IFACE_1, .playback = { .channels_min = 1, .channels_max = 8, }, .capture = { .channels_min = 1, .channels_max = 8, }, .ops = &catpt_dai_ops, }, }; #define DSP_VOLUME_MAX S32_MAX /* 0db */ #define DSP_VOLUME_STEP_MAX 30 static u32 ctlvol_to_dspvol(u32 value) { if (value > DSP_VOLUME_STEP_MAX) value = 0; return DSP_VOLUME_MAX >> (DSP_VOLUME_STEP_MAX - value); } static u32 dspvol_to_ctlvol(u32 volume) { if (volume > DSP_VOLUME_MAX) return DSP_VOLUME_STEP_MAX; return volume ? __fls(volume) : 0; } static int catpt_set_dspvol(struct catpt_dev *cdev, u8 stream_id, long *ctlvol) { u32 dspvol; int ret, i; for (i = 1; i < CATPT_CHANNELS_MAX; i++) if (ctlvol[i] != ctlvol[0]) break; if (i == CATPT_CHANNELS_MAX) { dspvol = ctlvol_to_dspvol(ctlvol[0]); ret = catpt_ipc_set_volume(cdev, stream_id, CATPT_ALL_CHANNELS_MASK, dspvol, 0, CATPT_AUDIO_CURVE_NONE); } else { for (i = 0; i < CATPT_CHANNELS_MAX; i++) { dspvol = ctlvol_to_dspvol(ctlvol[i]); ret = catpt_ipc_set_volume(cdev, stream_id, i, dspvol, 0, CATPT_AUDIO_CURVE_NONE); if (ret) break; } } if (ret) return CATPT_IPC_ERROR(ret); return 0; } static int catpt_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = CATPT_CHANNELS_MAX; uinfo->value.integer.min = 0; uinfo->value.integer.max = DSP_VOLUME_STEP_MAX; return 0; } static int catpt_mixer_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct catpt_dev *cdev = dev_get_drvdata(component->dev); u32 dspvol; int ret; int i; ret = pm_runtime_resume_and_get(cdev->dev); if (ret < 0 && ret != -EACCES) return ret; for (i = 0; i < CATPT_CHANNELS_MAX; i++) { dspvol = catpt_mixer_volume(cdev, &cdev->mixer, i); ucontrol->value.integer.value[i] = dspvol_to_ctlvol(dspvol); } pm_runtime_mark_last_busy(cdev->dev); pm_runtime_put_autosuspend(cdev->dev); return 0; } static int catpt_mixer_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct catpt_dev *cdev = dev_get_drvdata(component->dev); int ret; ret = pm_runtime_resume_and_get(cdev->dev); if (ret < 0 && ret != -EACCES) return ret; ret = catpt_set_dspvol(cdev, cdev->mixer.mixer_hw_id, ucontrol->value.integer.value); pm_runtime_mark_last_busy(cdev->dev); pm_runtime_put_autosuspend(cdev->dev); return ret; } static int catpt_stream_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol, enum catpt_pin_id pin_id) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct catpt_stream_runtime *stream; struct catpt_dev *cdev = dev_get_drvdata(component->dev); long *ctlvol = (long *)kcontrol->private_value; u32 dspvol; int ret; int i; stream = catpt_stream_find(cdev, pin_id); if (!stream) { for (i = 0; i < CATPT_CHANNELS_MAX; i++) ucontrol->value.integer.value[i] = ctlvol[i]; return 0; } ret = pm_runtime_resume_and_get(cdev->dev); if (ret < 0 && ret != -EACCES) return ret; for (i = 0; i < CATPT_CHANNELS_MAX; i++) { dspvol = catpt_stream_volume(cdev, stream, i); ucontrol->value.integer.value[i] = dspvol_to_ctlvol(dspvol); } pm_runtime_mark_last_busy(cdev->dev); pm_runtime_put_autosuspend(cdev->dev); return 0; } static int catpt_stream_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol, enum catpt_pin_id pin_id) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct catpt_stream_runtime *stream; struct catpt_dev *cdev = dev_get_drvdata(component->dev); long *ctlvol = (long *)kcontrol->private_value; int ret, i; stream = catpt_stream_find(cdev, pin_id); if (!stream) { for (i = 0; i < CATPT_CHANNELS_MAX; i++) ctlvol[i] = ucontrol->value.integer.value[i]; return 0; } ret = pm_runtime_resume_and_get(cdev->dev); if (ret < 0 && ret != -EACCES) return ret; ret = catpt_set_dspvol(cdev, stream->info.stream_hw_id, ucontrol->value.integer.value); pm_runtime_mark_last_busy(cdev->dev); pm_runtime_put_autosuspend(cdev->dev); if (ret) return ret; for (i = 0; i < CATPT_CHANNELS_MAX; i++) ctlvol[i] = ucontrol->value.integer.value[i]; return 0; } static int catpt_offload1_volume_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uctl) { return catpt_stream_volume_get(kctl, uctl, CATPT_PIN_ID_OFFLOAD1); } static int catpt_offload1_volume_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uctl) { return catpt_stream_volume_put(kctl, uctl, CATPT_PIN_ID_OFFLOAD1); } static int catpt_offload2_volume_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uctl) { return catpt_stream_volume_get(kctl, uctl, CATPT_PIN_ID_OFFLOAD2); } static int catpt_offload2_volume_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uctl) { return catpt_stream_volume_put(kctl, uctl, CATPT_PIN_ID_OFFLOAD2); } static int catpt_capture_volume_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uctl) { return catpt_stream_volume_get(kctl, uctl, CATPT_PIN_ID_CAPTURE1); } static int catpt_capture_volume_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *uctl) { return catpt_stream_volume_put(kctl, uctl, CATPT_PIN_ID_CAPTURE1); } static int catpt_loopback_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.integer.value[0] = *(bool *)kcontrol->private_value; return 0; } static int catpt_loopback_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct catpt_stream_runtime *stream; struct catpt_dev *cdev = dev_get_drvdata(component->dev); bool mute; int ret; mute = (bool)ucontrol->value.integer.value[0]; stream = catpt_stream_find(cdev, CATPT_PIN_ID_REFERENCE); if (!stream) { *(bool *)kcontrol->private_value = mute; return 0; } ret = pm_runtime_resume_and_get(cdev->dev); if (ret < 0 && ret != -EACCES) return ret; ret = catpt_ipc_mute_loopback(cdev, stream->info.stream_hw_id, mute); pm_runtime_mark_last_busy(cdev->dev); pm_runtime_put_autosuspend(cdev->dev); if (ret) return CATPT_IPC_ERROR(ret); *(bool *)kcontrol->private_value = mute; return 0; } static int catpt_waves_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { return 0; } static int catpt_waves_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { return 0; } static int catpt_waves_param_get(struct snd_kcontrol *kcontrol, unsigned int __user *bytes, unsigned int size) { return 0; } static int catpt_waves_param_put(struct snd_kcontrol *kcontrol, const unsigned int __user *bytes, unsigned int size) { return 0; } static const SNDRV_CTL_TLVD_DECLARE_DB_SCALE(catpt_volume_tlv, -9000, 300, 1); #define CATPT_VOLUME_CTL(kname, sname) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .name = (kname), \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = catpt_volume_info, \ .get = catpt_##sname##_volume_get, \ .put = catpt_##sname##_volume_put, \ .tlv.p = catpt_volume_tlv, \ .private_value = (unsigned long) \ &(long[CATPT_CHANNELS_MAX]) {0} } static const struct snd_kcontrol_new component_kcontrols[] = { /* Master volume (mixer stream) */ CATPT_VOLUME_CTL("Master Playback Volume", mixer), /* Individual volume controls for offload and capture */ CATPT_VOLUME_CTL("Media0 Playback Volume", offload1), CATPT_VOLUME_CTL("Media1 Playback Volume", offload2), CATPT_VOLUME_CTL("Mic Capture Volume", capture), SOC_SINGLE_BOOL_EXT("Loopback Mute", (unsigned long)&(bool[1]) {0}, catpt_loopback_switch_get, catpt_loopback_switch_put), /* Enable or disable WAVES module */ SOC_SINGLE_BOOL_EXT("Waves Switch", 0, catpt_waves_switch_get, catpt_waves_switch_put), /* WAVES module parameter control */ SND_SOC_BYTES_TLV("Waves Set Param", 128, catpt_waves_param_get, catpt_waves_param_put), }; static const struct snd_soc_dapm_widget component_widgets[] = { SND_SOC_DAPM_AIF_IN("SSP0 CODEC IN", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("SSP0 CODEC OUT", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("SSP1 BT IN", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("SSP1 BT OUT", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_MIXER("Playback VMixer", SND_SOC_NOPM, 0, 0, NULL, 0), }; static const struct snd_soc_dapm_route component_routes[] = { {"Playback VMixer", NULL, "System Playback"}, {"Playback VMixer", NULL, "Offload0 Playback"}, {"Playback VMixer", NULL, "Offload1 Playback"}, {"SSP0 CODEC OUT", NULL, "Playback VMixer"}, {"Analog Capture", NULL, "SSP0 CODEC IN"}, {"Loopback Capture", NULL, "SSP0 CODEC IN"}, {"SSP1 BT OUT", NULL, "Bluetooth Playback"}, {"Bluetooth Capture", NULL, "SSP1 BT IN"}, }; static const struct snd_soc_component_driver catpt_comp_driver = { .name = "catpt-platform", .pcm_construct = catpt_component_pcm_construct, .open = catpt_component_open, .pointer = catpt_component_pointer, .controls = component_kcontrols, .num_controls = ARRAY_SIZE(component_kcontrols), .dapm_widgets = component_widgets, .num_dapm_widgets = ARRAY_SIZE(component_widgets), .dapm_routes = component_routes, .num_dapm_routes = ARRAY_SIZE(component_routes), }; int catpt_arm_stream_templates(struct catpt_dev *cdev) { struct resource *res; u32 scratch_size = 0; int i, j; for (i = 0; i < ARRAY_SIZE(catpt_topology); i++) { struct catpt_stream_template *template; struct catpt_module_entry *entry; struct catpt_module_type *type; template = catpt_topology[i]; template->persistent_size = 0; for (j = 0; j < template->num_entries; j++) { entry = &template->entries[j]; type = &cdev->modules[entry->module_id]; if (!type->loaded) return -ENOENT; entry->entry_point = type->entry_point; template->persistent_size += type->persistent_size; if (type->scratch_size > scratch_size) scratch_size = type->scratch_size; } } if (scratch_size) { /* allocate single scratch area for all modules */ res = catpt_request_region(&cdev->dram, scratch_size); if (!res) return -EBUSY; cdev->scratch = res; } return 0; } int catpt_register_plat_component(struct catpt_dev *cdev) { struct snd_soc_component *component; int ret; component = devm_kzalloc(cdev->dev, sizeof(*component), GFP_KERNEL); if (!component) return -ENOMEM; ret = snd_soc_component_initialize(component, &catpt_comp_driver, cdev->dev); if (ret) return ret; component->name = catpt_comp_driver.name; return snd_soc_add_component(component, dai_drivers, ARRAY_SIZE(dai_drivers)); }
linux-master
sound/soc/intel/catpt/pcm.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2020 Intel Corporation. All rights reserved. // // Author: Cezary Rojewski <[email protected]> // #include <linux/slab.h> #include "core.h" #include "messages.h" #include "registers.h" int catpt_ipc_get_fw_version(struct catpt_dev *cdev, struct catpt_fw_version *version) { union catpt_global_msg msg = CATPT_GLOBAL_MSG(GET_FW_VERSION); struct catpt_ipc_msg request = {{0}}, reply; int ret; request.header = msg.val; reply.size = sizeof(*version); reply.data = version; ret = catpt_dsp_send_msg(cdev, request, &reply); if (ret) dev_err(cdev->dev, "get fw version failed: %d\n", ret); return ret; } struct catpt_alloc_stream_input { enum catpt_path_id path_id:8; enum catpt_stream_type stream_type:8; enum catpt_format_id format_id:8; u8 reserved; struct catpt_audio_format input_format; struct catpt_ring_info ring_info; u8 num_entries; /* flex array with entries here */ struct catpt_memory_info persistent_mem; struct catpt_memory_info scratch_mem; u32 num_notifications; /* obsolete */ } __packed; int catpt_ipc_alloc_stream(struct catpt_dev *cdev, enum catpt_path_id path_id, enum catpt_stream_type type, struct catpt_audio_format *afmt, struct catpt_ring_info *rinfo, u8 num_modules, struct catpt_module_entry *modules, struct resource *persistent, struct resource *scratch, struct catpt_stream_info *sinfo) { union catpt_global_msg msg = CATPT_GLOBAL_MSG(ALLOCATE_STREAM); struct catpt_alloc_stream_input input; struct catpt_ipc_msg request, reply; size_t size, arrsz; u8 *payload; off_t off; int ret; off = offsetof(struct catpt_alloc_stream_input, persistent_mem); arrsz = sizeof(*modules) * num_modules; size = sizeof(input) + arrsz; payload = kzalloc(size, GFP_KERNEL); if (!payload) return -ENOMEM; memset(&input, 0, sizeof(input)); input.path_id = path_id; input.stream_type = type; input.format_id = CATPT_FORMAT_PCM; input.input_format = *afmt; input.ring_info = *rinfo; input.num_entries = num_modules; input.persistent_mem.offset = catpt_to_dsp_offset(persistent->start); input.persistent_mem.size = resource_size(persistent); if (scratch) { input.scratch_mem.offset = catpt_to_dsp_offset(scratch->start); input.scratch_mem.size = resource_size(scratch); } /* re-arrange the input: account for flex array 'entries' */ memcpy(payload, &input, sizeof(input)); memmove(payload + off + arrsz, payload + off, sizeof(input) - off); memcpy(payload + off, modules, arrsz); request.header = msg.val; request.size = size; request.data = payload; reply.size = sizeof(*sinfo); reply.data = sinfo; ret = catpt_dsp_send_msg(cdev, request, &reply); if (ret) dev_err(cdev->dev, "alloc stream type %d failed: %d\n", type, ret); kfree(payload); return ret; } int catpt_ipc_free_stream(struct catpt_dev *cdev, u8 stream_hw_id) { union catpt_global_msg msg = CATPT_GLOBAL_MSG(FREE_STREAM); struct catpt_ipc_msg request; int ret; request.header = msg.val; request.size = sizeof(stream_hw_id); request.data = &stream_hw_id; ret = catpt_dsp_send_msg(cdev, request, NULL); if (ret) dev_err(cdev->dev, "free stream %d failed: %d\n", stream_hw_id, ret); return ret; } int catpt_ipc_set_device_format(struct catpt_dev *cdev, struct catpt_ssp_device_format *devfmt) { union catpt_global_msg msg = CATPT_GLOBAL_MSG(SET_DEVICE_FORMATS); struct catpt_ipc_msg request; int ret; request.header = msg.val; request.size = sizeof(*devfmt); request.data = devfmt; ret = catpt_dsp_send_msg(cdev, request, NULL); if (ret) dev_err(cdev->dev, "set device format failed: %d\n", ret); return ret; } int catpt_ipc_enter_dxstate(struct catpt_dev *cdev, enum catpt_dx_state state, struct catpt_dx_context *context) { union catpt_global_msg msg = CATPT_GLOBAL_MSG(ENTER_DX_STATE); struct catpt_ipc_msg request, reply; int ret; request.header = msg.val; request.size = sizeof(state); request.data = &state; reply.size = sizeof(*context); reply.data = context; ret = catpt_dsp_send_msg(cdev, request, &reply); if (ret) dev_err(cdev->dev, "enter dx state failed: %d\n", ret); return ret; } int catpt_ipc_get_mixer_stream_info(struct catpt_dev *cdev, struct catpt_mixer_stream_info *info) { union catpt_global_msg msg = CATPT_GLOBAL_MSG(GET_MIXER_STREAM_INFO); struct catpt_ipc_msg request = {{0}}, reply; int ret; request.header = msg.val; reply.size = sizeof(*info); reply.data = info; ret = catpt_dsp_send_msg(cdev, request, &reply); if (ret) dev_err(cdev->dev, "get mixer info failed: %d\n", ret); return ret; } int catpt_ipc_reset_stream(struct catpt_dev *cdev, u8 stream_hw_id) { union catpt_stream_msg msg = CATPT_STREAM_MSG(RESET_STREAM); struct catpt_ipc_msg request = {{0}}; int ret; msg.stream_hw_id = stream_hw_id; request.header = msg.val; ret = catpt_dsp_send_msg(cdev, request, NULL); if (ret) dev_err(cdev->dev, "reset stream %d failed: %d\n", stream_hw_id, ret); return ret; } int catpt_ipc_pause_stream(struct catpt_dev *cdev, u8 stream_hw_id) { union catpt_stream_msg msg = CATPT_STREAM_MSG(PAUSE_STREAM); struct catpt_ipc_msg request = {{0}}; int ret; msg.stream_hw_id = stream_hw_id; request.header = msg.val; ret = catpt_dsp_send_msg(cdev, request, NULL); if (ret) dev_err(cdev->dev, "pause stream %d failed: %d\n", stream_hw_id, ret); return ret; } int catpt_ipc_resume_stream(struct catpt_dev *cdev, u8 stream_hw_id) { union catpt_stream_msg msg = CATPT_STREAM_MSG(RESUME_STREAM); struct catpt_ipc_msg request = {{0}}; int ret; msg.stream_hw_id = stream_hw_id; request.header = msg.val; ret = catpt_dsp_send_msg(cdev, request, NULL); if (ret) dev_err(cdev->dev, "resume stream %d failed: %d\n", stream_hw_id, ret); return ret; } struct catpt_set_volume_input { u32 channel; u32 target_volume; u64 curve_duration; u32 curve_type; } __packed; int catpt_ipc_set_volume(struct catpt_dev *cdev, u8 stream_hw_id, u32 channel, u32 volume, u32 curve_duration, enum catpt_audio_curve_type curve_type) { union catpt_stream_msg msg = CATPT_STAGE_MSG(SET_VOLUME); struct catpt_ipc_msg request; struct catpt_set_volume_input input; int ret; msg.stream_hw_id = stream_hw_id; input.channel = channel; input.target_volume = volume; input.curve_duration = curve_duration; input.curve_type = curve_type; request.header = msg.val; request.size = sizeof(input); request.data = &input; ret = catpt_dsp_send_msg(cdev, request, NULL); if (ret) dev_err(cdev->dev, "set stream %d volume failed: %d\n", stream_hw_id, ret); return ret; } struct catpt_set_write_pos_input { u32 new_write_pos; bool end_of_buffer; bool low_latency; } __packed; int catpt_ipc_set_write_pos(struct catpt_dev *cdev, u8 stream_hw_id, u32 pos, bool eob, bool ll) { union catpt_stream_msg msg = CATPT_STAGE_MSG(SET_WRITE_POSITION); struct catpt_ipc_msg request; struct catpt_set_write_pos_input input; int ret; msg.stream_hw_id = stream_hw_id; input.new_write_pos = pos; input.end_of_buffer = eob; input.low_latency = ll; request.header = msg.val; request.size = sizeof(input); request.data = &input; ret = catpt_dsp_send_msg(cdev, request, NULL); if (ret) dev_err(cdev->dev, "set stream %d write pos failed: %d\n", stream_hw_id, ret); return ret; } int catpt_ipc_mute_loopback(struct catpt_dev *cdev, u8 stream_hw_id, bool mute) { union catpt_stream_msg msg = CATPT_STAGE_MSG(MUTE_LOOPBACK); struct catpt_ipc_msg request; int ret; msg.stream_hw_id = stream_hw_id; request.header = msg.val; request.size = sizeof(mute); request.data = &mute; ret = catpt_dsp_send_msg(cdev, request, NULL); if (ret) dev_err(cdev->dev, "mute loopback failed: %d\n", ret); return ret; }
linux-master
sound/soc/intel/catpt/messages.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2020 Intel Corporation. All rights reserved. // // Author: Cezary Rojewski <[email protected]> // // Special thanks to: // Marcin Barlik <[email protected]> // Piotr Papierkowski <[email protected]> // // for sharing LPT-LP and WTP-LP AudioDSP architecture expertise and // helping backtrack its historical background // #include <linux/acpi.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <sound/intel-dsp-config.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "core.h" #include "registers.h" #define CREATE_TRACE_POINTS #include "trace.h" static int __maybe_unused catpt_suspend(struct device *dev) { struct catpt_dev *cdev = dev_get_drvdata(dev); struct dma_chan *chan; int ret; chan = catpt_dma_request_config_chan(cdev); if (IS_ERR(chan)) return PTR_ERR(chan); memset(&cdev->dx_ctx, 0, sizeof(cdev->dx_ctx)); ret = catpt_ipc_enter_dxstate(cdev, CATPT_DX_STATE_D3, &cdev->dx_ctx); if (ret) { ret = CATPT_IPC_ERROR(ret); goto release_dma_chan; } ret = catpt_dsp_stall(cdev, true); if (ret) goto release_dma_chan; ret = catpt_store_memdumps(cdev, chan); if (ret) { dev_err(cdev->dev, "store memdumps failed: %d\n", ret); goto release_dma_chan; } ret = catpt_store_module_states(cdev, chan); if (ret) { dev_err(cdev->dev, "store module states failed: %d\n", ret); goto release_dma_chan; } ret = catpt_store_streams_context(cdev, chan); if (ret) dev_err(cdev->dev, "store streams ctx failed: %d\n", ret); release_dma_chan: dma_release_channel(chan); if (ret) return ret; return catpt_dsp_power_down(cdev); } static int __maybe_unused catpt_resume(struct device *dev) { struct catpt_dev *cdev = dev_get_drvdata(dev); int ret, i; ret = catpt_dsp_power_up(cdev); if (ret) return ret; if (!try_module_get(dev->driver->owner)) { dev_info(dev, "module unloading, skipping fw boot\n"); return 0; } module_put(dev->driver->owner); ret = catpt_boot_firmware(cdev, true); if (ret) { dev_err(cdev->dev, "boot firmware failed: %d\n", ret); return ret; } /* reconfigure SSP devices after Dx transition */ for (i = 0; i < CATPT_SSP_COUNT; i++) { if (cdev->devfmt[i].iface == UINT_MAX) continue; ret = catpt_ipc_set_device_format(cdev, &cdev->devfmt[i]); if (ret) return CATPT_IPC_ERROR(ret); } return 0; } static int __maybe_unused catpt_runtime_suspend(struct device *dev) { if (!try_module_get(dev->driver->owner)) { dev_info(dev, "module unloading, skipping suspend\n"); return 0; } module_put(dev->driver->owner); return catpt_suspend(dev); } static int __maybe_unused catpt_runtime_resume(struct device *dev) { return catpt_resume(dev); } static const struct dev_pm_ops catpt_dev_pm = { SET_SYSTEM_SLEEP_PM_OPS(catpt_suspend, catpt_resume) SET_RUNTIME_PM_OPS(catpt_runtime_suspend, catpt_runtime_resume, NULL) }; /* machine board owned by CATPT is removed with this hook */ static void board_pdev_unregister(void *data) { platform_device_unregister(data); } static int catpt_register_board(struct catpt_dev *cdev) { const struct catpt_spec *spec = cdev->spec; struct snd_soc_acpi_mach *mach; struct platform_device *board; mach = snd_soc_acpi_find_machine(spec->machines); if (!mach) { dev_info(cdev->dev, "no machines present\n"); return 0; } mach->mach_params.platform = "catpt-platform"; board = platform_device_register_data(NULL, mach->drv_name, PLATFORM_DEVID_NONE, (const void *)mach, sizeof(*mach)); if (IS_ERR(board)) { dev_err(cdev->dev, "board register failed\n"); return PTR_ERR(board); } return devm_add_action_or_reset(cdev->dev, board_pdev_unregister, board); } static int catpt_probe_components(struct catpt_dev *cdev) { int ret; ret = catpt_dsp_power_up(cdev); if (ret) return ret; ret = catpt_dmac_probe(cdev); if (ret) { dev_err(cdev->dev, "DMAC probe failed: %d\n", ret); goto err_dmac_probe; } ret = catpt_first_boot_firmware(cdev); if (ret) { dev_err(cdev->dev, "first fw boot failed: %d\n", ret); goto err_boot_fw; } ret = catpt_register_plat_component(cdev); if (ret) { dev_err(cdev->dev, "register plat comp failed: %d\n", ret); goto err_boot_fw; } ret = catpt_register_board(cdev); if (ret) { dev_err(cdev->dev, "register board failed: %d\n", ret); goto err_reg_board; } /* reflect actual ADSP state in pm_runtime */ pm_runtime_set_active(cdev->dev); pm_runtime_set_autosuspend_delay(cdev->dev, 2000); pm_runtime_use_autosuspend(cdev->dev); pm_runtime_mark_last_busy(cdev->dev); pm_runtime_enable(cdev->dev); return 0; err_reg_board: snd_soc_unregister_component(cdev->dev); err_boot_fw: catpt_dmac_remove(cdev); err_dmac_probe: catpt_dsp_power_down(cdev); return ret; } static void catpt_dev_init(struct catpt_dev *cdev, struct device *dev, const struct catpt_spec *spec) { cdev->dev = dev; cdev->spec = spec; init_completion(&cdev->fw_ready); INIT_LIST_HEAD(&cdev->stream_list); spin_lock_init(&cdev->list_lock); mutex_init(&cdev->clk_mutex); /* * Mark both device formats as uninitialized. Once corresponding * cpu_dai's pcm is created, proper values are assigned. */ cdev->devfmt[CATPT_SSP_IFACE_0].iface = UINT_MAX; cdev->devfmt[CATPT_SSP_IFACE_1].iface = UINT_MAX; catpt_ipc_init(&cdev->ipc, dev); catpt_sram_init(&cdev->dram, spec->host_dram_offset, catpt_dram_size(cdev)); catpt_sram_init(&cdev->iram, spec->host_iram_offset, catpt_iram_size(cdev)); } static int catpt_acpi_probe(struct platform_device *pdev) { const struct catpt_spec *spec; struct catpt_dev *cdev; struct device *dev = &pdev->dev; const struct acpi_device_id *id; struct resource *res; int ret; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return -ENODEV; ret = snd_intel_acpi_dsp_driver_probe(dev, id->id); if (ret != SND_INTEL_DSP_DRIVER_ANY && ret != SND_INTEL_DSP_DRIVER_SST) { dev_dbg(dev, "CATPT ACPI driver not selected, aborting probe\n"); return -ENODEV; } cdev = devm_kzalloc(dev, sizeof(*cdev), GFP_KERNEL); if (!cdev) return -ENOMEM; spec = (const struct catpt_spec *)id->driver_data; catpt_dev_init(cdev, dev, spec); /* map DSP bar address */ cdev->lpe_ba = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(cdev->lpe_ba)) return PTR_ERR(cdev->lpe_ba); cdev->lpe_base = res->start; /* map PCI bar address */ cdev->pci_ba = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(cdev->pci_ba)) return PTR_ERR(cdev->pci_ba); /* alloc buffer for storing DRAM context during dx transitions */ cdev->dxbuf_vaddr = dmam_alloc_coherent(dev, catpt_dram_size(cdev), &cdev->dxbuf_paddr, GFP_KERNEL); if (!cdev->dxbuf_vaddr) return -ENOMEM; ret = platform_get_irq(pdev, 0); if (ret < 0) return ret; cdev->irq = ret; platform_set_drvdata(pdev, cdev); ret = devm_request_threaded_irq(dev, cdev->irq, catpt_dsp_irq_handler, catpt_dsp_irq_thread, IRQF_SHARED, "AudioDSP", cdev); if (ret) return ret; return catpt_probe_components(cdev); } static void catpt_acpi_remove(struct platform_device *pdev) { struct catpt_dev *cdev = platform_get_drvdata(pdev); pm_runtime_disable(cdev->dev); snd_soc_unregister_component(cdev->dev); catpt_dmac_remove(cdev); catpt_dsp_power_down(cdev); catpt_sram_free(&cdev->iram); catpt_sram_free(&cdev->dram); } static struct snd_soc_acpi_mach lpt_machines[] = { { .id = "INT33CA", .drv_name = "hsw_rt5640", }, {} }; static struct snd_soc_acpi_mach wpt_machines[] = { { .id = "INT33CA", .drv_name = "hsw_rt5640", }, { .id = "INT343A", .drv_name = "bdw_rt286", }, { .id = "10EC5650", .drv_name = "bdw-rt5650", }, { .id = "RT5677CE", .drv_name = "bdw-rt5677", }, {} }; static struct catpt_spec lpt_desc = { .machines = lpt_machines, .core_id = 0x01, .host_dram_offset = 0x000000, .host_iram_offset = 0x080000, .host_shim_offset = 0x0E7000, .host_dma_offset = { 0x0F0000, 0x0F8000 }, .host_ssp_offset = { 0x0E8000, 0x0E9000 }, .dram_mask = LPT_VDRTCTL0_DSRAMPGE_MASK, .iram_mask = LPT_VDRTCTL0_ISRAMPGE_MASK, .d3srampgd_bit = LPT_VDRTCTL0_D3SRAMPGD, .d3pgd_bit = LPT_VDRTCTL0_D3PGD, .pll_shutdown = lpt_dsp_pll_shutdown, }; static struct catpt_spec wpt_desc = { .machines = wpt_machines, .core_id = 0x02, .host_dram_offset = 0x000000, .host_iram_offset = 0x0A0000, .host_shim_offset = 0x0FB000, .host_dma_offset = { 0x0FE000, 0x0FF000 }, .host_ssp_offset = { 0x0FC000, 0x0FD000 }, .dram_mask = WPT_VDRTCTL0_DSRAMPGE_MASK, .iram_mask = WPT_VDRTCTL0_ISRAMPGE_MASK, .d3srampgd_bit = WPT_VDRTCTL0_D3SRAMPGD, .d3pgd_bit = WPT_VDRTCTL0_D3PGD, .pll_shutdown = wpt_dsp_pll_shutdown, }; static const struct acpi_device_id catpt_ids[] = { { "INT33C8", (unsigned long)&lpt_desc }, { "INT3438", (unsigned long)&wpt_desc }, { } }; MODULE_DEVICE_TABLE(acpi, catpt_ids); static struct platform_driver catpt_acpi_driver = { .probe = catpt_acpi_probe, .remove_new = catpt_acpi_remove, .driver = { .name = "intel_catpt", .acpi_match_table = catpt_ids, .pm = &catpt_dev_pm, .dev_groups = catpt_attr_groups, }, }; module_platform_driver(catpt_acpi_driver); MODULE_AUTHOR("Cezary Rojewski <[email protected]>"); MODULE_DESCRIPTION("Intel LPT/WPT AudioDSP driver"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/catpt/device.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2020 Intel Corporation. All rights reserved. // // Author: Cezary Rojewski <[email protected]> // #include <linux/irqreturn.h> #include "core.h" #include "messages.h" #include "registers.h" #include "trace.h" #define CATPT_IPC_TIMEOUT_MS 300 void catpt_ipc_init(struct catpt_ipc *ipc, struct device *dev) { ipc->dev = dev; ipc->ready = false; ipc->default_timeout = CATPT_IPC_TIMEOUT_MS; init_completion(&ipc->done_completion); init_completion(&ipc->busy_completion); spin_lock_init(&ipc->lock); mutex_init(&ipc->mutex); } static int catpt_ipc_arm(struct catpt_ipc *ipc, struct catpt_fw_ready *config) { /* * Both tx and rx are put into and received from outbox. Inbox is * only used for notifications where payload size is known upfront, * thus no separate buffer is allocated for it. */ ipc->rx.data = devm_kzalloc(ipc->dev, config->outbox_size, GFP_KERNEL); if (!ipc->rx.data) return -ENOMEM; memcpy(&ipc->config, config, sizeof(*config)); ipc->ready = true; return 0; } static void catpt_ipc_msg_init(struct catpt_ipc *ipc, struct catpt_ipc_msg *reply) { lockdep_assert_held(&ipc->lock); ipc->rx.header = 0; ipc->rx.size = reply ? reply->size : 0; reinit_completion(&ipc->done_completion); reinit_completion(&ipc->busy_completion); } static void catpt_dsp_send_tx(struct catpt_dev *cdev, const struct catpt_ipc_msg *tx) { u32 header = tx->header | CATPT_IPCC_BUSY; trace_catpt_ipc_request(header); trace_catpt_ipc_payload(tx->data, tx->size); memcpy_toio(catpt_outbox_addr(cdev), tx->data, tx->size); catpt_writel_shim(cdev, IPCC, header); } static int catpt_wait_msg_completion(struct catpt_dev *cdev, int timeout) { struct catpt_ipc *ipc = &cdev->ipc; int ret; ret = wait_for_completion_timeout(&ipc->done_completion, msecs_to_jiffies(timeout)); if (!ret) return -ETIMEDOUT; if (ipc->rx.rsp.status != CATPT_REPLY_PENDING) return 0; /* wait for delayed reply */ ret = wait_for_completion_timeout(&ipc->busy_completion, msecs_to_jiffies(timeout)); return ret ? 0 : -ETIMEDOUT; } static int catpt_dsp_do_send_msg(struct catpt_dev *cdev, struct catpt_ipc_msg request, struct catpt_ipc_msg *reply, int timeout) { struct catpt_ipc *ipc = &cdev->ipc; unsigned long flags; int ret; if (!ipc->ready) return -EPERM; if (request.size > ipc->config.outbox_size || (reply && reply->size > ipc->config.outbox_size)) return -EINVAL; spin_lock_irqsave(&ipc->lock, flags); catpt_ipc_msg_init(ipc, reply); catpt_dsp_send_tx(cdev, &request); spin_unlock_irqrestore(&ipc->lock, flags); ret = catpt_wait_msg_completion(cdev, timeout); if (ret) { dev_crit(cdev->dev, "communication severed: %d, rebooting dsp..\n", ret); ipc->ready = false; /* TODO: attempt recovery */ return ret; } ret = ipc->rx.rsp.status; if (reply) { reply->header = ipc->rx.header; if (!ret && reply->data) memcpy(reply->data, ipc->rx.data, reply->size); } return ret; } int catpt_dsp_send_msg_timeout(struct catpt_dev *cdev, struct catpt_ipc_msg request, struct catpt_ipc_msg *reply, int timeout) { struct catpt_ipc *ipc = &cdev->ipc; int ret; mutex_lock(&ipc->mutex); ret = catpt_dsp_do_send_msg(cdev, request, reply, timeout); mutex_unlock(&ipc->mutex); return ret; } int catpt_dsp_send_msg(struct catpt_dev *cdev, struct catpt_ipc_msg request, struct catpt_ipc_msg *reply) { return catpt_dsp_send_msg_timeout(cdev, request, reply, cdev->ipc.default_timeout); } static void catpt_dsp_notify_stream(struct catpt_dev *cdev, union catpt_notify_msg msg) { struct catpt_stream_runtime *stream; struct catpt_notify_position pos; struct catpt_notify_glitch glitch; stream = catpt_stream_find(cdev, msg.stream_hw_id); if (!stream) { dev_warn(cdev->dev, "notify %d for non-existent stream %d\n", msg.notify_reason, msg.stream_hw_id); return; } switch (msg.notify_reason) { case CATPT_NOTIFY_POSITION_CHANGED: memcpy_fromio(&pos, catpt_inbox_addr(cdev), sizeof(pos)); trace_catpt_ipc_payload((u8 *)&pos, sizeof(pos)); catpt_stream_update_position(cdev, stream, &pos); break; case CATPT_NOTIFY_GLITCH_OCCURRED: memcpy_fromio(&glitch, catpt_inbox_addr(cdev), sizeof(glitch)); trace_catpt_ipc_payload((u8 *)&glitch, sizeof(glitch)); dev_warn(cdev->dev, "glitch %d at pos: 0x%08llx, wp: 0x%08x\n", glitch.type, glitch.presentation_pos, glitch.write_pos); break; default: dev_warn(cdev->dev, "unknown notification: %d received\n", msg.notify_reason); break; } } static void catpt_dsp_copy_rx(struct catpt_dev *cdev, u32 header) { struct catpt_ipc *ipc = &cdev->ipc; ipc->rx.header = header; if (ipc->rx.rsp.status != CATPT_REPLY_SUCCESS) return; memcpy_fromio(ipc->rx.data, catpt_outbox_addr(cdev), ipc->rx.size); trace_catpt_ipc_payload(ipc->rx.data, ipc->rx.size); } static void catpt_dsp_process_response(struct catpt_dev *cdev, u32 header) { union catpt_notify_msg msg = CATPT_MSG(header); struct catpt_ipc *ipc = &cdev->ipc; if (msg.fw_ready) { struct catpt_fw_ready config; /* to fit 32b header original address is shifted right by 3 */ u32 off = msg.mailbox_address << 3; memcpy_fromio(&config, cdev->lpe_ba + off, sizeof(config)); trace_catpt_ipc_payload((u8 *)&config, sizeof(config)); catpt_ipc_arm(ipc, &config); complete(&cdev->fw_ready); return; } switch (msg.global_msg_type) { case CATPT_GLB_REQUEST_CORE_DUMP: dev_err(cdev->dev, "ADSP device coredump received\n"); ipc->ready = false; catpt_coredump(cdev); /* TODO: attempt recovery */ break; case CATPT_GLB_STREAM_MESSAGE: switch (msg.stream_msg_type) { case CATPT_STRM_NOTIFICATION: catpt_dsp_notify_stream(cdev, msg); break; default: catpt_dsp_copy_rx(cdev, header); /* signal completion of delayed reply */ complete(&ipc->busy_completion); break; } break; default: dev_warn(cdev->dev, "unknown response: %d received\n", msg.global_msg_type); break; } } irqreturn_t catpt_dsp_irq_thread(int irq, void *dev_id) { struct catpt_dev *cdev = dev_id; u32 ipcd; ipcd = catpt_readl_shim(cdev, IPCD); trace_catpt_ipc_notify(ipcd); /* ensure there is delayed reply or notification to process */ if (!(ipcd & CATPT_IPCD_BUSY)) return IRQ_NONE; catpt_dsp_process_response(cdev, ipcd); /* tell DSP processing is completed */ catpt_updatel_shim(cdev, IPCD, CATPT_IPCD_BUSY | CATPT_IPCD_DONE, CATPT_IPCD_DONE); /* unmask dsp BUSY interrupt */ catpt_updatel_shim(cdev, IMC, CATPT_IMC_IPCDB, 0); return IRQ_HANDLED; } irqreturn_t catpt_dsp_irq_handler(int irq, void *dev_id) { struct catpt_dev *cdev = dev_id; irqreturn_t ret = IRQ_NONE; u32 isc, ipcc; isc = catpt_readl_shim(cdev, ISC); trace_catpt_irq(isc); /* immediate reply */ if (isc & CATPT_ISC_IPCCD) { /* mask host DONE interrupt */ catpt_updatel_shim(cdev, IMC, CATPT_IMC_IPCCD, CATPT_IMC_IPCCD); ipcc = catpt_readl_shim(cdev, IPCC); trace_catpt_ipc_reply(ipcc); catpt_dsp_copy_rx(cdev, ipcc); complete(&cdev->ipc.done_completion); /* tell DSP processing is completed */ catpt_updatel_shim(cdev, IPCC, CATPT_IPCC_DONE, 0); /* unmask host DONE interrupt */ catpt_updatel_shim(cdev, IMC, CATPT_IMC_IPCCD, 0); ret = IRQ_HANDLED; } /* delayed reply or notification */ if (isc & CATPT_ISC_IPCDB) { /* mask dsp BUSY interrupt */ catpt_updatel_shim(cdev, IMC, CATPT_IMC_IPCDB, CATPT_IMC_IPCDB); ret = IRQ_WAKE_THREAD; } return ret; }
linux-master
sound/soc/intel/catpt/ipc.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-ehl-match.c - tables and support for EHL ACPI enumeration. * * Copyright (c) 2019, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> #include "../skylake/skl.h" struct snd_soc_acpi_mach snd_soc_acpi_intel_ehl_machines[] = { { .id = "10EC5660", .drv_name = "ehl_rt5660", .sof_tplg_filename = "sof-ehl-rt5660.tplg", }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_ehl_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-ehl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-byt-match.c - tables and support for BYT ACPI enumeration. * * Copyright (c) 2017, Intel Corporation. */ #include <linux/dmi.h> #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> static unsigned long byt_machine_id; #define BYT_RT5672 1 #define BYT_POV_P1006W 2 static int byt_rt5672_quirk_cb(const struct dmi_system_id *id) { byt_machine_id = BYT_RT5672; return 1; } static int byt_pov_p1006w_quirk_cb(const struct dmi_system_id *id) { byt_machine_id = BYT_POV_P1006W; return 1; } static const struct dmi_system_id byt_table[] = { { .callback = byt_rt5672_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "ThinkPad 8"), }, }, { .callback = byt_rt5672_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "ThinkPad 10"), }, }, { .callback = byt_rt5672_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "ThinkPad Tablet B"), }, }, { .callback = byt_rt5672_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo Miix 2 10"), }, }, { /* Point of View mobii wintab p1006w (v1.0) */ .callback = byt_pov_p1006w_quirk_cb, .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Insyde"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "BayTrail"), /* Note 105b is Foxcon's USB/PCI vendor id */ DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "105B"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "0E57"), }, }, { /* Aegex 10 tablet (RU2) */ .callback = byt_rt5672_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "AEGEX"), DMI_MATCH(DMI_PRODUCT_VERSION, "RU2"), }, }, { /* Dell Venue 10 Pro 5055 */ .callback = byt_rt5672_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Venue 10 Pro 5055"), }, }, { } }; /* Various devices use an ACPI id of 10EC5640 while using a rt5672 codec */ static struct snd_soc_acpi_mach byt_rt5672 = { .id = "10EC5640", .drv_name = "cht-bsw-rt5672", .fw_filename = "intel/fw_sst_0f28.bin", .board = "cht-bsw", .sof_tplg_filename = "sof-byt-rt5670.tplg", }; static struct snd_soc_acpi_mach byt_pov_p1006w = { .id = "10EC5640", .drv_name = "bytcr_rt5651", .fw_filename = "intel/fw_sst_0f28.bin", .board = "bytcr_rt5651", .sof_tplg_filename = "sof-byt-rt5651.tplg", }; static struct snd_soc_acpi_mach *byt_quirk(void *arg) { struct snd_soc_acpi_mach *mach = arg; dmi_check_system(byt_table); switch (byt_machine_id) { case BYT_RT5672: return &byt_rt5672; case BYT_POV_P1006W: return &byt_pov_p1006w; default: return mach; } } static const struct snd_soc_acpi_codecs rt5640_comp_ids = { .num_codecs = 3, .codecs = { "10EC5640", "10EC5642", "INTCCFFD"}, }; static const struct snd_soc_acpi_codecs wm5102_comp_ids = { .num_codecs = 3, .codecs = { "10WM5102", "WM510204", "WM510205"}, }; static const struct snd_soc_acpi_codecs da7213_comp_ids = { .num_codecs = 2, .codecs = { "DGLS7212", "DGLS7213"}, }; static const struct snd_soc_acpi_codecs rt5645_comp_ids = { .num_codecs = 2, .codecs = { "10EC5645", "10EC5648"}, }; struct snd_soc_acpi_mach snd_soc_acpi_intel_baytrail_machines[] = { { .comp_ids = &rt5640_comp_ids, .drv_name = "bytcr_rt5640", .fw_filename = "intel/fw_sst_0f28.bin", .board = "bytcr_rt5640", .machine_quirk = byt_quirk, .sof_tplg_filename = "sof-byt-rt5640.tplg", }, { .id = "10EC5651", .drv_name = "bytcr_rt5651", .fw_filename = "intel/fw_sst_0f28.bin", .board = "bytcr_rt5651", .sof_tplg_filename = "sof-byt-rt5651.tplg", }, { .comp_ids = &wm5102_comp_ids, .drv_name = "bytcr_wm5102", .fw_filename = "intel/fw_sst_0f28.bin", .board = "bytcr_wm5102", .sof_tplg_filename = "sof-byt-wm5102.tplg", }, { .comp_ids = &da7213_comp_ids, .drv_name = "bytcht_da7213", .fw_filename = "intel/fw_sst_0f28.bin", .board = "bytcht_da7213", .sof_tplg_filename = "sof-byt-da7213.tplg", }, { .id = "ESSX8316", .drv_name = "bytcht_es8316", .fw_filename = "intel/fw_sst_0f28.bin", .board = "bytcht_es8316", .sof_tplg_filename = "sof-byt-es8316.tplg", }, { .id = "10EC5682", .drv_name = "sof_rt5682", .sof_tplg_filename = "sof-byt-rt5682.tplg", }, /* some Baytrail platforms rely on RT5645, use CHT machine driver */ { .comp_ids = &rt5645_comp_ids, .drv_name = "cht-bsw-rt5645", .fw_filename = "intel/fw_sst_0f28.bin", .board = "cht-bsw", .sof_tplg_filename = "sof-byt-rt5645.tplg", }, /* use CHT driver to Baytrail Chromebooks */ { .id = "193C9890", .drv_name = "cht-bsw-max98090", .fw_filename = "intel/fw_sst_0f28.bin", .board = "cht-bsw", .sof_tplg_filename = "sof-byt-max98090.tplg", }, { .id = "14F10720", .drv_name = "bytcht_cx2072x", .fw_filename = "intel/fw_sst_0f28.bin", .board = "bytcht_cx2072x", .sof_tplg_filename = "sof-byt-cx2072x.tplg", }, #if IS_ENABLED(CONFIG_SND_SOC_INTEL_BYT_CHT_NOCODEC_MACH) /* * This is always last in the table so that it is selected only when * enabled explicitly and there is no codec-related information in SSDT */ { .id = "80860F28", .drv_name = "bytcht_nocodec", .fw_filename = "intel/fw_sst_0f28.bin", .board = "bytcht_nocodec", }, #endif {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_baytrail_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-byt-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-bxt-match.c - tables and support for BXT ACPI enumeration. * * Copyright (c) 2018, Intel Corporation. * */ #include <linux/dmi.h> #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> enum { APL_RVP, }; static const struct dmi_system_id apl_table[] = { { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corp."), DMI_MATCH(DMI_BOARD_NAME, "Apollolake RVP1A"), }, .driver_data = (void *)(APL_RVP), }, {} }; static struct snd_soc_acpi_mach *apl_quirk(void *arg) { struct snd_soc_acpi_mach *mach = arg; const struct dmi_system_id *dmi_id; unsigned long apl_machine_id; dmi_id = dmi_first_match(apl_table); if (dmi_id) { apl_machine_id = (unsigned long)dmi_id->driver_data; if (apl_machine_id == APL_RVP) return NULL; } return mach; } static const struct snd_soc_acpi_codecs essx_83x6 = { .num_codecs = 3, .codecs = { "ESSX8316", "ESSX8326", "ESSX8336"}, }; static const struct snd_soc_acpi_codecs bxt_codecs = { .num_codecs = 1, .codecs = {"MX98357A"} }; struct snd_soc_acpi_mach snd_soc_acpi_intel_bxt_machines[] = { { .id = "INT343A", .drv_name = "bxt_alc298s_i2s", .fw_filename = "intel/dsp_fw_bxtn.bin", .sof_tplg_filename = "sof-apl-rt298.tplg", }, { .id = "DLGS7219", .drv_name = "bxt_da7219_mx98357a", .fw_filename = "intel/dsp_fw_bxtn.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &bxt_codecs, .sof_tplg_filename = "sof-apl-da7219.tplg", }, { .id = "104C5122", .drv_name = "sof_pcm512x", .sof_tplg_filename = "sof-apl-pcm512x.tplg", }, { .id = "1AEC8804", .drv_name = "sof-wm8804", .sof_tplg_filename = "sof-apl-wm8804.tplg", }, { .id = "INT34C3", .drv_name = "bxt_tdf8532", .machine_quirk = apl_quirk, .sof_tplg_filename = "sof-apl-tdf8532.tplg", }, { .comp_ids = &essx_83x6, .drv_name = "sof-essx8336", .sof_tplg_filename = "sof-apl-es8336", /* the tplg suffix is added at run time */ .tplg_quirk_mask = SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER | SND_SOC_ACPI_TPLG_INTEL_SSP_MSB | SND_SOC_ACPI_TPLG_INTEL_DMIC_NUMBER, }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_bxt_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-bxt-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-cnl-match.c - tables and support for CNL ACPI enumeration. * * Copyright (c) 2018, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> #include "../skylake/skl.h" #include "soc-acpi-intel-sdw-mockup-match.h" static const struct snd_soc_acpi_codecs essx_83x6 = { .num_codecs = 3, .codecs = { "ESSX8316", "ESSX8326", "ESSX8336"}, }; static struct skl_machine_pdata cnl_pdata = { .use_tplg_pcm = true, }; struct snd_soc_acpi_mach snd_soc_acpi_intel_cnl_machines[] = { { .id = "INT34C2", .drv_name = "cnl_rt274", .fw_filename = "intel/dsp_fw_cnl.bin", .pdata = &cnl_pdata, .sof_tplg_filename = "sof-cnl-rt274.tplg", }, { .comp_ids = &essx_83x6, .drv_name = "sof-essx8336", /* cnl and cml are identical */ .sof_tplg_filename = "sof-cml-es8336", /* the tplg suffix is added at run time */ .tplg_quirk_mask = SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER | SND_SOC_ACPI_TPLG_INTEL_SSP_MSB | SND_SOC_ACPI_TPLG_INTEL_DMIC_NUMBER, }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_cnl_machines); static const struct snd_soc_acpi_endpoint single_endpoint = { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }; static const struct snd_soc_acpi_adr_device rt5682_2_adr[] = { { .adr = 0x000220025D568200ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt5682" } }; static const struct snd_soc_acpi_link_adr up_extreme_rt5682_2[] = { { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt5682_2_adr), .adr_d = rt5682_2_adr, }, {} }; struct snd_soc_acpi_mach snd_soc_acpi_intel_cnl_sdw_machines[] = { { .link_mask = BIT(2), .links = up_extreme_rt5682_2, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-cnl-rt5682-sdw2.tplg" }, { .link_mask = GENMASK(3, 0), .links = sdw_mockup_headset_2amps_mic, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-cml-rt711-rt1308-rt715.tplg", }, { .link_mask = BIT(0) | BIT(1) | BIT(3), .links = sdw_mockup_headset_1amp_mic, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-cml-rt711-rt1308-mono-rt715.tplg", }, {} }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_cnl_sdw_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-cnl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-icl-match.c - tables and support for ICL ACPI enumeration. * * Copyright (c) 2018, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> #include "../skylake/skl.h" static const struct snd_soc_acpi_codecs essx_83x6 = { .num_codecs = 3, .codecs = { "ESSX8316", "ESSX8326", "ESSX8336"}, }; static struct skl_machine_pdata icl_pdata = { .use_tplg_pcm = true, }; struct snd_soc_acpi_mach snd_soc_acpi_intel_icl_machines[] = { { .id = "INT34C2", .drv_name = "icl_rt274", .fw_filename = "intel/dsp_fw_icl.bin", .pdata = &icl_pdata, .sof_tplg_filename = "sof-icl-rt274.tplg", }, { .id = "10EC5682", .drv_name = "sof_rt5682", .sof_tplg_filename = "sof-icl-rt5682.tplg", }, { .comp_ids = &essx_83x6, .drv_name = "sof-essx8336", .sof_tplg_filename = "sof-icl-es8336", /* the tplg suffix is added at run time */ .tplg_quirk_mask = SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER | SND_SOC_ACPI_TPLG_INTEL_SSP_MSB | SND_SOC_ACPI_TPLG_INTEL_DMIC_NUMBER, }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_icl_machines); static const struct snd_soc_acpi_endpoint single_endpoint = { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }; static const struct snd_soc_acpi_endpoint spk_l_endpoint = { .num = 0, .aggregated = 1, .group_position = 0, .group_id = 1, }; static const struct snd_soc_acpi_endpoint spk_r_endpoint = { .num = 0, .aggregated = 1, .group_position = 1, .group_id = 1, }; static const struct snd_soc_acpi_adr_device rt700_0_adr[] = { { .adr = 0x000010025D070000ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt700" } }; static const struct snd_soc_acpi_link_adr icl_rvp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt700_0_adr), .adr_d = rt700_0_adr, }, {} }; static const struct snd_soc_acpi_adr_device rt711_0_adr[] = { { .adr = 0x000020025D071100ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt1308_1_adr[] = { { .adr = 0x000120025D130800ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt1308-1" } }; static const struct snd_soc_acpi_adr_device rt1308_1_group1_adr[] = { { .adr = 0x000120025D130800ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1308-1" } }; static const struct snd_soc_acpi_adr_device rt1308_2_group1_adr[] = { { .adr = 0x000220025D130800ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1308-2" } }; static const struct snd_soc_acpi_adr_device rt715_3_adr[] = { { .adr = 0x000320025D071500ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt715" } }; static const struct snd_soc_acpi_link_adr icl_3_in_1_default[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1308_1_group1_adr), .adr_d = rt1308_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1308_2_group1_adr), .adr_d = rt1308_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt715_3_adr), .adr_d = rt715_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr icl_3_in_1_mono_amp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1308_1_adr), .adr_d = rt1308_1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt715_3_adr), .adr_d = rt715_3_adr, }, {} }; struct snd_soc_acpi_mach snd_soc_acpi_intel_icl_sdw_machines[] = { { .link_mask = 0xF, /* 4 active links required */ .links = icl_3_in_1_default, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-icl-rt711-rt1308-rt715.tplg", }, { .link_mask = 0xB, /* 3 active links required */ .links = icl_3_in_1_mono_amp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-icl-rt711-rt1308-rt715-mono.tplg", }, { .link_mask = 0x1, /* rt700 connected on link0 */ .links = icl_rvp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-icl-rt700.tplg", }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_icl_sdw_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-icl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel SST generic IPC Support * * Copyright (C) 2015, Intel Corporation. All rights reserved. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/wait.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <sound/asound.h> #include "sst-dsp.h" #include "sst-dsp-priv.h" #include "sst-ipc.h" /* IPC message timeout (msecs) */ #define IPC_TIMEOUT_MSECS 300 #define IPC_EMPTY_LIST_SIZE 8 /* locks held by caller */ static struct ipc_message *msg_get_empty(struct sst_generic_ipc *ipc) { struct ipc_message *msg = NULL; if (!list_empty(&ipc->empty_list)) { msg = list_first_entry(&ipc->empty_list, struct ipc_message, list); list_del(&msg->list); } return msg; } static int tx_wait_done(struct sst_generic_ipc *ipc, struct ipc_message *msg, struct sst_ipc_message *reply) { unsigned long flags; int ret; /* wait for DSP completion (in all cases atm inc pending) */ ret = wait_event_timeout(msg->waitq, msg->complete, msecs_to_jiffies(IPC_TIMEOUT_MSECS)); spin_lock_irqsave(&ipc->dsp->spinlock, flags); if (ret == 0) { if (ipc->ops.shim_dbg != NULL) ipc->ops.shim_dbg(ipc, "message timeout"); list_del(&msg->list); ret = -ETIMEDOUT; } else { /* copy the data returned from DSP */ if (reply) { reply->header = msg->rx.header; if (reply->data) memcpy(reply->data, msg->rx.data, msg->rx.size); } ret = msg->errno; } list_add_tail(&msg->list, &ipc->empty_list); spin_unlock_irqrestore(&ipc->dsp->spinlock, flags); return ret; } static int ipc_tx_message(struct sst_generic_ipc *ipc, struct sst_ipc_message request, struct sst_ipc_message *reply, int wait) { struct ipc_message *msg; unsigned long flags; spin_lock_irqsave(&ipc->dsp->spinlock, flags); msg = msg_get_empty(ipc); if (msg == NULL) { spin_unlock_irqrestore(&ipc->dsp->spinlock, flags); return -EBUSY; } msg->tx.header = request.header; msg->tx.size = request.size; msg->rx.header = 0; msg->rx.size = reply ? reply->size : 0; msg->wait = wait; msg->errno = 0; msg->pending = false; msg->complete = false; if ((request.size) && (ipc->ops.tx_data_copy != NULL)) ipc->ops.tx_data_copy(msg, request.data, request.size); list_add_tail(&msg->list, &ipc->tx_list); schedule_work(&ipc->kwork); spin_unlock_irqrestore(&ipc->dsp->spinlock, flags); if (wait) return tx_wait_done(ipc, msg, reply); else return 0; } static int msg_empty_list_init(struct sst_generic_ipc *ipc) { int i; ipc->msg = kcalloc(IPC_EMPTY_LIST_SIZE, sizeof(struct ipc_message), GFP_KERNEL); if (ipc->msg == NULL) return -ENOMEM; for (i = 0; i < IPC_EMPTY_LIST_SIZE; i++) { ipc->msg[i].tx.data = kzalloc(ipc->tx_data_max_size, GFP_KERNEL); if (ipc->msg[i].tx.data == NULL) goto free_mem; ipc->msg[i].rx.data = kzalloc(ipc->rx_data_max_size, GFP_KERNEL); if (ipc->msg[i].rx.data == NULL) { kfree(ipc->msg[i].tx.data); goto free_mem; } init_waitqueue_head(&ipc->msg[i].waitq); list_add(&ipc->msg[i].list, &ipc->empty_list); } return 0; free_mem: while (i > 0) { kfree(ipc->msg[i-1].tx.data); kfree(ipc->msg[i-1].rx.data); --i; } kfree(ipc->msg); return -ENOMEM; } static void ipc_tx_msgs(struct work_struct *work) { struct sst_generic_ipc *ipc = container_of(work, struct sst_generic_ipc, kwork); struct ipc_message *msg; spin_lock_irq(&ipc->dsp->spinlock); while (!list_empty(&ipc->tx_list) && !ipc->pending) { /* if the DSP is busy, we will TX messages after IRQ. * also postpone if we are in the middle of processing * completion irq */ if (ipc->ops.is_dsp_busy && ipc->ops.is_dsp_busy(ipc->dsp)) { dev_dbg(ipc->dev, "ipc_tx_msgs dsp busy\n"); break; } msg = list_first_entry(&ipc->tx_list, struct ipc_message, list); list_move(&msg->list, &ipc->rx_list); if (ipc->ops.tx_msg != NULL) ipc->ops.tx_msg(ipc, msg); } spin_unlock_irq(&ipc->dsp->spinlock); } int sst_ipc_tx_message_wait(struct sst_generic_ipc *ipc, struct sst_ipc_message request, struct sst_ipc_message *reply) { int ret; /* * DSP maybe in lower power active state, so * check if the DSP supports DSP lp On method * if so invoke that before sending IPC */ if (ipc->ops.check_dsp_lp_on) if (ipc->ops.check_dsp_lp_on(ipc->dsp, true)) return -EIO; ret = ipc_tx_message(ipc, request, reply, 1); if (ipc->ops.check_dsp_lp_on) if (ipc->ops.check_dsp_lp_on(ipc->dsp, false)) return -EIO; return ret; } EXPORT_SYMBOL_GPL(sst_ipc_tx_message_wait); int sst_ipc_tx_message_nowait(struct sst_generic_ipc *ipc, struct sst_ipc_message request) { return ipc_tx_message(ipc, request, NULL, 0); } EXPORT_SYMBOL_GPL(sst_ipc_tx_message_nowait); int sst_ipc_tx_message_nopm(struct sst_generic_ipc *ipc, struct sst_ipc_message request, struct sst_ipc_message *reply) { return ipc_tx_message(ipc, request, reply, 1); } EXPORT_SYMBOL_GPL(sst_ipc_tx_message_nopm); struct ipc_message *sst_ipc_reply_find_msg(struct sst_generic_ipc *ipc, u64 header) { struct ipc_message *msg; u64 mask; if (ipc->ops.reply_msg_match != NULL) header = ipc->ops.reply_msg_match(header, &mask); else mask = (u64)-1; if (list_empty(&ipc->rx_list)) { dev_err(ipc->dev, "error: rx list empty but received 0x%llx\n", header); return NULL; } list_for_each_entry(msg, &ipc->rx_list, list) { if ((msg->tx.header & mask) == header) return msg; } return NULL; } EXPORT_SYMBOL_GPL(sst_ipc_reply_find_msg); /* locks held by caller */ void sst_ipc_tx_msg_reply_complete(struct sst_generic_ipc *ipc, struct ipc_message *msg) { msg->complete = true; if (!msg->wait) list_add_tail(&msg->list, &ipc->empty_list); else wake_up(&msg->waitq); } EXPORT_SYMBOL_GPL(sst_ipc_tx_msg_reply_complete); int sst_ipc_init(struct sst_generic_ipc *ipc) { int ret; INIT_LIST_HEAD(&ipc->tx_list); INIT_LIST_HEAD(&ipc->rx_list); INIT_LIST_HEAD(&ipc->empty_list); init_waitqueue_head(&ipc->wait_txq); ret = msg_empty_list_init(ipc); if (ret < 0) return -ENOMEM; INIT_WORK(&ipc->kwork, ipc_tx_msgs); return 0; } EXPORT_SYMBOL_GPL(sst_ipc_init); void sst_ipc_fini(struct sst_generic_ipc *ipc) { int i; cancel_work_sync(&ipc->kwork); if (ipc->msg) { for (i = 0; i < IPC_EMPTY_LIST_SIZE; i++) { kfree(ipc->msg[i].tx.data); kfree(ipc->msg[i].rx.data); } kfree(ipc->msg); } } EXPORT_SYMBOL_GPL(sst_ipc_fini); /* Module information */ MODULE_AUTHOR("Jin Yao"); MODULE_DESCRIPTION("Intel SST IPC generic"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/common/sst-ipc.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-tgl-match.c - tables and support for TGL ACPI enumeration. * * Copyright (c) 2019, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> #include "soc-acpi-intel-sdw-mockup-match.h" static const struct snd_soc_acpi_codecs essx_83x6 = { .num_codecs = 3, .codecs = { "ESSX8316", "ESSX8326", "ESSX8336"}, }; static const struct snd_soc_acpi_codecs tgl_codecs = { .num_codecs = 1, .codecs = {"MX98357A"} }; static const struct snd_soc_acpi_endpoint single_endpoint = { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }; static const struct snd_soc_acpi_endpoint spk_l_endpoint = { .num = 0, .aggregated = 1, .group_position = 0, .group_id = 1, }; static const struct snd_soc_acpi_endpoint spk_r_endpoint = { .num = 0, .aggregated = 1, .group_position = 1, .group_id = 1, }; static const struct snd_soc_acpi_endpoint rt712_endpoints[] = { { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }, { .num = 1, .aggregated = 0, .group_position = 0, .group_id = 0, }, }; static const struct snd_soc_acpi_adr_device rt711_0_adr[] = { { .adr = 0x000020025D071100ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt711_1_adr[] = { { .adr = 0x000120025D071100ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt1308_1_dual_adr[] = { { .adr = 0x000120025D130800ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1308-1" }, { .adr = 0x000122025D130800ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1308-2" } }; static const struct snd_soc_acpi_adr_device rt1308_1_single_adr[] = { { .adr = 0x000120025D130800ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt1308-1" } }; static const struct snd_soc_acpi_adr_device rt1308_2_single_adr[] = { { .adr = 0x000220025D130800ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt1308-1" } }; static const struct snd_soc_acpi_adr_device rt1308_1_group1_adr[] = { { .adr = 0x000120025D130800ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1308-1" } }; static const struct snd_soc_acpi_adr_device rt1308_2_group1_adr[] = { { .adr = 0x000220025D130800ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1308-2" } }; static const struct snd_soc_acpi_adr_device rt715_0_adr[] = { { .adr = 0x000021025D071500ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt715" } }; static const struct snd_soc_acpi_adr_device rt715_3_adr[] = { { .adr = 0x000320025D071500ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt715" } }; static const struct snd_soc_acpi_adr_device mx8373_1_adr[] = { { .adr = 0x000123019F837300ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "Right" }, { .adr = 0x000127019F837300ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "Left" } }; static const struct snd_soc_acpi_adr_device rt5682_0_adr[] = { { .adr = 0x000021025D568200ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt5682" } }; static const struct snd_soc_acpi_adr_device rt711_sdca_0_adr[] = { { .adr = 0x000030025D071101ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt1316_1_single_adr[] = { { .adr = 0x000131025D131601ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt712_0_single_adr[] = { { .adr = 0x000030025D071201ull, .num_endpoints = ARRAY_SIZE(rt712_endpoints), .endpoints = rt712_endpoints, .name_prefix = "rt712" } }; static const struct snd_soc_acpi_adr_device rt1712_1_single_adr[] = { { .adr = 0x000130025D171201ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt712-dmic" } }; static const struct snd_soc_acpi_adr_device rt1316_1_group1_adr[] = { { .adr = 0x000131025D131601ull, /* unique ID is set for some reason */ .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt1316_2_group1_adr[] = { { .adr = 0x000230025D131601ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1316-2" } }; static const struct snd_soc_acpi_adr_device rt714_3_adr[] = { { .adr = 0x000330025D071401ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt714" } }; static const struct snd_soc_acpi_link_adr tgl_rvp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1308_1_dual_adr), .adr_d = rt1308_1_dual_adr, }, {} }; static const struct snd_soc_acpi_link_adr tgl_rvp_headset_only[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr tgl_hp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1308_1_single_adr), .adr_d = rt1308_1_single_adr, }, {} }; static const struct snd_soc_acpi_link_adr tgl_chromebook_base[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt5682_0_adr), .adr_d = rt5682_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(mx8373_1_adr), .adr_d = mx8373_1_adr, }, {} }; static const struct snd_soc_acpi_link_adr tgl_3_in_1_default[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1308_1_group1_adr), .adr_d = rt1308_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1308_2_group1_adr), .adr_d = rt1308_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt715_3_adr), .adr_d = rt715_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr tgl_3_in_1_mono_amp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1308_1_single_adr), .adr_d = rt1308_1_single_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt715_3_adr), .adr_d = rt715_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr tgl_sdw_rt711_link1_rt1308_link2_rt715_link0[] = { { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt711_1_adr), .adr_d = rt711_1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1308_2_single_adr), .adr_d = rt1308_2_single_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt715_0_adr), .adr_d = rt715_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr tgl_3_in_1_sdca[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group1_adr), .adr_d = rt1316_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1316_2_group1_adr), .adr_d = rt1316_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt714_3_adr), .adr_d = rt714_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr tgl_3_in_1_sdca_mono[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_single_adr), .adr_d = rt1316_1_single_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt714_3_adr), .adr_d = rt714_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr tgl_712_only[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt712_0_single_adr), .adr_d = rt712_0_single_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1712_1_single_adr), .adr_d = rt1712_1_single_adr, }, {} }; static const struct snd_soc_acpi_codecs tgl_max98373_amp = { .num_codecs = 1, .codecs = {"MX98373"} }; static const struct snd_soc_acpi_codecs tgl_rt1011_amp = { .num_codecs = 1, .codecs = {"10EC1011"} }; static const struct snd_soc_acpi_codecs tgl_rt5682_rt5682s_hp = { .num_codecs = 2, .codecs = {"10EC5682", "RTL5682"}, }; static const struct snd_soc_acpi_codecs tgl_lt6911_hdmi = { .num_codecs = 1, .codecs = {"INTC10B0"} }; struct snd_soc_acpi_mach snd_soc_acpi_intel_tgl_machines[] = { { .comp_ids = &tgl_rt5682_rt5682s_hp, .drv_name = "tgl_mx98357_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &tgl_codecs, .sof_tplg_filename = "sof-tgl-max98357a-rt5682.tplg", }, { .comp_ids = &tgl_rt5682_rt5682s_hp, .drv_name = "tgl_mx98373_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &tgl_max98373_amp, .sof_tplg_filename = "sof-tgl-max98373-rt5682.tplg", }, { .comp_ids = &tgl_rt5682_rt5682s_hp, .drv_name = "tgl_rt1011_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &tgl_rt1011_amp, .sof_tplg_filename = "sof-tgl-rt1011-rt5682.tplg", }, { .comp_ids = &essx_83x6, .drv_name = "sof-essx8336", .sof_tplg_filename = "sof-tgl-es8336", /* the tplg suffix is added at run time */ .tplg_quirk_mask = SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER | SND_SOC_ACPI_TPLG_INTEL_SSP_MSB | SND_SOC_ACPI_TPLG_INTEL_DMIC_NUMBER, }, { .id = "10EC1308", .drv_name = "tgl_rt1308_hdmi_ssp", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &tgl_lt6911_hdmi, .sof_tplg_filename = "sof-tgl-rt1308-ssp2-hdmi-ssp15.tplg" }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_tgl_machines); /* this table is used when there is no I2S codec present */ struct snd_soc_acpi_mach snd_soc_acpi_intel_tgl_sdw_machines[] = { /* mockup tests need to be first */ { .link_mask = GENMASK(3, 0), .links = sdw_mockup_headset_2amps_mic, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt711-rt1308-rt715.tplg", }, { .link_mask = BIT(0) | BIT(1) | BIT(3), .links = sdw_mockup_headset_1amp_mic, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt711-rt1308-mono-rt715.tplg", }, { .link_mask = BIT(0) | BIT(1) | BIT(2), .links = sdw_mockup_mic_headset_1amp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt715-rt711-rt1308-mono.tplg", }, { .link_mask = 0xF, /* 4 active links required */ .links = tgl_712_only, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt712.tplg", }, { .link_mask = 0x7, .links = tgl_sdw_rt711_link1_rt1308_link2_rt715_link0, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt715-rt711-rt1308-mono.tplg", }, { .link_mask = 0xF, /* 4 active links required */ .links = tgl_3_in_1_default, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt711-rt1308-rt715.tplg", }, { /* * link_mask should be 0xB, but all links are enabled by BIOS. * This entry will be selected if there is no rt1308 exposed * on link2 since it will fail to match the above entry. */ .link_mask = 0xF, .links = tgl_3_in_1_mono_amp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt711-rt1308-mono-rt715.tplg", }, { .link_mask = 0xF, /* 4 active links required */ .links = tgl_3_in_1_sdca, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt711-rt1316-rt714.tplg", }, { /* * link_mask should be 0xB, but all links are enabled by BIOS. * This entry will be selected if there is no rt1316 amplifier exposed * on link2 since it will fail to match the above entry. */ .link_mask = 0xF, /* 4 active links required */ .links = tgl_3_in_1_sdca_mono, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt711-l0-rt1316-l1-mono-rt714-l3.tplg", }, { .link_mask = 0x3, /* rt711 on link 0 and 1 rt1308 on link 1 */ .links = tgl_hp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt711-rt1308.tplg", }, { .link_mask = 0x3, /* rt711 on link 0 and 2 rt1308s on link 1 */ .links = tgl_rvp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt711-rt1308.tplg", }, { .link_mask = 0x3, /* rt5682 on link0 & 2xmax98373 on link 1 */ .links = tgl_chromebook_base, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-sdw-max98373-rt5682.tplg", }, { .link_mask = 0x1, /* rt711 on link 0 */ .links = tgl_rvp_headset_only, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-tgl-rt711.tplg", }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_tgl_sdw_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-tgl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-hsw-bdw-match.c - tables and support for ACPI enumeration. * * Copyright (c) 2017, Intel Corporation. */ #include <linux/dmi.h> #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> struct snd_soc_acpi_mach snd_soc_acpi_intel_broadwell_machines[] = { { .id = "INT343A", .drv_name = "bdw_rt286", .sof_tplg_filename = "sof-bdw-rt286.tplg", }, { .id = "10EC5650", .drv_name = "bdw-rt5650", .sof_tplg_filename = "sof-bdw-rt5650.tplg", }, { .id = "RT5677CE", .drv_name = "bdw-rt5677", .sof_tplg_filename = "sof-bdw-rt5677.tplg", }, { .id = "INT33CA", .drv_name = "hsw_rt5640", .sof_tplg_filename = "sof-bdw-rt5640.tplg", }, {} }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_broadwell_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-hsw-bdw-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-mtl-match.c - tables and support for MTL ACPI enumeration. * * Copyright (c) 2022, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> #include "soc-acpi-intel-sdw-mockup-match.h" static const struct snd_soc_acpi_codecs mtl_max98357a_amp = { .num_codecs = 1, .codecs = {"MX98357A"} }; static const struct snd_soc_acpi_codecs mtl_max98360a_amp = { .num_codecs = 1, .codecs = {"MX98360A"} }; static const struct snd_soc_acpi_codecs mtl_rt1019p_amp = { .num_codecs = 1, .codecs = {"RTL1019"} }; static const struct snd_soc_acpi_codecs mtl_rt5682_rt5682s_hp = { .num_codecs = 2, .codecs = {"10EC5682", "RTL5682"}, }; struct snd_soc_acpi_mach snd_soc_acpi_intel_mtl_machines[] = { { .comp_ids = &mtl_rt5682_rt5682s_hp, .drv_name = "mtl_mx98357_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &mtl_max98357a_amp, .sof_tplg_filename = "sof-mtl-max98357a-rt5682.tplg", }, { .comp_ids = &mtl_rt5682_rt5682s_hp, .drv_name = "mtl_mx98360_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &mtl_max98360a_amp, .sof_tplg_filename = "sof-mtl-max98360a-rt5682.tplg", }, { .comp_ids = &mtl_rt5682_rt5682s_hp, .drv_name = "mtl_rt1019_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &mtl_rt1019p_amp, .sof_tplg_filename = "sof-mtl-rt1019-rt5682.tplg", }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_mtl_machines); static const struct snd_soc_acpi_endpoint single_endpoint = { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }; static const struct snd_soc_acpi_endpoint spk_l_endpoint = { .num = 0, .aggregated = 1, .group_position = 0, .group_id = 1, }; static const struct snd_soc_acpi_endpoint spk_r_endpoint = { .num = 0, .aggregated = 1, .group_position = 1, .group_id = 1, }; static const struct snd_soc_acpi_endpoint rt712_endpoints[] = { { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }, { .num = 1, .aggregated = 0, .group_position = 0, .group_id = 0, }, }; static const struct snd_soc_acpi_adr_device rt711_sdca_0_adr[] = { { .adr = 0x000030025D071101ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt712_0_single_adr[] = { { .adr = 0x000030025D071201ull, .num_endpoints = ARRAY_SIZE(rt712_endpoints), .endpoints = rt712_endpoints, .name_prefix = "rt712" } }; static const struct snd_soc_acpi_adr_device rt1712_3_single_adr[] = { { .adr = 0x000330025D171201ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt712-dmic" } }; static const struct snd_soc_acpi_adr_device mx8373_0_adr[] = { { .adr = 0x000023019F837300ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "Left" }, { .adr = 0x000027019F837300ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "Right" } }; static const struct snd_soc_acpi_adr_device rt5682_2_adr[] = { { .adr = 0x000221025D568200ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt5682" } }; static const struct snd_soc_acpi_adr_device rt1316_2_group1_adr[] = { { .adr = 0x000230025D131601ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt1316_3_group1_adr[] = { { .adr = 0x000331025D131601ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1316-2" } }; static const struct snd_soc_acpi_adr_device rt1318_1_group1_adr[] = { { .adr = 0x000130025D131801ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1318-1" } }; static const struct snd_soc_acpi_adr_device rt1318_2_group1_adr[] = { { .adr = 0x000232025D131801ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1318-2" } }; static const struct snd_soc_acpi_adr_device rt714_0_adr[] = { { .adr = 0x000030025D071401ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt714" } }; static const struct snd_soc_acpi_adr_device rt714_1_adr[] = { { .adr = 0x000130025D071401ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt714" } }; static const struct snd_soc_acpi_link_adr mtl_712_only[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt712_0_single_adr), .adr_d = rt712_0_single_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt1712_3_single_adr), .adr_d = rt1712_3_single_adr, }, {} }; static const struct snd_soc_acpi_link_adr rt5682_link2_max98373_link0[] = { /* Expected order: jack -> amp */ { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt5682_2_adr), .adr_d = rt5682_2_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(mx8373_0_adr), .adr_d = mx8373_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr mtl_rvp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr mtl_3_in_1_sdca[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1316_2_group1_adr), .adr_d = rt1316_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt1316_3_group1_adr), .adr_d = rt1316_3_group1_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt714_1_adr), .adr_d = rt714_1_adr, }, {} }; static const struct snd_soc_acpi_link_adr mtl_sdw_rt1318_l12_rt714_l0[] = { { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1318_1_group1_adr), .adr_d = rt1318_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1318_2_group1_adr), .adr_d = rt1318_2_group1_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt714_0_adr), .adr_d = rt714_0_adr, }, {} }; static const struct snd_soc_acpi_adr_device mx8363_2_adr[] = { { .adr = 0x000230019F836300ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "Left" }, { .adr = 0x000231019F836300ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "Right" } }; static const struct snd_soc_acpi_adr_device cs42l42_0_adr[] = { { .adr = 0x00001001FA424200ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "cs42l42" } }; static const struct snd_soc_acpi_link_adr cs42l42_link0_max98363_link2[] = { /* Expected order: jack -> amp */ { .mask = BIT(0), .num_adr = ARRAY_SIZE(cs42l42_0_adr), .adr_d = cs42l42_0_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(mx8363_2_adr), .adr_d = mx8363_2_adr, }, {} }; /* this table is used when there is no I2S codec present */ struct snd_soc_acpi_mach snd_soc_acpi_intel_mtl_sdw_machines[] = { /* mockup tests need to be first */ { .link_mask = GENMASK(3, 0), .links = sdw_mockup_headset_2amps_mic, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-mtl-rt711-rt1308-rt715.tplg", }, { .link_mask = BIT(0) | BIT(1) | BIT(3), .links = sdw_mockup_headset_1amp_mic, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-mtl-rt711-rt1308-mono-rt715.tplg", }, { .link_mask = GENMASK(2, 0), .links = sdw_mockup_mic_headset_1amp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-mtl-rt715-rt711-rt1308-mono.tplg", }, { .link_mask = BIT(3) | BIT(0), .links = mtl_712_only, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-mtl-rt712-l0-rt1712-l3.tplg", }, { .link_mask = GENMASK(2, 0), .links = mtl_sdw_rt1318_l12_rt714_l0, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-mtl-rt1318-l12-rt714-l0.tplg" }, { .link_mask = GENMASK(3, 0), .links = mtl_3_in_1_sdca, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-mtl-rt711-l0-rt1316-l23-rt714-l1.tplg", }, { .link_mask = BIT(0), .links = mtl_rvp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-mtl-rt711.tplg", }, { .link_mask = BIT(0) | BIT(2), .links = rt5682_link2_max98373_link0, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-mtl-sdw-rt5682-l2-max98373-l0.tplg", }, { .link_mask = BIT(0) | BIT(2), .links = cs42l42_link0_max98363_link2, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-mtl-sdw-cs42l42-l0-max98363-l2.tplg", }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_mtl_sdw_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-mtl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-apci-intel-jsl-match.c - tables and support for JSL ACPI enumeration. * * Copyright (c) 2019-2020, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> static const struct snd_soc_acpi_codecs essx_83x6 = { .num_codecs = 3, .codecs = { "ESSX8316", "ESSX8326", "ESSX8336"}, }; static const struct snd_soc_acpi_codecs jsl_7219_98373_codecs = { .num_codecs = 1, .codecs = {"MX98373"} }; static const struct snd_soc_acpi_codecs rt1015_spk = { .num_codecs = 1, .codecs = {"10EC1015"} }; static const struct snd_soc_acpi_codecs rt1015p_spk = { .num_codecs = 1, .codecs = {"RTL1015"} }; static const struct snd_soc_acpi_codecs mx98360a_spk = { .num_codecs = 1, .codecs = {"MX98360A"} }; static struct snd_soc_acpi_codecs rt5650_spk = { .num_codecs = 1, .codecs = {"10EC5650"} }; static const struct snd_soc_acpi_codecs rt5682_rt5682s_hp = { .num_codecs = 2, .codecs = {"10EC5682", "RTL5682"}, }; /* * When adding new entry to the snd_soc_acpi_intel_jsl_machines array, * use .quirk_data member to distinguish different machine driver, * and keep ACPI .id field unchanged for the common codec. */ struct snd_soc_acpi_mach snd_soc_acpi_intel_jsl_machines[] = { { .id = "DLGS7219", .drv_name = "sof_da7219_mx98373", .sof_tplg_filename = "sof-jsl-da7219.tplg", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &jsl_7219_98373_codecs, }, { .id = "DLGS7219", .drv_name = "sof_da7219_mx98360a", .sof_tplg_filename = "sof-jsl-da7219-mx98360a.tplg", }, { .comp_ids = &rt5682_rt5682s_hp, .drv_name = "jsl_rt5682_rt1015", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rt1015_spk, .sof_tplg_filename = "sof-jsl-rt5682-rt1015.tplg", }, { .comp_ids = &rt5682_rt5682s_hp, .drv_name = "jsl_rt5682_rt1015p", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rt1015p_spk, .sof_tplg_filename = "sof-jsl-rt5682-rt1015.tplg", }, { .comp_ids = &rt5682_rt5682s_hp, .drv_name = "jsl_rt5682_mx98360", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &mx98360a_spk, .sof_tplg_filename = "sof-jsl-rt5682-mx98360a.tplg", }, { .comp_ids = &rt5682_rt5682s_hp, .drv_name = "jsl_rt5682", .sof_tplg_filename = "sof-jsl-rt5682.tplg", }, { .id = "10134242", .drv_name = "jsl_cs4242_mx98360a", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &mx98360a_spk, .sof_tplg_filename = "sof-jsl-cs42l42-mx98360a.tplg", }, { .comp_ids = &essx_83x6, .drv_name = "sof-essx8336", .sof_tplg_filename = "sof-jsl-es8336", /* the tplg suffix is added at run time */ .tplg_quirk_mask = SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER | SND_SOC_ACPI_TPLG_INTEL_SSP_MSB | SND_SOC_ACPI_TPLG_INTEL_DMIC_NUMBER, }, { .id = "10EC5650", .drv_name = "jsl_rt5650", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rt5650_spk, .sof_tplg_filename = "sof-jsl-rt5650.tplg", }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_jsl_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-jsl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-skl-match.c - tables and support for SKL ACPI enumeration. * * Copyright (c) 2018, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> #include "../skylake/skl.h" static struct skl_machine_pdata skl_dmic_data; static const struct snd_soc_acpi_codecs skl_codecs = { .num_codecs = 1, .codecs = {"10508825"} }; struct snd_soc_acpi_mach snd_soc_acpi_intel_skl_machines[] = { { .id = "INT343A", .drv_name = "skl_alc286s_i2s", .fw_filename = "intel/dsp_fw_release.bin", }, { .id = "INT343B", .drv_name = "skl_n88l25_s4567", .fw_filename = "intel/dsp_fw_release.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &skl_codecs, .pdata = &skl_dmic_data, }, { .id = "MX98357A", .drv_name = "skl_n88l25_m98357a", .fw_filename = "intel/dsp_fw_release.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &skl_codecs, .pdata = &skl_dmic_data, }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_skl_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-skl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Smart Sound Technology (SST) DSP Core Driver * * Copyright (C) 2013, Intel Corporation. All rights reserved. */ #include <linux/slab.h> #include <linux/export.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/delay.h> #include "sst-dsp.h" #include "sst-dsp-priv.h" #define CREATE_TRACE_POINTS #include <trace/events/intel-sst.h> /* Internal generic low-level SST IO functions - can be overidden */ void sst_shim32_write(void __iomem *addr, u32 offset, u32 value) { writel(value, addr + offset); } EXPORT_SYMBOL_GPL(sst_shim32_write); u32 sst_shim32_read(void __iomem *addr, u32 offset) { return readl(addr + offset); } EXPORT_SYMBOL_GPL(sst_shim32_read); void sst_shim32_write64(void __iomem *addr, u32 offset, u64 value) { writeq(value, addr + offset); } EXPORT_SYMBOL_GPL(sst_shim32_write64); u64 sst_shim32_read64(void __iomem *addr, u32 offset) { return readq(addr + offset); } EXPORT_SYMBOL_GPL(sst_shim32_read64); /* Public API */ void sst_dsp_shim_write(struct sst_dsp *sst, u32 offset, u32 value) { unsigned long flags; spin_lock_irqsave(&sst->spinlock, flags); sst->ops->write(sst->addr.shim, offset, value); spin_unlock_irqrestore(&sst->spinlock, flags); } EXPORT_SYMBOL_GPL(sst_dsp_shim_write); u32 sst_dsp_shim_read(struct sst_dsp *sst, u32 offset) { unsigned long flags; u32 val; spin_lock_irqsave(&sst->spinlock, flags); val = sst->ops->read(sst->addr.shim, offset); spin_unlock_irqrestore(&sst->spinlock, flags); return val; } EXPORT_SYMBOL_GPL(sst_dsp_shim_read); void sst_dsp_shim_write_unlocked(struct sst_dsp *sst, u32 offset, u32 value) { sst->ops->write(sst->addr.shim, offset, value); } EXPORT_SYMBOL_GPL(sst_dsp_shim_write_unlocked); u32 sst_dsp_shim_read_unlocked(struct sst_dsp *sst, u32 offset) { return sst->ops->read(sst->addr.shim, offset); } EXPORT_SYMBOL_GPL(sst_dsp_shim_read_unlocked); int sst_dsp_shim_update_bits_unlocked(struct sst_dsp *sst, u32 offset, u32 mask, u32 value) { bool change; unsigned int old, new; u32 ret; ret = sst_dsp_shim_read_unlocked(sst, offset); old = ret; new = (old & (~mask)) | (value & mask); change = (old != new); if (change) sst_dsp_shim_write_unlocked(sst, offset, new); return change; } EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits_unlocked); /* This is for registers bits with attribute RWC */ void sst_dsp_shim_update_bits_forced_unlocked(struct sst_dsp *sst, u32 offset, u32 mask, u32 value) { unsigned int old, new; u32 ret; ret = sst_dsp_shim_read_unlocked(sst, offset); old = ret; new = (old & (~mask)) | (value & mask); sst_dsp_shim_write_unlocked(sst, offset, new); } EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits_forced_unlocked); int sst_dsp_shim_update_bits(struct sst_dsp *sst, u32 offset, u32 mask, u32 value) { unsigned long flags; bool change; spin_lock_irqsave(&sst->spinlock, flags); change = sst_dsp_shim_update_bits_unlocked(sst, offset, mask, value); spin_unlock_irqrestore(&sst->spinlock, flags); return change; } EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits); /* This is for registers bits with attribute RWC */ void sst_dsp_shim_update_bits_forced(struct sst_dsp *sst, u32 offset, u32 mask, u32 value) { unsigned long flags; spin_lock_irqsave(&sst->spinlock, flags); sst_dsp_shim_update_bits_forced_unlocked(sst, offset, mask, value); spin_unlock_irqrestore(&sst->spinlock, flags); } EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits_forced); int sst_dsp_register_poll(struct sst_dsp *ctx, u32 offset, u32 mask, u32 target, u32 time, char *operation) { u32 reg; unsigned long timeout; int k = 0, s = 500; /* * split the loop into sleeps of varying resolution. more accurately, * the range of wakeups are: * Phase 1(first 5ms): min sleep 0.5ms; max sleep 1ms. * Phase 2:( 5ms to 10ms) : min sleep 0.5ms; max sleep 10ms * (usleep_range (500, 1000) and usleep_range(5000, 10000) are * both possible in this phase depending on whether k > 10 or not). * Phase 3: (beyond 10 ms) min sleep 5ms; max sleep 10ms. */ timeout = jiffies + msecs_to_jiffies(time); while ((((reg = sst_dsp_shim_read_unlocked(ctx, offset)) & mask) != target) && time_before(jiffies, timeout)) { k++; if (k > 10) s = 5000; usleep_range(s, 2*s); } if ((reg & mask) == target) { dev_dbg(ctx->dev, "FW Poll Status: reg=%#x %s successful\n", reg, operation); return 0; } dev_dbg(ctx->dev, "FW Poll Status: reg=%#x %s timedout\n", reg, operation); return -ETIME; } EXPORT_SYMBOL_GPL(sst_dsp_register_poll); int sst_dsp_mailbox_init(struct sst_dsp *sst, u32 inbox_offset, size_t inbox_size, u32 outbox_offset, size_t outbox_size) { sst->mailbox.in_base = sst->addr.lpe + inbox_offset; sst->mailbox.out_base = sst->addr.lpe + outbox_offset; sst->mailbox.in_size = inbox_size; sst->mailbox.out_size = outbox_size; return 0; } EXPORT_SYMBOL_GPL(sst_dsp_mailbox_init); void sst_dsp_outbox_write(struct sst_dsp *sst, void *message, size_t bytes) { u32 i; trace_sst_ipc_outbox_write(bytes); memcpy_toio(sst->mailbox.out_base, message, bytes); for (i = 0; i < bytes; i += 4) trace_sst_ipc_outbox_wdata(i, *(u32 *)(message + i)); } EXPORT_SYMBOL_GPL(sst_dsp_outbox_write); void sst_dsp_outbox_read(struct sst_dsp *sst, void *message, size_t bytes) { u32 i; trace_sst_ipc_outbox_read(bytes); memcpy_fromio(message, sst->mailbox.out_base, bytes); for (i = 0; i < bytes; i += 4) trace_sst_ipc_outbox_rdata(i, *(u32 *)(message + i)); } EXPORT_SYMBOL_GPL(sst_dsp_outbox_read); void sst_dsp_inbox_write(struct sst_dsp *sst, void *message, size_t bytes) { u32 i; trace_sst_ipc_inbox_write(bytes); memcpy_toio(sst->mailbox.in_base, message, bytes); for (i = 0; i < bytes; i += 4) trace_sst_ipc_inbox_wdata(i, *(u32 *)(message + i)); } EXPORT_SYMBOL_GPL(sst_dsp_inbox_write); void sst_dsp_inbox_read(struct sst_dsp *sst, void *message, size_t bytes) { u32 i; trace_sst_ipc_inbox_read(bytes); memcpy_fromio(message, sst->mailbox.in_base, bytes); for (i = 0; i < bytes; i += 4) trace_sst_ipc_inbox_rdata(i, *(u32 *)(message + i)); } EXPORT_SYMBOL_GPL(sst_dsp_inbox_read); /* Module information */ MODULE_AUTHOR("Liam Girdwood"); MODULE_DESCRIPTION("Intel SST Core"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/common/sst-dsp.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2018, Intel Corporation. /* * soc-acpi-intel-hda-match.c - tables and support for HDA+ACPI enumeration. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> #include "../skylake/skl.h" static struct skl_machine_pdata hda_pdata = { .use_tplg_pcm = true, }; struct snd_soc_acpi_mach snd_soc_acpi_intel_hda_machines[] = { { /* .id is not used in this file */ .drv_name = "skl_hda_dsp_generic", /* .fw_filename is dynamically set in skylake driver */ .sof_tplg_filename = "sof-hda-generic.tplg", /* * .machine_quirk and .quirk_data are not used here but * can be used if we need a more complicated machine driver * combining HDA+other device (e.g. DMIC). */ .pdata = &hda_pdata, }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_hda_machines); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel Common ACPI Match module");
linux-master
sound/soc/intel/common/soc-acpi-intel-hda-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-kbl-match.c - tables and support for KBL ACPI enumeration. * * Copyright (c) 2018, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> #include "../skylake/skl.h" static struct skl_machine_pdata skl_dmic_data; static const struct snd_soc_acpi_codecs kbl_codecs = { .num_codecs = 1, .codecs = {"10508825"} }; static const struct snd_soc_acpi_codecs kbl_poppy_codecs = { .num_codecs = 1, .codecs = {"10EC5663"} }; static const struct snd_soc_acpi_codecs kbl_5663_5514_codecs = { .num_codecs = 2, .codecs = {"10EC5663", "10EC5514"} }; static const struct snd_soc_acpi_codecs kbl_7219_98357_codecs = { .num_codecs = 1, .codecs = {"MX98357A"} }; static const struct snd_soc_acpi_codecs kbl_7219_98927_codecs = { .num_codecs = 1, .codecs = {"MX98927"} }; static const struct snd_soc_acpi_codecs kbl_7219_98373_codecs = { .num_codecs = 1, .codecs = {"MX98373"} }; struct snd_soc_acpi_mach snd_soc_acpi_intel_kbl_machines[] = { { .id = "INT343A", .drv_name = "kbl_alc286s_i2s", .fw_filename = "intel/dsp_fw_kbl.bin", }, { .id = "INT343B", .drv_name = "kbl_n88l25_s4567", .fw_filename = "intel/dsp_fw_kbl.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &kbl_codecs, .pdata = &skl_dmic_data, }, { .id = "MX98357A", .drv_name = "kbl_n88l25_m98357a", .fw_filename = "intel/dsp_fw_kbl.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &kbl_codecs, .pdata = &skl_dmic_data, }, { .id = "MX98927", .drv_name = "kbl_r5514_5663_max", .fw_filename = "intel/dsp_fw_kbl.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &kbl_5663_5514_codecs, .pdata = &skl_dmic_data, }, { .id = "MX98927", .drv_name = "kbl_rt5663_m98927", .fw_filename = "intel/dsp_fw_kbl.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &kbl_poppy_codecs, .pdata = &skl_dmic_data, }, { .id = "10EC5663", .drv_name = "kbl_rt5663", .fw_filename = "intel/dsp_fw_kbl.bin", }, { .id = "DLGS7219", .drv_name = "kbl_da7219_mx98357a", .fw_filename = "intel/dsp_fw_kbl.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &kbl_7219_98357_codecs, .pdata = &skl_dmic_data, }, { .id = "DLGS7219", .drv_name = "kbl_da7219_max98927", .fw_filename = "intel/dsp_fw_kbl.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &kbl_7219_98927_codecs, .pdata = &skl_dmic_data }, { .id = "10EC5660", .drv_name = "kbl_rt5660", .fw_filename = "intel/dsp_fw_kbl.bin", }, { .id = "10EC3277", .drv_name = "kbl_rt5660", .fw_filename = "intel/dsp_fw_kbl.bin", }, { .id = "DLGS7219", .drv_name = "kbl_da7219_mx98373", .fw_filename = "intel/dsp_fw_kbl.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &kbl_7219_98373_codecs, .pdata = &skl_dmic_data }, { .id = "MX98373", .drv_name = "kbl_max98373", .fw_filename = "intel/dsp_fw_kbl.bin", .pdata = &skl_dmic_data }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_kbl_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-kbl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-glk-match.c - tables and support for GLK ACPI enumeration. * * Copyright (c) 2018, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> static const struct snd_soc_acpi_codecs essx_83x6 = { .num_codecs = 3, .codecs = { "ESSX8316", "ESSX8326", "ESSX8336"}, }; static const struct snd_soc_acpi_codecs glk_codecs = { .num_codecs = 1, .codecs = {"MX98357A"} }; struct snd_soc_acpi_mach snd_soc_acpi_intel_glk_machines[] = { { .id = "INT343A", .drv_name = "glk_alc298s_i2s", .fw_filename = "intel/dsp_fw_glk.bin", .sof_tplg_filename = "sof-glk-alc298.tplg", }, { .id = "DLGS7219", .drv_name = "glk_da7219_mx98357a", .fw_filename = "intel/dsp_fw_glk.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &glk_codecs, .sof_tplg_filename = "sof-glk-da7219.tplg", }, { .id = "10EC5682", .drv_name = "glk_rt5682_mx98357a", .fw_filename = "intel/dsp_fw_glk.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &glk_codecs, .sof_tplg_filename = "sof-glk-rt5682.tplg", }, { .id = "RTL5682", .drv_name = "glk_rt5682_max98357a", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &glk_codecs, .sof_tplg_filename = "sof-glk-rt5682.tplg", }, { .id = "10134242", .drv_name = "glk_cs4242_mx98357a", .fw_filename = "intel/dsp_fw_glk.bin", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &glk_codecs, .sof_tplg_filename = "sof-glk-cs42l42.tplg", }, { .comp_ids = &essx_83x6, .drv_name = "sof-essx8336", .sof_tplg_filename = "sof-glk-es8336", /* the tplg suffix is added at run time */ .tplg_quirk_mask = SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER | SND_SOC_ACPI_TPLG_INTEL_SSP_MSB | SND_SOC_ACPI_TPLG_INTEL_DMIC_NUMBER, }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_glk_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-glk-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-apci-intel-rpl-match.c - tables and support for RPL ACPI enumeration. * * Copyright (c) 2022 Intel Corporation. */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> static const struct snd_soc_acpi_endpoint single_endpoint = { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }; static const struct snd_soc_acpi_endpoint spk_l_endpoint = { .num = 0, .aggregated = 1, .group_position = 0, .group_id = 1, }; static const struct snd_soc_acpi_endpoint spk_r_endpoint = { .num = 0, .aggregated = 1, .group_position = 1, .group_id = 1, }; static const struct snd_soc_acpi_adr_device rt711_0_adr[] = { { .adr = 0x000020025D071100ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_link_adr rpl_rvp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, {} }; static const struct snd_soc_acpi_adr_device rt711_sdca_0_adr[] = { { .adr = 0x000030025D071101ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt711_sdca_2_adr[] = { { .adr = 0x000230025D071101ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt1316_1_group1_adr[] = { { .adr = 0x000131025D131601ull, /* unique ID is set for some reason */ .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt1316_2_group1_adr[] = { { .adr = 0x000230025D131601ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1316-2" } }; static const struct snd_soc_acpi_adr_device rt1316_3_group1_adr[] = { { .adr = 0x000330025D131601ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1316-2" } }; static const struct snd_soc_acpi_adr_device rt1316_0_group2_adr[] = { { .adr = 0x000030025D131601ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt1316_1_group2_adr[] = { { .adr = 0x000131025D131601ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1316-2" } }; static const struct snd_soc_acpi_adr_device rt1318_1_group1_adr[] = { { .adr = 0x000132025D131801ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1318-1" } }; static const struct snd_soc_acpi_adr_device rt1318_2_group1_adr[] = { { .adr = 0x000230025D131801ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1318-2" } }; static const struct snd_soc_acpi_adr_device rt714_0_adr[] = { { .adr = 0x000030025D071401ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt714" } }; static const struct snd_soc_acpi_adr_device rt714_2_adr[] = { { .adr = 0x000230025D071401ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt714" } }; static const struct snd_soc_acpi_adr_device rt714_3_adr[] = { { .adr = 0x000330025D071401ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt714" } }; static const struct snd_soc_acpi_link_adr rpl_sdca_3_in_1[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group1_adr), .adr_d = rt1316_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt714_2_adr), .adr_d = rt714_2_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt1316_3_group1_adr), .adr_d = rt1316_3_group1_adr, }, {} }; static const struct snd_soc_acpi_link_adr rpl_sdw_rt711_link0_rt1316_link12_rt714_link3[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group1_adr), .adr_d = rt1316_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1316_2_group1_adr), .adr_d = rt1316_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt714_3_adr), .adr_d = rt714_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr rpl_sdw_rt711_link2_rt1316_link01_rt714_link3[] = { { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt711_sdca_2_adr), .adr_d = rt711_sdca_2_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt1316_0_group2_adr), .adr_d = rt1316_0_group2_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group2_adr), .adr_d = rt1316_1_group2_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt714_3_adr), .adr_d = rt714_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr rpl_sdw_rt711_link2_rt1316_link01[] = { { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt711_sdca_2_adr), .adr_d = rt711_sdca_2_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt1316_0_group2_adr), .adr_d = rt1316_0_group2_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group2_adr), .adr_d = rt1316_1_group2_adr, }, {} }; static const struct snd_soc_acpi_link_adr rpl_sdw_rt711_link0_rt1318_link12_rt714_link3[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1318_1_group1_adr), .adr_d = rt1318_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1318_2_group1_adr), .adr_d = rt1318_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt714_3_adr), .adr_d = rt714_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr rpl_sdw_rt711_link0_rt1318_link12[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1318_1_group1_adr), .adr_d = rt1318_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1318_2_group1_adr), .adr_d = rt1318_2_group1_adr, }, {} }; static const struct snd_soc_acpi_link_adr rpl_sdw_rt1316_link12_rt714_link0[] = { { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group1_adr), .adr_d = rt1316_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1316_2_group1_adr), .adr_d = rt1316_2_group1_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt714_0_adr), .adr_d = rt714_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr rpl_sdca_rvp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr rplp_crb[] = { { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt711_sdca_2_adr), .adr_d = rt711_sdca_2_adr, }, {} }; static const struct snd_soc_acpi_codecs rpl_rt5682_hp = { .num_codecs = 2, .codecs = {"10EC5682", "RTL5682"}, }; static const struct snd_soc_acpi_codecs rpl_essx_83x6 = { .num_codecs = 3, .codecs = { "ESSX8316", "ESSX8326", "ESSX8336"}, }; static const struct snd_soc_acpi_codecs rpl_max98357a_amp = { .num_codecs = 1, .codecs = {"MX98357A"} }; static const struct snd_soc_acpi_codecs rpl_max98360a_amp = { .num_codecs = 1, .codecs = {"MX98360A"}, }; static const struct snd_soc_acpi_codecs rpl_max98373_amp = { .num_codecs = 1, .codecs = {"MX98373"} }; static const struct snd_soc_acpi_codecs rpl_lt6911_hdmi = { .num_codecs = 1, .codecs = {"INTC10B0"} }; static const struct snd_soc_acpi_codecs rpl_nau8318_amp = { .num_codecs = 1, .codecs = {"NVTN2012"} }; static const struct snd_soc_acpi_codecs rpl_rt1019p_amp = { .num_codecs = 1, .codecs = {"RTL1019"} }; struct snd_soc_acpi_mach snd_soc_acpi_intel_rpl_machines[] = { { .comp_ids = &rpl_rt5682_hp, .drv_name = "rpl_mx98357_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rpl_max98357a_amp, .sof_tplg_filename = "sof-rpl-max98357a-rt5682.tplg", }, { .comp_ids = &rpl_rt5682_hp, .drv_name = "rpl_mx98360_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rpl_max98360a_amp, .sof_tplg_filename = "sof-rpl-max98360a-rt5682.tplg", }, { .id = "10508825", .drv_name = "rpl_max98373_8825", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rpl_max98373_amp, .sof_tplg_filename = "sof-rpl-max98373-nau8825.tplg", }, { .id = "10508825", .drv_name = "rpl_nau8318_8825", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rpl_nau8318_amp, .sof_tplg_filename = "sof-rpl-nau8318-nau8825.tplg", }, { .comp_ids = &rpl_rt5682_hp, .drv_name = "rpl_rt1019_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rpl_rt1019p_amp, .sof_tplg_filename = "sof-rpl-rt1019-rt5682.tplg", }, { .comp_ids = &rpl_essx_83x6, .drv_name = "rpl_es83x6_c1_h02", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rpl_lt6911_hdmi, .sof_tplg_filename = "sof-rpl-es83x6-ssp1-hdmi-ssp02.tplg", }, { .comp_ids = &rpl_essx_83x6, .drv_name = "sof-essx8336", .sof_tplg_filename = "sof-rpl-es83x6", /* the tplg suffix is added at run time */ .tplg_quirk_mask = SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER | SND_SOC_ACPI_TPLG_INTEL_SSP_MSB | SND_SOC_ACPI_TPLG_INTEL_DMIC_NUMBER, }, { .id = "INTC10B0", .drv_name = "rpl_lt6911_hdmi_ssp", .sof_tplg_filename = "sof-rpl-nocodec-hdmi-ssp02.tplg" }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_rpl_machines); /* this table is used when there is no I2S codec present */ struct snd_soc_acpi_mach snd_soc_acpi_intel_rpl_sdw_machines[] = { { .link_mask = 0xF, /* 4 active links required */ .links = rpl_sdca_3_in_1, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-rpl-rt711-l0-rt1316-l13-rt714-l2.tplg", }, { .link_mask = 0xF, /* 4 active links required */ .links = rpl_sdw_rt711_link2_rt1316_link01_rt714_link3, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-rpl-rt711-l2-rt1316-l01-rt714-l3.tplg", }, { .link_mask = 0xF, /* 4 active links required */ .links = rpl_sdw_rt711_link0_rt1316_link12_rt714_link3, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-rpl-rt711-l0-rt1316-l12-rt714-l3.tplg", }, { .link_mask = 0xF, /* 4 active links required */ .links = rpl_sdw_rt711_link0_rt1318_link12_rt714_link3, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-rpl-rt711-l0-rt1318-l12-rt714-l3.tplg", }, { .link_mask = 0x7, /* rt711 on link0 & two rt1318s on link1 and link2 */ .links = rpl_sdw_rt711_link0_rt1318_link12, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-rpl-rt711-l0-rt1318-l12.tplg", }, { .link_mask = 0x7, /* rt714 on link0 & two rt1316s on link1 and link2 */ .links = rpl_sdw_rt1316_link12_rt714_link0, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-rpl-rt1316-l12-rt714-l0.tplg", }, { .link_mask = 0x7, /* rt711 on link2 & two rt1316s on link0 and link1 */ .links = rpl_sdw_rt711_link2_rt1316_link01, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-rpl-rt711-l2-rt1316-l01.tplg", }, { .link_mask = 0x1, /* link0 required */ .links = rpl_rvp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-rpl-rt711-l0.tplg", }, { .link_mask = 0x1, /* link0 required */ .links = rpl_sdca_rvp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-rpl-rt711-l0.tplg", }, { .link_mask = 0x4, /* link2 required */ .links = rplp_crb, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-rpl-rt711-l2.tplg", }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_rpl_sdw_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-rpl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-lnl-match.c - tables and support for LNL ACPI enumeration. * * Copyright (c) 2023, Intel Corporation. All rights reserved. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> #include "soc-acpi-intel-sdw-mockup-match.h" struct snd_soc_acpi_mach snd_soc_acpi_intel_lnl_machines[] = { {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_lnl_machines); static const struct snd_soc_acpi_endpoint single_endpoint = { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }; static const struct snd_soc_acpi_adr_device rt711_sdca_0_adr[] = { { .adr = 0x000030025D071101ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_link_adr lnl_rvp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, {} }; /* this table is used when there is no I2S codec present */ struct snd_soc_acpi_mach snd_soc_acpi_intel_lnl_sdw_machines[] = { /* mockup tests need to be first */ { .link_mask = GENMASK(3, 0), .links = sdw_mockup_headset_2amps_mic, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-lnl-rt711-rt1308-rt715.tplg", }, { .link_mask = BIT(0) | BIT(1) | BIT(3), .links = sdw_mockup_headset_1amp_mic, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-lnl-rt711-rt1308-mono-rt715.tplg", }, { .link_mask = GENMASK(2, 0), .links = sdw_mockup_mic_headset_1amp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-lnl-rt715-rt711-rt1308-mono.tplg", }, { .link_mask = BIT(0), .links = lnl_rvp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-lnl-rt711.tplg", }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_lnl_sdw_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-lnl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-apci-intel-adl-match.c - tables and support for ADL ACPI enumeration. * * Copyright (c) 2020, Intel Corporation. */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> static const struct snd_soc_acpi_codecs essx_83x6 = { .num_codecs = 3, .codecs = { "ESSX8316", "ESSX8326", "ESSX8336"}, }; static const struct snd_soc_acpi_endpoint single_endpoint = { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }; static const struct snd_soc_acpi_endpoint spk_l_endpoint = { .num = 0, .aggregated = 1, .group_position = 0, .group_id = 1, }; static const struct snd_soc_acpi_endpoint spk_r_endpoint = { .num = 0, .aggregated = 1, .group_position = 1, .group_id = 1, }; static const struct snd_soc_acpi_adr_device rt711_0_adr[] = { { .adr = 0x000020025D071100ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt1308_1_group1_adr[] = { { .adr = 0x000120025D130800ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1308-1" } }; static const struct snd_soc_acpi_adr_device rt1308_2_group1_adr[] = { { .adr = 0x000220025D130800ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1308-2" } }; static const struct snd_soc_acpi_adr_device rt715_3_adr[] = { { .adr = 0x000320025D071500ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt715" } }; static const struct snd_soc_acpi_adr_device rt711_sdca_0_adr[] = { { .adr = 0x000030025D071101ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt711_sdca_2_adr[] = { { .adr = 0x000230025D071101ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt1316_1_group1_adr[] = { { .adr = 0x000131025D131601ull, /* unique ID is set for some reason */ .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt1316_2_group1_adr[] = { { .adr = 0x000230025D131601ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1316-2" } }; static const struct snd_soc_acpi_adr_device rt1316_3_group1_adr[] = { { .adr = 0x000330025D131601ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1316-2" } }; static const struct snd_soc_acpi_adr_device rt1316_0_group2_adr[] = { { .adr = 0x000031025D131601ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt1316_1_group2_adr[] = { { .adr = 0x000130025D131601ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1316-2" } }; static const struct snd_soc_acpi_adr_device rt1316_1_single_adr[] = { { .adr = 0x000130025D131601ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt1316_2_single_adr[] = { { .adr = 0x000230025D131601ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt1316_3_single_adr[] = { { .adr = 0x000330025D131601ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt714_0_adr[] = { { .adr = 0x000030025D071401ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt714" } }; static const struct snd_soc_acpi_adr_device rt714_2_adr[] = { { .adr = 0x000230025D071401ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt714" } }; static const struct snd_soc_acpi_adr_device rt714_3_adr[] = { { .adr = 0x000330025D071401ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt714" } }; static const struct snd_soc_acpi_link_adr adl_default[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1308_1_group1_adr), .adr_d = rt1308_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1308_2_group1_adr), .adr_d = rt1308_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt715_3_adr), .adr_d = rt715_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_sdca_default[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group1_adr), .adr_d = rt1316_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1316_2_group1_adr), .adr_d = rt1316_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt714_3_adr), .adr_d = rt714_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_sdca_3_in_1[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group1_adr), .adr_d = rt1316_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt714_2_adr), .adr_d = rt714_2_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt1316_3_group1_adr), .adr_d = rt1316_3_group1_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_sdw_rt711_link2_rt1316_link01_rt714_link3[] = { { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt711_sdca_2_adr), .adr_d = rt711_sdca_2_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt1316_0_group2_adr), .adr_d = rt1316_0_group2_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group2_adr), .adr_d = rt1316_1_group2_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt714_3_adr), .adr_d = rt714_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_sdw_rt711_link2_rt1316_link01[] = { { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt711_sdca_2_adr), .adr_d = rt711_sdca_2_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt1316_0_group2_adr), .adr_d = rt1316_0_group2_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group2_adr), .adr_d = rt1316_1_group2_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_sdw_rt1316_link12_rt714_link0[] = { { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group1_adr), .adr_d = rt1316_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1316_2_group1_adr), .adr_d = rt1316_2_group1_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt714_0_adr), .adr_d = rt714_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_sdw_rt1316_link1_rt714_link0[] = { { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_single_adr), .adr_d = rt1316_1_single_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt714_0_adr), .adr_d = rt714_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_sdw_rt1316_link2_rt714_link3[] = { { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1316_2_single_adr), .adr_d = rt1316_2_single_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt714_3_adr), .adr_d = rt714_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_sdw_rt1316_link2_rt714_link0[] = { { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1316_2_single_adr), .adr_d = rt1316_2_single_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt714_0_adr), .adr_d = rt714_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_sdw_rt711_link0_rt1316_link3[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt1316_3_single_adr), .adr_d = rt1316_3_single_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_sdw_rt711_link0_rt1316_link2[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1316_2_single_adr), .adr_d = rt1316_2_single_adr, }, {} }; static const struct snd_soc_acpi_adr_device mx8373_2_adr[] = { { .adr = 0x000223019F837300ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "Left" }, { .adr = 0x000227019F837300ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "Right" } }; static const struct snd_soc_acpi_adr_device rt5682_0_adr[] = { { .adr = 0x000021025D568200ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt5682" } }; static const struct snd_soc_acpi_link_adr adl_rvp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr adlps_rvp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, {} }; static const struct snd_soc_acpi_link_adr adl_chromebook_base[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt5682_0_adr), .adr_d = rt5682_0_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(mx8373_2_adr), .adr_d = mx8373_2_adr, }, {} }; static const struct snd_soc_acpi_codecs adl_max98373_amp = { .num_codecs = 1, .codecs = {"MX98373"} }; static const struct snd_soc_acpi_codecs adl_max98357a_amp = { .num_codecs = 1, .codecs = {"MX98357A"} }; static const struct snd_soc_acpi_codecs adl_max98360a_amp = { .num_codecs = 1, .codecs = {"MX98360A"} }; static const struct snd_soc_acpi_codecs adl_rt5682_rt5682s_hp = { .num_codecs = 2, .codecs = {"10EC5682", "RTL5682"}, }; static const struct snd_soc_acpi_codecs adl_rt1015p_amp = { .num_codecs = 1, .codecs = {"RTL1015"} }; static const struct snd_soc_acpi_codecs adl_rt1019p_amp = { .num_codecs = 1, .codecs = {"RTL1019"} }; static const struct snd_soc_acpi_codecs adl_max98390_amp = { .num_codecs = 1, .codecs = {"MX98390"} }; static const struct snd_soc_acpi_codecs adl_lt6911_hdmi = { .num_codecs = 1, .codecs = {"INTC10B0"} }; static const struct snd_soc_acpi_codecs adl_nau8318_amp = { .num_codecs = 1, .codecs = {"NVTN2012"} }; struct snd_soc_acpi_mach snd_soc_acpi_intel_adl_machines[] = { { .comp_ids = &adl_rt5682_rt5682s_hp, .drv_name = "adl_mx98373_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_max98373_amp, .sof_tplg_filename = "sof-adl-max98373-rt5682.tplg", }, { .comp_ids = &adl_rt5682_rt5682s_hp, .drv_name = "adl_mx98357_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_max98357a_amp, .sof_tplg_filename = "sof-adl-max98357a-rt5682.tplg", }, { .comp_ids = &adl_rt5682_rt5682s_hp, .drv_name = "adl_mx98360_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_max98360a_amp, .sof_tplg_filename = "sof-adl-max98360a-rt5682.tplg", }, { .id = "10508825", .drv_name = "adl_rt1019p_8825", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_rt1019p_amp, .sof_tplg_filename = "sof-adl-rt1019-nau8825.tplg", }, { .id = "10508825", .drv_name = "adl_max98373_8825", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_max98373_amp, .sof_tplg_filename = "sof-adl-max98373-nau8825.tplg", }, { .id = "10508825", .drv_name = "adl_mx98360a_8825", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_max98360a_amp, .sof_tplg_filename = "sof-adl-max98360a-nau8825.tplg", }, { .comp_ids = &adl_rt5682_rt5682s_hp, .drv_name = "adl_rt1019_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_rt1019p_amp, .sof_tplg_filename = "sof-adl-rt1019-rt5682.tplg", }, { .id = "10508825", .drv_name = "adl_rt1015p_8825", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_rt1015p_amp, .sof_tplg_filename = "sof-adl-rt1015-nau8825.tplg", }, { .id = "10508825", .drv_name = "adl_nau8318_8825", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_nau8318_amp, .sof_tplg_filename = "sof-adl-nau8318-nau8825.tplg", }, { .id = "10508825", .drv_name = "sof_nau8825", .sof_tplg_filename = "sof-adl-nau8825.tplg", }, { .comp_ids = &adl_rt5682_rt5682s_hp, .drv_name = "adl_max98390_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_max98390_amp, .sof_tplg_filename = "sof-adl-max98390-rt5682.tplg", }, { .comp_ids = &adl_rt5682_rt5682s_hp, .drv_name = "adl_rt5682_c1_h02", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_lt6911_hdmi, .sof_tplg_filename = "sof-adl-rt5682-ssp1-hdmi-ssp02.tplg", }, { .comp_ids = &adl_rt5682_rt5682s_hp, .drv_name = "adl_rt5682", .sof_tplg_filename = "sof-adl-rt5682.tplg", }, { .id = "10134242", .drv_name = "adl_mx98360a_cs4242", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_max98360a_amp, .sof_tplg_filename = "sof-adl-max98360a-cs42l42.tplg", }, { .comp_ids = &essx_83x6, .drv_name = "adl_es83x6_c1_h02", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &adl_lt6911_hdmi, .sof_tplg_filename = "sof-adl-es83x6-ssp1-hdmi-ssp02.tplg", }, { .comp_ids = &essx_83x6, .drv_name = "sof-essx8336", .sof_tplg_filename = "sof-adl-es8336", /* the tplg suffix is added at run time */ .tplg_quirk_mask = SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER | SND_SOC_ACPI_TPLG_INTEL_SSP_MSB | SND_SOC_ACPI_TPLG_INTEL_DMIC_NUMBER, }, /* place amp-only boards in the end of table */ { .id = "CSC3541", .drv_name = "adl_cs35l41", .sof_tplg_filename = "sof-adl-cs35l41.tplg", }, { .id = "INTC10B0", .drv_name = "adl_lt6911_hdmi_ssp", .sof_tplg_filename = "sof-adl-nocodec-hdmi-ssp02.tplg" }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_adl_machines); /* this table is used when there is no I2S codec present */ struct snd_soc_acpi_mach snd_soc_acpi_intel_adl_sdw_machines[] = { { .link_mask = 0xF, /* 4 active links required */ .links = adl_default, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt711-l0-rt1308-l12-rt715-l3.tplg", }, { .link_mask = 0xF, /* 4 active links required */ .links = adl_sdca_default, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt711-l0-rt1316-l12-rt714-l3.tplg", }, { .link_mask = 0xF, /* 4 active links required */ .links = adl_sdca_3_in_1, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt711-l0-rt1316-l13-rt714-l2.tplg", }, { .link_mask = 0xF, /* 4 active links required */ .links = adl_sdw_rt711_link2_rt1316_link01_rt714_link3, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt711-l2-rt1316-l01-rt714-l3.tplg", }, { .link_mask = 0x7, /* rt1316 on link0 and link1 & rt711 on link2*/ .links = adl_sdw_rt711_link2_rt1316_link01, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt711-l2-rt1316-l01.tplg", }, { .link_mask = 0xC, /* rt1316 on link2 & rt714 on link3 */ .links = adl_sdw_rt1316_link2_rt714_link3, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt1316-l2-mono-rt714-l3.tplg", }, { .link_mask = 0x3, /* rt1316 on link1 & rt714 on link0 */ .links = adl_sdw_rt1316_link1_rt714_link0, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt1316-l1-mono-rt714-l0.tplg", }, { .link_mask = 0x7, /* rt714 on link0 & two rt1316s on link1 and link2 */ .links = adl_sdw_rt1316_link12_rt714_link0, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt1316-l12-rt714-l0.tplg", }, { .link_mask = 0x5, /* 2 active links required */ .links = adl_sdw_rt1316_link2_rt714_link0, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt1316-l2-mono-rt714-l0.tplg", }, { .link_mask = 0x9, /* 2 active links required */ .links = adl_sdw_rt711_link0_rt1316_link3, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt711-l0-rt1316-l3.tplg", }, { .link_mask = 0x5, /* 2 active links required */ .links = adl_sdw_rt711_link0_rt1316_link2, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt711-l0-rt1316-l2.tplg", }, { .link_mask = 0x1, /* link0 required */ .links = adl_rvp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt711.tplg", }, { .link_mask = 0x1, /* link0 required */ .links = adlps_rvp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-rt711.tplg", }, { .link_mask = 0x5, /* rt5682 on link0 & 2xmax98373 on link 2 */ .links = adl_chromebook_base, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-adl-sdw-max98373-rt5682.tplg", }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_adl_sdw_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-adl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-apci-intel-cfl-match.c - tables and support for CFL ACPI enumeration. * * Copyright (c) 2019, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> struct snd_soc_acpi_mach snd_soc_acpi_intel_cfl_machines[] = { {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_cfl_machines); struct snd_soc_acpi_mach snd_soc_acpi_intel_cfl_sdw_machines[] = { {} }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_cfl_sdw_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-cfl-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-cml-match.c - tables and support for CML ACPI enumeration. * * Copyright (c) 2019, Intel Corporation. * */ #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> static const struct snd_soc_acpi_codecs essx_83x6 = { .num_codecs = 3, .codecs = { "ESSX8316", "ESSX8326", "ESSX8336"}, }; static const struct snd_soc_acpi_codecs rt1011_spk_codecs = { .num_codecs = 1, .codecs = {"10EC1011"} }; static const struct snd_soc_acpi_codecs rt1015_spk_codecs = { .num_codecs = 1, .codecs = {"10EC1015"} }; static const struct snd_soc_acpi_codecs max98357a_spk_codecs = { .num_codecs = 1, .codecs = {"MX98357A"} }; static const struct snd_soc_acpi_codecs max98390_spk_codecs = { .num_codecs = 1, .codecs = {"MX98390"} }; /* * The order of the three entries with .id = "10EC5682" matters * here, because DSDT tables expose an ACPI HID for the MAX98357A * speaker amplifier which is not populated on the board. */ struct snd_soc_acpi_mach snd_soc_acpi_intel_cml_machines[] = { { .id = "10EC5682", .drv_name = "cml_rt1011_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rt1011_spk_codecs, .sof_tplg_filename = "sof-cml-rt1011-rt5682.tplg", }, { .id = "10EC5682", .drv_name = "cml_rt1015_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &rt1015_spk_codecs, .sof_tplg_filename = "sof-cml-rt1011-rt5682.tplg", }, { .id = "10EC5682", .drv_name = "sof_rt5682", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &max98357a_spk_codecs, .sof_tplg_filename = "sof-cml-rt5682-max98357a.tplg", }, { .id = "10EC5682", .drv_name = "sof_rt5682", .sof_tplg_filename = "sof-cml-rt5682.tplg", }, { .id = "DLGS7219", .drv_name = "cml_da7219_mx98357a", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &max98357a_spk_codecs, .sof_tplg_filename = "sof-cml-da7219-max98357a.tplg", }, { .id = "DLGS7219", .drv_name = "cml_da7219_mx98357a", .machine_quirk = snd_soc_acpi_codec_list, .quirk_data = &max98390_spk_codecs, .sof_tplg_filename = "sof-cml-da7219-max98390.tplg", }, { .comp_ids = &essx_83x6, .drv_name = "sof-essx8336", .sof_tplg_filename = "sof-cml-es8336", /* the tplg suffix is added at run time */ .tplg_quirk_mask = SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER | SND_SOC_ACPI_TPLG_INTEL_SSP_MSB | SND_SOC_ACPI_TPLG_INTEL_DMIC_NUMBER, }, {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_cml_machines); static const struct snd_soc_acpi_endpoint single_endpoint = { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }; static const struct snd_soc_acpi_endpoint spk_l_endpoint = { .num = 0, .aggregated = 1, .group_position = 0, .group_id = 1, }; static const struct snd_soc_acpi_endpoint spk_r_endpoint = { .num = 0, .aggregated = 1, .group_position = 1, .group_id = 1, }; static const struct snd_soc_acpi_adr_device rt700_1_adr[] = { { .adr = 0x000110025D070000ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt700" } }; static const struct snd_soc_acpi_link_adr cml_rvp[] = { { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt700_1_adr), .adr_d = rt700_1_adr, }, {} }; static const struct snd_soc_acpi_adr_device rt711_0_adr[] = { { .adr = 0x000020025D071100ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt1308_1_single_adr[] = { { .adr = 0x000120025D130800ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt1308-1" } }; static const struct snd_soc_acpi_adr_device rt1308_1_group1_adr[] = { { .adr = 0x000120025D130800ull, .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1308-1" } }; static const struct snd_soc_acpi_adr_device rt1308_2_group1_adr[] = { { .adr = 0x000220025D130800ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1308-2" } }; static const struct snd_soc_acpi_adr_device rt715_3_adr[] = { { .adr = 0x000320025D071500ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt715" } }; static const struct snd_soc_acpi_adr_device rt711_sdca_0_adr[] = { { .adr = 0x000030025D071101ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt711" } }; static const struct snd_soc_acpi_adr_device rt1316_1_group1_adr[] = { { .adr = 0x000131025D131601ull, /* unique ID is set for some reason */ .num_endpoints = 1, .endpoints = &spk_l_endpoint, .name_prefix = "rt1316-1" } }; static const struct snd_soc_acpi_adr_device rt1316_2_group1_adr[] = { { .adr = 0x000230025D131601ull, .num_endpoints = 1, .endpoints = &spk_r_endpoint, .name_prefix = "rt1316-2" } }; static const struct snd_soc_acpi_adr_device rt714_3_adr[] = { { .adr = 0x000330025D071401ull, .num_endpoints = 1, .endpoints = &single_endpoint, .name_prefix = "rt714" } }; static const struct snd_soc_acpi_link_adr cml_3_in_1_default[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1308_1_group1_adr), .adr_d = rt1308_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1308_2_group1_adr), .adr_d = rt1308_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt715_3_adr), .adr_d = rt715_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr cml_3_in_1_mono_amp[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_0_adr), .adr_d = rt711_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1308_1_single_adr), .adr_d = rt1308_1_single_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt715_3_adr), .adr_d = rt715_3_adr, }, {} }; static const struct snd_soc_acpi_link_adr cml_3_in_1_sdca[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(rt711_sdca_0_adr), .adr_d = rt711_sdca_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(rt1316_1_group1_adr), .adr_d = rt1316_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(rt1316_2_group1_adr), .adr_d = rt1316_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(rt714_3_adr), .adr_d = rt714_3_adr, }, {} }; struct snd_soc_acpi_mach snd_soc_acpi_intel_cml_sdw_machines[] = { { .link_mask = 0xF, /* 4 active links required */ .links = cml_3_in_1_default, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-cml-rt711-rt1308-rt715.tplg", }, { .link_mask = 0xF, /* 4 active links required */ .links = cml_3_in_1_sdca, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-cml-rt711-rt1316-rt714.tplg", }, { /* * link_mask should be 0xB, but all links are enabled by BIOS. * This entry will be selected if there is no rt1308 exposed * on link2 since it will fail to match the above entry. */ .link_mask = 0xF, .links = cml_3_in_1_mono_amp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-cml-rt711-rt1308-mono-rt715.tplg", }, { .link_mask = 0x2, /* RT700 connected on Link1 */ .links = cml_rvp, .drv_name = "sof_sdw", .sof_tplg_filename = "sof-cml-rt700.tplg", }, {} }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_cml_sdw_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-cml-match.c
// SPDX-License-Identifier: GPL-2.0-only // // soc-acpi-intel-sdw-mockup-match.c - tables and support for SoundWire // mockup device ACPI enumeration. // // Copyright (c) 2021, Intel Corporation. // #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> #include "soc-acpi-intel-sdw-mockup-match.h" static const struct snd_soc_acpi_endpoint sdw_mockup_single_endpoint = { .num = 0, .aggregated = 0, .group_position = 0, .group_id = 0, }; static const struct snd_soc_acpi_endpoint sdw_mockup_l_endpoint = { .num = 0, .aggregated = 1, .group_position = 0, .group_id = 1, }; static const struct snd_soc_acpi_endpoint sdw_mockup_r_endpoint = { .num = 0, .aggregated = 1, .group_position = 1, .group_id = 1, }; static const struct snd_soc_acpi_adr_device sdw_mockup_headset_0_adr[] = { { .adr = 0x0000000105AA5500ull, .num_endpoints = 1, .endpoints = &sdw_mockup_single_endpoint, .name_prefix = "sdw_mockup_headset0" } }; static const struct snd_soc_acpi_adr_device sdw_mockup_headset_1_adr[] = { { .adr = 0x0001000105AA5500ull, .num_endpoints = 1, .endpoints = &sdw_mockup_single_endpoint, .name_prefix = "sdw_mockup_headset1" } }; static const struct snd_soc_acpi_adr_device sdw_mockup_amp_1_adr[] = { { .adr = 0x000100010555AA00ull, .num_endpoints = 1, .endpoints = &sdw_mockup_single_endpoint, .name_prefix = "sdw_mockup_amp1" } }; static const struct snd_soc_acpi_adr_device sdw_mockup_amp_2_adr[] = { { .adr = 0x000200010555AA00ull, .num_endpoints = 1, .endpoints = &sdw_mockup_single_endpoint, .name_prefix = "sdw_mockup_amp2" } }; static const struct snd_soc_acpi_adr_device sdw_mockup_mic_0_adr[] = { { .adr = 0x0000000105555500ull, .num_endpoints = 1, .endpoints = &sdw_mockup_single_endpoint, .name_prefix = "sdw_mockup_mic0" } }; static const struct snd_soc_acpi_adr_device sdw_mockup_mic_3_adr[] = { { .adr = 0x0003000105555500ull, .num_endpoints = 1, .endpoints = &sdw_mockup_single_endpoint, .name_prefix = "sdw_mockup_mic3" } }; static const struct snd_soc_acpi_adr_device sdw_mockup_amp_1_group1_adr[] = { { .adr = 0x000100010555AA00ull, .num_endpoints = 1, .endpoints = &sdw_mockup_l_endpoint, .name_prefix = "sdw_mockup_amp1_l" } }; static const struct snd_soc_acpi_adr_device sdw_mockup_amp_2_group1_adr[] = { { .adr = 0x000200010555AA00ull, .num_endpoints = 1, .endpoints = &sdw_mockup_r_endpoint, .name_prefix = "sdw_mockup_amp2_r" } }; const struct snd_soc_acpi_link_adr sdw_mockup_headset_1amp_mic[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(sdw_mockup_headset_0_adr), .adr_d = sdw_mockup_headset_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(sdw_mockup_amp_1_adr), .adr_d = sdw_mockup_amp_1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(sdw_mockup_mic_3_adr), .adr_d = sdw_mockup_mic_3_adr, }, {} }; const struct snd_soc_acpi_link_adr sdw_mockup_headset_2amps_mic[] = { { .mask = BIT(0), .num_adr = ARRAY_SIZE(sdw_mockup_headset_0_adr), .adr_d = sdw_mockup_headset_0_adr, }, { .mask = BIT(1), .num_adr = ARRAY_SIZE(sdw_mockup_amp_1_group1_adr), .adr_d = sdw_mockup_amp_1_group1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(sdw_mockup_amp_2_group1_adr), .adr_d = sdw_mockup_amp_2_group1_adr, }, { .mask = BIT(3), .num_adr = ARRAY_SIZE(sdw_mockup_mic_3_adr), .adr_d = sdw_mockup_mic_3_adr, }, {} }; const struct snd_soc_acpi_link_adr sdw_mockup_mic_headset_1amp[] = { { .mask = BIT(1), .num_adr = ARRAY_SIZE(sdw_mockup_headset_1_adr), .adr_d = sdw_mockup_headset_1_adr, }, { .mask = BIT(2), .num_adr = ARRAY_SIZE(sdw_mockup_amp_2_adr), .adr_d = sdw_mockup_amp_2_adr, }, { .mask = BIT(0), .num_adr = ARRAY_SIZE(sdw_mockup_mic_0_adr), .adr_d = sdw_mockup_mic_0_adr, }, {} };
linux-master
sound/soc/intel/common/soc-acpi-intel-sdw-mockup-match.c
// SPDX-License-Identifier: GPL-2.0-only /* * soc-acpi-intel-cht-match.c - tables and support for CHT ACPI enumeration. * * Copyright (c) 2017, Intel Corporation. */ #include <linux/dmi.h> #include <sound/soc-acpi.h> #include <sound/soc-acpi-intel-match.h> static unsigned long cht_machine_id; #define CHT_SURFACE_MACH 1 static int cht_surface_quirk_cb(const struct dmi_system_id *id) { cht_machine_id = CHT_SURFACE_MACH; return 1; } static const struct dmi_system_id cht_table[] = { { .callback = cht_surface_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Surface 3"), }, }, { } }; static struct snd_soc_acpi_mach cht_surface_mach = { .id = "10EC5640", .drv_name = "cht-bsw-rt5645", .fw_filename = "intel/fw_sst_22a8.bin", .board = "cht-bsw", .sof_tplg_filename = "sof-cht-rt5645.tplg", }; static struct snd_soc_acpi_mach *cht_quirk(void *arg) { struct snd_soc_acpi_mach *mach = arg; dmi_check_system(cht_table); if (cht_machine_id == CHT_SURFACE_MACH) return &cht_surface_mach; else return mach; } /* * Some tablets with Android factory OS have buggy DSDTs with an ESSX8316 device * in the ACPI tables. While they are not using an ESS8316 codec. These DSDTs * also have an ACPI device for the correct codec, ignore the ESSX8316. */ static const struct dmi_system_id cht_ess8316_not_present_table[] = { { /* Nextbook Ares 8A */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Insyde"), DMI_MATCH(DMI_PRODUCT_NAME, "CherryTrail"), DMI_MATCH(DMI_BIOS_VERSION, "M882"), }, }, { } }; static struct snd_soc_acpi_mach *cht_ess8316_quirk(void *arg) { if (dmi_check_system(cht_ess8316_not_present_table)) return NULL; return arg; } static const struct snd_soc_acpi_codecs rt5640_comp_ids = { .num_codecs = 2, .codecs = { "10EC5640", "10EC3276" }, }; static const struct snd_soc_acpi_codecs rt5670_comp_ids = { .num_codecs = 2, .codecs = { "10EC5670", "10EC5672" }, }; static const struct snd_soc_acpi_codecs rt5645_comp_ids = { .num_codecs = 3, .codecs = { "10EC5645", "10EC5650", "10EC3270" }, }; static const struct snd_soc_acpi_codecs da7213_comp_ids = { .num_codecs = 2, .codecs = { "DGLS7212", "DGLS7213"}, }; /* Cherryview-based platforms: CherryTrail and Braswell */ struct snd_soc_acpi_mach snd_soc_acpi_intel_cherrytrail_machines[] = { { .comp_ids = &rt5670_comp_ids, .drv_name = "cht-bsw-rt5672", .fw_filename = "intel/fw_sst_22a8.bin", .board = "cht-bsw", .sof_tplg_filename = "sof-cht-rt5670.tplg", }, { .comp_ids = &rt5645_comp_ids, .drv_name = "cht-bsw-rt5645", .fw_filename = "intel/fw_sst_22a8.bin", .board = "cht-bsw", .sof_tplg_filename = "sof-cht-rt5645.tplg", }, { .id = "193C9890", .drv_name = "cht-bsw-max98090", .fw_filename = "intel/fw_sst_22a8.bin", .board = "cht-bsw", .sof_tplg_filename = "sof-cht-max98090.tplg", }, { .id = "10508824", .drv_name = "cht-bsw-nau8824", .fw_filename = "intel/fw_sst_22a8.bin", .board = "cht-bsw", .sof_tplg_filename = "sof-cht-nau8824.tplg", }, { .comp_ids = &da7213_comp_ids, .drv_name = "bytcht_da7213", .fw_filename = "intel/fw_sst_22a8.bin", .board = "bytcht_da7213", .sof_tplg_filename = "sof-cht-da7213.tplg", }, { .id = "ESSX8316", .drv_name = "bytcht_es8316", .fw_filename = "intel/fw_sst_22a8.bin", .board = "bytcht_es8316", .machine_quirk = cht_ess8316_quirk, .sof_tplg_filename = "sof-cht-es8316.tplg", }, /* some CHT-T platforms rely on RT5640, use Baytrail machine driver */ { .comp_ids = &rt5640_comp_ids, .drv_name = "bytcr_rt5640", .fw_filename = "intel/fw_sst_22a8.bin", .board = "bytcr_rt5640", .machine_quirk = cht_quirk, .sof_tplg_filename = "sof-cht-rt5640.tplg", }, { .id = "10EC5682", .drv_name = "sof_rt5682", .sof_tplg_filename = "sof-cht-rt5682.tplg", }, /* some CHT-T platforms rely on RT5651, use Baytrail machine driver */ { .id = "10EC5651", .drv_name = "bytcr_rt5651", .fw_filename = "intel/fw_sst_22a8.bin", .board = "bytcr_rt5651", .sof_tplg_filename = "sof-cht-rt5651.tplg", }, { .id = "14F10720", .drv_name = "bytcht_cx2072x", .fw_filename = "intel/fw_sst_22a8.bin", .board = "bytcht_cx2072x", .sof_tplg_filename = "sof-cht-cx2072x.tplg", }, { .id = "104C5122", .drv_name = "sof_pcm512x", .sof_tplg_filename = "sof-cht-src-50khz-pcm512x.tplg", }, #if IS_ENABLED(CONFIG_SND_SOC_INTEL_BYT_CHT_NOCODEC_MACH) /* * This is always last in the table so that it is selected only when * enabled explicitly and there is no codec-related information in SSDT */ { .id = "808622A8", .drv_name = "bytcht_nocodec", .fw_filename = "intel/fw_sst_22a8.bin", .board = "bytcht_nocodec", }, #endif {}, }; EXPORT_SYMBOL_GPL(snd_soc_acpi_intel_cherrytrail_machines);
linux-master
sound/soc/intel/common/soc-acpi-intel-cht-match.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2018-2020, Intel Corporation // // sof-wm8804.c - ASoC machine driver for Up and Up2 board // based on WM8804/Hifiberry Digi+ #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/gpio/consumer.h> #include <linux/gpio/machine.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/wm8804.h" struct sof_card_private { struct gpio_desc *gpio_44; struct gpio_desc *gpio_48; int sample_rate; }; #define SOF_WM8804_UP2_QUIRK BIT(0) static unsigned long sof_wm8804_quirk; static int sof_wm8804_quirk_cb(const struct dmi_system_id *id) { sof_wm8804_quirk = (unsigned long)id->driver_data; return 1; } static const struct dmi_system_id sof_wm8804_quirk_table[] = { { .callback = sof_wm8804_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "AAEON"), DMI_MATCH(DMI_PRODUCT_NAME, "UP-APL01"), }, .driver_data = (void *)SOF_WM8804_UP2_QUIRK, }, {} }; static int sof_wm8804_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_component *codec = codec_dai->component; const int sysclk = 27000000; /* This is fixed on this board */ int samplerate; long mclk_freq; int mclk_div; int sampling_freq; bool clk_44; int ret; samplerate = params_rate(params); if (samplerate == ctx->sample_rate) return 0; ctx->sample_rate = 0; if (samplerate <= 96000) { mclk_freq = samplerate * 256; mclk_div = WM8804_MCLKDIV_256FS; } else { mclk_freq = samplerate * 128; mclk_div = WM8804_MCLKDIV_128FS; } switch (samplerate) { case 32000: sampling_freq = 0x03; break; case 44100: sampling_freq = 0x00; break; case 48000: sampling_freq = 0x02; break; case 88200: sampling_freq = 0x08; break; case 96000: sampling_freq = 0x0a; break; case 176400: sampling_freq = 0x0c; break; case 192000: sampling_freq = 0x0e; break; default: dev_err(rtd->card->dev, "unsupported samplerate %d\n", samplerate); return -EINVAL; } if (samplerate % 16000) clk_44 = true; /* use 44.1 kHz root frequency */ else clk_44 = false; if (!(IS_ERR_OR_NULL(ctx->gpio_44) || IS_ERR_OR_NULL(ctx->gpio_48))) { /* * ensure both GPIOs are LOW first, then drive the * relevant one to HIGH */ if (clk_44) { gpiod_set_value_cansleep(ctx->gpio_48, !clk_44); gpiod_set_value_cansleep(ctx->gpio_44, clk_44); } else { gpiod_set_value_cansleep(ctx->gpio_44, clk_44); gpiod_set_value_cansleep(ctx->gpio_48, !clk_44); } } snd_soc_dai_set_clkdiv(codec_dai, WM8804_MCLK_DIV, mclk_div); ret = snd_soc_dai_set_pll(codec_dai, 0, 0, sysclk, mclk_freq); if (ret < 0) { dev_err(rtd->card->dev, "Failed to set WM8804 PLL\n"); return ret; } ret = snd_soc_dai_set_sysclk(codec_dai, WM8804_TX_CLKSRC_PLL, sysclk, SND_SOC_CLOCK_OUT); if (ret < 0) { dev_err(rtd->card->dev, "Failed to set WM8804 SYSCLK: %d\n", ret); return ret; } /* set sampling frequency status bits */ snd_soc_component_update_bits(codec, WM8804_SPDTX4, 0x0f, sampling_freq); ctx->sample_rate = samplerate; return 0; } /* machine stream operations */ static struct snd_soc_ops sof_wm8804_ops = { .hw_params = sof_wm8804_hw_params, }; SND_SOC_DAILINK_DEF(ssp5_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP5 Pin"))); SND_SOC_DAILINK_DEF(ssp5_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-1AEC8804:00", "wm8804-spdif"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:0e.0"))); static struct snd_soc_dai_link dailink[] = { /* back ends */ { .name = "SSP5-Codec", .id = 0, .no_pcm = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &sof_wm8804_ops, SND_SOC_DAILINK_REG(ssp5_pin, ssp5_codec, platform), }, }; /* SoC card */ static struct snd_soc_card sof_wm8804_card = { .name = "wm8804", /* sof- prefix added automatically */ .owner = THIS_MODULE, .dai_link = dailink, .num_links = ARRAY_SIZE(dailink), }; /* i2c-<HID>:00 with HID being 8 chars */ static char codec_name[SND_ACPI_I2C_ID_LEN]; /* * to control the HifiBerry Digi+ PRO, it's required to toggle GPIO to * select the clock source. On the Up2 board, this means * Pin29/BCM5/Linux GPIO 430 and Pin 31/BCM6/ Linux GPIO 404. * * Using the ACPI device name is not very nice, but since we only use * the value for the Up2 board there is no risk of conflict with other * platforms. */ static struct gpiod_lookup_table up2_gpios_table = { /* .dev_id is set during probe */ .table = { GPIO_LOOKUP("INT3452:01", 73, "BCM-GPIO5", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("INT3452:01", 74, "BCM-GPIO6", GPIO_ACTIVE_HIGH), { }, }, }; static int sof_wm8804_probe(struct platform_device *pdev) { struct snd_soc_card *card; struct snd_soc_acpi_mach *mach; struct sof_card_private *ctx; struct acpi_device *adev; int dai_index = 0; int ret; int i; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; mach = pdev->dev.platform_data; card = &sof_wm8804_card; card->dev = &pdev->dev; dmi_check_system(sof_wm8804_quirk_table); if (sof_wm8804_quirk & SOF_WM8804_UP2_QUIRK) { up2_gpios_table.dev_id = dev_name(&pdev->dev); gpiod_add_lookup_table(&up2_gpios_table); /* * The gpios are required for specific boards with * local oscillators, and optional in other cases. * Since we can't identify when they are needed, use * the GPIO as non-optional */ ctx->gpio_44 = devm_gpiod_get(&pdev->dev, "BCM-GPIO5", GPIOD_OUT_LOW); if (IS_ERR(ctx->gpio_44)) { ret = PTR_ERR(ctx->gpio_44); dev_err(&pdev->dev, "could not get BCM-GPIO5: %d\n", ret); return ret; } ctx->gpio_48 = devm_gpiod_get(&pdev->dev, "BCM-GPIO6", GPIOD_OUT_LOW); if (IS_ERR(ctx->gpio_48)) { ret = PTR_ERR(ctx->gpio_48); dev_err(&pdev->dev, "could not get BCM-GPIO6: %d\n", ret); return ret; } } /* fix index of codec dai */ for (i = 0; i < ARRAY_SIZE(dailink); i++) { if (!strcmp(dailink[i].codecs->name, "i2c-1AEC8804:00")) { dai_index = i; break; } } /* fixup codec name based on HID */ adev = acpi_dev_get_first_match_dev(mach->id, NULL, -1); if (adev) { snprintf(codec_name, sizeof(codec_name), "%s%s", "i2c-", acpi_dev_name(adev)); dailink[dai_index].codecs->name = codec_name; } acpi_dev_put(adev); snd_soc_card_set_drvdata(card, ctx); return devm_snd_soc_register_card(&pdev->dev, card); } static void sof_wm8804_remove(struct platform_device *pdev) { if (sof_wm8804_quirk & SOF_WM8804_UP2_QUIRK) gpiod_remove_lookup_table(&up2_gpios_table); } static struct platform_driver sof_wm8804_driver = { .driver = { .name = "sof-wm8804", .pm = &snd_soc_pm_ops, }, .probe = sof_wm8804_probe, .remove_new = sof_wm8804_remove, }; module_platform_driver(sof_wm8804_driver); MODULE_DESCRIPTION("ASoC Intel(R) SOF + WM8804 Machine driver"); MODULE_AUTHOR("Pierre-Louis Bossart"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:sof-wm8804");
linux-master
sound/soc/intel/boards/sof_wm8804.c
// SPDX-License-Identifier: GPL-2.0-only // // ASoC DPCM Machine driver for Baytrail / Cherrytrail platforms with // CX2072X codec // #include <linux/acpi.h> #include <linux/device.h> #include <linux/gpio/consumer.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/jack.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/cx2072x.h" #include "../atom/sst-atom-controls.h" static const struct snd_soc_dapm_widget byt_cht_cx2072x_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Int Mic", NULL), SND_SOC_DAPM_SPK("Ext Spk", NULL), }; static const struct snd_soc_dapm_route byt_cht_cx2072x_audio_map[] = { /* External Speakers: HFL, HFR */ {"Headphone", NULL, "PORTA"}, {"Ext Spk", NULL, "PORTG"}, {"PORTC", NULL, "Int Mic"}, {"PORTD", NULL, "Headset Mic"}, {"Playback", NULL, "ssp2 Tx"}, {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx"}, {"codec_in1", NULL, "ssp2 Rx"}, {"ssp2 Rx", NULL, "Capture"}, }; static const struct snd_kcontrol_new byt_cht_cx2072x_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Int Mic"), SOC_DAPM_PIN_SWITCH("Ext Spk"), }; static struct snd_soc_jack byt_cht_cx2072x_headset; /* Headset jack detection DAPM pins */ static struct snd_soc_jack_pin byt_cht_cx2072x_headset_pins[] = { { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, }; static const struct acpi_gpio_params byt_cht_cx2072x_headset_gpios; static const struct acpi_gpio_mapping byt_cht_cx2072x_acpi_gpios[] = { { "headset-gpios", &byt_cht_cx2072x_headset_gpios, 1 }, {}, }; static int byt_cht_cx2072x_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; struct snd_soc_component *codec = asoc_rtd_to_codec(rtd, 0)->component; int ret; if (devm_acpi_dev_add_driver_gpios(codec->dev, byt_cht_cx2072x_acpi_gpios)) dev_warn(rtd->dev, "Unable to add GPIO mapping table\n"); card->dapm.idle_bias_off = true; /* set the default PLL rate, the clock is handled by the codec driver */ ret = snd_soc_dai_set_sysclk(asoc_rtd_to_codec(rtd, 0), CX2072X_MCLK_EXTERNAL_PLL, 19200000, SND_SOC_CLOCK_IN); if (ret) { dev_err(rtd->dev, "Could not set sysclk\n"); return ret; } ret = snd_soc_card_jack_new_pins(card, "Headset", SND_JACK_HEADSET | SND_JACK_BTN_0, &byt_cht_cx2072x_headset, byt_cht_cx2072x_headset_pins, ARRAY_SIZE(byt_cht_cx2072x_headset_pins)); if (ret) return ret; snd_soc_component_set_jack(codec, &byt_cht_cx2072x_headset, NULL); snd_soc_dai_set_bclk_ratio(asoc_rtd_to_codec(rtd, 0), 50); return 0; } static int byt_cht_cx2072x_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); int ret; /* The DSP will convert the FE rate to 48k, stereo, 24bits */ rate->min = rate->max = 48000; channels->min = channels->max = 2; /* set SSP2 to 24-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S24_LE); /* * Default mode for SSP configuration is TDM 4 slot, override config * with explicit setting to I2S 2ch 24-bit. The word length is set with * dai_set_tdm_slot() since there is no other API exposed */ ret = snd_soc_dai_set_fmt(asoc_rtd_to_cpu(rtd, 0), SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BP_FP); if (ret < 0) { dev_err(rtd->dev, "can't set format to I2S, err %d\n", ret); return ret; } ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_cpu(rtd, 0), 0x3, 0x3, 2, 24); if (ret < 0) { dev_err(rtd->dev, "can't set I2S config, err %d\n", ret); return ret; } return 0; } static int byt_cht_cx2072x_aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_single(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 48000); } static const struct snd_soc_ops byt_cht_cx2072x_aif1_ops = { .startup = byt_cht_cx2072x_aif1_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp2, DAILINK_COMP_ARRAY(COMP_CPU("ssp2-port"))); SND_SOC_DAILINK_DEF(cx2072x, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-14F10720:00", "cx2072x-hifi"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link byt_cht_cx2072x_dais[] = { [MERR_DPCM_AUDIO] = { .name = "Audio Port", .stream_name = "Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &byt_cht_cx2072x_aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &byt_cht_cx2072x_aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* back ends */ { .name = "SSP2-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .init = byt_cht_cx2072x_init, .be_hw_params_fixup = byt_cht_cx2072x_fixup, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp2, cx2072x, platform), }, }; /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bytcht cx2072x" /* card name will be 'sof-bytcht cx2072x' */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "bytcht-cx2072x" #define DRIVER_NAME NULL /* card name will be used for driver name */ /* SoC card */ static struct snd_soc_card byt_cht_cx2072x_card = { .name = CARD_NAME, .driver_name = DRIVER_NAME, .owner = THIS_MODULE, .dai_link = byt_cht_cx2072x_dais, .num_links = ARRAY_SIZE(byt_cht_cx2072x_dais), .dapm_widgets = byt_cht_cx2072x_widgets, .num_dapm_widgets = ARRAY_SIZE(byt_cht_cx2072x_widgets), .dapm_routes = byt_cht_cx2072x_audio_map, .num_dapm_routes = ARRAY_SIZE(byt_cht_cx2072x_audio_map), .controls = byt_cht_cx2072x_controls, .num_controls = ARRAY_SIZE(byt_cht_cx2072x_controls), }; static char codec_name[SND_ACPI_I2C_ID_LEN]; static int snd_byt_cht_cx2072x_probe(struct platform_device *pdev) { struct snd_soc_acpi_mach *mach; struct acpi_device *adev; int dai_index = 0; bool sof_parent; int i, ret; byt_cht_cx2072x_card.dev = &pdev->dev; mach = dev_get_platdata(&pdev->dev); /* fix index of codec dai */ for (i = 0; i < ARRAY_SIZE(byt_cht_cx2072x_dais); i++) { if (!strcmp(byt_cht_cx2072x_dais[i].codecs->name, "i2c-14F10720:00")) { dai_index = i; break; } } /* fixup codec name based on HID */ adev = acpi_dev_get_first_match_dev(mach->id, NULL, -1); if (adev) { snprintf(codec_name, sizeof(codec_name), "i2c-%s", acpi_dev_name(adev)); byt_cht_cx2072x_dais[dai_index].codecs->name = codec_name; } acpi_dev_put(adev); /* override platform name, if required */ ret = snd_soc_fixup_dai_links_platform_name(&byt_cht_cx2072x_card, mach->mach_params.platform); if (ret) return ret; sof_parent = snd_soc_acpi_sof_parent(&pdev->dev); /* set card and driver name */ if (sof_parent) { byt_cht_cx2072x_card.name = SOF_CARD_NAME; byt_cht_cx2072x_card.driver_name = SOF_DRIVER_NAME; } else { byt_cht_cx2072x_card.name = CARD_NAME; byt_cht_cx2072x_card.driver_name = DRIVER_NAME; } /* set pm ops */ if (sof_parent) pdev->dev.driver->pm = &snd_soc_pm_ops; return devm_snd_soc_register_card(&pdev->dev, &byt_cht_cx2072x_card); } static struct platform_driver snd_byt_cht_cx2072x_driver = { .driver = { .name = "bytcht_cx2072x", }, .probe = snd_byt_cht_cx2072x_probe, }; module_platform_driver(snd_byt_cht_cx2072x_driver); MODULE_DESCRIPTION("ASoC Intel(R) Baytrail/Cherrytrail Machine driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:bytcht_cx2072x");
linux-master
sound/soc/intel/boards/bytcht_cx2072x.c
// SPDX-License-Identifier: GPL-2.0-only /* * bytcht_es8316.c - ASoc Machine driver for Intel Baytrail/Cherrytrail * platforms with Everest ES8316 SoC * * Copyright (C) 2017 Endless Mobile, Inc. * Authors: David Yang <[email protected]>, * Daniel Drake <[email protected]> * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/acpi.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/dmi.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../atom/sst-atom-controls.h" #include "../common/soc-intel-quirks.h" /* jd-inv + terminating entry */ #define MAX_NO_PROPS 2 struct byt_cht_es8316_private { struct clk *mclk; struct snd_soc_jack jack; struct gpio_desc *speaker_en_gpio; struct device *codec_dev; bool speaker_en; }; enum { BYT_CHT_ES8316_INTMIC_IN1_MAP, BYT_CHT_ES8316_INTMIC_IN2_MAP, }; #define BYT_CHT_ES8316_MAP(quirk) ((quirk) & GENMASK(3, 0)) #define BYT_CHT_ES8316_SSP0 BIT(16) #define BYT_CHT_ES8316_MONO_SPEAKER BIT(17) #define BYT_CHT_ES8316_JD_INVERTED BIT(18) static unsigned long quirk; static int quirk_override = -1; module_param_named(quirk, quirk_override, int, 0444); MODULE_PARM_DESC(quirk, "Board-specific quirk override"); static void log_quirks(struct device *dev) { if (BYT_CHT_ES8316_MAP(quirk) == BYT_CHT_ES8316_INTMIC_IN1_MAP) dev_info(dev, "quirk IN1_MAP enabled"); if (BYT_CHT_ES8316_MAP(quirk) == BYT_CHT_ES8316_INTMIC_IN2_MAP) dev_info(dev, "quirk IN2_MAP enabled"); if (quirk & BYT_CHT_ES8316_SSP0) dev_info(dev, "quirk SSP0 enabled"); if (quirk & BYT_CHT_ES8316_MONO_SPEAKER) dev_info(dev, "quirk MONO_SPEAKER enabled\n"); if (quirk & BYT_CHT_ES8316_JD_INVERTED) dev_info(dev, "quirk JD_INVERTED enabled\n"); } static int byt_cht_es8316_speaker_power_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_card *card = w->dapm->card; struct byt_cht_es8316_private *priv = snd_soc_card_get_drvdata(card); if (SND_SOC_DAPM_EVENT_ON(event)) priv->speaker_en = true; else priv->speaker_en = false; gpiod_set_value_cansleep(priv->speaker_en_gpio, priv->speaker_en); return 0; } static const struct snd_soc_dapm_widget byt_cht_es8316_widgets[] = { SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Internal Mic", NULL), SND_SOC_DAPM_SUPPLY("Speaker Power", SND_SOC_NOPM, 0, 0, byt_cht_es8316_speaker_power_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), }; static const struct snd_soc_dapm_route byt_cht_es8316_audio_map[] = { {"Headphone", NULL, "HPOL"}, {"Headphone", NULL, "HPOR"}, /* * There is no separate speaker output instead the speakers are muxed to * the HP outputs. The mux is controlled by the "Speaker Power" supply. */ {"Speaker", NULL, "HPOL"}, {"Speaker", NULL, "HPOR"}, {"Speaker", NULL, "Speaker Power"}, }; static const struct snd_soc_dapm_route byt_cht_es8316_intmic_in1_map[] = { {"MIC1", NULL, "Internal Mic"}, {"MIC2", NULL, "Headset Mic"}, }; static const struct snd_soc_dapm_route byt_cht_es8316_intmic_in2_map[] = { {"MIC2", NULL, "Internal Mic"}, {"MIC1", NULL, "Headset Mic"}, }; static const struct snd_soc_dapm_route byt_cht_es8316_ssp0_map[] = { {"Playback", NULL, "ssp0 Tx"}, {"ssp0 Tx", NULL, "modem_out"}, {"modem_in", NULL, "ssp0 Rx"}, {"ssp0 Rx", NULL, "Capture"}, }; static const struct snd_soc_dapm_route byt_cht_es8316_ssp2_map[] = { {"Playback", NULL, "ssp2 Tx"}, {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx" }, {"codec_in1", NULL, "ssp2 Rx" }, {"ssp2 Rx", NULL, "Capture"}, }; static const struct snd_kcontrol_new byt_cht_es8316_controls[] = { SOC_DAPM_PIN_SWITCH("Speaker"), SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Internal Mic"), }; static struct snd_soc_jack_pin byt_cht_es8316_jack_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int byt_cht_es8316_init(struct snd_soc_pcm_runtime *runtime) { struct snd_soc_component *codec = asoc_rtd_to_codec(runtime, 0)->component; struct snd_soc_card *card = runtime->card; struct byt_cht_es8316_private *priv = snd_soc_card_get_drvdata(card); const struct snd_soc_dapm_route *custom_map; int num_routes; int ret; card->dapm.idle_bias_off = true; switch (BYT_CHT_ES8316_MAP(quirk)) { case BYT_CHT_ES8316_INTMIC_IN1_MAP: default: custom_map = byt_cht_es8316_intmic_in1_map; num_routes = ARRAY_SIZE(byt_cht_es8316_intmic_in1_map); break; case BYT_CHT_ES8316_INTMIC_IN2_MAP: custom_map = byt_cht_es8316_intmic_in2_map; num_routes = ARRAY_SIZE(byt_cht_es8316_intmic_in2_map); break; } ret = snd_soc_dapm_add_routes(&card->dapm, custom_map, num_routes); if (ret) return ret; if (quirk & BYT_CHT_ES8316_SSP0) { custom_map = byt_cht_es8316_ssp0_map; num_routes = ARRAY_SIZE(byt_cht_es8316_ssp0_map); } else { custom_map = byt_cht_es8316_ssp2_map; num_routes = ARRAY_SIZE(byt_cht_es8316_ssp2_map); } ret = snd_soc_dapm_add_routes(&card->dapm, custom_map, num_routes); if (ret) return ret; /* * The firmware might enable the clock at boot (this information * may or may not be reflected in the enable clock register). * To change the rate we must disable the clock first to cover these * cases. Due to common clock framework restrictions that do not allow * to disable a clock that has not been enabled, we need to enable * the clock first. */ ret = clk_prepare_enable(priv->mclk); if (!ret) clk_disable_unprepare(priv->mclk); ret = clk_set_rate(priv->mclk, 19200000); if (ret) dev_err(card->dev, "unable to set MCLK rate\n"); ret = clk_prepare_enable(priv->mclk); if (ret) dev_err(card->dev, "unable to enable MCLK\n"); ret = snd_soc_dai_set_sysclk(asoc_rtd_to_codec(runtime, 0), 0, 19200000, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(card->dev, "can't set codec clock %d\n", ret); return ret; } ret = snd_soc_card_jack_new_pins(card, "Headset", SND_JACK_HEADSET | SND_JACK_BTN_0, &priv->jack, byt_cht_es8316_jack_pins, ARRAY_SIZE(byt_cht_es8316_jack_pins)); if (ret) { dev_err(card->dev, "jack creation failed %d\n", ret); return ret; } snd_jack_set_key(priv->jack.jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_soc_component_set_jack(codec, &priv->jack, NULL); return 0; } static int byt_cht_es8316_codec_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); int ret, bits; /* The DSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; channels->min = channels->max = 2; if (quirk & BYT_CHT_ES8316_SSP0) { /* set SSP0 to 16-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S16_LE); bits = 16; } else { /* set SSP2 to 24-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S24_LE); bits = 24; } /* * Default mode for SSP configuration is TDM 4 slot, override config * with explicit setting to I2S 2ch 24-bit. The word length is set with * dai_set_tdm_slot() since there is no other API exposed */ ret = snd_soc_dai_set_fmt(asoc_rtd_to_cpu(rtd, 0), SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BP_FP ); if (ret < 0) { dev_err(rtd->dev, "can't set format to I2S, err %d\n", ret); return ret; } ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_cpu(rtd, 0), 0x3, 0x3, 2, bits); if (ret < 0) { dev_err(rtd->dev, "can't set I2S config, err %d\n", ret); return ret; } return 0; } static int byt_cht_es8316_aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_single(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 48000); } static const struct snd_soc_ops byt_cht_es8316_aif1_ops = { .startup = byt_cht_es8316_aif1_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp2_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp2-port"))); SND_SOC_DAILINK_DEF(ssp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-ESSX8316:00", "ES8316 HiFi"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link byt_cht_es8316_dais[] = { [MERR_DPCM_AUDIO] = { .name = "Audio Port", .stream_name = "Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &byt_cht_es8316_aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &byt_cht_es8316_aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* back ends */ { .name = "SSP2-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .be_hw_params_fixup = byt_cht_es8316_codec_fixup, .dpcm_playback = 1, .dpcm_capture = 1, .init = byt_cht_es8316_init, SND_SOC_DAILINK_REG(ssp2_port, ssp2_codec, platform), }, }; /* SoC card */ static char codec_name[SND_ACPI_I2C_ID_LEN]; #if !IS_ENABLED(CONFIG_SND_SOC_INTEL_USER_FRIENDLY_LONG_NAMES) static char long_name[50]; /* = "bytcht-es8316-*-spk-*-mic" */ #endif static char components_string[32]; /* = "cfg-spk:* cfg-mic:* */ static int byt_cht_es8316_suspend(struct snd_soc_card *card) { struct snd_soc_component *component; for_each_card_components(card, component) { if (!strcmp(component->name, codec_name)) { dev_dbg(component->dev, "disabling jack detect before suspend\n"); snd_soc_component_set_jack(component, NULL, NULL); break; } } return 0; } static int byt_cht_es8316_resume(struct snd_soc_card *card) { struct byt_cht_es8316_private *priv = snd_soc_card_get_drvdata(card); struct snd_soc_component *component; for_each_card_components(card, component) { if (!strcmp(component->name, codec_name)) { dev_dbg(component->dev, "re-enabling jack detect after resume\n"); snd_soc_component_set_jack(component, &priv->jack, NULL); break; } } /* * Some Cherry Trail boards with an ES8316 codec have a bug in their * ACPI tables where the MSSL1680 touchscreen's _PS0 and _PS3 methods * wrongly also set the speaker-enable GPIO to 1/0. Testing has shown * that this really is a bug and the GPIO has no influence on the * touchscreen at all. * * The silead.c touchscreen driver does not support runtime suspend, so * the GPIO can only be changed underneath us during a system suspend. * This resume() function runs from a pm complete() callback, and thus * is guaranteed to run after the touchscreen driver/ACPI-subsys has * brought the touchscreen back up again (and thus changed the GPIO). * * So to work around this we pass GPIOD_FLAGS_BIT_NONEXCLUSIVE when * requesting the GPIO and we set its value here to undo any changes * done by the touchscreen's broken _PS0 ACPI method. */ gpiod_set_value_cansleep(priv->speaker_en_gpio, priv->speaker_en); return 0; } /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bytcht es8316" /* card name will be 'sof-bytcht es8316' */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "bytcht-es8316" #define DRIVER_NAME NULL /* card name will be used for driver name */ static struct snd_soc_card byt_cht_es8316_card = { .owner = THIS_MODULE, .dai_link = byt_cht_es8316_dais, .num_links = ARRAY_SIZE(byt_cht_es8316_dais), .dapm_widgets = byt_cht_es8316_widgets, .num_dapm_widgets = ARRAY_SIZE(byt_cht_es8316_widgets), .dapm_routes = byt_cht_es8316_audio_map, .num_dapm_routes = ARRAY_SIZE(byt_cht_es8316_audio_map), .controls = byt_cht_es8316_controls, .num_controls = ARRAY_SIZE(byt_cht_es8316_controls), .fully_routed = true, .suspend_pre = byt_cht_es8316_suspend, .resume_post = byt_cht_es8316_resume, }; static const struct acpi_gpio_params first_gpio = { 0, 0, false }; static const struct acpi_gpio_mapping byt_cht_es8316_gpios[] = { { "speaker-enable-gpios", &first_gpio, 1 }, { }, }; /* Please keep this list alphabetically sorted */ static const struct dmi_system_id byt_cht_es8316_quirk_table[] = { { /* Irbis NB41 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "IRBIS"), DMI_MATCH(DMI_PRODUCT_NAME, "NB41"), }, .driver_data = (void *)(BYT_CHT_ES8316_SSP0 | BYT_CHT_ES8316_INTMIC_IN2_MAP | BYT_CHT_ES8316_JD_INVERTED), }, { /* Nanote UMPC-01 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "RWC CO.,LTD"), DMI_MATCH(DMI_PRODUCT_NAME, "UMPC-01"), }, .driver_data = (void *)BYT_CHT_ES8316_INTMIC_IN1_MAP, }, { /* Teclast X98 Plus II */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "TECLAST"), DMI_MATCH(DMI_PRODUCT_NAME, "X98 Plus II"), }, .driver_data = (void *)(BYT_CHT_ES8316_INTMIC_IN1_MAP | BYT_CHT_ES8316_JD_INVERTED), }, {} }; static int snd_byt_cht_es8316_mc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; static const char * const mic_name[] = { "in1", "in2" }; struct snd_soc_acpi_mach *mach = dev_get_platdata(dev); struct property_entry props[MAX_NO_PROPS] = {}; struct byt_cht_es8316_private *priv; const struct dmi_system_id *dmi_id; struct fwnode_handle *fwnode; const char *platform_name; struct acpi_device *adev; struct device *codec_dev; bool sof_parent; unsigned int cnt = 0; int dai_index = 0; int i; int ret = 0; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; /* fix index of codec dai */ for (i = 0; i < ARRAY_SIZE(byt_cht_es8316_dais); i++) { if (!strcmp(byt_cht_es8316_dais[i].codecs->name, "i2c-ESSX8316:00")) { dai_index = i; break; } } /* fixup codec name based on HID */ adev = acpi_dev_get_first_match_dev(mach->id, NULL, -1); if (adev) { snprintf(codec_name, sizeof(codec_name), "i2c-%s", acpi_dev_name(adev)); byt_cht_es8316_dais[dai_index].codecs->name = codec_name; } else { dev_err(dev, "Error cannot find '%s' dev\n", mach->id); return -ENXIO; } codec_dev = acpi_get_first_physical_node(adev); acpi_dev_put(adev); if (!codec_dev) return -EPROBE_DEFER; priv->codec_dev = get_device(codec_dev); /* override platform name, if required */ byt_cht_es8316_card.dev = dev; platform_name = mach->mach_params.platform; ret = snd_soc_fixup_dai_links_platform_name(&byt_cht_es8316_card, platform_name); if (ret) { put_device(codec_dev); return ret; } /* Check for BYTCR or other platform and setup quirks */ dmi_id = dmi_first_match(byt_cht_es8316_quirk_table); if (dmi_id) { quirk = (unsigned long)dmi_id->driver_data; } else if (soc_intel_is_byt() && mach->mach_params.acpi_ipc_irq_index == 0) { /* On BYTCR default to SSP0, internal-mic-in2-map, mono-spk */ quirk = BYT_CHT_ES8316_SSP0 | BYT_CHT_ES8316_INTMIC_IN2_MAP | BYT_CHT_ES8316_MONO_SPEAKER; } else { /* Others default to internal-mic-in1-map, mono-speaker */ quirk = BYT_CHT_ES8316_INTMIC_IN1_MAP | BYT_CHT_ES8316_MONO_SPEAKER; } if (quirk_override != -1) { dev_info(dev, "Overriding quirk 0x%lx => 0x%x\n", quirk, quirk_override); quirk = quirk_override; } log_quirks(dev); if (quirk & BYT_CHT_ES8316_SSP0) byt_cht_es8316_dais[dai_index].cpus->dai_name = "ssp0-port"; /* get the clock */ priv->mclk = devm_clk_get(dev, "pmc_plt_clk_3"); if (IS_ERR(priv->mclk)) { put_device(codec_dev); return dev_err_probe(dev, PTR_ERR(priv->mclk), "clk_get pmc_plt_clk_3 failed\n"); } if (quirk & BYT_CHT_ES8316_JD_INVERTED) props[cnt++] = PROPERTY_ENTRY_BOOL("everest,jack-detect-inverted"); if (cnt) { fwnode = fwnode_create_software_node(props, NULL); if (IS_ERR(fwnode)) { put_device(codec_dev); return PTR_ERR(fwnode); } ret = device_add_software_node(codec_dev, to_software_node(fwnode)); fwnode_handle_put(fwnode); if (ret) { put_device(codec_dev); return ret; } } /* get speaker enable GPIO */ devm_acpi_dev_add_driver_gpios(codec_dev, byt_cht_es8316_gpios); priv->speaker_en_gpio = gpiod_get_optional(codec_dev, "speaker-enable", /* see comment in byt_cht_es8316_resume() */ GPIOD_OUT_LOW | GPIOD_FLAGS_BIT_NONEXCLUSIVE); if (IS_ERR(priv->speaker_en_gpio)) { ret = dev_err_probe(dev, PTR_ERR(priv->speaker_en_gpio), "get speaker GPIO failed\n"); goto err_put_codec; } snprintf(components_string, sizeof(components_string), "cfg-spk:%s cfg-mic:%s", (quirk & BYT_CHT_ES8316_MONO_SPEAKER) ? "1" : "2", mic_name[BYT_CHT_ES8316_MAP(quirk)]); byt_cht_es8316_card.components = components_string; #if !IS_ENABLED(CONFIG_SND_SOC_INTEL_USER_FRIENDLY_LONG_NAMES) snprintf(long_name, sizeof(long_name), "bytcht-es8316-%s-spk-%s-mic", (quirk & BYT_CHT_ES8316_MONO_SPEAKER) ? "mono" : "stereo", mic_name[BYT_CHT_ES8316_MAP(quirk)]); byt_cht_es8316_card.long_name = long_name; #endif sof_parent = snd_soc_acpi_sof_parent(dev); /* set card and driver name */ if (sof_parent) { byt_cht_es8316_card.name = SOF_CARD_NAME; byt_cht_es8316_card.driver_name = SOF_DRIVER_NAME; } else { byt_cht_es8316_card.name = CARD_NAME; byt_cht_es8316_card.driver_name = DRIVER_NAME; } /* set pm ops */ if (sof_parent) dev->driver->pm = &snd_soc_pm_ops; /* register the soc card */ snd_soc_card_set_drvdata(&byt_cht_es8316_card, priv); ret = devm_snd_soc_register_card(dev, &byt_cht_es8316_card); if (ret) { gpiod_put(priv->speaker_en_gpio); dev_err(dev, "snd_soc_register_card failed: %d\n", ret); goto err_put_codec; } platform_set_drvdata(pdev, &byt_cht_es8316_card); return 0; err_put_codec: device_remove_software_node(priv->codec_dev); put_device(priv->codec_dev); return ret; } static void snd_byt_cht_es8316_mc_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); struct byt_cht_es8316_private *priv = snd_soc_card_get_drvdata(card); gpiod_put(priv->speaker_en_gpio); device_remove_software_node(priv->codec_dev); put_device(priv->codec_dev); } static struct platform_driver snd_byt_cht_es8316_mc_driver = { .driver = { .name = "bytcht_es8316", }, .probe = snd_byt_cht_es8316_mc_probe, .remove_new = snd_byt_cht_es8316_mc_remove, }; module_platform_driver(snd_byt_cht_es8316_mc_driver); MODULE_DESCRIPTION("ASoC Intel(R) Baytrail/Cherrytrail Machine driver"); MODULE_AUTHOR("David Yang <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:bytcht_es8316");
linux-master
sound/soc/intel/boards/bytcht_es8316.c
// SPDX-License-Identifier: GPL-2.0-only /* * cht-bsw-rt5645.c - ASoc Machine driver for Intel Cherryview-based platforms * Cherrytrail and Braswell, with RT5645 codec. * * Copyright (C) 2015 Intel Corp * Author: Fang, Yang A <[email protected]> * N,Harshapriya <[email protected]> * This file is modified from cht_bsw_rt5672.c * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/acpi.h> #include <linux/clk.h> #include <linux/dmi.h> #include <linux/slab.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/jack.h> #include <sound/soc-acpi.h> #include "../../codecs/rt5645.h" #include "../atom/sst-atom-controls.h" #include "../common/soc-intel-quirks.h" #define CHT_PLAT_CLK_3_HZ 19200000 #define CHT_CODEC_DAI1 "rt5645-aif1" #define CHT_CODEC_DAI2 "rt5645-aif2" struct cht_acpi_card { char *codec_id; int codec_type; struct snd_soc_card *soc_card; }; struct cht_mc_private { struct snd_soc_jack jack; struct cht_acpi_card *acpi_card; char codec_name[SND_ACPI_I2C_ID_LEN]; struct clk *mclk; }; #define CHT_RT5645_MAP(quirk) ((quirk) & GENMASK(7, 0)) #define CHT_RT5645_SSP2_AIF2 BIT(16) /* default is using AIF1 */ #define CHT_RT5645_SSP0_AIF1 BIT(17) #define CHT_RT5645_SSP0_AIF2 BIT(18) #define CHT_RT5645_PMC_PLT_CLK_0 BIT(19) static unsigned long cht_rt5645_quirk = 0; static void log_quirks(struct device *dev) { if (cht_rt5645_quirk & CHT_RT5645_SSP2_AIF2) dev_info(dev, "quirk SSP2_AIF2 enabled"); if (cht_rt5645_quirk & CHT_RT5645_SSP0_AIF1) dev_info(dev, "quirk SSP0_AIF1 enabled"); if (cht_rt5645_quirk & CHT_RT5645_SSP0_AIF2) dev_info(dev, "quirk SSP0_AIF2 enabled"); if (cht_rt5645_quirk & CHT_RT5645_PMC_PLT_CLK_0) dev_info(dev, "quirk PMC_PLT_CLK_0 enabled"); } static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; struct cht_mc_private *ctx = snd_soc_card_get_drvdata(card); int ret; codec_dai = snd_soc_card_get_codec_dai(card, CHT_CODEC_DAI1); if (!codec_dai) codec_dai = snd_soc_card_get_codec_dai(card, CHT_CODEC_DAI2); if (!codec_dai) { dev_err(card->dev, "Codec dai not found; Unable to set platform clock\n"); return -EIO; } if (SND_SOC_DAPM_EVENT_ON(event)) { ret = clk_prepare_enable(ctx->mclk); if (ret < 0) { dev_err(card->dev, "could not configure MCLK state"); return ret; } } else { /* Set codec sysclk source to its internal clock because codec PLL will * be off when idle and MCLK will also be off when codec is * runtime suspended. Codec needs clock for jack detection and button * press. MCLK is turned off with clock framework or ACPI. */ ret = snd_soc_dai_set_sysclk(codec_dai, RT5645_SCLK_S_RCCLK, 48000 * 512, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(card->dev, "can't set codec sysclk: %d\n", ret); return ret; } clk_disable_unprepare(ctx->mclk); } return 0; } static const struct snd_soc_dapm_widget cht_dapm_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Int Mic", NULL), SND_SOC_DAPM_MIC("Int Analog Mic", NULL), SND_SOC_DAPM_SPK("Ext Spk", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static const struct snd_soc_dapm_route cht_rt5645_audio_map[] = { {"IN1P", NULL, "Headset Mic"}, {"IN1N", NULL, "Headset Mic"}, {"DMIC L1", NULL, "Int Mic"}, {"DMIC R1", NULL, "Int Mic"}, {"IN2P", NULL, "Int Analog Mic"}, {"IN2N", NULL, "Int Analog Mic"}, {"Headphone", NULL, "HPOL"}, {"Headphone", NULL, "HPOR"}, {"Ext Spk", NULL, "SPOL"}, {"Ext Spk", NULL, "SPOR"}, {"Headphone", NULL, "Platform Clock"}, {"Headset Mic", NULL, "Platform Clock"}, {"Int Mic", NULL, "Platform Clock"}, {"Int Analog Mic", NULL, "Platform Clock"}, {"Int Analog Mic", NULL, "micbias1"}, {"Int Analog Mic", NULL, "micbias2"}, {"Ext Spk", NULL, "Platform Clock"}, }; static const struct snd_soc_dapm_route cht_rt5650_audio_map[] = { {"IN1P", NULL, "Headset Mic"}, {"IN1N", NULL, "Headset Mic"}, {"DMIC L2", NULL, "Int Mic"}, {"DMIC R2", NULL, "Int Mic"}, {"Headphone", NULL, "HPOL"}, {"Headphone", NULL, "HPOR"}, {"Ext Spk", NULL, "SPOL"}, {"Ext Spk", NULL, "SPOR"}, {"Headphone", NULL, "Platform Clock"}, {"Headset Mic", NULL, "Platform Clock"}, {"Int Mic", NULL, "Platform Clock"}, {"Ext Spk", NULL, "Platform Clock"}, }; static const struct snd_soc_dapm_route cht_rt5645_ssp2_aif1_map[] = { {"AIF1 Playback", NULL, "ssp2 Tx"}, {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx" }, {"codec_in1", NULL, "ssp2 Rx" }, {"ssp2 Rx", NULL, "AIF1 Capture"}, }; static const struct snd_soc_dapm_route cht_rt5645_ssp2_aif2_map[] = { {"AIF2 Playback", NULL, "ssp2 Tx"}, {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx" }, {"codec_in1", NULL, "ssp2 Rx" }, {"ssp2 Rx", NULL, "AIF2 Capture"}, }; static const struct snd_soc_dapm_route cht_rt5645_ssp0_aif1_map[] = { {"AIF1 Playback", NULL, "ssp0 Tx"}, {"ssp0 Tx", NULL, "modem_out"}, {"modem_in", NULL, "ssp0 Rx" }, {"ssp0 Rx", NULL, "AIF1 Capture"}, }; static const struct snd_soc_dapm_route cht_rt5645_ssp0_aif2_map[] = { {"AIF2 Playback", NULL, "ssp0 Tx"}, {"ssp0 Tx", NULL, "modem_out"}, {"modem_in", NULL, "ssp0 Rx" }, {"ssp0 Rx", NULL, "AIF2 Capture"}, }; static const struct snd_kcontrol_new cht_mc_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Int Mic"), SOC_DAPM_PIN_SWITCH("Int Analog Mic"), SOC_DAPM_PIN_SWITCH("Ext Spk"), }; static struct snd_soc_jack_pin cht_bsw_jack_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int cht_aif1_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; /* set codec PLL source to the 19.2MHz platform clock (MCLK) */ ret = snd_soc_dai_set_pll(codec_dai, 0, RT5645_PLL1_S_MCLK, CHT_PLAT_CLK_3_HZ, params_rate(params) * 512); if (ret < 0) { dev_err(rtd->dev, "can't set codec pll: %d\n", ret); return ret; } ret = snd_soc_dai_set_sysclk(codec_dai, RT5645_SCLK_S_PLL1, params_rate(params) * 512, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "can't set codec sysclk: %d\n", ret); return ret; } return 0; } static int cht_rt5645_quirk_cb(const struct dmi_system_id *id) { cht_rt5645_quirk = (unsigned long)id->driver_data; return 1; } static const struct dmi_system_id cht_rt5645_quirk_table[] = { { /* Strago family Chromebooks */ .callback = cht_rt5645_quirk_cb, .matches = { DMI_MATCH(DMI_PRODUCT_FAMILY, "Intel_Strago"), }, .driver_data = (void *)CHT_RT5645_PMC_PLT_CLK_0, }, { }, }; static int cht_codec_init(struct snd_soc_pcm_runtime *runtime) { struct snd_soc_card *card = runtime->card; struct cht_mc_private *ctx = snd_soc_card_get_drvdata(runtime->card); struct snd_soc_component *component = asoc_rtd_to_codec(runtime, 0)->component; int jack_type; int ret; if ((cht_rt5645_quirk & CHT_RT5645_SSP2_AIF2) || (cht_rt5645_quirk & CHT_RT5645_SSP0_AIF2)) { /* Select clk_i2s2_asrc as ASRC clock source */ rt5645_sel_asrc_clk_src(component, RT5645_DA_STEREO_FILTER | RT5645_DA_MONO_L_FILTER | RT5645_DA_MONO_R_FILTER | RT5645_AD_STEREO_FILTER, RT5645_CLK_SEL_I2S2_ASRC); } else { /* Select clk_i2s1_asrc as ASRC clock source */ rt5645_sel_asrc_clk_src(component, RT5645_DA_STEREO_FILTER | RT5645_DA_MONO_L_FILTER | RT5645_DA_MONO_R_FILTER | RT5645_AD_STEREO_FILTER, RT5645_CLK_SEL_I2S1_ASRC); } if (cht_rt5645_quirk & CHT_RT5645_SSP2_AIF2) { ret = snd_soc_dapm_add_routes(&card->dapm, cht_rt5645_ssp2_aif2_map, ARRAY_SIZE(cht_rt5645_ssp2_aif2_map)); } else if (cht_rt5645_quirk & CHT_RT5645_SSP0_AIF1) { ret = snd_soc_dapm_add_routes(&card->dapm, cht_rt5645_ssp0_aif1_map, ARRAY_SIZE(cht_rt5645_ssp0_aif1_map)); } else if (cht_rt5645_quirk & CHT_RT5645_SSP0_AIF2) { ret = snd_soc_dapm_add_routes(&card->dapm, cht_rt5645_ssp0_aif2_map, ARRAY_SIZE(cht_rt5645_ssp0_aif2_map)); } else { ret = snd_soc_dapm_add_routes(&card->dapm, cht_rt5645_ssp2_aif1_map, ARRAY_SIZE(cht_rt5645_ssp2_aif1_map)); } if (ret) return ret; if (ctx->acpi_card->codec_type == CODEC_TYPE_RT5650) jack_type = SND_JACK_HEADPHONE | SND_JACK_MICROPHONE | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3; else jack_type = SND_JACK_HEADPHONE | SND_JACK_MICROPHONE; ret = snd_soc_card_jack_new_pins(runtime->card, "Headset", jack_type, &ctx->jack, cht_bsw_jack_pins, ARRAY_SIZE(cht_bsw_jack_pins)); if (ret) { dev_err(runtime->dev, "Headset jack creation failed %d\n", ret); return ret; } rt5645_set_jack_detect(component, &ctx->jack, &ctx->jack, &ctx->jack); /* * The firmware might enable the clock at * boot (this information may or may not * be reflected in the enable clock register). * To change the rate we must disable the clock * first to cover these cases. Due to common * clock framework restrictions that do not allow * to disable a clock that has not been enabled, * we need to enable the clock first. */ ret = clk_prepare_enable(ctx->mclk); if (!ret) clk_disable_unprepare(ctx->mclk); ret = clk_set_rate(ctx->mclk, CHT_PLAT_CLK_3_HZ); if (ret) dev_err(runtime->dev, "unable to set MCLK rate\n"); return ret; } static int cht_codec_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { int ret; struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); /* The DSP will convert the FE rate to 48k, stereo, 24bits */ rate->min = rate->max = 48000; channels->min = channels->max = 2; if ((cht_rt5645_quirk & CHT_RT5645_SSP0_AIF1) || (cht_rt5645_quirk & CHT_RT5645_SSP0_AIF2)) { /* set SSP0 to 16-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S16_LE); /* * Default mode for SSP configuration is TDM 4 slot, override config * with explicit setting to I2S 2ch 16-bit. The word length is set with * dai_set_tdm_slot() since there is no other API exposed */ ret = snd_soc_dai_set_fmt(asoc_rtd_to_cpu(rtd, 0), SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BP_FP ); if (ret < 0) { dev_err(rtd->dev, "can't set format to I2S, err %d\n", ret); return ret; } ret = snd_soc_dai_set_fmt(asoc_rtd_to_codec(rtd, 0), SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BC_FC ); if (ret < 0) { dev_err(rtd->dev, "can't set format to I2S, err %d\n", ret); return ret; } ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_cpu(rtd, 0), 0x3, 0x3, 2, 16); if (ret < 0) { dev_err(rtd->dev, "can't set I2S config, err %d\n", ret); return ret; } } else { /* set SSP2 to 24-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S24_LE); /* * Default mode for SSP configuration is TDM 4 slot */ ret = snd_soc_dai_set_fmt(asoc_rtd_to_codec(rtd, 0), SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF | SND_SOC_DAIFMT_BC_FC); if (ret < 0) { dev_err(rtd->dev, "can't set format to TDM %d\n", ret); return ret; } /* TDM 4 slots 24 bit, set Rx & Tx bitmask to 4 active slots */ ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_codec(rtd, 0), 0xF, 0xF, 4, 24); if (ret < 0) { dev_err(rtd->dev, "can't set codec TDM slot %d\n", ret); return ret; } } return 0; } static int cht_aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_single(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 48000); } static const struct snd_soc_ops cht_aif1_ops = { .startup = cht_aif1_startup, }; static const struct snd_soc_ops cht_be_ssp2_ops = { .hw_params = cht_aif1_hw_params, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp2_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp2-port"))); SND_SOC_DAILINK_DEF(ssp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10EC5645:00", "rt5645-aif1"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link cht_dailink[] = { [MERR_DPCM_AUDIO] = { .name = "Audio Port", .stream_name = "Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &cht_aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &cht_aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* CODEC<->CODEC link */ /* back ends */ { .name = "SSP2-Codec", .id = 0, .no_pcm = 1, .init = cht_codec_init, .be_hw_params_fixup = cht_codec_fixup, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &cht_be_ssp2_ops, SND_SOC_DAILINK_REG(ssp2_port, ssp2_codec, platform), }, }; /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_RT5645_NAME "bytcht rt5645" /* card name 'sof-bytcht rt5645' */ #define SOF_CARD_RT5650_NAME "bytcht rt5650" /* card name 'sof-bytcht rt5650' */ #define SOF_DRIVER_NAME "SOF" #define CARD_RT5645_NAME "chtrt5645" #define CARD_RT5650_NAME "chtrt5650" #define DRIVER_NAME NULL /* card name will be used for driver name */ /* SoC card */ static struct snd_soc_card snd_soc_card_chtrt5645 = { .owner = THIS_MODULE, .dai_link = cht_dailink, .num_links = ARRAY_SIZE(cht_dailink), .dapm_widgets = cht_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cht_dapm_widgets), .dapm_routes = cht_rt5645_audio_map, .num_dapm_routes = ARRAY_SIZE(cht_rt5645_audio_map), .controls = cht_mc_controls, .num_controls = ARRAY_SIZE(cht_mc_controls), }; static struct snd_soc_card snd_soc_card_chtrt5650 = { .owner = THIS_MODULE, .dai_link = cht_dailink, .num_links = ARRAY_SIZE(cht_dailink), .dapm_widgets = cht_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cht_dapm_widgets), .dapm_routes = cht_rt5650_audio_map, .num_dapm_routes = ARRAY_SIZE(cht_rt5650_audio_map), .controls = cht_mc_controls, .num_controls = ARRAY_SIZE(cht_mc_controls), }; static struct cht_acpi_card snd_soc_cards[] = { {"10EC5640", CODEC_TYPE_RT5645, &snd_soc_card_chtrt5645}, {"10EC5645", CODEC_TYPE_RT5645, &snd_soc_card_chtrt5645}, {"10EC5648", CODEC_TYPE_RT5645, &snd_soc_card_chtrt5645}, {"10EC3270", CODEC_TYPE_RT5645, &snd_soc_card_chtrt5645}, {"10EC5650", CODEC_TYPE_RT5650, &snd_soc_card_chtrt5650}, }; static char cht_rt5645_codec_name[SND_ACPI_I2C_ID_LEN]; struct acpi_chan_package { /* ACPICA seems to require 64 bit integers */ u64 aif_value; /* 1: AIF1, 2: AIF2 */ u64 mclock_value; /* usually 25MHz (0x17d7940), ignored */ }; static int snd_cht_mc_probe(struct platform_device *pdev) { struct snd_soc_card *card = snd_soc_cards[0].soc_card; struct snd_soc_acpi_mach *mach; const char *platform_name; struct cht_mc_private *drv; struct acpi_device *adev; bool sof_parent; bool found = false; bool is_bytcr = false; int dai_index = 0; int ret_val = 0; int i; const char *mclk_name; drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL); if (!drv) return -ENOMEM; mach = pdev->dev.platform_data; for (i = 0; i < ARRAY_SIZE(snd_soc_cards); i++) { if (acpi_dev_found(snd_soc_cards[i].codec_id) && (!strncmp(snd_soc_cards[i].codec_id, mach->id, 8))) { dev_dbg(&pdev->dev, "found codec %s\n", snd_soc_cards[i].codec_id); card = snd_soc_cards[i].soc_card; drv->acpi_card = &snd_soc_cards[i]; found = true; break; } } if (!found) { dev_err(&pdev->dev, "No matching HID found in supported list\n"); return -ENODEV; } card->dev = &pdev->dev; sprintf(drv->codec_name, "i2c-%s:00", drv->acpi_card->codec_id); /* set correct codec name */ for (i = 0; i < ARRAY_SIZE(cht_dailink); i++) if (!strcmp(card->dai_link[i].codecs->name, "i2c-10EC5645:00")) { card->dai_link[i].codecs->name = drv->codec_name; dai_index = i; } /* fixup codec name based on HID */ adev = acpi_dev_get_first_match_dev(mach->id, NULL, -1); if (adev) { snprintf(cht_rt5645_codec_name, sizeof(cht_rt5645_codec_name), "i2c-%s", acpi_dev_name(adev)); cht_dailink[dai_index].codecs->name = cht_rt5645_codec_name; } acpi_dev_put(adev); /* * swap SSP0 if bytcr is detected * (will be overridden if DMI quirk is detected) */ if (soc_intel_is_byt()) { if (mach->mach_params.acpi_ipc_irq_index == 0) is_bytcr = true; } if (is_bytcr) { /* * Baytrail CR platforms may have CHAN package in BIOS, try * to find relevant routing quirk based as done on Windows * platforms. We have to read the information directly from the * BIOS, at this stage the card is not created and the links * with the codec driver/pdata are non-existent */ struct acpi_chan_package chan_package = { 0 }; /* format specified: 2 64-bit integers */ struct acpi_buffer format = {sizeof("NN"), "NN"}; struct acpi_buffer state = {0, NULL}; struct snd_soc_acpi_package_context pkg_ctx; bool pkg_found = false; state.length = sizeof(chan_package); state.pointer = &chan_package; pkg_ctx.name = "CHAN"; pkg_ctx.length = 2; pkg_ctx.format = &format; pkg_ctx.state = &state; pkg_ctx.data_valid = false; pkg_found = snd_soc_acpi_find_package_from_hid(mach->id, &pkg_ctx); if (pkg_found) { if (chan_package.aif_value == 1) { dev_info(&pdev->dev, "BIOS Routing: AIF1 connected\n"); cht_rt5645_quirk |= CHT_RT5645_SSP0_AIF1; } else if (chan_package.aif_value == 2) { dev_info(&pdev->dev, "BIOS Routing: AIF2 connected\n"); cht_rt5645_quirk |= CHT_RT5645_SSP0_AIF2; } else { dev_info(&pdev->dev, "BIOS Routing isn't valid, ignored\n"); pkg_found = false; } } if (!pkg_found) { /* no BIOS indications, assume SSP0-AIF2 connection */ cht_rt5645_quirk |= CHT_RT5645_SSP0_AIF2; } } /* check quirks before creating card */ dmi_check_system(cht_rt5645_quirk_table); log_quirks(&pdev->dev); if ((cht_rt5645_quirk & CHT_RT5645_SSP2_AIF2) || (cht_rt5645_quirk & CHT_RT5645_SSP0_AIF2)) cht_dailink[dai_index].codecs->dai_name = "rt5645-aif2"; if ((cht_rt5645_quirk & CHT_RT5645_SSP0_AIF1) || (cht_rt5645_quirk & CHT_RT5645_SSP0_AIF2)) cht_dailink[dai_index].cpus->dai_name = "ssp0-port"; /* override platform name, if required */ platform_name = mach->mach_params.platform; ret_val = snd_soc_fixup_dai_links_platform_name(card, platform_name); if (ret_val) return ret_val; if (cht_rt5645_quirk & CHT_RT5645_PMC_PLT_CLK_0) mclk_name = "pmc_plt_clk_0"; else mclk_name = "pmc_plt_clk_3"; drv->mclk = devm_clk_get(&pdev->dev, mclk_name); if (IS_ERR(drv->mclk)) { dev_err(&pdev->dev, "Failed to get MCLK from %s: %ld\n", mclk_name, PTR_ERR(drv->mclk)); return PTR_ERR(drv->mclk); } snd_soc_card_set_drvdata(card, drv); sof_parent = snd_soc_acpi_sof_parent(&pdev->dev); /* set card and driver name */ if (sof_parent) { snd_soc_card_chtrt5645.name = SOF_CARD_RT5645_NAME; snd_soc_card_chtrt5645.driver_name = SOF_DRIVER_NAME; snd_soc_card_chtrt5650.name = SOF_CARD_RT5650_NAME; snd_soc_card_chtrt5650.driver_name = SOF_DRIVER_NAME; } else { snd_soc_card_chtrt5645.name = CARD_RT5645_NAME; snd_soc_card_chtrt5645.driver_name = DRIVER_NAME; snd_soc_card_chtrt5650.name = CARD_RT5650_NAME; snd_soc_card_chtrt5650.driver_name = DRIVER_NAME; } /* set pm ops */ if (sof_parent) pdev->dev.driver->pm = &snd_soc_pm_ops; ret_val = devm_snd_soc_register_card(&pdev->dev, card); if (ret_val) { dev_err(&pdev->dev, "snd_soc_register_card failed %d\n", ret_val); return ret_val; } platform_set_drvdata(pdev, card); return ret_val; } static struct platform_driver snd_cht_mc_driver = { .driver = { .name = "cht-bsw-rt5645", }, .probe = snd_cht_mc_probe, }; module_platform_driver(snd_cht_mc_driver) MODULE_DESCRIPTION("ASoC Intel(R) Braswell Machine driver"); MODULE_AUTHOR("Fang, Yang A,N,Harshapriya"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:cht-bsw-rt5645");
linux-master
sound/soc/intel/boards/cht_bsw_rt5645.c
// SPDX-License-Identifier: GPL-2.0-only /* * ASoC machine driver for Intel Broadwell platforms with RT5650 codec * * Copyright 2019, The Chromium OS Authors. All rights reserved. */ #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/rt5645.h" struct bdw_rt5650_priv { struct gpio_desc *gpio_hp_en; struct snd_soc_component *component; }; static const struct snd_soc_dapm_widget bdw_rt5650_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("DMIC Pair1", NULL), SND_SOC_DAPM_MIC("DMIC Pair2", NULL), }; static const struct snd_soc_dapm_route bdw_rt5650_map[] = { /* Speakers */ {"Speaker", NULL, "SPOL"}, {"Speaker", NULL, "SPOR"}, /* Headset jack connectors */ {"Headphone", NULL, "HPOL"}, {"Headphone", NULL, "HPOR"}, {"IN1P", NULL, "Headset Mic"}, {"IN1N", NULL, "Headset Mic"}, /* Digital MICs * DMIC Pair1 are the two DMICs connected on the DMICN1 connector. * DMIC Pair2 are the two DMICs connected on the DMICN2 connector. * Facing the camera, DMIC Pair1 are on the left side, DMIC Pair2 * are on the right side. */ {"DMIC L1", NULL, "DMIC Pair1"}, {"DMIC R1", NULL, "DMIC Pair1"}, {"DMIC L2", NULL, "DMIC Pair2"}, {"DMIC R2", NULL, "DMIC Pair2"}, /* CODEC BE connections */ {"SSP0 CODEC IN", NULL, "AIF1 Capture"}, {"AIF1 Playback", NULL, "SSP0 CODEC OUT"}, }; static const struct snd_kcontrol_new bdw_rt5650_controls[] = { SOC_DAPM_PIN_SWITCH("Speaker"), SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("DMIC Pair1"), SOC_DAPM_PIN_SWITCH("DMIC Pair2"), }; static struct snd_soc_jack headphone_jack; static struct snd_soc_jack mic_jack; static struct snd_soc_jack_pin headphone_jack_pin = { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }; static struct snd_soc_jack_pin mic_jack_pin = { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }; static int broadwell_ssp0_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); /* The ADSP will convert the FE rate to 48k, max 4-channels */ rate->min = rate->max = 48000; chan->min = 2; chan->max = 4; /* set SSP0 to 24 bit */ snd_mask_set_format(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT), SNDRV_PCM_FORMAT_S24_LE); return 0; } static int bdw_rt5650_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; /* Workaround: set codec PLL to 19.2MHz that PLL source is * from MCLK(24MHz) to conform 2.4MHz DMIC clock. */ ret = snd_soc_dai_set_pll(codec_dai, 0, RT5645_PLL1_S_MCLK, 24000000, 19200000); if (ret < 0) { dev_err(rtd->dev, "can't set codec pll: %d\n", ret); return ret; } /* The actual MCLK freq is 24MHz. The codec is told that MCLK is * 24.576MHz to satisfy the requirement of rl6231_get_clk_info. * ASRC is enabled on AD and DA filters to ensure good audio quality. */ ret = snd_soc_dai_set_sysclk(codec_dai, RT5645_SCLK_S_PLL1, 24576000, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "can't set codec sysclk configuration\n"); return ret; } return ret; } static struct snd_soc_ops bdw_rt5650_ops = { .hw_params = bdw_rt5650_hw_params, }; static const unsigned int channels[] = { 2, 4, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static int bdw_rt5650_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* Board supports stereo and quad configurations for capture */ if (substream->stream != SNDRV_PCM_STREAM_CAPTURE) return 0; runtime->hw.channels_max = 4; return snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); } static const struct snd_soc_ops bdw_rt5650_fe_ops = { .startup = bdw_rt5650_fe_startup, }; static int bdw_rt5650_init(struct snd_soc_pcm_runtime *rtd) { struct bdw_rt5650_priv *bdw_rt5650 = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_component *component = codec_dai->component; int ret; /* Enable codec ASRC function for Stereo DAC/Stereo1 ADC/DMIC/I2S1. * The ASRC clock source is clk_i2s1_asrc. */ rt5645_sel_asrc_clk_src(component, RT5645_DA_STEREO_FILTER | RT5645_DA_MONO_L_FILTER | RT5645_DA_MONO_R_FILTER | RT5645_AD_STEREO_FILTER | RT5645_AD_MONO_L_FILTER | RT5645_AD_MONO_R_FILTER, RT5645_CLK_SEL_I2S1_ASRC); /* TDM 4 slots 24 bit, set Rx & Tx bitmask to 4 active slots */ ret = snd_soc_dai_set_tdm_slot(codec_dai, 0xF, 0xF, 4, 24); if (ret < 0) { dev_err(rtd->dev, "can't set codec TDM slot %d\n", ret); return ret; } /* Create and initialize headphone jack */ if (snd_soc_card_jack_new_pins(rtd->card, "Headphone Jack", SND_JACK_HEADPHONE, &headphone_jack, &headphone_jack_pin, 1)) { dev_err(component->dev, "Can't create headphone jack\n"); } /* Create and initialize mic jack */ if (snd_soc_card_jack_new_pins(rtd->card, "Mic Jack", SND_JACK_MICROPHONE, &mic_jack, &mic_jack_pin, 1)) { dev_err(component->dev, "Can't create mic jack\n"); } rt5645_set_jack_detect(component, &headphone_jack, &mic_jack, NULL); bdw_rt5650->component = component; return 0; } /* broadwell digital audio interface glue - connects codec <--> CPU */ SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(fe, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("haswell-pcm-audio"))); SND_SOC_DAILINK_DEF(be, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10EC5650:00", "rt5645-aif1"))); SND_SOC_DAILINK_DEF(ssp0_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp0-port"))); static struct snd_soc_dai_link bdw_rt5650_dais[] = { /* Front End DAI links */ { .name = "System PCM", .stream_name = "System Playback", .nonatomic = 1, .dynamic = 1, .ops = &bdw_rt5650_fe_ops, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST }, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(fe, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "Codec", .id = 0, .nonatomic = 1, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = broadwell_ssp0_fixup, .ops = &bdw_rt5650_ops, .dpcm_playback = 1, .dpcm_capture = 1, .init = bdw_rt5650_init, SND_SOC_DAILINK_REG(ssp0_port, be, platform), }, }; /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bdw rt5650" /* card name will be 'sof-bdw rt5650' */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "bdw-rt5650" #define DRIVER_NAME NULL /* card name will be used for driver name */ /* ASoC machine driver for Broadwell DSP + RT5650 */ static struct snd_soc_card bdw_rt5650_card = { .name = CARD_NAME, .driver_name = DRIVER_NAME, .owner = THIS_MODULE, .dai_link = bdw_rt5650_dais, .num_links = ARRAY_SIZE(bdw_rt5650_dais), .dapm_widgets = bdw_rt5650_widgets, .num_dapm_widgets = ARRAY_SIZE(bdw_rt5650_widgets), .dapm_routes = bdw_rt5650_map, .num_dapm_routes = ARRAY_SIZE(bdw_rt5650_map), .controls = bdw_rt5650_controls, .num_controls = ARRAY_SIZE(bdw_rt5650_controls), .fully_routed = true, }; static int bdw_rt5650_probe(struct platform_device *pdev) { struct bdw_rt5650_priv *bdw_rt5650; struct snd_soc_acpi_mach *mach; int ret; bdw_rt5650_card.dev = &pdev->dev; /* Allocate driver private struct */ bdw_rt5650 = devm_kzalloc(&pdev->dev, sizeof(struct bdw_rt5650_priv), GFP_KERNEL); if (!bdw_rt5650) return -ENOMEM; /* override platform name, if required */ mach = pdev->dev.platform_data; ret = snd_soc_fixup_dai_links_platform_name(&bdw_rt5650_card, mach->mach_params.platform); if (ret) return ret; /* set card and driver name */ if (snd_soc_acpi_sof_parent(&pdev->dev)) { bdw_rt5650_card.name = SOF_CARD_NAME; bdw_rt5650_card.driver_name = SOF_DRIVER_NAME; } else { bdw_rt5650_card.name = CARD_NAME; bdw_rt5650_card.driver_name = DRIVER_NAME; } snd_soc_card_set_drvdata(&bdw_rt5650_card, bdw_rt5650); return devm_snd_soc_register_card(&pdev->dev, &bdw_rt5650_card); } static struct platform_driver bdw_rt5650_audio = { .probe = bdw_rt5650_probe, .driver = { .name = "bdw-rt5650", .pm = &snd_soc_pm_ops, }, }; module_platform_driver(bdw_rt5650_audio) /* Module information */ MODULE_AUTHOR("Ben Zhang <[email protected]>"); MODULE_DESCRIPTION("Intel Broadwell RT5650 machine driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:bdw-rt5650");
linux-master
sound/soc/intel/boards/bdw-rt5650.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2022 Intel Corporation. All rights reserved. /* * sof_ssp_amp.c - ASoc Machine driver for Intel platforms * with RT1308/CS35L41 codec. */ #include <linux/acpi.h> #include <linux/delay.h> #include <linux/dmi.h> #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/sof.h> #include "../../codecs/hdac_hdmi.h" #include "hda_dsp_common.h" #include "sof_realtek_common.h" #include "sof_cirrus_common.h" #define NAME_SIZE 32 /* SSP port ID for speaker amplifier */ #define SOF_AMPLIFIER_SSP(quirk) ((quirk) & GENMASK(3, 0)) #define SOF_AMPLIFIER_SSP_MASK (GENMASK(3, 0)) /* HDMI capture*/ #define SOF_SSP_HDMI_CAPTURE_PRESENT BIT(4) #define SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT 5 #define SOF_NO_OF_HDMI_CAPTURE_SSP_MASK (GENMASK(6, 5)) #define SOF_NO_OF_HDMI_CAPTURE_SSP(quirk) \ (((quirk) << SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT) & SOF_NO_OF_HDMI_CAPTURE_SSP_MASK) #define SOF_HDMI_CAPTURE_1_SSP_SHIFT 7 #define SOF_HDMI_CAPTURE_1_SSP_MASK (GENMASK(9, 7)) #define SOF_HDMI_CAPTURE_1_SSP(quirk) \ (((quirk) << SOF_HDMI_CAPTURE_1_SSP_SHIFT) & SOF_HDMI_CAPTURE_1_SSP_MASK) #define SOF_HDMI_CAPTURE_2_SSP_SHIFT 10 #define SOF_HDMI_CAPTURE_2_SSP_MASK (GENMASK(12, 10)) #define SOF_HDMI_CAPTURE_2_SSP(quirk) \ (((quirk) << SOF_HDMI_CAPTURE_2_SSP_SHIFT) & SOF_HDMI_CAPTURE_2_SSP_MASK) /* HDMI playback */ #define SOF_HDMI_PLAYBACK_PRESENT BIT(13) #define SOF_NO_OF_HDMI_PLAYBACK_SHIFT 14 #define SOF_NO_OF_HDMI_PLAYBACK_MASK (GENMASK(16, 14)) #define SOF_NO_OF_HDMI_PLAYBACK(quirk) \ (((quirk) << SOF_NO_OF_HDMI_PLAYBACK_SHIFT) & SOF_NO_OF_HDMI_PLAYBACK_MASK) /* BT audio offload */ #define SOF_SSP_BT_OFFLOAD_PRESENT BIT(17) #define SOF_BT_OFFLOAD_SSP_SHIFT 18 #define SOF_BT_OFFLOAD_SSP_MASK (GENMASK(20, 18)) #define SOF_BT_OFFLOAD_SSP(quirk) \ (((quirk) << SOF_BT_OFFLOAD_SSP_SHIFT) & SOF_BT_OFFLOAD_SSP_MASK) /* Speaker amplifiers */ #define SOF_RT1308_SPEAKER_AMP_PRESENT BIT(21) #define SOF_CS35L41_SPEAKER_AMP_PRESENT BIT(22) /* Default: SSP2 */ static unsigned long sof_ssp_amp_quirk = SOF_AMPLIFIER_SSP(2); struct sof_hdmi_pcm { struct list_head head; struct snd_soc_jack sof_hdmi; struct snd_soc_dai *codec_dai; int device; }; struct sof_card_private { struct list_head hdmi_pcm_list; bool common_hdmi_codec_drv; bool idisp_codec; }; static const struct dmi_system_id chromebook_platforms[] = { { .ident = "Google Chromebooks", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Google"), } }, {}, }; static const struct snd_soc_dapm_widget sof_ssp_amp_dapm_widgets[] = { SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_route sof_ssp_amp_dapm_routes[] = { /* digital mics */ {"DMic", NULL, "SoC DMIC"}, }; static int sof_card_late_probe(struct snd_soc_card *card) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_component *component = NULL; char jack_name[NAME_SIZE]; struct sof_hdmi_pcm *pcm; int err; if (!(sof_ssp_amp_quirk & SOF_HDMI_PLAYBACK_PRESENT)) return 0; /* HDMI is not supported by SOF on Baytrail/CherryTrail */ if (!ctx->idisp_codec) return 0; if (list_empty(&ctx->hdmi_pcm_list)) return -EINVAL; if (ctx->common_hdmi_codec_drv) { pcm = list_first_entry(&ctx->hdmi_pcm_list, struct sof_hdmi_pcm, head); component = pcm->codec_dai->component; return hda_dsp_hdmi_build_controls(card, component); } list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &pcm->sof_hdmi); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &pcm->sof_hdmi); if (err < 0) return err; } return hdac_hdmi_jack_port_init(component, &card->dapm); } static struct snd_soc_card sof_ssp_amp_card = { .name = "ssp_amp", .owner = THIS_MODULE, .dapm_widgets = sof_ssp_amp_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(sof_ssp_amp_dapm_widgets), .dapm_routes = sof_ssp_amp_dapm_routes, .num_dapm_routes = ARRAY_SIZE(sof_ssp_amp_dapm_routes), .fully_routed = true, .late_probe = sof_card_late_probe, }; static struct snd_soc_dai_link_component platform_component[] = { { /* name might be overridden during probe */ .name = "0000:00:1f.3" } }; static struct snd_soc_dai_link_component dmic_component[] = { { .name = "dmic-codec", .dai_name = "dmic-hifi", } }; static int sof_hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct sof_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; /* dai_link id is 1:1 mapped to the PCM device */ pcm->device = rtd->dai_link->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } #define IDISP_CODEC_MASK 0x4 static struct snd_soc_dai_link *sof_card_dai_links_create(struct device *dev, int ssp_codec, int dmic_be_num, int hdmi_num, bool idisp_codec) { struct snd_soc_dai_link_component *idisp_components; struct snd_soc_dai_link_component *cpus; struct snd_soc_dai_link *links; int i, id = 0; links = devm_kcalloc(dev, sof_ssp_amp_card.num_links, sizeof(struct snd_soc_dai_link), GFP_KERNEL); cpus = devm_kcalloc(dev, sof_ssp_amp_card.num_links, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!links || !cpus) return NULL; /* HDMI-In SSP */ if (sof_ssp_amp_quirk & SOF_SSP_HDMI_CAPTURE_PRESENT) { int num_of_hdmi_ssp = (sof_ssp_amp_quirk & SOF_NO_OF_HDMI_CAPTURE_SSP_MASK) >> SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT; for (i = 1; i <= num_of_hdmi_ssp; i++) { int port = (i == 1 ? (sof_ssp_amp_quirk & SOF_HDMI_CAPTURE_1_SSP_MASK) >> SOF_HDMI_CAPTURE_1_SSP_SHIFT : (sof_ssp_amp_quirk & SOF_HDMI_CAPTURE_2_SSP_MASK) >> SOF_HDMI_CAPTURE_2_SSP_SHIFT); links[id].cpus = &cpus[id]; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", port); if (!links[id].cpus->dai_name) return NULL; links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-HDMI", port); if (!links[id].name) return NULL; links[id].id = id; links[id].codecs = &asoc_dummy_dlc; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].num_cpus = 1; id++; } } /* codec SSP */ links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-Codec", ssp_codec); if (!links[id].name) return NULL; links[id].id = id; if (sof_ssp_amp_quirk & SOF_RT1308_SPEAKER_AMP_PRESENT) { sof_rt1308_dai_link(&links[id]); } else if (sof_ssp_amp_quirk & SOF_CS35L41_SPEAKER_AMP_PRESENT) { cs35l41_set_dai_link(&links[id]); } links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].dpcm_playback = 1; /* feedback from amplifier or firmware-generated echo reference */ links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", ssp_codec); if (!links[id].cpus->dai_name) return NULL; id++; /* dmic */ if (dmic_be_num > 0) { /* at least we have dmic01 */ links[id].name = "dmic01"; links[id].cpus = &cpus[id]; links[id].cpus->dai_name = "DMIC01 Pin"; if (dmic_be_num > 1) { /* set up 2 BE links at most */ links[id + 1].name = "dmic16k"; links[id + 1].cpus = &cpus[id + 1]; links[id + 1].cpus->dai_name = "DMIC16k Pin"; dmic_be_num = 2; } } for (i = 0; i < dmic_be_num; i++) { links[id].id = id; links[id].num_cpus = 1; links[id].codecs = dmic_component; links[id].num_codecs = ARRAY_SIZE(dmic_component); links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].ignore_suspend = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; id++; } /* HDMI playback */ if (sof_ssp_amp_quirk & SOF_HDMI_PLAYBACK_PRESENT) { /* HDMI */ if (hdmi_num > 0) { idisp_components = devm_kcalloc(dev, hdmi_num, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!idisp_components) goto devm_err; } for (i = 1; i <= hdmi_num; i++) { links[id].name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d", i); if (!links[id].name) goto devm_err; links[id].id = id; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d Pin", i); if (!links[id].cpus->dai_name) goto devm_err; if (idisp_codec) { idisp_components[i - 1].name = "ehdaudio0D2"; idisp_components[i - 1].dai_name = devm_kasprintf(dev, GFP_KERNEL, "intel-hdmi-hifi%d", i); if (!idisp_components[i - 1].dai_name) goto devm_err; } else { idisp_components[i - 1] = asoc_dummy_dlc; } links[id].codecs = &idisp_components[i - 1]; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].init = sof_hdmi_init; links[id].dpcm_playback = 1; links[id].no_pcm = 1; id++; } } /* BT audio offload */ if (sof_ssp_amp_quirk & SOF_SSP_BT_OFFLOAD_PRESENT) { int port = (sof_ssp_amp_quirk & SOF_BT_OFFLOAD_SSP_MASK) >> SOF_BT_OFFLOAD_SSP_SHIFT; links[id].id = id; links[id].cpus = &cpus[id]; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", port); if (!links[id].cpus->dai_name) goto devm_err; links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-BT", port); if (!links[id].name) goto devm_err; links[id].codecs = &asoc_dummy_dlc; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].dpcm_playback = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].num_cpus = 1; id++; } return links; devm_err: return NULL; } static int sof_ssp_amp_probe(struct platform_device *pdev) { struct snd_soc_dai_link *dai_links; struct snd_soc_acpi_mach *mach; struct sof_card_private *ctx; int dmic_be_num = 0, hdmi_num = 0; int ret, ssp_codec; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; if (pdev->id_entry && pdev->id_entry->driver_data) sof_ssp_amp_quirk = (unsigned long)pdev->id_entry->driver_data; mach = pdev->dev.platform_data; if (dmi_check_system(chromebook_platforms) || mach->mach_params.dmic_num > 0) dmic_be_num = 2; ssp_codec = sof_ssp_amp_quirk & SOF_AMPLIFIER_SSP_MASK; /* set number of dai links */ sof_ssp_amp_card.num_links = 1 + dmic_be_num; if (sof_ssp_amp_quirk & SOF_SSP_HDMI_CAPTURE_PRESENT) sof_ssp_amp_card.num_links += (sof_ssp_amp_quirk & SOF_NO_OF_HDMI_CAPTURE_SSP_MASK) >> SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT; if (sof_ssp_amp_quirk & SOF_HDMI_PLAYBACK_PRESENT) { hdmi_num = (sof_ssp_amp_quirk & SOF_NO_OF_HDMI_PLAYBACK_MASK) >> SOF_NO_OF_HDMI_PLAYBACK_SHIFT; /* default number of HDMI DAI's */ if (!hdmi_num) hdmi_num = 3; if (mach->mach_params.codec_mask & IDISP_CODEC_MASK) ctx->idisp_codec = true; sof_ssp_amp_card.num_links += hdmi_num; } if (sof_ssp_amp_quirk & SOF_SSP_BT_OFFLOAD_PRESENT) sof_ssp_amp_card.num_links++; dai_links = sof_card_dai_links_create(&pdev->dev, ssp_codec, dmic_be_num, hdmi_num, ctx->idisp_codec); if (!dai_links) return -ENOMEM; sof_ssp_amp_card.dai_link = dai_links; /* update codec_conf */ if (sof_ssp_amp_quirk & SOF_CS35L41_SPEAKER_AMP_PRESENT) { cs35l41_set_codec_conf(&sof_ssp_amp_card); } INIT_LIST_HEAD(&ctx->hdmi_pcm_list); sof_ssp_amp_card.dev = &pdev->dev; /* set platform name for each dailink */ ret = snd_soc_fixup_dai_links_platform_name(&sof_ssp_amp_card, mach->mach_params.platform); if (ret) return ret; ctx->common_hdmi_codec_drv = mach->mach_params.common_hdmi_codec_drv; snd_soc_card_set_drvdata(&sof_ssp_amp_card, ctx); return devm_snd_soc_register_card(&pdev->dev, &sof_ssp_amp_card); } static const struct platform_device_id board_ids[] = { { .name = "sof_ssp_amp", }, { .name = "tgl_rt1308_hdmi_ssp", .driver_data = (kernel_ulong_t)(SOF_AMPLIFIER_SSP(2) | SOF_NO_OF_HDMI_CAPTURE_SSP(2) | SOF_HDMI_CAPTURE_1_SSP(1) | SOF_HDMI_CAPTURE_2_SSP(5) | SOF_SSP_HDMI_CAPTURE_PRESENT | SOF_RT1308_SPEAKER_AMP_PRESENT), }, { .name = "adl_cs35l41", .driver_data = (kernel_ulong_t)(SOF_AMPLIFIER_SSP(1) | SOF_NO_OF_HDMI_PLAYBACK(4) | SOF_HDMI_PLAYBACK_PRESENT | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT | SOF_CS35L41_SPEAKER_AMP_PRESENT), }, { .name = "adl_lt6911_hdmi_ssp", .driver_data = (kernel_ulong_t)(SOF_NO_OF_HDMI_CAPTURE_SSP(2) | SOF_HDMI_CAPTURE_1_SSP(0) | SOF_HDMI_CAPTURE_2_SSP(2) | SOF_SSP_HDMI_CAPTURE_PRESENT | SOF_NO_OF_HDMI_PLAYBACK(3) | SOF_HDMI_PLAYBACK_PRESENT), }, { .name = "rpl_lt6911_hdmi_ssp", .driver_data = (kernel_ulong_t)(SOF_NO_OF_HDMI_CAPTURE_SSP(2) | SOF_HDMI_CAPTURE_1_SSP(0) | SOF_HDMI_CAPTURE_2_SSP(2) | SOF_SSP_HDMI_CAPTURE_PRESENT | SOF_NO_OF_HDMI_PLAYBACK(3) | SOF_HDMI_PLAYBACK_PRESENT), }, { } }; MODULE_DEVICE_TABLE(platform, board_ids); static struct platform_driver sof_ssp_amp_driver = { .probe = sof_ssp_amp_probe, .driver = { .name = "sof_ssp_amp", .pm = &snd_soc_pm_ops, }, .id_table = board_ids, }; module_platform_driver(sof_ssp_amp_driver); MODULE_DESCRIPTION("ASoC Intel(R) SOF Amplifier Machine driver"); MODULE_AUTHOR("Balamurugan C <[email protected]>"); MODULE_AUTHOR("Brent Lu <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON); MODULE_IMPORT_NS(SND_SOC_INTEL_SOF_REALTEK_COMMON); MODULE_IMPORT_NS(SND_SOC_INTEL_SOF_CIRRUS_COMMON);
linux-master
sound/soc/intel/boards/sof_ssp_amp.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2020 Intel Corporation. All rights reserved. #include <linux/device.h> #include <linux/kernel.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dai.h> #include <sound/soc-dapm.h> #include <sound/sof.h> #include <uapi/sound/asound.h> #include "../../codecs/rt1011.h" #include "../../codecs/rt1015.h" #include "../../codecs/rt1308.h" #include "sof_realtek_common.h" /* * Current only 2-amp configuration is supported for rt1011 */ static const struct snd_soc_dapm_route speaker_map_lr[] = { /* speaker */ { "Left Spk", NULL, "Left SPO" }, { "Right Spk", NULL, "Right SPO" }, }; /* * Make sure device's Unique ID follows this configuration: * * Two speakers: * 0: left, 1: right * Four speakers: * 0: Woofer left, 1: Woofer right * 2: Tweeter left, 3: Tweeter right */ static struct snd_soc_codec_conf rt1011_codec_confs[] = { { .dlc = COMP_CODEC_CONF(RT1011_DEV0_NAME), .name_prefix = "Left", }, { .dlc = COMP_CODEC_CONF(RT1011_DEV1_NAME), .name_prefix = "Right", }, }; static struct snd_soc_dai_link_component rt1011_dai_link_components[] = { { .name = RT1011_DEV0_NAME, .dai_name = RT1011_CODEC_DAI, }, { .name = RT1011_DEV1_NAME, .dai_name = RT1011_CODEC_DAI, }, }; static const struct { unsigned int tx; unsigned int rx; } rt1011_tdm_mask[] = { {.tx = 0x4, .rx = 0x1}, {.tx = 0x8, .rx = 0x2}, }; static int rt1011_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; int srate, i, ret = 0; srate = params_rate(params); for_each_rtd_codec_dais(rtd, i, codec_dai) { /* 100 Fs to drive 24 bit data */ ret = snd_soc_dai_set_pll(codec_dai, 0, RT1011_PLL1_S_BCLK, 100 * srate, 256 * srate); if (ret < 0) { dev_err(codec_dai->dev, "fail to set pll, ret %d\n", ret); return ret; } ret = snd_soc_dai_set_sysclk(codec_dai, RT1011_FS_SYS_PRE_S_PLL1, 256 * srate, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(codec_dai->dev, "fail to set sysclk, ret %d\n", ret); return ret; } if (i >= ARRAY_SIZE(rt1011_tdm_mask)) { dev_err(codec_dai->dev, "invalid codec index %d\n", i); return -ENODEV; } ret = snd_soc_dai_set_tdm_slot(codec_dai, rt1011_tdm_mask[i].tx, rt1011_tdm_mask[i].rx, 4, params_width(params)); if (ret < 0) { dev_err(codec_dai->dev, "fail to set tdm slot, ret %d\n", ret); return ret; } } return 0; } static const struct snd_soc_ops rt1011_ops = { .hw_params = rt1011_hw_params, }; static int rt1011_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_add_routes(&card->dapm, speaker_map_lr, ARRAY_SIZE(speaker_map_lr)); if (ret) dev_err(rtd->dev, "Speaker map addition failed: %d\n", ret); return ret; } void sof_rt1011_dai_link(struct snd_soc_dai_link *link) { link->codecs = rt1011_dai_link_components; link->num_codecs = ARRAY_SIZE(rt1011_dai_link_components); link->init = rt1011_init; link->ops = &rt1011_ops; } EXPORT_SYMBOL_NS(sof_rt1011_dai_link, SND_SOC_INTEL_SOF_REALTEK_COMMON); void sof_rt1011_codec_conf(struct snd_soc_card *card) { card->codec_conf = rt1011_codec_confs; card->num_configs = ARRAY_SIZE(rt1011_codec_confs); } EXPORT_SYMBOL_NS(sof_rt1011_codec_conf, SND_SOC_INTEL_SOF_REALTEK_COMMON); /* * rt1015: i2c mode driver for ALC1015 and ALC1015Q * rt1015p: auto-mode driver for ALC1015, ALC1015Q, and ALC1015Q-VB * * For stereo output, there are always two amplifiers on the board. * However, the ACPI implements only one device instance (UID=0) if they * are sharing the same enable pin. The code will detect the number of * device instance and use corresponding DAPM structures for * initialization. */ static const struct snd_soc_dapm_route rt1015p_1dev_dapm_routes[] = { /* speaker */ { "Left Spk", NULL, "Speaker" }, { "Right Spk", NULL, "Speaker" }, }; static const struct snd_soc_dapm_route rt1015p_2dev_dapm_routes[] = { /* speaker */ { "Left Spk", NULL, "Left Speaker" }, { "Right Spk", NULL, "Right Speaker" }, }; static struct snd_soc_codec_conf rt1015p_codec_confs[] = { { .dlc = COMP_CODEC_CONF(RT1015P_DEV0_NAME), .name_prefix = "Left", }, { .dlc = COMP_CODEC_CONF(RT1015P_DEV1_NAME), .name_prefix = "Right", }, }; static struct snd_soc_dai_link_component rt1015p_dai_link_components[] = { { .name = RT1015P_DEV0_NAME, .dai_name = RT1015P_CODEC_DAI, }, { .name = RT1015P_DEV1_NAME, .dai_name = RT1015P_CODEC_DAI, }, }; static int rt1015p_get_num_codecs(void) { static int dev_num; if (dev_num) return dev_num; if (!acpi_dev_present("RTL1015", "1", -1)) dev_num = 1; else dev_num = 2; return dev_num; } static int rt1015p_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { /* reserved for debugging purpose */ return 0; } static const struct snd_soc_ops rt1015p_ops = { .hw_params = rt1015p_hw_params, }; static int rt1015p_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; if (rt1015p_get_num_codecs() == 1) ret = snd_soc_dapm_add_routes(&card->dapm, rt1015p_1dev_dapm_routes, ARRAY_SIZE(rt1015p_1dev_dapm_routes)); else ret = snd_soc_dapm_add_routes(&card->dapm, rt1015p_2dev_dapm_routes, ARRAY_SIZE(rt1015p_2dev_dapm_routes)); if (ret) dev_err(rtd->dev, "Speaker map addition failed: %d\n", ret); return ret; } void sof_rt1015p_dai_link(struct snd_soc_dai_link *link) { link->codecs = rt1015p_dai_link_components; link->num_codecs = rt1015p_get_num_codecs(); link->init = rt1015p_init; link->ops = &rt1015p_ops; } EXPORT_SYMBOL_NS(sof_rt1015p_dai_link, SND_SOC_INTEL_SOF_REALTEK_COMMON); void sof_rt1015p_codec_conf(struct snd_soc_card *card) { if (rt1015p_get_num_codecs() == 1) return; card->codec_conf = rt1015p_codec_confs; card->num_configs = ARRAY_SIZE(rt1015p_codec_confs); } EXPORT_SYMBOL_NS(sof_rt1015p_codec_conf, SND_SOC_INTEL_SOF_REALTEK_COMMON); /* * RT1015 audio amplifier */ static const struct { unsigned int tx; unsigned int rx; } rt1015_tdm_mask[] = { {.tx = 0x0, .rx = 0x1}, {.tx = 0x0, .rx = 0x2}, }; static int rt1015_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai_link *dai_link = rtd->dai_link; struct snd_soc_dai *codec_dai; int i, clk_freq; int ret = 0; clk_freq = sof_dai_get_bclk(rtd); if (clk_freq <= 0) { dev_err(rtd->dev, "fail to get bclk freq, ret %d\n", clk_freq); return -EINVAL; } for_each_rtd_codec_dais(rtd, i, codec_dai) { ret = snd_soc_dai_set_pll(codec_dai, 0, RT1015_PLL_S_BCLK, clk_freq, params_rate(params) * 256); if (ret) { dev_err(codec_dai->dev, "fail to set pll, ret %d\n", ret); return ret; } ret = snd_soc_dai_set_sysclk(codec_dai, RT1015_SCLK_S_PLL, params_rate(params) * 256, SND_SOC_CLOCK_IN); if (ret) { dev_err(codec_dai->dev, "fail to set sysclk, ret %d\n", ret); return ret; } switch (dai_link->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: case SND_SOC_DAIFMT_DSP_B: /* 4-slot TDM */ ret = snd_soc_dai_set_tdm_slot(codec_dai, rt1015_tdm_mask[i].tx, rt1015_tdm_mask[i].rx, 4, params_width(params)); if (ret < 0) { dev_err(codec_dai->dev, "fail to set tdm slot, ret %d\n", ret); return ret; } break; default: dev_dbg(codec_dai->dev, "codec is in I2S mode\n"); break; } } return ret; } static struct snd_soc_ops rt1015_ops = { .hw_params = rt1015_hw_params, }; static struct snd_soc_codec_conf rt1015_amp_conf[] = { { .dlc = COMP_CODEC_CONF(RT1015_DEV0_NAME), .name_prefix = "Left", }, { .dlc = COMP_CODEC_CONF(RT1015_DEV1_NAME), .name_prefix = "Right", }, }; static struct snd_soc_dai_link_component rt1015_components[] = { { .name = RT1015_DEV0_NAME, .dai_name = RT1015_CODEC_DAI, }, { .name = RT1015_DEV1_NAME, .dai_name = RT1015_CODEC_DAI, }, }; static int speaker_codec_init_lr(struct snd_soc_pcm_runtime *rtd) { return snd_soc_dapm_add_routes(&rtd->card->dapm, speaker_map_lr, ARRAY_SIZE(speaker_map_lr)); } void sof_rt1015_codec_conf(struct snd_soc_card *card) { card->codec_conf = rt1015_amp_conf; card->num_configs = ARRAY_SIZE(rt1015_amp_conf); } EXPORT_SYMBOL_NS(sof_rt1015_codec_conf, SND_SOC_INTEL_SOF_REALTEK_COMMON); void sof_rt1015_dai_link(struct snd_soc_dai_link *link) { link->codecs = rt1015_components; link->num_codecs = ARRAY_SIZE(rt1015_components); link->init = speaker_codec_init_lr; link->ops = &rt1015_ops; } EXPORT_SYMBOL_NS(sof_rt1015_dai_link, SND_SOC_INTEL_SOF_REALTEK_COMMON); /* * RT1308 audio amplifier */ static const struct snd_kcontrol_new rt1308_kcontrols[] = { SOC_DAPM_PIN_SWITCH("Speakers"), }; static const struct snd_soc_dapm_widget rt1308_dapm_widgets[] = { SND_SOC_DAPM_SPK("Speakers", NULL), }; static const struct snd_soc_dapm_route rt1308_dapm_routes[] = { /* speaker */ {"Speakers", NULL, "SPOL"}, {"Speakers", NULL, "SPOR"}, }; static struct snd_soc_dai_link_component rt1308_components[] = { { .name = RT1308_DEV0_NAME, .dai_name = RT1308_CODEC_DAI, } }; static int rt1308_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_new_controls(&card->dapm, rt1308_dapm_widgets, ARRAY_SIZE(rt1308_dapm_widgets)); if (ret) { dev_err(rtd->dev, "fail to add dapm controls, ret %d\n", ret); return ret; } ret = snd_soc_add_card_controls(card, rt1308_kcontrols, ARRAY_SIZE(rt1308_kcontrols)); if (ret) { dev_err(rtd->dev, "fail to add card controls, ret %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, rt1308_dapm_routes, ARRAY_SIZE(rt1308_dapm_routes)); if (ret) dev_err(rtd->dev, "fail to add dapm routes, ret %d\n", ret); return ret; } static int rt1308_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_card *card = rtd->card; struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int clk_id, clk_freq, pll_out; int ret; clk_id = RT1308_PLL_S_MCLK; /* get the tplg configured mclk. */ clk_freq = sof_dai_get_mclk(rtd); pll_out = params_rate(params) * 512; /* Set rt1308 pll */ ret = snd_soc_dai_set_pll(codec_dai, 0, clk_id, clk_freq, pll_out); if (ret < 0) { dev_err(card->dev, "Failed to set RT1308 PLL: %d\n", ret); return ret; } /* Set rt1308 sysclk */ ret = snd_soc_dai_set_sysclk(codec_dai, RT1308_FS_SYS_S_PLL, pll_out, SND_SOC_CLOCK_IN); if (ret < 0) dev_err(card->dev, "Failed to set RT1308 SYSCLK: %d\n", ret); return ret; } static const struct snd_soc_ops rt1308_ops = { .hw_params = rt1308_hw_params, }; void sof_rt1308_dai_link(struct snd_soc_dai_link *link) { link->codecs = rt1308_components; link->num_codecs = ARRAY_SIZE(rt1308_components); link->init = rt1308_init; link->ops = &rt1308_ops; } EXPORT_SYMBOL_NS(sof_rt1308_dai_link, SND_SOC_INTEL_SOF_REALTEK_COMMON); /* * 2-amp Configuration for RT1019 */ static const struct snd_soc_dapm_route rt1019p_dapm_routes[] = { /* speaker */ { "Left Spk", NULL, "Speaker" }, { "Right Spk", NULL, "Speaker" }, }; static struct snd_soc_dai_link_component rt1019p_components[] = { { .name = RT1019P_DEV0_NAME, .dai_name = RT1019P_CODEC_DAI, }, }; static int rt1019p_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_add_routes(&card->dapm, rt1019p_dapm_routes, ARRAY_SIZE(rt1019p_dapm_routes)); if (ret) { dev_err(rtd->dev, "Speaker map addition failed: %d\n", ret); return ret; } return ret; } void sof_rt1019p_dai_link(struct snd_soc_dai_link *link) { link->codecs = rt1019p_components; link->num_codecs = ARRAY_SIZE(rt1019p_components); link->init = rt1019p_init; } EXPORT_SYMBOL_NS(sof_rt1019p_dai_link, SND_SOC_INTEL_SOF_REALTEK_COMMON); MODULE_DESCRIPTION("ASoC Intel SOF Realtek helpers"); MODULE_LICENSE("GPL");
linux-master
sound/soc/intel/boards/sof_realtek_common.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2015-18 Intel Corporation. /* * Common functions used in different Intel machine drivers */ #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include "../../codecs/hdac_hdmi.h" #include "skl_hda_dsp_common.h" #include <sound/hda_codec.h> #include "../../codecs/hdac_hda.h" #define NAME_SIZE 32 int skl_hda_hdmi_add_pcm(struct snd_soc_card *card, int device) { struct skl_hda_private *ctx = snd_soc_card_get_drvdata(card); struct skl_hda_hdmi_pcm *pcm; char dai_name[NAME_SIZE]; pcm = devm_kzalloc(card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; snprintf(dai_name, sizeof(dai_name), "intel-hdmi-hifi%d", ctx->dai_index); pcm->codec_dai = snd_soc_card_get_codec_dai(card, dai_name); if (!pcm->codec_dai) return -EINVAL; pcm->device = device; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } SND_SOC_DAILINK_DEF(idisp1_cpu, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_cpu, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_cpu, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(analog_cpu, DAILINK_COMP_ARRAY(COMP_CPU("Analog CPU DAI"))); SND_SOC_DAILINK_DEF(analog_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D0", "Analog Codec DAI"))); SND_SOC_DAILINK_DEF(digital_cpu, DAILINK_COMP_ARRAY(COMP_CPU("Digital CPU DAI"))); SND_SOC_DAILINK_DEF(digital_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D0", "Digital Codec DAI"))); SND_SOC_DAILINK_DEF(dmic_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(dmic16k, DAILINK_COMP_ARRAY(COMP_CPU("DMIC16k Pin"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); /* skl_hda_digital audio interface glue - connects codec <--> CPU */ struct snd_soc_dai_link skl_hda_be_dai_links[HDA_DSP_MAX_BE_DAI_LINKS] = { /* Back End DAI links */ { .name = "iDisp1", .id = 1, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_cpu, idisp1_codec, platform), }, { .name = "iDisp2", .id = 2, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_cpu, idisp2_codec, platform), }, { .name = "iDisp3", .id = 3, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_cpu, idisp3_codec, platform), }, { .name = "Analog Playback and Capture", .id = 4, .dpcm_playback = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(analog_cpu, analog_codec, platform), }, { .name = "Digital Playback and Capture", .id = 5, .dpcm_playback = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(digital_cpu, digital_codec, platform), }, { .name = "dmic01", .id = 6, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "dmic16k", .id = 7, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic16k, dmic_codec, platform), }, }; int skl_hda_hdmi_jack_init(struct snd_soc_card *card) { struct skl_hda_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_component *component = NULL; struct skl_hda_hdmi_pcm *pcm; char jack_name[NAME_SIZE]; int err; if (ctx->common_hdmi_codec_drv) return skl_hda_hdmi_build_controls(card); list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &pcm->hdmi_jack); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &pcm->hdmi_jack); if (err < 0) return err; } if (!component) return -EINVAL; return hdac_hdmi_jack_port_init(component, &card->dapm); }
linux-master
sound/soc/intel/boards/skl_hda_dsp_common.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2018-19 Canonical Corporation. /* * Intel Kabylake I2S Machine Driver with RT5660 Codec * * Modified from: * Intel Kabylake I2S Machine driver supporting MAXIM98357a and * DA7219 codecs * Also referred to: * Intel Broadwell I2S Machine driver supporting RT5677 codec */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/gpio/consumer.h> #include <linux/acpi.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include "../../codecs/hdac_hdmi.h" #include "../../codecs/rt5660.h" #define KBL_RT5660_CODEC_DAI "rt5660-aif1" #define DUAL_CHANNEL 2 static struct snd_soc_card *kabylake_audio_card; static struct snd_soc_jack skylake_hdmi[3]; static struct snd_soc_jack lineout_jack; static struct snd_soc_jack mic_jack; struct kbl_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct kbl_codec_private { struct gpio_desc *gpio_lo_mute; struct list_head hdmi_pcm_list; }; enum { KBL_DPCM_AUDIO_PB = 0, KBL_DPCM_AUDIO_CP, KBL_DPCM_AUDIO_HDMI1_PB, KBL_DPCM_AUDIO_HDMI2_PB, KBL_DPCM_AUDIO_HDMI3_PB, }; #define GPIO_LINEOUT_MUTE_INDEX 0 #define GPIO_LINEOUT_DET_INDEX 3 #define GPIO_LINEIN_DET_INDEX 4 static const struct acpi_gpio_params lineout_mute_gpio = { GPIO_LINEOUT_MUTE_INDEX, 0, true }; static const struct acpi_gpio_params lineout_det_gpio = { GPIO_LINEOUT_DET_INDEX, 0, false }; static const struct acpi_gpio_params mic_det_gpio = { GPIO_LINEIN_DET_INDEX, 0, false }; static const struct acpi_gpio_mapping acpi_rt5660_gpios[] = { { "lineout-mute-gpios", &lineout_mute_gpio, 1 }, { "lineout-det-gpios", &lineout_det_gpio, 1 }, { "mic-det-gpios", &mic_det_gpio, 1 }, { NULL }, }; static struct snd_soc_jack_pin lineout_jack_pin = { .pin = "Line Out", .mask = SND_JACK_LINEOUT, }; static struct snd_soc_jack_pin mic_jack_pin = { .pin = "Line In", .mask = SND_JACK_MICROPHONE, }; static struct snd_soc_jack_gpio lineout_jack_gpio = { .name = "lineout-det", .report = SND_JACK_LINEOUT, .debounce_time = 200, }; static struct snd_soc_jack_gpio mic_jack_gpio = { .name = "mic-det", .report = SND_JACK_MICROPHONE, .debounce_time = 200, }; static int kabylake_5660_event_lineout(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct kbl_codec_private *priv = snd_soc_card_get_drvdata(dapm->card); gpiod_set_value_cansleep(priv->gpio_lo_mute, !(SND_SOC_DAPM_EVENT_ON(event))); return 0; } static const struct snd_kcontrol_new kabylake_rt5660_controls[] = { SOC_DAPM_PIN_SWITCH("Line In"), SOC_DAPM_PIN_SWITCH("Line Out"), }; static const struct snd_soc_dapm_widget kabylake_rt5660_widgets[] = { SND_SOC_DAPM_MIC("Line In", NULL), SND_SOC_DAPM_LINE("Line Out", kabylake_5660_event_lineout), }; static const struct snd_soc_dapm_route kabylake_rt5660_map[] = { /* other jacks */ {"IN1P", NULL, "Line In"}, {"IN2P", NULL, "Line In"}, {"Line Out", NULL, "LOUTR"}, {"Line Out", NULL, "LOUTL"}, /* CODEC BE connections */ { "AIF1 Playback", NULL, "ssp0 Tx"}, { "ssp0 Tx", NULL, "codec0_out"}, { "codec0_in", NULL, "ssp0 Rx" }, { "ssp0 Rx", NULL, "AIF1 Capture" }, { "hifi1", NULL, "iDisp1 Tx"}, { "iDisp1 Tx", NULL, "iDisp1_out"}, { "hifi2", NULL, "iDisp2 Tx"}, { "iDisp2 Tx", NULL, "iDisp2_out"}, { "hifi3", NULL, "iDisp3 Tx"}, { "iDisp3 Tx", NULL, "iDisp3_out"}, }; static int kabylake_ssp0_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); /* The ADSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; chan->min = chan->max = DUAL_CHANNEL; /* set SSP0 to 24 bit */ snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); return 0; } static int kabylake_rt5660_codec_init(struct snd_soc_pcm_runtime *rtd) { int ret; struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); ret = devm_acpi_dev_add_driver_gpios(component->dev, acpi_rt5660_gpios); if (ret) dev_warn(component->dev, "Failed to add driver gpios\n"); /* Request rt5660 GPIO for lineout mute control, return if fails */ ctx->gpio_lo_mute = gpiod_get(component->dev, "lineout-mute", GPIOD_OUT_HIGH); if (IS_ERR(ctx->gpio_lo_mute)) { dev_err(component->dev, "Can't find GPIO_MUTE# gpio\n"); return PTR_ERR(ctx->gpio_lo_mute); } /* Create and initialize headphone jack, this jack is not mandatory, don't return if fails */ ret = snd_soc_card_jack_new_pins(rtd->card, "Lineout Jack", SND_JACK_LINEOUT, &lineout_jack, &lineout_jack_pin, 1); if (ret) dev_warn(component->dev, "Can't create Lineout jack\n"); else { lineout_jack_gpio.gpiod_dev = component->dev; ret = snd_soc_jack_add_gpios(&lineout_jack, 1, &lineout_jack_gpio); if (ret) dev_warn(component->dev, "Can't add Lineout jack gpio\n"); } /* Create and initialize mic jack, this jack is not mandatory, don't return if fails */ ret = snd_soc_card_jack_new_pins(rtd->card, "Mic Jack", SND_JACK_MICROPHONE, &mic_jack, &mic_jack_pin, 1); if (ret) dev_warn(component->dev, "Can't create mic jack\n"); else { mic_jack_gpio.gpiod_dev = component->dev; ret = snd_soc_jack_add_gpios(&mic_jack, 1, &mic_jack_gpio); if (ret) dev_warn(component->dev, "Can't add mic jack gpio\n"); } /* Here we enable some dapms in advance to reduce the pop noise for recording via line-in */ snd_soc_dapm_force_enable_pin(dapm, "MICBIAS1"); snd_soc_dapm_force_enable_pin(dapm, "BST1"); snd_soc_dapm_force_enable_pin(dapm, "BST2"); return 0; } static void kabylake_rt5660_codec_exit(struct snd_soc_pcm_runtime *rtd) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(rtd->card); /* * The .exit() can be reached without going through the .init() * so explicitly test if the gpiod is valid */ if (!IS_ERR_OR_NULL(ctx->gpio_lo_mute)) gpiod_put(ctx->gpio_lo_mute); } static int kabylake_hdmi_init(struct snd_soc_pcm_runtime *rtd, int device) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct kbl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = device; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int kabylake_hdmi1_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI1_PB); } static int kabylake_hdmi2_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI2_PB); } static int kabylake_hdmi3_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI3_PB); } static int kabylake_rt5660_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, RT5660_SCLK_S_PLL1, params_rate(params) * 512, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "snd_soc_dai_set_sysclk err = %d\n", ret); return ret; } ret = snd_soc_dai_set_pll(codec_dai, 0, RT5660_PLL1_S_BCLK, params_rate(params) * 50, params_rate(params) * 512); if (ret < 0) dev_err(codec_dai->dev, "can't set codec pll: %d\n", ret); return ret; } static struct snd_soc_ops kabylake_rt5660_ops = { .hw_params = kabylake_rt5660_hw_params, }; static const unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static const unsigned int channels[] = { DUAL_CHANNEL, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static int kbl_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* * On this platform for PCM device we support, * 48Khz * stereo * 16 bit audio */ runtime->hw.channels_max = DUAL_CHANNEL; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); return 0; } static const struct snd_soc_ops kabylake_rt5660_fe_ops = { .startup = kbl_fe_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(hdmi3, DAILINK_COMP_ARRAY(COMP_CPU("HDMI3 Pin"))); SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10EC3277:00", KBL_RT5660_CODEC_DAI))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); /* kabylake digital audio interface glue - connects rt5660 codec <--> CPU */ static struct snd_soc_dai_link kabylake_rt5660_dais[] = { /* Front End DAI links */ [KBL_DPCM_AUDIO_PB] = { .name = "Kbl Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &kabylake_rt5660_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_CP] = { .name = "Kbl Audio Capture Port", .stream_name = "Audio Record", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, .ops = &kabylake_rt5660_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI1_PB] = { .name = "Kbl HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI2_PB] = { .name = "Kbl HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI3_PB] = { .name = "Kbl HDMI Port3", .stream_name = "Hdmi3", .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "SSP0-Codec", .id = 0, .no_pcm = 1, .init = kabylake_rt5660_codec_init, .exit = kabylake_rt5660_codec_exit, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp0_fixup, .ops = &kabylake_rt5660_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec, platform), }, { .name = "iDisp1", .id = 1, .dpcm_playback = 1, .init = kabylake_hdmi1_init, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 2, .init = kabylake_hdmi2_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 3, .init = kabylake_hdmi3_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, }; #define NAME_SIZE 32 static int kabylake_card_late_probe(struct snd_soc_card *card) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(card); struct kbl_hdmi_pcm *pcm; struct snd_soc_component *component = NULL; int err, i = 0; char jack_name[NAME_SIZE]; list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &skylake_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &skylake_hdmi[i]); if (err < 0) return err; i++; } if (!component) return -EINVAL; return hdac_hdmi_jack_port_init(component, &card->dapm); } /* kabylake audio machine driver for rt5660 */ static struct snd_soc_card kabylake_audio_card_rt5660 = { .name = "kblrt5660", .owner = THIS_MODULE, .dai_link = kabylake_rt5660_dais, .num_links = ARRAY_SIZE(kabylake_rt5660_dais), .controls = kabylake_rt5660_controls, .num_controls = ARRAY_SIZE(kabylake_rt5660_controls), .dapm_widgets = kabylake_rt5660_widgets, .num_dapm_widgets = ARRAY_SIZE(kabylake_rt5660_widgets), .dapm_routes = kabylake_rt5660_map, .num_dapm_routes = ARRAY_SIZE(kabylake_rt5660_map), .fully_routed = true, .late_probe = kabylake_card_late_probe, }; static int kabylake_audio_probe(struct platform_device *pdev) { struct kbl_codec_private *ctx; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); kabylake_audio_card = (struct snd_soc_card *)pdev->id_entry->driver_data; kabylake_audio_card->dev = &pdev->dev; snd_soc_card_set_drvdata(kabylake_audio_card, ctx); return devm_snd_soc_register_card(&pdev->dev, kabylake_audio_card); } static const struct platform_device_id kbl_board_ids[] = { { .name = "kbl_rt5660", .driver_data = (kernel_ulong_t)&kabylake_audio_card_rt5660, }, { } }; MODULE_DEVICE_TABLE(platform, kbl_board_ids); static struct platform_driver kabylake_audio = { .probe = kabylake_audio_probe, .driver = { .name = "kbl_rt5660", .pm = &snd_soc_pm_ops, }, .id_table = kbl_board_ids, }; module_platform_driver(kabylake_audio) /* Module information */ MODULE_DESCRIPTION("Audio Machine driver-RT5660 in I2S mode"); MODULE_AUTHOR("Hui Wang <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/boards/kbl_rt5660.c
// SPDX-License-Identifier: GPL-2.0-only /* * cht-bsw-nau8824.c - ASoc Machine driver for Intel Cherryview-based * platforms Cherrytrail and Braswell, with nau8824 codec. * * Copyright (C) 2018 Intel Corp * Copyright (C) 2018 Nuvoton Technology Corp * * Author: Wang, Joseph C <[email protected]> * Co-author: John Hsu <[email protected]> * This file is based on cht_bsw_rt5672.c and cht-bsw-max98090.c */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/jack.h> #include <linux/input.h> #include "../atom/sst-atom-controls.h" #include "../../codecs/nau8824.h" struct cht_mc_private { struct snd_soc_jack jack; }; static struct snd_soc_jack_pin cht_bsw_jack_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static const struct snd_soc_dapm_widget cht_dapm_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Int Mic", NULL), SND_SOC_DAPM_SPK("Ext Spk", NULL), }; static const struct snd_soc_dapm_route cht_audio_map[] = { {"Ext Spk", NULL, "SPKOUTL"}, {"Ext Spk", NULL, "SPKOUTR"}, {"Headphone", NULL, "HPOL"}, {"Headphone", NULL, "HPOR"}, {"MIC1", NULL, "Int Mic"}, {"MIC2", NULL, "Int Mic"}, {"HSMIC1", NULL, "Headset Mic"}, {"HSMIC2", NULL, "Headset Mic"}, {"Playback", NULL, "ssp2 Tx"}, {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx" }, {"codec_in1", NULL, "ssp2 Rx" }, {"ssp2 Rx", NULL, "Capture"}, }; static const struct snd_kcontrol_new cht_mc_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Int Mic"), SOC_DAPM_PIN_SWITCH("Ext Spk"), }; static int cht_aif1_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, NAU8824_CLK_FLL_FS, 0, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(codec_dai->dev, "can't set FS clock %d\n", ret); return ret; } ret = snd_soc_dai_set_pll(codec_dai, 0, 0, params_rate(params), params_rate(params) * 256); if (ret < 0) { dev_err(codec_dai->dev, "can't set FLL: %d\n", ret); return ret; } return 0; } static int cht_codec_init(struct snd_soc_pcm_runtime *runtime) { struct cht_mc_private *ctx = snd_soc_card_get_drvdata(runtime->card); struct snd_soc_jack *jack = &ctx->jack; struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(runtime, 0); struct snd_soc_component *component = codec_dai->component; int ret, jack_type; /* NAU88L24 supports 4 buttons headset detection * KEY_PLAYPAUSE * KEY_VOICECOMMAND * KEY_VOLUMEUP * KEY_VOLUMEDOWN */ jack_type = SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3; ret = snd_soc_card_jack_new_pins(runtime->card, "Headset", jack_type, jack, cht_bsw_jack_pins, ARRAY_SIZE(cht_bsw_jack_pins)); if (ret) { dev_err(runtime->dev, "Headset Jack creation failed %d\n", ret); return ret; } snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); nau8824_enable_jack_detect(component, jack); return ret; } static int cht_codec_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); int ret; /* The DSP will convert the FE rate to 48k, stereo, 24bits */ rate->min = rate->max = 48000; channels->min = channels->max = 2; /* set SSP2 to 24-bit */ snd_mask_none(fmt); params_set_format(params, SNDRV_PCM_FORMAT_S24_LE); /* TDM 4 slots 24 bit, set Rx & Tx bitmask to 4 active slots */ ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_codec(rtd, 0), 0xf, 0x1, 4, 24); if (ret < 0) { dev_err(rtd->dev, "can't set codec TDM slot %d\n", ret); return ret; } return 0; } static int cht_aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_single(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 48000); } static const struct snd_soc_ops cht_aif1_ops = { .startup = cht_aif1_startup, }; static const struct snd_soc_ops cht_be_ssp2_ops = { .hw_params = cht_aif1_hw_params, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp2_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp2-port"))); SND_SOC_DAILINK_DEF(ssp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10508824:00", NAU8824_CODEC_DAI))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link cht_dailink[] = { /* Front End DAI links */ [MERR_DPCM_AUDIO] = { .name = "Audio Port", .stream_name = "Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &cht_aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &cht_aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* Back End DAI links */ { /* SSP2 - Codec */ .name = "SSP2-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF | SND_SOC_DAIFMT_CBC_CFC, .init = cht_codec_init, .be_hw_params_fixup = cht_codec_fixup, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &cht_be_ssp2_ops, SND_SOC_DAILINK_REG(ssp2_port, ssp2_codec, platform), }, }; /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bytcht nau8824" /* card name will be 'sof-bytcht nau8824 */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "chtnau8824" #define DRIVER_NAME NULL /* card name will be used for driver name */ /* SoC card */ static struct snd_soc_card snd_soc_card_cht = { .owner = THIS_MODULE, .dai_link = cht_dailink, .num_links = ARRAY_SIZE(cht_dailink), .dapm_widgets = cht_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cht_dapm_widgets), .dapm_routes = cht_audio_map, .num_dapm_routes = ARRAY_SIZE(cht_audio_map), .controls = cht_mc_controls, .num_controls = ARRAY_SIZE(cht_mc_controls), }; static int snd_cht_mc_probe(struct platform_device *pdev) { struct cht_mc_private *drv; struct snd_soc_acpi_mach *mach; const char *platform_name; bool sof_parent; int ret_val; drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL); if (!drv) return -ENOMEM; snd_soc_card_set_drvdata(&snd_soc_card_cht, drv); /* override platform name, if required */ snd_soc_card_cht.dev = &pdev->dev; mach = pdev->dev.platform_data; platform_name = mach->mach_params.platform; ret_val = snd_soc_fixup_dai_links_platform_name(&snd_soc_card_cht, platform_name); if (ret_val) return ret_val; sof_parent = snd_soc_acpi_sof_parent(&pdev->dev); /* set card and driver name */ if (sof_parent) { snd_soc_card_cht.name = SOF_CARD_NAME; snd_soc_card_cht.driver_name = SOF_DRIVER_NAME; } else { snd_soc_card_cht.name = CARD_NAME; snd_soc_card_cht.driver_name = DRIVER_NAME; } snd_soc_card_cht.components = nau8824_components(); /* set pm ops */ if (sof_parent) pdev->dev.driver->pm = &snd_soc_pm_ops; /* register the soc card */ ret_val = devm_snd_soc_register_card(&pdev->dev, &snd_soc_card_cht); if (ret_val) { dev_err(&pdev->dev, "snd_soc_register_card failed %d\n", ret_val); return ret_val; } platform_set_drvdata(pdev, &snd_soc_card_cht); return ret_val; } static struct platform_driver snd_cht_mc_driver = { .driver = { .name = "cht-bsw-nau8824", }, .probe = snd_cht_mc_probe, }; module_platform_driver(snd_cht_mc_driver); MODULE_DESCRIPTION("ASoC Intel(R) Baytrail CR Machine driver"); MODULE_AUTHOR("Wang, Joseph C <[email protected]>"); MODULE_AUTHOR("John Hsu <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:cht-bsw-nau8824");
linux-master
sound/soc/intel/boards/cht_bsw_nau8824.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation /* * sof_sdw_rt711_sdca - Helpers to handle RT711-SDCA from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <linux/input.h> #include <linux/soundwire/sdw.h> #include <linux/soundwire/sdw_type.h> #include <sound/control.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dapm.h> #include <sound/jack.h> #include "sof_sdw_common.h" /* * Note this MUST be called before snd_soc_register_card(), so that the props * are in place before the codec component driver's probe function parses them. */ static int rt_sdca_jack_add_codec_device_props(struct device *sdw_dev) { struct property_entry props[MAX_NO_PROPS] = {}; struct fwnode_handle *fwnode; int ret; if (!SOF_JACK_JDSRC(sof_sdw_quirk)) return 0; props[0] = PROPERTY_ENTRY_U32("realtek,jd-src", SOF_JACK_JDSRC(sof_sdw_quirk)); fwnode = fwnode_create_software_node(props, NULL); if (IS_ERR(fwnode)) return PTR_ERR(fwnode); ret = device_add_software_node(sdw_dev, to_software_node(fwnode)); fwnode_handle_put(fwnode); return ret; } static const struct snd_soc_dapm_widget rt_sdca_jack_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), }; static const struct snd_soc_dapm_route rt711_sdca_map[] = { { "Headphone", NULL, "rt711 HP" }, { "rt711 MIC2", NULL, "Headset Mic" }, }; static const struct snd_soc_dapm_route rt712_sdca_map[] = { { "Headphone", NULL, "rt712 HP" }, { "rt712 MIC2", NULL, "Headset Mic" }, }; static const struct snd_kcontrol_new rt_sdca_jack_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), }; static struct snd_soc_jack_pin rt_sdca_jack_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int rt_sdca_jack_rtd_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; struct mc_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_component *component = codec_dai->component; struct snd_soc_jack *jack; int ret; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s hs:%s-sdca", card->components, component->name_prefix); if (!card->components) return -ENOMEM; ret = snd_soc_add_card_controls(card, rt_sdca_jack_controls, ARRAY_SIZE(rt_sdca_jack_controls)); if (ret) { dev_err(card->dev, "rt sdca jack controls addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_new_controls(&card->dapm, rt_sdca_jack_widgets, ARRAY_SIZE(rt_sdca_jack_widgets)); if (ret) { dev_err(card->dev, "rt sdca jack widgets addition failed: %d\n", ret); return ret; } if (strstr(component->name_prefix, "rt711")) { ret = snd_soc_dapm_add_routes(&card->dapm, rt711_sdca_map, ARRAY_SIZE(rt711_sdca_map)); } else if (strstr(component->name_prefix, "rt712")) { ret = snd_soc_dapm_add_routes(&card->dapm, rt712_sdca_map, ARRAY_SIZE(rt712_sdca_map)); } else { dev_err(card->dev, "%s is not supported\n", component->name_prefix); return -EINVAL; } if (ret) { dev_err(card->dev, "rt sdca jack map addition failed: %d\n", ret); return ret; } ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &ctx->sdw_headset, rt_sdca_jack_pins, ARRAY_SIZE(rt_sdca_jack_pins)); if (ret) { dev_err(rtd->card->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->sdw_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); ret = snd_soc_component_set_jack(component, jack, NULL); if (ret) dev_err(rtd->card->dev, "Headset Jack call-back failed: %d\n", ret); return ret; } int sof_sdw_rt_sdca_jack_exit(struct snd_soc_card *card, struct snd_soc_dai_link *dai_link) { struct mc_private *ctx = snd_soc_card_get_drvdata(card); if (!ctx->headset_codec_dev) return 0; if (!SOF_JACK_JDSRC(sof_sdw_quirk)) return 0; device_remove_software_node(ctx->headset_codec_dev); put_device(ctx->headset_codec_dev); return 0; } int sof_sdw_rt_sdca_jack_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { struct mc_private *ctx = snd_soc_card_get_drvdata(card); struct device *sdw_dev; int ret; /* * headset should be initialized once. * Do it with dai link for playback. */ if (!playback) return 0; sdw_dev = bus_find_device_by_name(&sdw_bus_type, NULL, dai_links->codecs[0].name); if (!sdw_dev) return -EPROBE_DEFER; ret = rt_sdca_jack_add_codec_device_props(sdw_dev); if (ret < 0) { put_device(sdw_dev); return ret; } ctx->headset_codec_dev = sdw_dev; dai_links->init = rt_sdca_jack_rtd_init; return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_rt_sdca_jack_common.c
// SPDX-License-Identifier: GPL-2.0-only /* * bytcht-da7213.c - ASoc Machine driver for Intel Baytrail and * Cherrytrail-based platforms, with Dialog DA7213 codec * * Copyright (C) 2017 Intel Corporation * Author: Pierre-Louis Bossart <[email protected]> * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/module.h> #include <linux/acpi.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/da7213.h" #include "../atom/sst-atom-controls.h" static const struct snd_kcontrol_new controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Mic"), SOC_DAPM_PIN_SWITCH("Aux In"), }; static const struct snd_soc_dapm_widget dapm_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Mic", NULL), SND_SOC_DAPM_LINE("Aux In", NULL), }; static const struct snd_soc_dapm_route audio_map[] = { {"Headphone Jack", NULL, "HPL"}, {"Headphone Jack", NULL, "HPR"}, {"AUXL", NULL, "Aux In"}, {"AUXR", NULL, "Aux In"}, /* Assume Mic1 is linked to Headset and Mic2 to on-board mic */ {"MIC1", NULL, "Headset Mic"}, {"MIC2", NULL, "Mic"}, /* SOC-codec link */ {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx"}, {"codec_in1", NULL, "ssp2 Rx"}, {"Playback", NULL, "ssp2 Tx"}, {"ssp2 Rx", NULL, "Capture"}, }; static int codec_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { int ret; struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); /* The DSP will convert the FE rate to 48k, stereo, 24bits */ rate->min = rate->max = 48000; channels->min = channels->max = 2; /* set SSP2 to 24-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S24_LE); /* * Default mode for SSP configuration is TDM 4 slot, override config * with explicit setting to I2S 2ch 24-bit. The word length is set with * dai_set_tdm_slot() since there is no other API exposed */ ret = snd_soc_dai_set_fmt(asoc_rtd_to_cpu(rtd, 0), SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BP_FP); if (ret < 0) { dev_err(rtd->dev, "can't set format to I2S, err %d\n", ret); return ret; } ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_cpu(rtd, 0), 0x3, 0x3, 2, 24); if (ret < 0) { dev_err(rtd->dev, "can't set I2S config, err %d\n", ret); return ret; } return 0; } static int aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_single(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 48000); } static int aif1_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, DA7213_CLKSRC_MCLK, 19200000, SND_SOC_CLOCK_IN); if (ret < 0) dev_err(codec_dai->dev, "can't set codec sysclk configuration\n"); ret = snd_soc_dai_set_pll(codec_dai, 0, DA7213_SYSCLK_PLL_SRM, 0, DA7213_PLL_FREQ_OUT_98304000); if (ret < 0) { dev_err(codec_dai->dev, "failed to start PLL: %d\n", ret); return -EIO; } return ret; } static int aif1_hw_free(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_pll(codec_dai, 0, DA7213_SYSCLK_MCLK, 0, 0); if (ret < 0) { dev_err(codec_dai->dev, "failed to stop PLL: %d\n", ret); return -EIO; } return ret; } static const struct snd_soc_ops aif1_ops = { .startup = aif1_startup, }; static const struct snd_soc_ops ssp2_ops = { .hw_params = aif1_hw_params, .hw_free = aif1_hw_free, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp2_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp2-port"))); SND_SOC_DAILINK_DEF(ssp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-DLGS7213:00", "da7213-hifi"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link dailink[] = { [MERR_DPCM_AUDIO] = { .name = "Audio Port", .stream_name = "Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* CODEC<->CODEC link */ /* back ends */ { .name = "SSP2-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .be_hw_params_fixup = codec_fixup, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &ssp2_ops, SND_SOC_DAILINK_REG(ssp2_port, ssp2_codec, platform), }, }; /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bytcht da7213" /* card name will be 'sof-bytcht da7213' */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "bytcht-da7213" #define DRIVER_NAME NULL /* card name will be used for driver name */ /* SoC card */ static struct snd_soc_card bytcht_da7213_card = { .name = CARD_NAME, .driver_name = DRIVER_NAME, .owner = THIS_MODULE, .dai_link = dailink, .num_links = ARRAY_SIZE(dailink), .controls = controls, .num_controls = ARRAY_SIZE(controls), .dapm_widgets = dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(dapm_widgets), .dapm_routes = audio_map, .num_dapm_routes = ARRAY_SIZE(audio_map), }; static char codec_name[SND_ACPI_I2C_ID_LEN]; static int bytcht_da7213_probe(struct platform_device *pdev) { struct snd_soc_card *card; struct snd_soc_acpi_mach *mach; const char *platform_name; struct acpi_device *adev; bool sof_parent; int dai_index = 0; int ret_val = 0; int i; mach = pdev->dev.platform_data; card = &bytcht_da7213_card; card->dev = &pdev->dev; /* fix index of codec dai */ for (i = 0; i < ARRAY_SIZE(dailink); i++) { if (!strcmp(dailink[i].codecs->name, "i2c-DLGS7213:00")) { dai_index = i; break; } } /* fixup codec name based on HID */ adev = acpi_dev_get_first_match_dev(mach->id, NULL, -1); if (adev) { snprintf(codec_name, sizeof(codec_name), "i2c-%s", acpi_dev_name(adev)); dailink[dai_index].codecs->name = codec_name; } acpi_dev_put(adev); /* override platform name, if required */ platform_name = mach->mach_params.platform; ret_val = snd_soc_fixup_dai_links_platform_name(card, platform_name); if (ret_val) return ret_val; sof_parent = snd_soc_acpi_sof_parent(&pdev->dev); /* set card and driver name */ if (sof_parent) { bytcht_da7213_card.name = SOF_CARD_NAME; bytcht_da7213_card.driver_name = SOF_DRIVER_NAME; } else { bytcht_da7213_card.name = CARD_NAME; bytcht_da7213_card.driver_name = DRIVER_NAME; } /* set pm ops */ if (sof_parent) pdev->dev.driver->pm = &snd_soc_pm_ops; ret_val = devm_snd_soc_register_card(&pdev->dev, card); if (ret_val) { dev_err(&pdev->dev, "snd_soc_register_card failed %d\n", ret_val); return ret_val; } platform_set_drvdata(pdev, card); return ret_val; } static struct platform_driver bytcht_da7213_driver = { .driver = { .name = "bytcht_da7213", }, .probe = bytcht_da7213_probe, }; module_platform_driver(bytcht_da7213_driver); MODULE_DESCRIPTION("ASoC Intel(R) Baytrail/Cherrytrail+DA7213 Machine driver"); MODULE_AUTHOR("Pierre-Louis Bossart"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:bytcht_da7213");
linux-master
sound/soc/intel/boards/bytcht_da7213.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2019-2020 Intel Corporation. /* * Intel SOF Machine Driver with Realtek rt5682 Codec * and speaker codec MAX98357A or RT1015. */ #include <linux/i2c.h> #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/dmi.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/sof.h> #include <sound/rt5682.h> #include <sound/rt5682s.h> #include <sound/soc-acpi.h> #include "../../codecs/rt5682.h" #include "../../codecs/rt5682s.h" #include "../../codecs/rt5645.h" #include "../../codecs/hdac_hdmi.h" #include "../common/soc-intel-quirks.h" #include "hda_dsp_common.h" #include "sof_maxim_common.h" #include "sof_realtek_common.h" #define NAME_SIZE 32 #define SOF_RT5682_SSP_CODEC(quirk) ((quirk) & GENMASK(2, 0)) #define SOF_RT5682_SSP_CODEC_MASK (GENMASK(2, 0)) #define SOF_RT5682_MCLK_EN BIT(3) #define SOF_RT5682_MCLK_24MHZ BIT(4) #define SOF_SPEAKER_AMP_PRESENT BIT(5) #define SOF_RT5682_SSP_AMP_SHIFT 6 #define SOF_RT5682_SSP_AMP_MASK (GENMASK(8, 6)) #define SOF_RT5682_SSP_AMP(quirk) \ (((quirk) << SOF_RT5682_SSP_AMP_SHIFT) & SOF_RT5682_SSP_AMP_MASK) #define SOF_RT5682_MCLK_BYTCHT_EN BIT(9) #define SOF_RT5682_NUM_HDMIDEV_SHIFT 10 #define SOF_RT5682_NUM_HDMIDEV_MASK (GENMASK(12, 10)) #define SOF_RT5682_NUM_HDMIDEV(quirk) \ ((quirk << SOF_RT5682_NUM_HDMIDEV_SHIFT) & SOF_RT5682_NUM_HDMIDEV_MASK) #define SOF_RT1011_SPEAKER_AMP_PRESENT BIT(13) #define SOF_RT1015_SPEAKER_AMP_PRESENT BIT(14) #define SOF_RT1015P_SPEAKER_AMP_PRESENT BIT(16) #define SOF_MAX98373_SPEAKER_AMP_PRESENT BIT(17) #define SOF_MAX98360A_SPEAKER_AMP_PRESENT BIT(18) /* BT audio offload: reserve 3 bits for future */ #define SOF_BT_OFFLOAD_SSP_SHIFT 19 #define SOF_BT_OFFLOAD_SSP_MASK (GENMASK(21, 19)) #define SOF_BT_OFFLOAD_SSP(quirk) \ (((quirk) << SOF_BT_OFFLOAD_SSP_SHIFT) & SOF_BT_OFFLOAD_SSP_MASK) #define SOF_SSP_BT_OFFLOAD_PRESENT BIT(22) #define SOF_RT5682S_HEADPHONE_CODEC_PRESENT BIT(23) #define SOF_MAX98390_SPEAKER_AMP_PRESENT BIT(24) #define SOF_RT1019_SPEAKER_AMP_PRESENT BIT(26) #define SOF_RT5650_HEADPHONE_CODEC_PRESENT BIT(27) /* HDMI capture*/ #define SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT 27 #define SOF_SSP_HDMI_CAPTURE_PRESENT_MASK (GENMASK(30, 27)) #define SOF_HDMI_CAPTURE_SSP_MASK(quirk) \ (((quirk) << SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT) & SOF_SSP_HDMI_CAPTURE_PRESENT_MASK) /* Default: MCLK on, MCLK 19.2M, SSP0 */ static unsigned long sof_rt5682_quirk = SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0); static int is_legacy_cpu; struct sof_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; struct snd_soc_jack hdmi_jack; int device; }; struct sof_card_private { struct clk *mclk; struct snd_soc_jack sof_headset; struct list_head hdmi_pcm_list; bool common_hdmi_codec_drv; bool idisp_codec; }; static int sof_rt5682_quirk_cb(const struct dmi_system_id *id) { sof_rt5682_quirk = (unsigned long)id->driver_data; return 1; } static const struct dmi_system_id sof_rt5682_quirk_table[] = { { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Circuitco"), DMI_MATCH(DMI_PRODUCT_NAME, "Minnowboard Max"), }, .driver_data = (void *)(SOF_RT5682_SSP_CODEC(2)), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "AAEON"), DMI_MATCH(DMI_PRODUCT_NAME, "UP-CHT01"), }, .driver_data = (void *)(SOF_RT5682_SSP_CODEC(2)), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "WhiskeyLake Client"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_MCLK_24MHZ | SOF_RT5682_SSP_CODEC(1)), }, { /* * Dooly is hatch family but using rt1015 amp so it * requires a quirk before "Google_Hatch". */ .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "Dooly"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_MCLK_24MHZ | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1015_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1)), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_PRODUCT_FAMILY, "Google_Hatch"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_MCLK_24MHZ | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1)), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Ice Lake Client"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0)), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_PRODUCT_FAMILY, "Google_Volteer"), DMI_MATCH(DMI_OEM_STRING, "AUDIO-MAX98373_ALC5682I_I2S_UP4"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98373_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(2) | SOF_RT5682_NUM_HDMIDEV(4)), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Alder Lake Client Platform"), DMI_MATCH(DMI_OEM_STRING, "AUDIO-ADL_MAX98373_ALC5682I_I2S"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98373_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(2) | SOF_RT5682_NUM_HDMIDEV(4)), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_PRODUCT_FAMILY, "Google_Brya"), DMI_MATCH(DMI_OEM_STRING, "AUDIO-MAX98390_ALC5682I_I2S"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98390_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(2) | SOF_RT5682_NUM_HDMIDEV(4)), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_PRODUCT_FAMILY, "Google_Brya"), DMI_MATCH(DMI_OEM_STRING, "AUDIO-MAX98360_ALC5682I_I2S_AMP_SSP2"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98360A_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(2) | SOF_RT5682_NUM_HDMIDEV(4)), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_PRODUCT_FAMILY, "Google_Rex"), DMI_MATCH(DMI_OEM_STRING, "AUDIO-MAX98360_ALC5682I_I2S"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(2) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98360A_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(0) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(1) | SOF_SSP_BT_OFFLOAD_PRESENT ), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_PRODUCT_FAMILY, "Google_Rex"), DMI_MATCH(DMI_OEM_STRING, "AUDIO-ALC1019_ALC5682I_I2S"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(2) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1019_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(0) | SOF_RT5682_NUM_HDMIDEV(3) ), }, { .callback = sof_rt5682_quirk_cb, .matches = { DMI_MATCH(DMI_PRODUCT_FAMILY, "Google_Rex"), }, .driver_data = (void *)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(2) | SOF_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(0) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(1) | SOF_SSP_BT_OFFLOAD_PRESENT ), }, {} }; static int sof_hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct sof_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; /* dai_link id is 1:1 mapped to the PCM device */ pcm->device = rtd->dai_link->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int sof_rt5682_codec_init(struct snd_soc_pcm_runtime *rtd) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_jack *jack; int extra_jack_data; int ret; /* need to enable ASRC function for 24MHz mclk rate */ if ((sof_rt5682_quirk & SOF_RT5682_MCLK_EN) && (sof_rt5682_quirk & SOF_RT5682_MCLK_24MHZ)) { if (sof_rt5682_quirk & SOF_RT5682S_HEADPHONE_CODEC_PRESENT) rt5682s_sel_asrc_clk_src(component, RT5682S_DA_STEREO1_FILTER | RT5682S_AD_STEREO1_FILTER, RT5682S_CLK_SEL_I2S1_ASRC); else if (sof_rt5682_quirk & SOF_RT5650_HEADPHONE_CODEC_PRESENT) { rt5645_sel_asrc_clk_src(component, RT5645_DA_STEREO_FILTER | RT5645_AD_STEREO_FILTER, RT5645_CLK_SEL_I2S1_ASRC); rt5645_sel_asrc_clk_src(component, RT5645_DA_MONO_L_FILTER | RT5645_DA_MONO_R_FILTER, RT5645_CLK_SEL_I2S2_ASRC); } else rt5682_sel_asrc_clk_src(component, RT5682_DA_STEREO1_FILTER | RT5682_AD_STEREO1_FILTER, RT5682_CLK_SEL_I2S1_ASRC); } if (sof_rt5682_quirk & SOF_RT5682_MCLK_BYTCHT_EN) { /* * The firmware might enable the clock at * boot (this information may or may not * be reflected in the enable clock register). * To change the rate we must disable the clock * first to cover these cases. Due to common * clock framework restrictions that do not allow * to disable a clock that has not been enabled, * we need to enable the clock first. */ ret = clk_prepare_enable(ctx->mclk); if (!ret) clk_disable_unprepare(ctx->mclk); ret = clk_set_rate(ctx->mclk, 19200000); if (ret) dev_err(rtd->dev, "unable to set MCLK rate\n"); } /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &ctx->sof_headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->sof_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); if (sof_rt5682_quirk & SOF_RT5650_HEADPHONE_CODEC_PRESENT) { extra_jack_data = SND_JACK_MICROPHONE | SND_JACK_BTN_0; ret = snd_soc_component_set_jack(component, jack, &extra_jack_data); } else ret = snd_soc_component_set_jack(component, jack, NULL); if (ret) { dev_err(rtd->dev, "Headset Jack call-back failed: %d\n", ret); return ret; } return ret; }; static void sof_rt5682_codec_exit(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; snd_soc_component_set_jack(component, NULL, NULL); } static int sof_rt5682_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int pll_id, pll_source, pll_in, pll_out, clk_id, ret; if (sof_rt5682_quirk & SOF_RT5682_MCLK_EN) { if (sof_rt5682_quirk & SOF_RT5682_MCLK_BYTCHT_EN) { ret = clk_prepare_enable(ctx->mclk); if (ret < 0) { dev_err(rtd->dev, "could not configure MCLK state"); return ret; } } if (sof_rt5682_quirk & SOF_RT5682S_HEADPHONE_CODEC_PRESENT) pll_source = RT5682S_PLL_S_MCLK; else if (sof_rt5682_quirk & SOF_RT5650_HEADPHONE_CODEC_PRESENT) pll_source = RT5645_PLL1_S_MCLK; else pll_source = RT5682_PLL1_S_MCLK; /* get the tplg configured mclk. */ pll_in = sof_dai_get_mclk(rtd); /* mclk from the quirk is the first choice */ if (sof_rt5682_quirk & SOF_RT5682_MCLK_24MHZ) { if (pll_in != 24000000) dev_warn(rtd->dev, "configure wrong mclk in tplg, please use 24MHz.\n"); pll_in = 24000000; } else if (pll_in == 0) { /* use default mclk if not specified correct in topology */ pll_in = 19200000; } else if (pll_in < 0) { return pll_in; } } else { if (sof_rt5682_quirk & SOF_RT5682S_HEADPHONE_CODEC_PRESENT) pll_source = RT5682S_PLL_S_BCLK1; else if (sof_rt5682_quirk & SOF_RT5650_HEADPHONE_CODEC_PRESENT) pll_source = RT5645_PLL1_S_BCLK1; else pll_source = RT5682_PLL1_S_BCLK1; pll_in = params_rate(params) * 50; } if (sof_rt5682_quirk & SOF_RT5682S_HEADPHONE_CODEC_PRESENT) { pll_id = RT5682S_PLL2; clk_id = RT5682S_SCLK_S_PLL2; } else if (sof_rt5682_quirk & SOF_RT5650_HEADPHONE_CODEC_PRESENT) { pll_id = 0; /* not used in codec driver */ clk_id = RT5645_SCLK_S_PLL1; } else { pll_id = RT5682_PLL1; clk_id = RT5682_SCLK_S_PLL1; } pll_out = params_rate(params) * 512; /* when MCLK is 512FS, no need to set PLL configuration additionally. */ if (pll_in == pll_out) clk_id = RT5682S_SCLK_S_MCLK; else { /* Configure pll for codec */ ret = snd_soc_dai_set_pll(codec_dai, pll_id, pll_source, pll_in, pll_out); if (ret < 0) dev_err(rtd->dev, "snd_soc_dai_set_pll err = %d\n", ret); } /* Configure sysclk for codec */ ret = snd_soc_dai_set_sysclk(codec_dai, clk_id, pll_out, SND_SOC_CLOCK_IN); if (ret < 0) dev_err(rtd->dev, "snd_soc_dai_set_sysclk err = %d\n", ret); /* * slot_width should equal or large than data length, set them * be the same */ ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x0, 0x0, 2, params_width(params)); if (ret < 0) { dev_err(rtd->dev, "set TDM slot err:%d\n", ret); return ret; } return ret; } static struct snd_soc_ops sof_rt5682_ops = { .hw_params = sof_rt5682_hw_params, }; static struct snd_soc_dai_link_component platform_component[] = { { /* name might be overridden during probe */ .name = "0000:00:1f.3" } }; static int sof_card_late_probe(struct snd_soc_card *card) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_component *component = NULL; struct snd_soc_dapm_context *dapm = &card->dapm; char jack_name[NAME_SIZE]; struct sof_hdmi_pcm *pcm; int err; if (sof_rt5682_quirk & SOF_MAX98373_SPEAKER_AMP_PRESENT) { /* Disable Left and Right Spk pin after boot */ snd_soc_dapm_disable_pin(dapm, "Left Spk"); snd_soc_dapm_disable_pin(dapm, "Right Spk"); err = snd_soc_dapm_sync(dapm); if (err < 0) return err; } /* HDMI is not supported by SOF on Baytrail/CherryTrail */ if (is_legacy_cpu || !ctx->idisp_codec) return 0; if (list_empty(&ctx->hdmi_pcm_list)) return -EINVAL; if (ctx->common_hdmi_codec_drv) { pcm = list_first_entry(&ctx->hdmi_pcm_list, struct sof_hdmi_pcm, head); component = pcm->codec_dai->component; return hda_dsp_hdmi_build_controls(card, component); } list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &pcm->hdmi_jack); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &pcm->hdmi_jack); if (err < 0) return err; } return hdac_hdmi_jack_port_init(component, &card->dapm); } static const struct snd_kcontrol_new sof_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Left Spk"), SOC_DAPM_PIN_SWITCH("Right Spk"), }; static const struct snd_soc_dapm_widget sof_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_SPK("Left Spk", NULL), SND_SOC_DAPM_SPK("Right Spk", NULL), }; static const struct snd_soc_dapm_widget dmic_widgets[] = { SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_route sof_map[] = { /* HP jack connectors - unknown if we have jack detection */ { "Headphone Jack", NULL, "HPOL" }, { "Headphone Jack", NULL, "HPOR" }, /* other jacks */ { "IN1P", NULL, "Headset Mic" }, }; static const struct snd_soc_dapm_route rt5650_spk_dapm_routes[] = { /* speaker */ { "Left Spk", NULL, "SPOL" }, { "Right Spk", NULL, "SPOR" }, }; static const struct snd_soc_dapm_route dmic_map[] = { /* digital mics */ {"DMic", NULL, "SoC DMIC"}, }; static int rt5650_spk_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_add_routes(&card->dapm, rt5650_spk_dapm_routes, ARRAY_SIZE(rt5650_spk_dapm_routes)); if (ret) dev_err(rtd->dev, "fail to add dapm routes, ret=%d\n", ret); return ret; } static int dmic_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_new_controls(&card->dapm, dmic_widgets, ARRAY_SIZE(dmic_widgets)); if (ret) { dev_err(card->dev, "DMic widget addition failed: %d\n", ret); /* Don't need to add routes if widget addition failed */ return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, dmic_map, ARRAY_SIZE(dmic_map)); if (ret) dev_err(card->dev, "DMic map addition failed: %d\n", ret); return ret; } /* sof audio machine driver for rt5682 codec */ static struct snd_soc_card sof_audio_card_rt5682 = { .name = "rt5682", /* the sof- prefix is added by the core */ .owner = THIS_MODULE, .controls = sof_controls, .num_controls = ARRAY_SIZE(sof_controls), .dapm_widgets = sof_widgets, .num_dapm_widgets = ARRAY_SIZE(sof_widgets), .dapm_routes = sof_map, .num_dapm_routes = ARRAY_SIZE(sof_map), .fully_routed = true, .late_probe = sof_card_late_probe, }; static struct snd_soc_dai_link_component rt5682_component[] = { { .name = "i2c-10EC5682:00", .dai_name = "rt5682-aif1", } }; static struct snd_soc_dai_link_component rt5682s_component[] = { { .name = "i2c-RTL5682:00", .dai_name = "rt5682s-aif1", } }; static struct snd_soc_dai_link_component rt5650_components[] = { { .name = "i2c-10EC5650:00", .dai_name = "rt5645-aif1", }, { .name = "i2c-10EC5650:00", .dai_name = "rt5645-aif2", } }; static struct snd_soc_dai_link_component dmic_component[] = { { .name = "dmic-codec", .dai_name = "dmic-hifi", } }; #define IDISP_CODEC_MASK 0x4 static struct snd_soc_dai_link *sof_card_dai_links_create(struct device *dev, int ssp_codec, int ssp_amp, int dmic_be_num, int hdmi_num, bool idisp_codec) { struct snd_soc_dai_link_component *idisp_components; struct snd_soc_dai_link_component *cpus; struct snd_soc_dai_link *links; int i, id = 0; int hdmi_id_offset = 0; links = devm_kcalloc(dev, sof_audio_card_rt5682.num_links, sizeof(struct snd_soc_dai_link), GFP_KERNEL); cpus = devm_kcalloc(dev, sof_audio_card_rt5682.num_links, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!links || !cpus) goto devm_err; /* codec SSP */ links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-Codec", ssp_codec); if (!links[id].name) goto devm_err; links[id].id = id; if (sof_rt5682_quirk & SOF_RT5682S_HEADPHONE_CODEC_PRESENT) { links[id].codecs = rt5682s_component; links[id].num_codecs = ARRAY_SIZE(rt5682s_component); } else if (sof_rt5682_quirk & SOF_RT5650_HEADPHONE_CODEC_PRESENT) { links[id].codecs = &rt5650_components[0]; links[id].num_codecs = 1; } else { links[id].codecs = rt5682_component; links[id].num_codecs = ARRAY_SIZE(rt5682_component); } links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].init = sof_rt5682_codec_init; links[id].exit = sof_rt5682_codec_exit; links[id].ops = &sof_rt5682_ops; links[id].dpcm_playback = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; if (is_legacy_cpu) { links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "ssp%d-port", ssp_codec); if (!links[id].cpus->dai_name) goto devm_err; } else { /* * Currently, On SKL+ platforms MCLK will be turned off in sof * runtime suspended, and it will go into runtime suspended * right after playback is stop. However, rt5682 will output * static noise if sysclk turns off during playback. Set * ignore_pmdown_time to power down rt5682 immediately and * avoid the noise. * It can be removed once we can control MCLK by driver. */ links[id].ignore_pmdown_time = 1; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", ssp_codec); if (!links[id].cpus->dai_name) goto devm_err; } id++; /* dmic */ if (dmic_be_num > 0) { /* at least we have dmic01 */ links[id].name = "dmic01"; links[id].cpus = &cpus[id]; links[id].cpus->dai_name = "DMIC01 Pin"; links[id].init = dmic_init; if (dmic_be_num > 1) { /* set up 2 BE links at most */ links[id + 1].name = "dmic16k"; links[id + 1].cpus = &cpus[id + 1]; links[id + 1].cpus->dai_name = "DMIC16k Pin"; dmic_be_num = 2; } } for (i = 0; i < dmic_be_num; i++) { links[id].id = id; links[id].num_cpus = 1; links[id].codecs = dmic_component; links[id].num_codecs = ARRAY_SIZE(dmic_component); links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].ignore_suspend = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; id++; } /* HDMI */ if (hdmi_num > 0) { idisp_components = devm_kcalloc(dev, hdmi_num, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!idisp_components) goto devm_err; } for (i = 1; i <= hdmi_num; i++) { links[id].name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d", i); if (!links[id].name) goto devm_err; links[id].id = id; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d Pin", i); if (!links[id].cpus->dai_name) goto devm_err; if (idisp_codec) { idisp_components[i - 1].name = "ehdaudio0D2"; idisp_components[i - 1].dai_name = devm_kasprintf(dev, GFP_KERNEL, "intel-hdmi-hifi%d", i); if (!idisp_components[i - 1].dai_name) goto devm_err; } else { idisp_components[i - 1] = asoc_dummy_dlc; } links[id].codecs = &idisp_components[i - 1]; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].init = sof_hdmi_init; links[id].dpcm_playback = 1; links[id].no_pcm = 1; id++; } /* speaker amp */ if (sof_rt5682_quirk & SOF_SPEAKER_AMP_PRESENT) { links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-Codec", ssp_amp); if (!links[id].name) goto devm_err; links[id].id = id; if (sof_rt5682_quirk & SOF_RT1015_SPEAKER_AMP_PRESENT) { sof_rt1015_dai_link(&links[id]); } else if (sof_rt5682_quirk & SOF_RT1015P_SPEAKER_AMP_PRESENT) { sof_rt1015p_dai_link(&links[id]); } else if (sof_rt5682_quirk & SOF_RT1019_SPEAKER_AMP_PRESENT) { sof_rt1019p_dai_link(&links[id]); } else if (sof_rt5682_quirk & SOF_MAX98373_SPEAKER_AMP_PRESENT) { links[id].codecs = max_98373_components; links[id].num_codecs = ARRAY_SIZE(max_98373_components); links[id].init = max_98373_spk_codec_init; links[id].ops = &max_98373_ops; } else if (sof_rt5682_quirk & SOF_MAX98360A_SPEAKER_AMP_PRESENT) { max_98360a_dai_link(&links[id]); } else if (sof_rt5682_quirk & SOF_RT1011_SPEAKER_AMP_PRESENT) { sof_rt1011_dai_link(&links[id]); } else if (sof_rt5682_quirk & SOF_MAX98390_SPEAKER_AMP_PRESENT) { max_98390_dai_link(dev, &links[id]); } else if (sof_rt5682_quirk & SOF_RT5650_HEADPHONE_CODEC_PRESENT) { links[id].codecs = &rt5650_components[1]; links[id].num_codecs = 1; links[id].init = rt5650_spk_init; links[id].ops = &sof_rt5682_ops; } else { max_98357a_dai_link(&links[id]); } links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].dpcm_playback = 1; /* feedback stream or firmware-generated echo reference */ links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; if (is_legacy_cpu) { links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "ssp%d-port", ssp_amp); if (!links[id].cpus->dai_name) goto devm_err; } else { links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", ssp_amp); if (!links[id].cpus->dai_name) goto devm_err; } id++; } /* BT audio offload */ if (sof_rt5682_quirk & SOF_SSP_BT_OFFLOAD_PRESENT) { int port = (sof_rt5682_quirk & SOF_BT_OFFLOAD_SSP_MASK) >> SOF_BT_OFFLOAD_SSP_SHIFT; links[id].id = id; links[id].cpus = &cpus[id]; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", port); if (!links[id].cpus->dai_name) goto devm_err; links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-BT", port); if (!links[id].name) goto devm_err; links[id].codecs = &asoc_dummy_dlc; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].dpcm_playback = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].num_cpus = 1; } /* HDMI-In SSP */ if (sof_rt5682_quirk & SOF_SSP_HDMI_CAPTURE_PRESENT_MASK) { unsigned long hdmi_in_ssp = (sof_rt5682_quirk & SOF_SSP_HDMI_CAPTURE_PRESENT_MASK) >> SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT; int port = 0; for_each_set_bit(port, &hdmi_in_ssp, 32) { links[id].cpus = &cpus[id]; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", port); if (!links[id].cpus->dai_name) return NULL; links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-HDMI", port); if (!links[id].name) return NULL; links[id].id = id + hdmi_id_offset; links[id].codecs = &asoc_dummy_dlc; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].num_cpus = 1; id++; } } return links; devm_err: return NULL; } static int sof_audio_probe(struct platform_device *pdev) { struct snd_soc_dai_link *dai_links; struct snd_soc_acpi_mach *mach; struct sof_card_private *ctx; int dmic_be_num, hdmi_num; int ret, ssp_amp, ssp_codec; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; if (pdev->id_entry && pdev->id_entry->driver_data) sof_rt5682_quirk = (unsigned long)pdev->id_entry->driver_data; dmi_check_system(sof_rt5682_quirk_table); mach = pdev->dev.platform_data; /* A speaker amp might not be present when the quirk claims one is. * Detect this via whether the machine driver match includes quirk_data. */ if ((sof_rt5682_quirk & SOF_SPEAKER_AMP_PRESENT) && !mach->quirk_data) sof_rt5682_quirk &= ~SOF_SPEAKER_AMP_PRESENT; /* Detect the headset codec variant */ if (acpi_dev_present("RTL5682", NULL, -1)) sof_rt5682_quirk |= SOF_RT5682S_HEADPHONE_CODEC_PRESENT; else if (acpi_dev_present("10EC5650", NULL, -1)) { sof_rt5682_quirk |= SOF_RT5650_HEADPHONE_CODEC_PRESENT; sof_audio_card_rt5682.name = devm_kstrdup(&pdev->dev, "rt5650", GFP_KERNEL); } if (soc_intel_is_byt() || soc_intel_is_cht()) { is_legacy_cpu = 1; dmic_be_num = 0; hdmi_num = 0; /* default quirk for legacy cpu */ sof_rt5682_quirk = SOF_RT5682_MCLK_EN | SOF_RT5682_MCLK_BYTCHT_EN | SOF_RT5682_SSP_CODEC(2); } else { dmic_be_num = 2; hdmi_num = (sof_rt5682_quirk & SOF_RT5682_NUM_HDMIDEV_MASK) >> SOF_RT5682_NUM_HDMIDEV_SHIFT; /* default number of HDMI DAI's */ if (!hdmi_num) hdmi_num = 3; if (mach->mach_params.codec_mask & IDISP_CODEC_MASK) ctx->idisp_codec = true; } /* need to get main clock from pmc */ if (sof_rt5682_quirk & SOF_RT5682_MCLK_BYTCHT_EN) { ctx->mclk = devm_clk_get(&pdev->dev, "pmc_plt_clk_3"); if (IS_ERR(ctx->mclk)) { ret = PTR_ERR(ctx->mclk); dev_err(&pdev->dev, "Failed to get MCLK from pmc_plt_clk_3: %d\n", ret); return ret; } ret = clk_prepare_enable(ctx->mclk); if (ret < 0) { dev_err(&pdev->dev, "could not configure MCLK state"); return ret; } } dev_dbg(&pdev->dev, "sof_rt5682_quirk = %lx\n", sof_rt5682_quirk); ssp_amp = (sof_rt5682_quirk & SOF_RT5682_SSP_AMP_MASK) >> SOF_RT5682_SSP_AMP_SHIFT; ssp_codec = sof_rt5682_quirk & SOF_RT5682_SSP_CODEC_MASK; /* compute number of dai links */ sof_audio_card_rt5682.num_links = 1 + dmic_be_num + hdmi_num; if (sof_rt5682_quirk & SOF_SPEAKER_AMP_PRESENT) sof_audio_card_rt5682.num_links++; if (sof_rt5682_quirk & SOF_MAX98373_SPEAKER_AMP_PRESENT) max_98373_set_codec_conf(&sof_audio_card_rt5682); else if (sof_rt5682_quirk & SOF_RT1011_SPEAKER_AMP_PRESENT) sof_rt1011_codec_conf(&sof_audio_card_rt5682); else if (sof_rt5682_quirk & SOF_RT1015P_SPEAKER_AMP_PRESENT) sof_rt1015p_codec_conf(&sof_audio_card_rt5682); else if (sof_rt5682_quirk & SOF_MAX98390_SPEAKER_AMP_PRESENT) { max_98390_set_codec_conf(&pdev->dev, &sof_audio_card_rt5682); } if (sof_rt5682_quirk & SOF_SSP_BT_OFFLOAD_PRESENT) sof_audio_card_rt5682.num_links++; if (sof_rt5682_quirk & SOF_SSP_HDMI_CAPTURE_PRESENT_MASK) sof_audio_card_rt5682.num_links += hweight32((sof_rt5682_quirk & SOF_SSP_HDMI_CAPTURE_PRESENT_MASK) >> SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT); dai_links = sof_card_dai_links_create(&pdev->dev, ssp_codec, ssp_amp, dmic_be_num, hdmi_num, ctx->idisp_codec); if (!dai_links) return -ENOMEM; sof_audio_card_rt5682.dai_link = dai_links; if (sof_rt5682_quirk & SOF_RT1015_SPEAKER_AMP_PRESENT) sof_rt1015_codec_conf(&sof_audio_card_rt5682); INIT_LIST_HEAD(&ctx->hdmi_pcm_list); sof_audio_card_rt5682.dev = &pdev->dev; /* set platform name for each dailink */ ret = snd_soc_fixup_dai_links_platform_name(&sof_audio_card_rt5682, mach->mach_params.platform); if (ret) return ret; ctx->common_hdmi_codec_drv = mach->mach_params.common_hdmi_codec_drv; snd_soc_card_set_drvdata(&sof_audio_card_rt5682, ctx); return devm_snd_soc_register_card(&pdev->dev, &sof_audio_card_rt5682); } static const struct platform_device_id board_ids[] = { { .name = "sof_rt5682", }, { .name = "cml_rt1015_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_MCLK_24MHZ | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1015_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1)), }, { .name = "jsl_rt5682_rt1015", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_MCLK_24MHZ | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1015_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1)), }, { .name = "jsl_rt5682_mx98360", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_MCLK_24MHZ | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98360A_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1)), }, { .name = "jsl_rt5682_rt1015p", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_MCLK_24MHZ | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1015P_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1)), }, { .name = "jsl_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_MCLK_24MHZ | SOF_RT5682_SSP_CODEC(0)), }, { .name = "tgl_mx98357_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "tgl_rt1011_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1011_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "tgl_mx98373_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98373_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "adl_mx98373_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98373_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "adl_mx98357_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(2) | SOF_RT5682_NUM_HDMIDEV(4)), }, { .name = "adl_max98390_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98390_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "adl_mx98360_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98360A_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "adl_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "adl_rt1019_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1019_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "adl_rt5682_c1_h02", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(1) | SOF_RT5682_NUM_HDMIDEV(3) | /* SSP 0 and SSP 2 are used for HDMI IN */ SOF_HDMI_CAPTURE_SSP_MASK(0x5)), }, { .name = "rpl_mx98357_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(2) | SOF_RT5682_NUM_HDMIDEV(4)), }, { .name = "rpl_mx98360_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98360A_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "rpl_rt1019_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1019_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "mtl_mx98357_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "mtl_mx98360_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98360A_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1) | SOF_RT5682_NUM_HDMIDEV(4)), }, { .name = "mtl_rt1019_rt5682", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_SSP_CODEC(2) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1019_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(0) | SOF_RT5682_NUM_HDMIDEV(3)), }, { .name = "jsl_rt5650", .driver_data = (kernel_ulong_t)(SOF_RT5682_MCLK_EN | SOF_RT5682_MCLK_24MHZ | SOF_RT5682_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT5682_SSP_AMP(1)), }, { } }; MODULE_DEVICE_TABLE(platform, board_ids); static struct platform_driver sof_audio = { .probe = sof_audio_probe, .driver = { .name = "sof_rt5682", .pm = &snd_soc_pm_ops, }, .id_table = board_ids, }; module_platform_driver(sof_audio) /* Module information */ MODULE_DESCRIPTION("SOF Audio Machine driver"); MODULE_AUTHOR("Bard Liao <[email protected]>"); MODULE_AUTHOR("Sathya Prakash M R <[email protected]>"); MODULE_AUTHOR("Brent Lu <[email protected]>"); MODULE_AUTHOR("Mac Chiang <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON); MODULE_IMPORT_NS(SND_SOC_INTEL_SOF_MAXIM_COMMON); MODULE_IMPORT_NS(SND_SOC_INTEL_SOF_REALTEK_COMMON);
linux-master
sound/soc/intel/boards/sof_rt5682.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation /* * sof_sdw - ASOC Machine driver for Intel SoundWire platforms */ #include <linux/device.h> #include <linux/dmi.h> #include <linux/module.h> #include <linux/soundwire/sdw.h> #include <linux/soundwire/sdw_type.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "sof_sdw_common.h" #include "../../codecs/rt711.h" unsigned long sof_sdw_quirk = RT711_JD1; static int quirk_override = -1; module_param_named(quirk, quirk_override, int, 0444); MODULE_PARM_DESC(quirk, "Board-specific quirk override"); #define INC_ID(BE, CPU, LINK) do { (BE)++; (CPU)++; (LINK)++; } while (0) #define SDW_MAX_LINKS 4 /* To store SDW Pin index for each SoundWire link */ static unsigned int sdw_pin_index[SDW_MAX_LINKS]; static void log_quirks(struct device *dev) { if (SOF_JACK_JDSRC(sof_sdw_quirk)) dev_dbg(dev, "quirk realtek,jack-detect-source %ld\n", SOF_JACK_JDSRC(sof_sdw_quirk)); if (sof_sdw_quirk & SOF_SDW_FOUR_SPK) dev_dbg(dev, "quirk SOF_SDW_FOUR_SPK enabled\n"); if (sof_sdw_quirk & SOF_SDW_TGL_HDMI) dev_dbg(dev, "quirk SOF_SDW_TGL_HDMI enabled\n"); if (sof_sdw_quirk & SOF_SDW_PCH_DMIC) dev_dbg(dev, "quirk SOF_SDW_PCH_DMIC enabled\n"); if (SOF_SSP_GET_PORT(sof_sdw_quirk)) dev_dbg(dev, "SSP port %ld\n", SOF_SSP_GET_PORT(sof_sdw_quirk)); if (sof_sdw_quirk & SOF_SDW_NO_AGGREGATION) dev_dbg(dev, "quirk SOF_SDW_NO_AGGREGATION enabled\n"); } static int sof_sdw_quirk_cb(const struct dmi_system_id *id) { sof_sdw_quirk = (unsigned long)id->driver_data; return 1; } static const struct dmi_system_id sof_sdw_quirk_table[] = { /* CometLake devices */ { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "CometLake Client"), }, .driver_data = (void *)SOF_SDW_PCH_DMIC, }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "09C6") }, .driver_data = (void *)RT711_JD2, }, { /* early version of SKU 09C6 */ .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0983") }, .driver_data = (void *)RT711_JD2, }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "098F"), }, .driver_data = (void *)(RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0990"), }, .driver_data = (void *)(RT711_JD2 | SOF_SDW_FOUR_SPK), }, /* IceLake devices */ { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Ice Lake Client"), }, .driver_data = (void *)SOF_SDW_PCH_DMIC, }, /* TigerLake devices */ { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Tiger Lake Client Platform"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD1 | SOF_SDW_PCH_DMIC | SOF_SSP_PORT(SOF_I2S_SSP2)), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0A3E") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2), }, { /* another SKU of Dell Latitude 9520 */ .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0A3F") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2), }, { /* Dell XPS 9710 */ .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0A5D") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0A5E") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Google"), DMI_MATCH(DMI_PRODUCT_NAME, "Volteer"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | SOF_SDW_PCH_DMIC | SOF_SDW_FOUR_SPK | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Google"), DMI_MATCH(DMI_PRODUCT_NAME, "Ripto"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | SOF_SDW_PCH_DMIC | SOF_SDW_FOUR_SPK), }, { /* * this entry covers multiple HP SKUs. The family name * does not seem robust enough, so we use a partial * match that ignores the product name suffix * (e.g. 15-eb1xxx, 14t-ea000 or 13-aw2xxx) */ .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Spectre x360 Conv"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | SOF_SDW_PCH_DMIC | RT711_JD1), }, { /* * this entry covers HP Spectre x360 where the DMI information * changed somehow */ .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_BOARD_NAME, "8709"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | SOF_SDW_PCH_DMIC | RT711_JD1), }, { /* NUC15 'Bishop County' LAPBC510 and LAPBC710 skews */ .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel(R) Client Systems"), DMI_MATCH(DMI_PRODUCT_NAME, "LAPBC"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | SOF_SDW_PCH_DMIC | RT711_JD1), }, { /* NUC15 LAPBC710 skews */ .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_BOARD_NAME, "LAPBC710"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | SOF_SDW_PCH_DMIC | RT711_JD1), }, { /* NUC15 'Rooks County' LAPRC510 and LAPRC710 skews */ .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel(R) Client Systems"), DMI_MATCH(DMI_PRODUCT_NAME, "LAPRC"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | SOF_SDW_PCH_DMIC | RT711_JD2_100K), }, /* TigerLake-SDCA devices */ { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0A32") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0A45") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2), }, /* AlderLake devices */ { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Alder Lake Client Platform"), }, .driver_data = (void *)(RT711_JD2_100K | SOF_SDW_TGL_HDMI | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Google"), DMI_MATCH(DMI_PRODUCT_NAME, "Brya"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | SOF_SDW_PCH_DMIC | SOF_SDW_FOUR_SPK | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0AF0") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0AF3"), }, /* No Jack */ .driver_data = (void *)(SOF_SDW_TGL_HDMI | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0AFE") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0AFF") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0B00") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0B01") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0B11") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0B12") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0B13"), }, /* No Jack */ .driver_data = (void *)SOF_SDW_TGL_HDMI, }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0B29"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0B34"), }, /* No Jack */ .driver_data = (void *)SOF_SDW_TGL_HDMI, }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "OMEN by HP Gaming Laptop 16-k0xxx"), }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2), }, /* RaptorLake devices */ { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0BDA") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0C10"), }, /* No Jack */ .driver_data = (void *)(SOF_SDW_TGL_HDMI | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0C11") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0C40") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0C4F") }, .driver_data = (void *)(SOF_SDW_TGL_HDMI | RT711_JD2 | SOF_SDW_FOUR_SPK), }, /* MeteorLake devices */ { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_PRODUCT_FAMILY, "Intel_mtlrvp"), }, .driver_data = (void *)(RT711_JD1), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Meteor Lake Client Platform"), }, .driver_data = (void *)(RT711_JD2_100K), }, { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Google"), DMI_MATCH(DMI_PRODUCT_NAME, "Rex"), }, .driver_data = (void *)(SOF_SDW_PCH_DMIC | SOF_BT_OFFLOAD_SSP(1) | SOF_SSP_BT_OFFLOAD_PRESENT), }, /* LunarLake devices */ { .callback = sof_sdw_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Lunar Lake Client Platform"), }, .driver_data = (void *)(RT711_JD2), }, {} }; static struct snd_soc_dai_link_component dmic_component[] = { { .name = "dmic-codec", .dai_name = "dmic-hifi", } }; static struct snd_soc_dai_link_component platform_component[] = { { /* name might be overridden during probe */ .name = "0000:00:1f.3" } }; /* these wrappers are only needed to avoid typecast compilation errors */ int sdw_startup(struct snd_pcm_substream *substream) { return sdw_startup_stream(substream); } int sdw_prepare(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct sdw_stream_runtime *sdw_stream; struct snd_soc_dai *dai; /* Find stream from first CPU DAI */ dai = asoc_rtd_to_cpu(rtd, 0); sdw_stream = snd_soc_dai_get_stream(dai, substream->stream); if (IS_ERR(sdw_stream)) { dev_err(rtd->dev, "no stream found for DAI %s\n", dai->name); return PTR_ERR(sdw_stream); } return sdw_prepare_stream(sdw_stream); } int sdw_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct sdw_stream_runtime *sdw_stream; struct snd_soc_dai *dai; int ret; /* Find stream from first CPU DAI */ dai = asoc_rtd_to_cpu(rtd, 0); sdw_stream = snd_soc_dai_get_stream(dai, substream->stream); if (IS_ERR(sdw_stream)) { dev_err(rtd->dev, "no stream found for DAI %s\n", dai->name); return PTR_ERR(sdw_stream); } switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: ret = sdw_enable_stream(sdw_stream); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: ret = sdw_disable_stream(sdw_stream); break; default: ret = -EINVAL; break; } if (ret) dev_err(rtd->dev, "%s trigger %d failed: %d\n", __func__, cmd, ret); return ret; } int sdw_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); int ch = params_channels(params); struct snd_soc_dai *codec_dai; struct snd_soc_dai *cpu_dai; unsigned int ch_mask; int num_codecs; int step; int i; int j; if (!rtd->dai_link->codec_ch_maps) return 0; /* Identical data will be sent to all codecs in playback */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { ch_mask = GENMASK(ch - 1, 0); step = 0; } else { num_codecs = rtd->dai_link->num_codecs; if (ch < num_codecs || ch % num_codecs != 0) { dev_err(rtd->dev, "Channels number %d is invalid when codec number = %d\n", ch, num_codecs); return -EINVAL; } ch_mask = GENMASK(ch / num_codecs - 1, 0); step = hweight_long(ch_mask); } /* * The captured data will be combined from each cpu DAI if the dai * link has more than one codec DAIs. Set codec channel mask and * ASoC will set the corresponding channel numbers for each cpu dai. */ for_each_rtd_cpu_dais(rtd, i, cpu_dai) { for_each_rtd_codec_dais(rtd, j, codec_dai) { if (rtd->dai_link->codec_ch_maps[j].connected_cpu_id != i) continue; rtd->dai_link->codec_ch_maps[j].ch_mask = ch_mask << (j * step); } } return 0; } int sdw_hw_free(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct sdw_stream_runtime *sdw_stream; struct snd_soc_dai *dai; /* Find stream from first CPU DAI */ dai = asoc_rtd_to_cpu(rtd, 0); sdw_stream = snd_soc_dai_get_stream(dai, substream->stream); if (IS_ERR(sdw_stream)) { dev_err(rtd->dev, "no stream found for DAI %s\n", dai->name); return PTR_ERR(sdw_stream); } return sdw_deprepare_stream(sdw_stream); } void sdw_shutdown(struct snd_pcm_substream *substream) { sdw_shutdown_stream(substream); } static const struct snd_soc_ops sdw_ops = { .startup = sdw_startup, .prepare = sdw_prepare, .trigger = sdw_trigger, .hw_params = sdw_hw_params, .hw_free = sdw_hw_free, .shutdown = sdw_shutdown, }; static struct sof_sdw_codec_info codec_info_list[] = { { .part_id = 0x700, .dais = { { .direction = {true, true}, .dai_name = "rt700-aif1", .dai_type = SOF_SDW_DAI_TYPE_JACK, .dailink = {SDW_JACK_OUT_DAI_ID, SDW_JACK_IN_DAI_ID}, .init = sof_sdw_rt700_init, }, }, .dai_num = 1, }, { .part_id = 0x711, .version_id = 3, .dais = { { .direction = {true, true}, .dai_name = "rt711-sdca-aif1", .dai_type = SOF_SDW_DAI_TYPE_JACK, .dailink = {SDW_JACK_OUT_DAI_ID, SDW_JACK_IN_DAI_ID}, .init = sof_sdw_rt_sdca_jack_init, .exit = sof_sdw_rt_sdca_jack_exit, }, }, .dai_num = 1, }, { .part_id = 0x711, .version_id = 2, .dais = { { .direction = {true, true}, .dai_name = "rt711-aif1", .dai_type = SOF_SDW_DAI_TYPE_JACK, .dailink = {SDW_JACK_OUT_DAI_ID, SDW_JACK_IN_DAI_ID}, .init = sof_sdw_rt711_init, .exit = sof_sdw_rt711_exit, }, }, .dai_num = 1, }, { .part_id = 0x712, .version_id = 3, .dais = { { .direction = {true, true}, .dai_name = "rt712-sdca-aif1", .dai_type = SOF_SDW_DAI_TYPE_JACK, .dailink = {SDW_JACK_OUT_DAI_ID, SDW_JACK_IN_DAI_ID}, .init = sof_sdw_rt_sdca_jack_init, .exit = sof_sdw_rt_sdca_jack_exit, }, { .direction = {true, false}, .dai_name = "rt712-sdca-aif2", .dai_type = SOF_SDW_DAI_TYPE_AMP, .dailink = {SDW_AMP_OUT_DAI_ID, SDW_UNUSED_DAI_ID}, .init = sof_sdw_rt712_spk_init, }, }, .dai_num = 2, }, { .part_id = 0x1712, .version_id = 3, .dais = { { .direction = {false, true}, .dai_name = "rt712-sdca-dmic-aif1", .dai_type = SOF_SDW_DAI_TYPE_MIC, .dailink = {SDW_UNUSED_DAI_ID, SDW_DMIC_DAI_ID}, .init = sof_sdw_rt712_sdca_dmic_init, }, }, .dai_num = 1, }, { .part_id = 0x713, .version_id = 3, .dais = { { .direction = {true, true}, .dai_name = "rt712-sdca-aif1", .dai_type = SOF_SDW_DAI_TYPE_JACK, .dailink = {SDW_JACK_OUT_DAI_ID, SDW_JACK_IN_DAI_ID}, .init = sof_sdw_rt_sdca_jack_init, .exit = sof_sdw_rt_sdca_jack_exit, }, }, .dai_num = 1, }, { .part_id = 0x1713, .version_id = 3, .dais = { { .direction = {false, true}, .dai_name = "rt712-sdca-dmic-aif1", .dai_type = SOF_SDW_DAI_TYPE_MIC, .dailink = {SDW_UNUSED_DAI_ID, SDW_DMIC_DAI_ID}, .init = sof_sdw_rt712_sdca_dmic_init, }, }, .dai_num = 1, }, { .part_id = 0x1308, .acpi_id = "10EC1308", .dais = { { .direction = {true, false}, .dai_name = "rt1308-aif", .dai_type = SOF_SDW_DAI_TYPE_AMP, .dailink = {SDW_AMP_OUT_DAI_ID, SDW_UNUSED_DAI_ID}, .init = sof_sdw_rt_amp_init, .exit = sof_sdw_rt_amp_exit, }, }, .dai_num = 1, .ops = &sof_sdw_rt1308_i2s_ops, }, { .part_id = 0x1316, .dais = { { .direction = {true, true}, .dai_name = "rt1316-aif", .dai_type = SOF_SDW_DAI_TYPE_AMP, .dailink = {SDW_AMP_OUT_DAI_ID, SDW_AMP_IN_DAI_ID}, .init = sof_sdw_rt_amp_init, .exit = sof_sdw_rt_amp_exit, }, }, .dai_num = 1, }, { .part_id = 0x1318, .dais = { { .direction = {true, true}, .dai_name = "rt1318-aif", .dai_type = SOF_SDW_DAI_TYPE_AMP, .dailink = {SDW_AMP_OUT_DAI_ID, SDW_AMP_IN_DAI_ID}, .init = sof_sdw_rt_amp_init, .exit = sof_sdw_rt_amp_exit, }, }, .dai_num = 1, }, { .part_id = 0x714, .version_id = 3, .ignore_pch_dmic = true, .dais = { { .direction = {false, true}, .dai_name = "rt715-aif2", .dai_type = SOF_SDW_DAI_TYPE_MIC, .dailink = {SDW_UNUSED_DAI_ID, SDW_DMIC_DAI_ID}, .init = sof_sdw_rt715_sdca_init, }, }, .dai_num = 1, }, { .part_id = 0x715, .version_id = 3, .ignore_pch_dmic = true, .dais = { { .direction = {false, true}, .dai_name = "rt715-aif2", .dai_type = SOF_SDW_DAI_TYPE_MIC, .dailink = {SDW_UNUSED_DAI_ID, SDW_DMIC_DAI_ID}, .init = sof_sdw_rt715_sdca_init, }, }, .dai_num = 1, }, { .part_id = 0x714, .version_id = 2, .ignore_pch_dmic = true, .dais = { { .direction = {false, true}, .dai_name = "rt715-aif2", .dai_type = SOF_SDW_DAI_TYPE_MIC, .dailink = {SDW_UNUSED_DAI_ID, SDW_DMIC_DAI_ID}, .init = sof_sdw_rt715_init, }, }, .dai_num = 1, }, { .part_id = 0x715, .version_id = 2, .ignore_pch_dmic = true, .dais = { { .direction = {false, true}, .dai_name = "rt715-aif2", .dai_type = SOF_SDW_DAI_TYPE_MIC, .dailink = {SDW_UNUSED_DAI_ID, SDW_DMIC_DAI_ID}, .init = sof_sdw_rt715_init, }, }, .dai_num = 1, }, { .part_id = 0x8373, .dais = { { .direction = {true, true}, .dai_name = "max98373-aif1", .dai_type = SOF_SDW_DAI_TYPE_AMP, .dailink = {SDW_AMP_OUT_DAI_ID, SDW_AMP_IN_DAI_ID}, .init = sof_sdw_maxim_init, }, }, .dai_num = 1, }, { .part_id = 0x8363, .dais = { { .direction = {true, false}, .dai_name = "max98363-aif1", .dai_type = SOF_SDW_DAI_TYPE_AMP, .dailink = {SDW_AMP_OUT_DAI_ID, SDW_UNUSED_DAI_ID}, .init = sof_sdw_maxim_init, }, }, .dai_num = 1, }, { .part_id = 0x5682, .dais = { { .direction = {true, true}, .dai_name = "rt5682-sdw", .dai_type = SOF_SDW_DAI_TYPE_JACK, .dailink = {SDW_JACK_OUT_DAI_ID, SDW_JACK_IN_DAI_ID}, .init = sof_sdw_rt5682_init, }, }, .dai_num = 1, }, { .part_id = 0x3556, .dais = { { .direction = {true, true}, .dai_name = "cs35l56-sdw1", .dai_type = SOF_SDW_DAI_TYPE_AMP, .dailink = {SDW_AMP_OUT_DAI_ID, SDW_AMP_IN_DAI_ID}, .init = sof_sdw_cs_amp_init, }, }, .dai_num = 1, }, { .part_id = 0x4242, .dais = { { .direction = {true, true}, .dai_name = "cs42l42-sdw", .dai_type = SOF_SDW_DAI_TYPE_JACK, .dailink = {SDW_JACK_OUT_DAI_ID, SDW_JACK_IN_DAI_ID}, .init = sof_sdw_cs42l42_init, }, }, .dai_num = 1, }, { .part_id = 0xaaaa, /* generic codec mockup */ .version_id = 0, .dais = { { .direction = {true, true}, .dai_name = "sdw-mockup-aif1", .dai_type = SOF_SDW_DAI_TYPE_JACK, .dailink = {SDW_JACK_OUT_DAI_ID, SDW_JACK_IN_DAI_ID}, .init = NULL, }, }, .dai_num = 1, }, { .part_id = 0xaa55, /* headset codec mockup */ .version_id = 0, .dais = { { .direction = {true, true}, .dai_name = "sdw-mockup-aif1", .dai_type = SOF_SDW_DAI_TYPE_JACK, .dailink = {SDW_JACK_OUT_DAI_ID, SDW_JACK_IN_DAI_ID}, .init = NULL, }, }, .dai_num = 1, }, { .part_id = 0x55aa, /* amplifier mockup */ .version_id = 0, .dais = { { .direction = {true, true}, .dai_name = "sdw-mockup-aif1", .dai_type = SOF_SDW_DAI_TYPE_AMP, .dailink = {SDW_AMP_OUT_DAI_ID, SDW_AMP_IN_DAI_ID}, .init = NULL, }, }, .dai_num = 1, }, { .part_id = 0x5555, .version_id = 0, .dais = { { .dai_name = "sdw-mockup-aif1", .direction = {false, true}, .dai_type = SOF_SDW_DAI_TYPE_MIC, .dailink = {SDW_UNUSED_DAI_ID, SDW_DMIC_DAI_ID}, .init = NULL, }, }, .dai_num = 1, }, }; static inline int find_codec_info_part(const u64 adr) { unsigned int part_id, sdw_version; int i; part_id = SDW_PART_ID(adr); sdw_version = SDW_VERSION(adr); for (i = 0; i < ARRAY_SIZE(codec_info_list); i++) /* * A codec info is for all sdw version with the part id if * version_id is not specified in the codec info. */ if (part_id == codec_info_list[i].part_id && (!codec_info_list[i].version_id || sdw_version == codec_info_list[i].version_id)) return i; return -EINVAL; } static inline int find_codec_info_acpi(const u8 *acpi_id) { int i; if (!acpi_id[0]) return -EINVAL; for (i = 0; i < ARRAY_SIZE(codec_info_list); i++) if (!memcmp(codec_info_list[i].acpi_id, acpi_id, ACPI_ID_LEN)) return i; return -EINVAL; } /* * get BE dailink number and CPU DAI number based on sdw link adr. * Since some sdw slaves may be aggregated, the CPU DAI number * may be larger than the number of BE dailinks. */ static int get_dailink_info(struct device *dev, const struct snd_soc_acpi_link_adr *adr_link, int *sdw_be_num, int *sdw_cpu_dai_num, int *codecs_num) { bool group_visited[SDW_MAX_GROUPS]; bool no_aggregation; int i; int j; no_aggregation = sof_sdw_quirk & SOF_SDW_NO_AGGREGATION; *sdw_cpu_dai_num = 0; *sdw_be_num = 0; if (!adr_link) return -EINVAL; for (i = 0; i < SDW_MAX_GROUPS; i++) group_visited[i] = false; for (; adr_link->num_adr; adr_link++) { const struct snd_soc_acpi_endpoint *endpoint; struct sof_sdw_codec_info *codec_info; int codec_index; int stream; u64 adr; /* make sure the link mask has a single bit set */ if (!is_power_of_2(adr_link->mask)) return -EINVAL; for (i = 0; i < adr_link->num_adr; i++) { adr = adr_link->adr_d[i].adr; codec_index = find_codec_info_part(adr); if (codec_index < 0) return codec_index; codec_info = &codec_info_list[codec_index]; *codecs_num += codec_info->dai_num; if (!adr_link->adr_d[i].name_prefix) { dev_err(dev, "codec 0x%llx does not have a name prefix\n", adr_link->adr_d[i].adr); return -EINVAL; } endpoint = adr_link->adr_d[i].endpoints; if (endpoint->aggregated && !endpoint->group_id) { dev_err(dev, "invalid group id on link %x\n", adr_link->mask); return -EINVAL; } for (j = 0; j < codec_info->dai_num; j++) { /* count DAI number for playback and capture */ for_each_pcm_streams(stream) { if (!codec_info->dais[j].direction[stream]) continue; (*sdw_cpu_dai_num)++; /* count BE for each non-aggregated slave or group */ if (!endpoint->aggregated || no_aggregation || !group_visited[endpoint->group_id]) (*sdw_be_num)++; } } if (endpoint->aggregated) group_visited[endpoint->group_id] = true; } } return 0; } static void init_dai_link(struct device *dev, struct snd_soc_dai_link *dai_links, int be_id, char *name, int playback, int capture, struct snd_soc_dai_link_component *cpus, int cpus_num, struct snd_soc_dai_link_component *codecs, int codecs_num, int (*init)(struct snd_soc_pcm_runtime *rtd), const struct snd_soc_ops *ops) { dev_dbg(dev, "create dai link %s, id %d\n", name, be_id); dai_links->id = be_id; dai_links->name = name; dai_links->platforms = platform_component; dai_links->num_platforms = ARRAY_SIZE(platform_component); dai_links->no_pcm = 1; dai_links->cpus = cpus; dai_links->num_cpus = cpus_num; dai_links->codecs = codecs; dai_links->num_codecs = codecs_num; dai_links->dpcm_playback = playback; dai_links->dpcm_capture = capture; dai_links->init = init; dai_links->ops = ops; } static bool is_unique_device(const struct snd_soc_acpi_link_adr *adr_link, unsigned int sdw_version, unsigned int mfg_id, unsigned int part_id, unsigned int class_id, int index_in_link) { int i; for (i = 0; i < adr_link->num_adr; i++) { unsigned int sdw1_version, mfg1_id, part1_id, class1_id; u64 adr; /* skip itself */ if (i == index_in_link) continue; adr = adr_link->adr_d[i].adr; sdw1_version = SDW_VERSION(adr); mfg1_id = SDW_MFG_ID(adr); part1_id = SDW_PART_ID(adr); class1_id = SDW_CLASS_ID(adr); if (sdw_version == sdw1_version && mfg_id == mfg1_id && part_id == part1_id && class_id == class1_id) return false; } return true; } static int fill_sdw_codec_dlc(struct device *dev, const struct snd_soc_acpi_link_adr *adr_link, struct snd_soc_dai_link_component *codec, int adr_index, int dai_index) { unsigned int sdw_version, unique_id, mfg_id, link_id, part_id, class_id; u64 adr = adr_link->adr_d[adr_index].adr; int codec_index; codec_index = find_codec_info_part(adr); if (codec_index < 0) return codec_index; sdw_version = SDW_VERSION(adr); link_id = SDW_DISCO_LINK_ID(adr); unique_id = SDW_UNIQUE_ID(adr); mfg_id = SDW_MFG_ID(adr); part_id = SDW_PART_ID(adr); class_id = SDW_CLASS_ID(adr); if (codec_info_list[codec_index].codec_name) codec->name = devm_kstrdup(dev, codec_info_list[codec_index].codec_name, GFP_KERNEL); else if (is_unique_device(adr_link, sdw_version, mfg_id, part_id, class_id, adr_index)) codec->name = devm_kasprintf(dev, GFP_KERNEL, "sdw:%01x:%04x:%04x:%02x", link_id, mfg_id, part_id, class_id); else codec->name = devm_kasprintf(dev, GFP_KERNEL, "sdw:%01x:%04x:%04x:%02x:%01x", link_id, mfg_id, part_id, class_id, unique_id); if (!codec->name) return -ENOMEM; codec->dai_name = codec_info_list[codec_index].dais[dai_index].dai_name; return 0; } static int set_codec_init_func(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *adr_link, struct snd_soc_dai_link *dai_links, bool playback, int group_id, int adr_index, int dai_index) { int i = adr_index; do { /* * Initialize the codec. If codec is part of an aggregated * group (group_id>0), initialize all codecs belonging to * same group. * The first link should start with adr_link->adr_d[adr_index] * because that is the device that we want to initialize and * we should end immediately if it is not aggregated (group_id=0) */ for ( ; i < adr_link->num_adr; i++) { int codec_index; codec_index = find_codec_info_part(adr_link->adr_d[i].adr); if (codec_index < 0) return codec_index; /* The group_id is > 0 iff the codec is aggregated */ if (adr_link->adr_d[i].endpoints->group_id != group_id) continue; if (codec_info_list[codec_index].dais[dai_index].init) codec_info_list[codec_index].dais[dai_index].init(card, adr_link, dai_links, &codec_info_list[codec_index], playback); if (!group_id) return 0; } i = 0; adr_link++; } while (adr_link->mask); return 0; } /* * check endpoint status in slaves and gather link ID for all slaves in * the same group to generate different CPU DAI. Now only support * one sdw link with all slaves set with only single group id. * * one slave on one sdw link with aggregated = 0 * one sdw BE DAI <---> one-cpu DAI <---> one-codec DAI * * two or more slaves on one sdw link with aggregated = 0 * one sdw BE DAI <---> one-cpu DAI <---> multi-codec DAIs * * multiple links with multiple slaves with aggregated = 1 * one sdw BE DAI <---> 1 .. N CPU DAIs <----> 1 .. N codec DAIs */ static int get_slave_info(const struct snd_soc_acpi_link_adr *adr_link, struct device *dev, int *cpu_dai_id, int *cpu_dai_num, int *codec_num, unsigned int *group_id, int adr_index) { bool no_aggregation = sof_sdw_quirk & SOF_SDW_NO_AGGREGATION; int i; if (!adr_link->adr_d[adr_index].endpoints->aggregated || no_aggregation) { cpu_dai_id[0] = ffs(adr_link->mask) - 1; *cpu_dai_num = 1; *codec_num = 1; *group_id = 0; return 0; } *codec_num = 0; *cpu_dai_num = 0; *group_id = adr_link->adr_d[adr_index].endpoints->group_id; /* Count endpoints with the same group_id in the adr_link */ for (; adr_link && adr_link->num_adr; adr_link++) { unsigned int link_codecs = 0; for (i = 0; i < adr_link->num_adr; i++) { if (adr_link->adr_d[i].endpoints->aggregated && adr_link->adr_d[i].endpoints->group_id == *group_id) link_codecs++; } if (link_codecs) { *codec_num += link_codecs; if (*cpu_dai_num >= SDW_MAX_CPU_DAIS) { dev_err(dev, "cpu_dai_id array overflowed\n"); return -EINVAL; } cpu_dai_id[(*cpu_dai_num)++] = ffs(adr_link->mask) - 1; } } return 0; } static void set_dailink_map(struct snd_soc_dai_link_codec_ch_map *sdw_codec_ch_maps, int codec_num, int cpu_num) { int step; int i; step = codec_num / cpu_num; for (i = 0; i < codec_num; i++) sdw_codec_ch_maps[i].connected_cpu_id = i / step; } static const char * const type_strings[] = {"SimpleJack", "SmartAmp", "SmartMic"}; static int create_sdw_dailink(struct snd_soc_card *card, int *link_index, struct snd_soc_dai_link *dai_links, int sdw_be_num, int sdw_cpu_dai_num, struct snd_soc_dai_link_component *cpus, const struct snd_soc_acpi_link_adr *adr_link, int *cpu_id, struct snd_soc_codec_conf *codec_conf, int codec_count, int *be_id, int *codec_conf_index, bool *ignore_pch_dmic, bool append_dai_type, int adr_index, int dai_index) { struct device *dev = card->dev; const struct snd_soc_acpi_link_adr *adr_link_next; struct snd_soc_dai_link_component *codecs; struct sof_sdw_codec_info *codec_info; int cpu_dai_id[SDW_MAX_CPU_DAIS]; int cpu_dai_num, cpu_dai_index; unsigned int group_id; int codec_dlc_index = 0; int codec_index; int codec_num; int stream; int i = 0; int j, k; int ret; ret = get_slave_info(adr_link, dev, cpu_dai_id, &cpu_dai_num, &codec_num, &group_id, adr_index); if (ret) return ret; codecs = devm_kcalloc(dev, codec_num, sizeof(*codecs), GFP_KERNEL); if (!codecs) return -ENOMEM; /* generate codec name on different links in the same group */ j = adr_index; for (adr_link_next = adr_link; adr_link_next && adr_link_next->num_adr && i < cpu_dai_num; adr_link_next++) { /* skip the link excluded by this processed group */ if (cpu_dai_id[i] != ffs(adr_link_next->mask) - 1) continue; /* j reset after loop, adr_index only applies to first link */ for (; j < adr_link_next->num_adr; j++) { const struct snd_soc_acpi_endpoint *endpoints; endpoints = adr_link_next->adr_d[j].endpoints; if (group_id && (!endpoints->aggregated || endpoints->group_id != group_id)) continue; /* sanity check */ if (*codec_conf_index >= codec_count) { dev_err(dev, "codec_conf array overflowed\n"); return -EINVAL; } ret = fill_sdw_codec_dlc(dev, adr_link_next, &codecs[codec_dlc_index], j, dai_index); if (ret) return ret; codec_conf[*codec_conf_index].dlc = codecs[codec_dlc_index]; codec_conf[*codec_conf_index].name_prefix = adr_link_next->adr_d[j].name_prefix; codec_dlc_index++; (*codec_conf_index)++; } j = 0; /* check next link to create codec dai in the processed group */ i++; } /* find codec info to create BE DAI */ codec_index = find_codec_info_part(adr_link->adr_d[adr_index].adr); if (codec_index < 0) return codec_index; codec_info = &codec_info_list[codec_index]; if (codec_info->ignore_pch_dmic) *ignore_pch_dmic = true; cpu_dai_index = *cpu_id; for_each_pcm_streams(stream) { struct snd_soc_dai_link_codec_ch_map *sdw_codec_ch_maps; char *name, *cpu_name; int playback, capture; static const char * const sdw_stream_name[] = { "SDW%d-Playback", "SDW%d-Capture", "SDW%d-Playback-%s", "SDW%d-Capture-%s", }; if (!codec_info->dais[dai_index].direction[stream]) continue; *be_id = codec_info->dais[dai_index].dailink[stream]; if (*be_id < 0) { dev_err(dev, "Invalid dailink id %d\n", *be_id); return -EINVAL; } sdw_codec_ch_maps = devm_kcalloc(dev, codec_num, sizeof(*sdw_codec_ch_maps), GFP_KERNEL); if (!sdw_codec_ch_maps) return -ENOMEM; /* create stream name according to first link id */ if (append_dai_type) { name = devm_kasprintf(dev, GFP_KERNEL, sdw_stream_name[stream + 2], cpu_dai_id[0], type_strings[codec_info->dais[dai_index].dai_type]); } else { name = devm_kasprintf(dev, GFP_KERNEL, sdw_stream_name[stream], cpu_dai_id[0]); } if (!name) return -ENOMEM; /* * generate CPU DAI name base on the sdw link ID and * PIN ID with offset of 2 according to sdw dai driver. */ for (k = 0; k < cpu_dai_num; k++) { cpu_name = devm_kasprintf(dev, GFP_KERNEL, "SDW%d Pin%d", cpu_dai_id[k], sdw_pin_index[cpu_dai_id[k]]++); if (!cpu_name) return -ENOMEM; if (cpu_dai_index >= sdw_cpu_dai_num) { dev_err(dev, "invalid cpu dai index %d\n", cpu_dai_index); return -EINVAL; } cpus[cpu_dai_index++].dai_name = cpu_name; } /* * We create sdw dai links at first stage, so link index should * not be larger than sdw_be_num */ if (*link_index >= sdw_be_num) { dev_err(dev, "invalid dai link index %d\n", *link_index); return -EINVAL; } if (*cpu_id >= sdw_cpu_dai_num) { dev_err(dev, "invalid cpu dai index %d\n", *cpu_id); return -EINVAL; } playback = (stream == SNDRV_PCM_STREAM_PLAYBACK); capture = (stream == SNDRV_PCM_STREAM_CAPTURE); init_dai_link(dev, dai_links + *link_index, (*be_id)++, name, playback, capture, cpus + *cpu_id, cpu_dai_num, codecs, codec_num, NULL, &sdw_ops); /* * SoundWire DAILINKs use 'stream' functions and Bank Switch operations * based on wait_for_completion(), tag them as 'nonatomic'. */ dai_links[*link_index].nonatomic = true; set_dailink_map(sdw_codec_ch_maps, codec_num, cpu_dai_num); dai_links[*link_index].codec_ch_maps = sdw_codec_ch_maps; ret = set_codec_init_func(card, adr_link, dai_links + (*link_index)++, playback, group_id, adr_index, dai_index); if (ret < 0) { dev_err(dev, "failed to init codec %d\n", codec_index); return ret; } *cpu_id += cpu_dai_num; } return 0; } #define IDISP_CODEC_MASK 0x4 static int sof_card_dai_links_create(struct snd_soc_card *card) { struct device *dev = card->dev; struct snd_soc_acpi_mach *mach = dev_get_platdata(card->dev); int sdw_be_num = 0, ssp_num = 0, dmic_num = 0, hdmi_num = 0, bt_num = 0; struct mc_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_dai_link_component *idisp_components; struct snd_soc_dai_link_component *ssp_components; struct snd_soc_acpi_mach_params *mach_params = &mach->mach_params; const struct snd_soc_acpi_link_adr *adr_link = mach_params->links; bool aggregation = !(sof_sdw_quirk & SOF_SDW_NO_AGGREGATION); struct snd_soc_dai_link_component *cpus; struct snd_soc_codec_conf *codec_conf; bool append_dai_type = false; bool ignore_pch_dmic = false; int codec_conf_num = 0; int codec_conf_index = 0; bool group_generated[SDW_MAX_GROUPS] = { }; int ssp_codec_index, ssp_mask; struct snd_soc_dai_link *dai_links; int num_links, link_index = 0; char *name, *cpu_name; int total_cpu_dai_num; int sdw_cpu_dai_num; int i, j, be_id = 0; int codec_index; int cpu_id = 0; int ret; ret = get_dailink_info(dev, adr_link, &sdw_be_num, &sdw_cpu_dai_num, &codec_conf_num); if (ret < 0) { dev_err(dev, "failed to get sdw link info %d\n", ret); return ret; } /* * on generic tgl platform, I2S or sdw mode is supported * based on board rework. A ACPI device is registered in * system only when I2S mode is supported, not sdw mode. * Here check ACPI ID to confirm I2S is supported. */ ssp_codec_index = find_codec_info_acpi(mach->id); if (ssp_codec_index >= 0) { ssp_mask = SOF_SSP_GET_PORT(sof_sdw_quirk); ssp_num = hweight_long(ssp_mask); } if (mach_params->codec_mask & IDISP_CODEC_MASK) { ctx->idisp_codec = true; if (sof_sdw_quirk & SOF_SDW_TGL_HDMI) hdmi_num = SOF_TGL_HDMI_COUNT; else hdmi_num = SOF_PRE_TGL_HDMI_COUNT; } /* enable dmic01 & dmic16k */ if (sof_sdw_quirk & SOF_SDW_PCH_DMIC || mach_params->dmic_num) dmic_num = 2; if (sof_sdw_quirk & SOF_SSP_BT_OFFLOAD_PRESENT) bt_num = 1; dev_dbg(dev, "sdw %d, ssp %d, dmic %d, hdmi %d, bt: %d\n", sdw_be_num, ssp_num, dmic_num, hdmi_num, bt_num); /* allocate BE dailinks */ num_links = sdw_be_num + ssp_num + dmic_num + hdmi_num + bt_num; dai_links = devm_kcalloc(dev, num_links, sizeof(*dai_links), GFP_KERNEL); if (!dai_links) return -ENOMEM; /* allocated CPU DAIs */ total_cpu_dai_num = sdw_cpu_dai_num + ssp_num + dmic_num + hdmi_num + bt_num; cpus = devm_kcalloc(dev, total_cpu_dai_num, sizeof(*cpus), GFP_KERNEL); if (!cpus) return -ENOMEM; /* allocate codec conf, will be populated when dailinks are created */ codec_conf = devm_kcalloc(dev, codec_conf_num, sizeof(*codec_conf), GFP_KERNEL); if (!codec_conf) return -ENOMEM; /* SDW */ if (!sdw_be_num) goto SSP; for (i = 0; i < SDW_MAX_LINKS; i++) sdw_pin_index[i] = SDW_INTEL_BIDIR_PDI_BASE; for (; adr_link->num_adr; adr_link++) { /* * If there are two or more different devices on the same sdw link, we have to * append the codec type to the dai link name to prevent duplicated dai link name. * The same type devices on the same sdw link will be in the same * snd_soc_acpi_adr_device array. They won't be described in different adr_links. */ for (i = 0; i < adr_link->num_adr; i++) { /* find codec info to get dai_num */ codec_index = find_codec_info_part(adr_link->adr_d[i].adr); if (codec_index < 0) return codec_index; if (codec_info_list[codec_index].dai_num > 1) { append_dai_type = true; goto out; } for (j = 0; j < i; j++) { if ((SDW_PART_ID(adr_link->adr_d[i].adr) != SDW_PART_ID(adr_link->adr_d[j].adr)) || (SDW_MFG_ID(adr_link->adr_d[i].adr) != SDW_MFG_ID(adr_link->adr_d[j].adr))) { append_dai_type = true; goto out; } } } } out: /* generate DAI links by each sdw link */ for (adr_link = mach_params->links ; adr_link->num_adr; adr_link++) { for (i = 0; i < adr_link->num_adr; i++) { const struct snd_soc_acpi_endpoint *endpoint; endpoint = adr_link->adr_d[i].endpoints; /* this group has been generated */ if (endpoint->aggregated && group_generated[endpoint->group_id]) continue; /* find codec info to get dai_num */ codec_index = find_codec_info_part(adr_link->adr_d[i].adr); if (codec_index < 0) return codec_index; for (j = 0; j < codec_info_list[codec_index].dai_num ; j++) { ret = create_sdw_dailink(card, &link_index, dai_links, sdw_be_num, sdw_cpu_dai_num, cpus, adr_link, &cpu_id, codec_conf, codec_conf_num, &be_id, &codec_conf_index, &ignore_pch_dmic, append_dai_type, i, j); if (ret < 0) { dev_err(dev, "failed to create dai link %d\n", link_index); return ret; } } if (aggregation && endpoint->aggregated) group_generated[endpoint->group_id] = true; } } SSP: /* SSP */ if (!ssp_num) goto DMIC; for (i = 0, j = 0; ssp_mask; i++, ssp_mask >>= 1) { struct sof_sdw_codec_info *info; int playback, capture; char *codec_name; if (!(ssp_mask & 0x1)) continue; name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-Codec", i); if (!name) return -ENOMEM; cpu_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", i); if (!cpu_name) return -ENOMEM; ssp_components = devm_kzalloc(dev, sizeof(*ssp_components), GFP_KERNEL); if (!ssp_components) return -ENOMEM; info = &codec_info_list[ssp_codec_index]; codec_name = devm_kasprintf(dev, GFP_KERNEL, "i2c-%s:0%d", info->acpi_id, j++); if (!codec_name) return -ENOMEM; ssp_components->name = codec_name; /* TODO: support multi codec dai on SSP when it is needed */ ssp_components->dai_name = info->dais[0].dai_name; cpus[cpu_id].dai_name = cpu_name; playback = info->dais[0].direction[SNDRV_PCM_STREAM_PLAYBACK]; capture = info->dais[0].direction[SNDRV_PCM_STREAM_CAPTURE]; init_dai_link(dev, dai_links + link_index, be_id, name, playback, capture, cpus + cpu_id, 1, ssp_components, 1, NULL, info->ops); ret = info->dais[0].init(card, NULL, dai_links + link_index, info, 0); if (ret < 0) return ret; INC_ID(be_id, cpu_id, link_index); } DMIC: /* dmic */ if (dmic_num > 0) { if (ignore_pch_dmic) { dev_warn(dev, "Ignoring PCH DMIC\n"); goto HDMI; } cpus[cpu_id].dai_name = "DMIC01 Pin"; init_dai_link(dev, dai_links + link_index, be_id, "dmic01", 0, 1, // DMIC only supports capture cpus + cpu_id, 1, dmic_component, 1, sof_sdw_dmic_init, NULL); INC_ID(be_id, cpu_id, link_index); cpus[cpu_id].dai_name = "DMIC16k Pin"; init_dai_link(dev, dai_links + link_index, be_id, "dmic16k", 0, 1, // DMIC only supports capture cpus + cpu_id, 1, dmic_component, 1, /* don't call sof_sdw_dmic_init() twice */ NULL, NULL); INC_ID(be_id, cpu_id, link_index); } HDMI: /* HDMI */ if (hdmi_num > 0) { idisp_components = devm_kcalloc(dev, hdmi_num, sizeof(*idisp_components), GFP_KERNEL); if (!idisp_components) return -ENOMEM; } for (i = 0; i < hdmi_num; i++) { name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d", i + 1); if (!name) return -ENOMEM; if (ctx->idisp_codec) { idisp_components[i].name = "ehdaudio0D2"; idisp_components[i].dai_name = devm_kasprintf(dev, GFP_KERNEL, "intel-hdmi-hifi%d", i + 1); if (!idisp_components[i].dai_name) return -ENOMEM; } else { idisp_components[i] = asoc_dummy_dlc; } cpu_name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d Pin", i + 1); if (!cpu_name) return -ENOMEM; cpus[cpu_id].dai_name = cpu_name; init_dai_link(dev, dai_links + link_index, be_id, name, 1, 0, // HDMI only supports playback cpus + cpu_id, 1, idisp_components + i, 1, sof_sdw_hdmi_init, NULL); INC_ID(be_id, cpu_id, link_index); } if (sof_sdw_quirk & SOF_SSP_BT_OFFLOAD_PRESENT) { int port = (sof_sdw_quirk & SOF_BT_OFFLOAD_SSP_MASK) >> SOF_BT_OFFLOAD_SSP_SHIFT; name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-BT", port); if (!name) return -ENOMEM; cpu_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", port); if (!cpu_name) return -ENOMEM; cpus[cpu_id].dai_name = cpu_name; init_dai_link(dev, dai_links + link_index, be_id, name, 1, 1, cpus + cpu_id, 1, &asoc_dummy_dlc, 1, NULL, NULL); } card->dai_link = dai_links; card->num_links = num_links; card->codec_conf = codec_conf; card->num_configs = codec_conf_num; return 0; } static int sof_sdw_card_late_probe(struct snd_soc_card *card) { struct mc_private *ctx = snd_soc_card_get_drvdata(card); int ret = 0; int i; for (i = 0; i < ARRAY_SIZE(codec_info_list); i++) { if (codec_info_list[i].codec_card_late_probe) { ret = codec_info_list[i].codec_card_late_probe(card); if (ret < 0) return ret; } } if (ctx->idisp_codec) ret = sof_sdw_hdmi_card_late_probe(card); return ret; } /* SoC card */ static const char sdw_card_long_name[] = "Intel Soundwire SOF"; static struct snd_soc_card card_sof_sdw = { .name = "soundwire", .owner = THIS_MODULE, .late_probe = sof_sdw_card_late_probe, }; /* helper to get the link that the codec DAI is used */ static struct snd_soc_dai_link *mc_find_codec_dai_used(struct snd_soc_card *card, const char *dai_name) { struct snd_soc_dai_link *dai_link; int i; int j; for_each_card_prelinks(card, i, dai_link) { for (j = 0; j < dai_link->num_codecs; j++) { /* Check each codec in a link */ if (!strcmp(dai_link->codecs[j].dai_name, dai_name)) return dai_link; } } return NULL; } static void mc_dailink_exit_loop(struct snd_soc_card *card) { struct snd_soc_dai_link *dai_link; int ret; int i, j; for (i = 0; i < ARRAY_SIZE(codec_info_list); i++) { for (j = 0; j < codec_info_list[i].dai_num; j++) { /* Check each dai in codec_info_lis to see if it is used in the link */ if (!codec_info_list[i].dais[j].exit) continue; /* * We don't need to call .exit function if there is no matched * dai link found. */ dai_link = mc_find_codec_dai_used(card, codec_info_list[i].dais[j].dai_name); if (dai_link) { /* Do the .exit function if the codec dai is used in the link */ ret = codec_info_list[i].dais[j].exit(card, dai_link); if (ret) dev_warn(card->dev, "codec exit failed %d\n", ret); break; } } } } static int mc_probe(struct platform_device *pdev) { struct snd_soc_card *card = &card_sof_sdw; struct snd_soc_acpi_mach *mach = dev_get_platdata(&pdev->dev); struct mc_private *ctx; int amp_num = 0, i; int ret; card->dev = &pdev->dev; dev_dbg(card->dev, "Entry\n"); ctx = devm_kzalloc(card->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); snd_soc_card_set_drvdata(card, ctx); dmi_check_system(sof_sdw_quirk_table); if (quirk_override != -1) { dev_info(card->dev, "Overriding quirk 0x%lx => 0x%x\n", sof_sdw_quirk, quirk_override); sof_sdw_quirk = quirk_override; } log_quirks(card->dev); /* reset amp_num to ensure amp_num++ starts from 0 in each probe */ for (i = 0; i < ARRAY_SIZE(codec_info_list); i++) codec_info_list[i].amp_num = 0; ret = sof_card_dai_links_create(card); if (ret < 0) return ret; /* * the default amp_num is zero for each codec and * amp_num will only be increased for active amp * codecs on used platform */ for (i = 0; i < ARRAY_SIZE(codec_info_list); i++) amp_num += codec_info_list[i].amp_num; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "cfg-spk:%d cfg-amp:%d", (sof_sdw_quirk & SOF_SDW_FOUR_SPK) ? 4 : 2, amp_num); if (!card->components) return -ENOMEM; if (mach->mach_params.dmic_num) { card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s mic:dmic cfg-mics:%d", card->components, mach->mach_params.dmic_num); if (!card->components) return -ENOMEM; } card->long_name = sdw_card_long_name; /* Register the card */ ret = devm_snd_soc_register_card(card->dev, card); if (ret) { dev_err(card->dev, "snd_soc_register_card failed %d\n", ret); mc_dailink_exit_loop(card); return ret; } platform_set_drvdata(pdev, card); return ret; } static void mc_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); mc_dailink_exit_loop(card); } static const struct platform_device_id mc_id_table[] = { { "sof_sdw", }, {} }; MODULE_DEVICE_TABLE(platform, mc_id_table); static struct platform_driver sof_sdw_driver = { .driver = { .name = "sof_sdw", .pm = &snd_soc_pm_ops, }, .probe = mc_probe, .remove_new = mc_remove, .id_table = mc_id_table, }; module_platform_driver(sof_sdw_driver); MODULE_DESCRIPTION("ASoC SoundWire Generic Machine driver"); MODULE_AUTHOR("Bard Liao <[email protected]>"); MODULE_AUTHOR("Rander Wang <[email protected]>"); MODULE_AUTHOR("Pierre-Louis Bossart <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON); MODULE_IMPORT_NS(SND_SOC_INTEL_SOF_MAXIM_COMMON);
linux-master
sound/soc/intel/boards/sof_sdw.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2021 Intel Corporation. /* * Intel SOF Machine Driver with Cirrus Logic CS42L42 Codec * and speaker codec MAX98357A */ #include <linux/i2c.h> #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/dmi.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/sof.h> #include <sound/soc-acpi.h> #include <dt-bindings/sound/cs42l42.h> #include "../../codecs/hdac_hdmi.h" #include "../common/soc-intel-quirks.h" #include "hda_dsp_common.h" #include "sof_maxim_common.h" #define NAME_SIZE 32 #define SOF_CS42L42_SSP_CODEC(quirk) ((quirk) & GENMASK(2, 0)) #define SOF_CS42L42_SSP_CODEC_MASK (GENMASK(2, 0)) #define SOF_SPEAKER_AMP_PRESENT BIT(3) #define SOF_CS42L42_SSP_AMP_SHIFT 4 #define SOF_CS42L42_SSP_AMP_MASK (GENMASK(6, 4)) #define SOF_CS42L42_SSP_AMP(quirk) \ (((quirk) << SOF_CS42L42_SSP_AMP_SHIFT) & SOF_CS42L42_SSP_AMP_MASK) #define SOF_CS42L42_NUM_HDMIDEV_SHIFT 7 #define SOF_CS42L42_NUM_HDMIDEV_MASK (GENMASK(9, 7)) #define SOF_CS42L42_NUM_HDMIDEV(quirk) \ (((quirk) << SOF_CS42L42_NUM_HDMIDEV_SHIFT) & SOF_CS42L42_NUM_HDMIDEV_MASK) #define SOF_CS42L42_DAILINK_SHIFT 10 #define SOF_CS42L42_DAILINK_MASK (GENMASK(24, 10)) #define SOF_CS42L42_DAILINK(link1, link2, link3, link4, link5) \ ((((link1) | ((link2) << 3) | ((link3) << 6) | ((link4) << 9) | ((link5) << 12)) << SOF_CS42L42_DAILINK_SHIFT) & SOF_CS42L42_DAILINK_MASK) #define SOF_BT_OFFLOAD_PRESENT BIT(25) #define SOF_CS42L42_SSP_BT_SHIFT 26 #define SOF_CS42L42_SSP_BT_MASK (GENMASK(28, 26)) #define SOF_CS42L42_SSP_BT(quirk) \ (((quirk) << SOF_CS42L42_SSP_BT_SHIFT) & SOF_CS42L42_SSP_BT_MASK) #define SOF_MAX98357A_SPEAKER_AMP_PRESENT BIT(29) #define SOF_MAX98360A_SPEAKER_AMP_PRESENT BIT(30) enum { LINK_NONE = 0, LINK_HP = 1, LINK_SPK = 2, LINK_DMIC = 3, LINK_HDMI = 4, LINK_BT = 5, }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; /* Default: SSP2 */ static unsigned long sof_cs42l42_quirk = SOF_CS42L42_SSP_CODEC(2); struct sof_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; struct snd_soc_jack hdmi_jack; int device; }; struct sof_card_private { struct snd_soc_jack headset_jack; struct list_head hdmi_pcm_list; bool common_hdmi_codec_drv; }; static int sof_hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct sof_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; /* dai_link id is 1:1 mapped to the PCM device */ pcm->device = rtd->dai_link->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int sof_cs42l42_init(struct snd_soc_pcm_runtime *rtd) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_jack *jack = &ctx->headset_jack; int ret; /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, jack, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed: %d\n", ret); return ret; } snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEDOWN); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOICECOMMAND); ret = snd_soc_component_set_jack(component, jack, NULL); if (ret) { dev_err(rtd->dev, "Headset Jack call-back failed: %d\n", ret); return ret; } return ret; }; static void sof_cs42l42_exit(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; snd_soc_component_set_jack(component, NULL, NULL); } static int sof_cs42l42_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int clk_freq, ret; clk_freq = sof_dai_get_bclk(rtd); /* BCLK freq */ if (clk_freq <= 0) { dev_err(rtd->dev, "get bclk freq failed: %d\n", clk_freq); return -EINVAL; } /* Configure sysclk for codec */ ret = snd_soc_dai_set_sysclk(codec_dai, 0, clk_freq, SND_SOC_CLOCK_IN); if (ret < 0) dev_err(rtd->dev, "snd_soc_dai_set_sysclk err = %d\n", ret); return ret; } static const struct snd_soc_ops sof_cs42l42_ops = { .hw_params = sof_cs42l42_hw_params, }; static struct snd_soc_dai_link_component platform_component[] = { { /* name might be overridden during probe */ .name = "0000:00:1f.3" } }; static int sof_card_late_probe(struct snd_soc_card *card) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_component *component = NULL; char jack_name[NAME_SIZE]; struct sof_hdmi_pcm *pcm; int err; if (list_empty(&ctx->hdmi_pcm_list)) return -EINVAL; if (ctx->common_hdmi_codec_drv) { pcm = list_first_entry(&ctx->hdmi_pcm_list, struct sof_hdmi_pcm, head); component = pcm->codec_dai->component; return hda_dsp_hdmi_build_controls(card, component); } list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &pcm->hdmi_jack); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &pcm->hdmi_jack); if (err < 0) return err; } return hdac_hdmi_jack_port_init(component, &card->dapm); } static const struct snd_kcontrol_new sof_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), }; static const struct snd_soc_dapm_widget sof_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), }; static const struct snd_soc_dapm_widget dmic_widgets[] = { SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_route sof_map[] = { /* HP jack connectors - unknown if we have jack detection */ {"Headphone Jack", NULL, "HP"}, /* other jacks */ {"HS", NULL, "Headset Mic"}, }; static const struct snd_soc_dapm_route dmic_map[] = { /* digital mics */ {"DMic", NULL, "SoC DMIC"}, }; static int dmic_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_new_controls(&card->dapm, dmic_widgets, ARRAY_SIZE(dmic_widgets)); if (ret) { dev_err(card->dev, "DMic widget addition failed: %d\n", ret); /* Don't need to add routes if widget addition failed */ return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, dmic_map, ARRAY_SIZE(dmic_map)); if (ret) dev_err(card->dev, "DMic map addition failed: %d\n", ret); return ret; } /* sof audio machine driver for cs42l42 codec */ static struct snd_soc_card sof_audio_card_cs42l42 = { .name = "cs42l42", /* the sof- prefix is added by the core */ .owner = THIS_MODULE, .controls = sof_controls, .num_controls = ARRAY_SIZE(sof_controls), .dapm_widgets = sof_widgets, .num_dapm_widgets = ARRAY_SIZE(sof_widgets), .dapm_routes = sof_map, .num_dapm_routes = ARRAY_SIZE(sof_map), .fully_routed = true, .late_probe = sof_card_late_probe, }; static struct snd_soc_dai_link_component cs42l42_component[] = { { .name = "i2c-10134242:00", .dai_name = "cs42l42", } }; static struct snd_soc_dai_link_component dmic_component[] = { { .name = "dmic-codec", .dai_name = "dmic-hifi", } }; static int create_spk_amp_dai_links(struct device *dev, struct snd_soc_dai_link *links, struct snd_soc_dai_link_component *cpus, int *id, int ssp_amp) { int ret = 0; /* speaker amp */ if (!(sof_cs42l42_quirk & SOF_SPEAKER_AMP_PRESENT)) return 0; links[*id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-Codec", ssp_amp); if (!links[*id].name) { ret = -ENOMEM; goto devm_err; } links[*id].id = *id; if (sof_cs42l42_quirk & SOF_MAX98357A_SPEAKER_AMP_PRESENT) { max_98357a_dai_link(&links[*id]); } else if (sof_cs42l42_quirk & SOF_MAX98360A_SPEAKER_AMP_PRESENT) { max_98360a_dai_link(&links[*id]); } else { dev_err(dev, "no amp defined\n"); ret = -EINVAL; goto devm_err; } links[*id].platforms = platform_component; links[*id].num_platforms = ARRAY_SIZE(platform_component); links[*id].dpcm_playback = 1; /* firmware-generated echo reference */ links[*id].dpcm_capture = 1; links[*id].no_pcm = 1; links[*id].cpus = &cpus[*id]; links[*id].num_cpus = 1; links[*id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", ssp_amp); if (!links[*id].cpus->dai_name) { ret = -ENOMEM; goto devm_err; } (*id)++; devm_err: return ret; } static int create_hp_codec_dai_links(struct device *dev, struct snd_soc_dai_link *links, struct snd_soc_dai_link_component *cpus, int *id, int ssp_codec) { /* codec SSP */ links[*id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-Codec", ssp_codec); if (!links[*id].name) goto devm_err; links[*id].id = *id; links[*id].codecs = cs42l42_component; links[*id].num_codecs = ARRAY_SIZE(cs42l42_component); links[*id].platforms = platform_component; links[*id].num_platforms = ARRAY_SIZE(platform_component); links[*id].init = sof_cs42l42_init; links[*id].exit = sof_cs42l42_exit; links[*id].ops = &sof_cs42l42_ops; links[*id].dpcm_playback = 1; links[*id].dpcm_capture = 1; links[*id].no_pcm = 1; links[*id].cpus = &cpus[*id]; links[*id].num_cpus = 1; links[*id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", ssp_codec); if (!links[*id].cpus->dai_name) goto devm_err; (*id)++; return 0; devm_err: return -ENOMEM; } static int create_dmic_dai_links(struct device *dev, struct snd_soc_dai_link *links, struct snd_soc_dai_link_component *cpus, int *id, int dmic_be_num) { int i; /* dmic */ if (dmic_be_num <= 0) return 0; /* at least we have dmic01 */ links[*id].name = "dmic01"; links[*id].cpus = &cpus[*id]; links[*id].cpus->dai_name = "DMIC01 Pin"; links[*id].init = dmic_init; if (dmic_be_num > 1) { /* set up 2 BE links at most */ links[*id + 1].name = "dmic16k"; links[*id + 1].cpus = &cpus[*id + 1]; links[*id + 1].cpus->dai_name = "DMIC16k Pin"; dmic_be_num = 2; } for (i = 0; i < dmic_be_num; i++) { links[*id].id = *id; links[*id].num_cpus = 1; links[*id].codecs = dmic_component; links[*id].num_codecs = ARRAY_SIZE(dmic_component); links[*id].platforms = platform_component; links[*id].num_platforms = ARRAY_SIZE(platform_component); links[*id].ignore_suspend = 1; links[*id].dpcm_capture = 1; links[*id].no_pcm = 1; (*id)++; } return 0; } static int create_hdmi_dai_links(struct device *dev, struct snd_soc_dai_link *links, struct snd_soc_dai_link_component *cpus, int *id, int hdmi_num) { struct snd_soc_dai_link_component *idisp_components; int i; /* HDMI */ if (hdmi_num <= 0) return 0; idisp_components = devm_kcalloc(dev, hdmi_num, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!idisp_components) goto devm_err; for (i = 1; i <= hdmi_num; i++) { links[*id].name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d", i); if (!links[*id].name) goto devm_err; links[*id].id = *id; links[*id].cpus = &cpus[*id]; links[*id].num_cpus = 1; links[*id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d Pin", i); if (!links[*id].cpus->dai_name) goto devm_err; idisp_components[i - 1].name = "ehdaudio0D2"; idisp_components[i - 1].dai_name = devm_kasprintf(dev, GFP_KERNEL, "intel-hdmi-hifi%d", i); if (!idisp_components[i - 1].dai_name) goto devm_err; links[*id].codecs = &idisp_components[i - 1]; links[*id].num_codecs = 1; links[*id].platforms = platform_component; links[*id].num_platforms = ARRAY_SIZE(platform_component); links[*id].init = sof_hdmi_init; links[*id].dpcm_playback = 1; links[*id].no_pcm = 1; (*id)++; } return 0; devm_err: return -ENOMEM; } static int create_bt_offload_dai_links(struct device *dev, struct snd_soc_dai_link *links, struct snd_soc_dai_link_component *cpus, int *id, int ssp_bt) { /* bt offload */ if (!(sof_cs42l42_quirk & SOF_BT_OFFLOAD_PRESENT)) return 0; links[*id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-BT", ssp_bt); if (!links[*id].name) goto devm_err; links[*id].id = *id; links[*id].codecs = &asoc_dummy_dlc; links[*id].num_codecs = 1; links[*id].platforms = platform_component; links[*id].num_platforms = ARRAY_SIZE(platform_component); links[*id].dpcm_playback = 1; links[*id].dpcm_capture = 1; links[*id].no_pcm = 1; links[*id].cpus = &cpus[*id]; links[*id].num_cpus = 1; links[*id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", ssp_bt); if (!links[*id].cpus->dai_name) goto devm_err; (*id)++; return 0; devm_err: return -ENOMEM; } static struct snd_soc_dai_link *sof_card_dai_links_create(struct device *dev, int ssp_codec, int ssp_amp, int ssp_bt, int dmic_be_num, int hdmi_num) { struct snd_soc_dai_link_component *cpus; struct snd_soc_dai_link *links; int ret, id = 0, link_seq; links = devm_kcalloc(dev, sof_audio_card_cs42l42.num_links, sizeof(struct snd_soc_dai_link), GFP_KERNEL); cpus = devm_kcalloc(dev, sof_audio_card_cs42l42.num_links, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!links || !cpus) goto devm_err; link_seq = (sof_cs42l42_quirk & SOF_CS42L42_DAILINK_MASK) >> SOF_CS42L42_DAILINK_SHIFT; while (link_seq) { int link_type = link_seq & 0x07; switch (link_type) { case LINK_HP: ret = create_hp_codec_dai_links(dev, links, cpus, &id, ssp_codec); if (ret < 0) { dev_err(dev, "fail to create hp codec dai links, ret %d\n", ret); goto devm_err; } break; case LINK_SPK: ret = create_spk_amp_dai_links(dev, links, cpus, &id, ssp_amp); if (ret < 0) { dev_err(dev, "fail to create spk amp dai links, ret %d\n", ret); goto devm_err; } break; case LINK_DMIC: ret = create_dmic_dai_links(dev, links, cpus, &id, dmic_be_num); if (ret < 0) { dev_err(dev, "fail to create dmic dai links, ret %d\n", ret); goto devm_err; } break; case LINK_HDMI: ret = create_hdmi_dai_links(dev, links, cpus, &id, hdmi_num); if (ret < 0) { dev_err(dev, "fail to create hdmi dai links, ret %d\n", ret); goto devm_err; } break; case LINK_BT: ret = create_bt_offload_dai_links(dev, links, cpus, &id, ssp_bt); if (ret < 0) { dev_err(dev, "fail to create bt offload dai links, ret %d\n", ret); goto devm_err; } break; case LINK_NONE: /* caught here if it's not used as terminator in macro */ default: dev_err(dev, "invalid link type %d\n", link_type); goto devm_err; } link_seq >>= 3; } return links; devm_err: return NULL; } static int sof_audio_probe(struct platform_device *pdev) { struct snd_soc_dai_link *dai_links; struct snd_soc_acpi_mach *mach; struct sof_card_private *ctx; int dmic_be_num, hdmi_num; int ret, ssp_bt, ssp_amp, ssp_codec; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; if (pdev->id_entry && pdev->id_entry->driver_data) sof_cs42l42_quirk = (unsigned long)pdev->id_entry->driver_data; mach = pdev->dev.platform_data; if (soc_intel_is_glk()) { dmic_be_num = 1; hdmi_num = 3; } else { dmic_be_num = 2; hdmi_num = (sof_cs42l42_quirk & SOF_CS42L42_NUM_HDMIDEV_MASK) >> SOF_CS42L42_NUM_HDMIDEV_SHIFT; /* default number of HDMI DAI's */ if (!hdmi_num) hdmi_num = 3; } dev_dbg(&pdev->dev, "sof_cs42l42_quirk = %lx\n", sof_cs42l42_quirk); ssp_bt = (sof_cs42l42_quirk & SOF_CS42L42_SSP_BT_MASK) >> SOF_CS42L42_SSP_BT_SHIFT; ssp_amp = (sof_cs42l42_quirk & SOF_CS42L42_SSP_AMP_MASK) >> SOF_CS42L42_SSP_AMP_SHIFT; ssp_codec = sof_cs42l42_quirk & SOF_CS42L42_SSP_CODEC_MASK; /* compute number of dai links */ sof_audio_card_cs42l42.num_links = 1 + dmic_be_num + hdmi_num; if (sof_cs42l42_quirk & SOF_SPEAKER_AMP_PRESENT) sof_audio_card_cs42l42.num_links++; if (sof_cs42l42_quirk & SOF_BT_OFFLOAD_PRESENT) sof_audio_card_cs42l42.num_links++; dai_links = sof_card_dai_links_create(&pdev->dev, ssp_codec, ssp_amp, ssp_bt, dmic_be_num, hdmi_num); if (!dai_links) return -ENOMEM; sof_audio_card_cs42l42.dai_link = dai_links; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); sof_audio_card_cs42l42.dev = &pdev->dev; /* set platform name for each dailink */ ret = snd_soc_fixup_dai_links_platform_name(&sof_audio_card_cs42l42, mach->mach_params.platform); if (ret) return ret; ctx->common_hdmi_codec_drv = mach->mach_params.common_hdmi_codec_drv; snd_soc_card_set_drvdata(&sof_audio_card_cs42l42, ctx); return devm_snd_soc_register_card(&pdev->dev, &sof_audio_card_cs42l42); } static const struct platform_device_id board_ids[] = { { .name = "glk_cs4242_mx98357a", .driver_data = (kernel_ulong_t)(SOF_CS42L42_SSP_CODEC(2) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98357A_SPEAKER_AMP_PRESENT | SOF_CS42L42_SSP_AMP(1)) | SOF_CS42L42_DAILINK(LINK_SPK, LINK_HP, LINK_DMIC, LINK_HDMI, LINK_NONE), }, { .name = "jsl_cs4242_mx98360a", .driver_data = (kernel_ulong_t)(SOF_CS42L42_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98360A_SPEAKER_AMP_PRESENT | SOF_CS42L42_SSP_AMP(1)) | SOF_CS42L42_DAILINK(LINK_HP, LINK_DMIC, LINK_HDMI, LINK_SPK, LINK_NONE), }, { .name = "adl_mx98360a_cs4242", .driver_data = (kernel_ulong_t)(SOF_CS42L42_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98360A_SPEAKER_AMP_PRESENT | SOF_CS42L42_SSP_AMP(1) | SOF_CS42L42_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_PRESENT | SOF_CS42L42_SSP_BT(2) | SOF_CS42L42_DAILINK(LINK_HP, LINK_DMIC, LINK_HDMI, LINK_SPK, LINK_BT)), }, { } }; MODULE_DEVICE_TABLE(platform, board_ids); static struct platform_driver sof_audio = { .probe = sof_audio_probe, .driver = { .name = "sof_cs42l42", .pm = &snd_soc_pm_ops, }, .id_table = board_ids, }; module_platform_driver(sof_audio) /* Module information */ MODULE_DESCRIPTION("SOF Audio Machine driver for CS42L42"); MODULE_AUTHOR("Brent Lu <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON); MODULE_IMPORT_NS(SND_SOC_INTEL_SOF_MAXIM_COMMON);
linux-master
sound/soc/intel/boards/sof_cs42l42.c
// SPDX-License-Identifier: GPL-2.0-only /* * cht-bsw-max98090.c - ASoc Machine driver for Intel Cherryview-based * platforms Cherrytrail and Braswell, with max98090 & TI codec. * * Copyright (C) 2015 Intel Corp * Author: Fang, Yang A <[email protected]> * This file is modified from cht_bsw_rt5645.c * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/dmi.h> #include <linux/gpio/consumer.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/clk.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/jack.h> #include "../../codecs/max98090.h" #include "../atom/sst-atom-controls.h" #include "../../codecs/ts3a227e.h" #define CHT_PLAT_CLK_3_HZ 19200000 #define CHT_CODEC_DAI "HiFi" #define QUIRK_PMC_PLT_CLK_0 0x01 struct cht_mc_private { struct clk *mclk; struct snd_soc_jack jack; bool ts3a227e_present; int quirks; }; static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; struct cht_mc_private *ctx = snd_soc_card_get_drvdata(card); int ret; /* See the comment in snd_cht_mc_probe() */ if (ctx->quirks & QUIRK_PMC_PLT_CLK_0) return 0; codec_dai = snd_soc_card_get_codec_dai(card, CHT_CODEC_DAI); if (!codec_dai) { dev_err(card->dev, "Codec dai not found; Unable to set platform clock\n"); return -EIO; } if (SND_SOC_DAPM_EVENT_ON(event)) { ret = clk_prepare_enable(ctx->mclk); if (ret < 0) { dev_err(card->dev, "could not configure MCLK state"); return ret; } } else { clk_disable_unprepare(ctx->mclk); } return 0; } static const struct snd_soc_dapm_widget cht_dapm_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Int Mic", NULL), SND_SOC_DAPM_SPK("Ext Spk", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static const struct snd_soc_dapm_route cht_audio_map[] = { {"IN34", NULL, "Headset Mic"}, {"Headset Mic", NULL, "MICBIAS"}, {"DMICL", NULL, "Int Mic"}, {"Headphone", NULL, "HPL"}, {"Headphone", NULL, "HPR"}, {"Ext Spk", NULL, "SPKL"}, {"Ext Spk", NULL, "SPKR"}, {"HiFi Playback", NULL, "ssp2 Tx"}, {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx" }, {"codec_in1", NULL, "ssp2 Rx" }, {"ssp2 Rx", NULL, "HiFi Capture"}, {"Headphone", NULL, "Platform Clock"}, {"Headset Mic", NULL, "Platform Clock"}, {"Int Mic", NULL, "Platform Clock"}, {"Ext Spk", NULL, "Platform Clock"}, }; static const struct snd_kcontrol_new cht_mc_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Int Mic"), SOC_DAPM_PIN_SWITCH("Ext Spk"), }; static int cht_aif1_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, M98090_REG_SYSTEM_CLOCK, CHT_PLAT_CLK_3_HZ, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "can't set codec sysclk: %d\n", ret); return ret; } return 0; } static int cht_ti_jack_event(struct notifier_block *nb, unsigned long event, void *data) { struct snd_soc_jack *jack = (struct snd_soc_jack *)data; struct snd_soc_dapm_context *dapm = &jack->card->dapm; if (event & SND_JACK_MICROPHONE) { snd_soc_dapm_force_enable_pin(dapm, "SHDN"); snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); snd_soc_dapm_sync(dapm); } else { snd_soc_dapm_disable_pin(dapm, "MICBIAS"); snd_soc_dapm_disable_pin(dapm, "SHDN"); snd_soc_dapm_sync(dapm); } return 0; } static struct notifier_block cht_jack_nb = { .notifier_call = cht_ti_jack_event, }; static struct snd_soc_jack_pin hs_jack_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static struct snd_soc_jack_gpio hs_jack_gpios[] = { { .name = "hp", .report = SND_JACK_HEADPHONE | SND_JACK_LINEOUT, .debounce_time = 200, }, { .name = "mic", .invert = 1, .report = SND_JACK_MICROPHONE, .debounce_time = 200, }, }; static const struct acpi_gpio_params hp_gpios = { 0, 0, false }; static const struct acpi_gpio_params mic_gpios = { 1, 0, false }; static const struct acpi_gpio_mapping acpi_max98090_gpios[] = { { "hp-gpios", &hp_gpios, 1 }, { "mic-gpios", &mic_gpios, 1 }, {}, }; static int cht_codec_init(struct snd_soc_pcm_runtime *runtime) { int ret; int jack_type; struct cht_mc_private *ctx = snd_soc_card_get_drvdata(runtime->card); struct snd_soc_jack *jack = &ctx->jack; if (ctx->ts3a227e_present) { /* * The jack has already been created in the * cht_max98090_headset_init() function. */ snd_soc_jack_notifier_register(jack, &cht_jack_nb); return 0; } jack_type = SND_JACK_HEADPHONE | SND_JACK_MICROPHONE; ret = snd_soc_card_jack_new_pins(runtime->card, "Headset Jack", jack_type, jack, hs_jack_pins, ARRAY_SIZE(hs_jack_pins)); if (ret) { dev_err(runtime->dev, "Headset Jack creation failed %d\n", ret); return ret; } ret = snd_soc_jack_add_gpiods(runtime->card->dev->parent, jack, ARRAY_SIZE(hs_jack_gpios), hs_jack_gpios); if (ret) { /* * flag error but don't bail if jack detect is broken * due to platform issues or bad BIOS/configuration */ dev_err(runtime->dev, "jack detection gpios not added, error %d\n", ret); } /* See the comment in snd_cht_mc_probe() */ if (ctx->quirks & QUIRK_PMC_PLT_CLK_0) return 0; /* * The firmware might enable the clock at * boot (this information may or may not * be reflected in the enable clock register). * To change the rate we must disable the clock * first to cover these cases. Due to common * clock framework restrictions that do not allow * to disable a clock that has not been enabled, * we need to enable the clock first. */ ret = clk_prepare_enable(ctx->mclk); if (!ret) clk_disable_unprepare(ctx->mclk); ret = clk_set_rate(ctx->mclk, CHT_PLAT_CLK_3_HZ); if (ret) dev_err(runtime->dev, "unable to set MCLK rate\n"); return ret; } static int cht_codec_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); int ret = 0; unsigned int fmt = 0; ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_cpu(rtd, 0), 0x3, 0x3, 2, 16); if (ret < 0) { dev_err(rtd->dev, "can't set cpu_dai slot fmt: %d\n", ret); return ret; } fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BP_FP; ret = snd_soc_dai_set_fmt(asoc_rtd_to_cpu(rtd, 0), fmt); if (ret < 0) { dev_err(rtd->dev, "can't set cpu_dai set fmt: %d\n", ret); return ret; } /* The DSP will convert the FE rate to 48k, stereo, 24bits */ rate->min = rate->max = 48000; channels->min = channels->max = 2; /* set SSP2 to 16-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S16_LE); return 0; } static int cht_aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_single(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 48000); } static int cht_max98090_headset_init(struct snd_soc_component *component) { struct snd_soc_card *card = component->card; struct cht_mc_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_jack *jack = &ctx->jack; int jack_type; int ret; /* * TI supports 4 buttons headset detection * KEY_MEDIA * KEY_VOICECOMMAND * KEY_VOLUMEUP * KEY_VOLUMEDOWN */ jack_type = SND_JACK_HEADPHONE | SND_JACK_MICROPHONE | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3; ret = snd_soc_card_jack_new(card, "Headset Jack", jack_type, jack); if (ret) { dev_err(card->dev, "Headset Jack creation failed %d\n", ret); return ret; } return ts3a227e_enable_jack_detect(component, jack); } static const struct snd_soc_ops cht_aif1_ops = { .startup = cht_aif1_startup, }; static const struct snd_soc_ops cht_be_ssp2_ops = { .hw_params = cht_aif1_hw_params, }; static struct snd_soc_aux_dev cht_max98090_headset_dev = { .dlc = COMP_AUX("i2c-104C227E:00"), .init = cht_max98090_headset_init, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp2_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp2-port"))); SND_SOC_DAILINK_DEF(ssp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-193C9890:00", "HiFi"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link cht_dailink[] = { [MERR_DPCM_AUDIO] = { .name = "Audio Port", .stream_name = "Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &cht_aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &cht_aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* back ends */ { .name = "SSP2-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .init = cht_codec_init, .be_hw_params_fixup = cht_codec_fixup, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &cht_be_ssp2_ops, SND_SOC_DAILINK_REG(ssp2_port, ssp2_codec, platform), }, }; /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bytcht max98090" /* card name will be 'sof-bytcht max98090 */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "chtmax98090" #define DRIVER_NAME NULL /* card name will be used for driver name */ /* SoC card */ static struct snd_soc_card snd_soc_card_cht = { .owner = THIS_MODULE, .dai_link = cht_dailink, .num_links = ARRAY_SIZE(cht_dailink), .aux_dev = &cht_max98090_headset_dev, .num_aux_devs = 1, .dapm_widgets = cht_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cht_dapm_widgets), .dapm_routes = cht_audio_map, .num_dapm_routes = ARRAY_SIZE(cht_audio_map), .controls = cht_mc_controls, .num_controls = ARRAY_SIZE(cht_mc_controls), }; static const struct dmi_system_id cht_max98090_quirk_table[] = { { /* Banjo model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Banjo"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Candy model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Candy"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Clapper model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Clapper"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Cyan model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Cyan"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Enguarde model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Enguarde"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Glimmer model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Glimmer"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Gnawty model Chromebook (Acer Chromebook CB3-111) */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Gnawty"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Heli model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Heli"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Kip model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Kip"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Ninja model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Ninja"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Orco model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Orco"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Quawks model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Quawks"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Rambi model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Rambi"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Squawks model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Squawks"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Sumo model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Sumo"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Swanky model Chromebook (Toshiba Chromebook 2) */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Swanky"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, { /* Winky model Chromebook */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "Winky"), }, .driver_data = (void *)QUIRK_PMC_PLT_CLK_0, }, {} }; static int snd_cht_mc_probe(struct platform_device *pdev) { const struct dmi_system_id *dmi_id; struct device *dev = &pdev->dev; int ret_val = 0; struct cht_mc_private *drv; const char *mclk_name; struct snd_soc_acpi_mach *mach; const char *platform_name; bool sof_parent; drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL); if (!drv) return -ENOMEM; dmi_id = dmi_first_match(cht_max98090_quirk_table); if (dmi_id) drv->quirks = (unsigned long)dmi_id->driver_data; drv->ts3a227e_present = acpi_dev_found("104C227E"); if (!drv->ts3a227e_present) { /* no need probe TI jack detection chip */ snd_soc_card_cht.aux_dev = NULL; snd_soc_card_cht.num_aux_devs = 0; ret_val = devm_acpi_dev_add_driver_gpios(dev->parent, acpi_max98090_gpios); if (ret_val) dev_dbg(dev, "Unable to add GPIO mapping table\n"); } /* override platform name, if required */ snd_soc_card_cht.dev = dev; mach = dev->platform_data; platform_name = mach->mach_params.platform; ret_val = snd_soc_fixup_dai_links_platform_name(&snd_soc_card_cht, platform_name); if (ret_val) return ret_val; /* register the soc card */ snd_soc_card_set_drvdata(&snd_soc_card_cht, drv); if (drv->quirks & QUIRK_PMC_PLT_CLK_0) mclk_name = "pmc_plt_clk_0"; else mclk_name = "pmc_plt_clk_3"; drv->mclk = devm_clk_get(dev, mclk_name); if (IS_ERR(drv->mclk)) { dev_err(dev, "Failed to get MCLK from %s: %ld\n", mclk_name, PTR_ERR(drv->mclk)); return PTR_ERR(drv->mclk); } /* * Boards which have the MAX98090's clk connected to clk_0 do not seem * to like it if we muck with the clock. If we disable the clock when * it is unused we get "max98090 i2c-193C9890:00: PLL unlocked" errors * and the PLL never seems to lock again. * So for these boards we enable it here once and leave it at that. */ if (drv->quirks & QUIRK_PMC_PLT_CLK_0) { ret_val = clk_prepare_enable(drv->mclk); if (ret_val < 0) { dev_err(dev, "MCLK enable error: %d\n", ret_val); return ret_val; } } sof_parent = snd_soc_acpi_sof_parent(dev); /* set card and driver name */ if (sof_parent) { snd_soc_card_cht.name = SOF_CARD_NAME; snd_soc_card_cht.driver_name = SOF_DRIVER_NAME; } else { snd_soc_card_cht.name = CARD_NAME; snd_soc_card_cht.driver_name = DRIVER_NAME; } /* set pm ops */ if (sof_parent) dev->driver->pm = &snd_soc_pm_ops; ret_val = devm_snd_soc_register_card(dev, &snd_soc_card_cht); if (ret_val) { dev_err(dev, "snd_soc_register_card failed %d\n", ret_val); return ret_val; } platform_set_drvdata(pdev, &snd_soc_card_cht); return ret_val; } static void snd_cht_mc_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); struct cht_mc_private *ctx = snd_soc_card_get_drvdata(card); if (ctx->quirks & QUIRK_PMC_PLT_CLK_0) clk_disable_unprepare(ctx->mclk); } static struct platform_driver snd_cht_mc_driver = { .driver = { .name = "cht-bsw-max98090", }, .probe = snd_cht_mc_probe, .remove_new = snd_cht_mc_remove, }; module_platform_driver(snd_cht_mc_driver) MODULE_DESCRIPTION("ASoC Intel(R) Braswell Machine driver"); MODULE_AUTHOR("Fang, Yang A <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:cht-bsw-max98090");
linux-master
sound/soc/intel/boards/cht_bsw_max98090_ti.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2023 Intel Corporation /* * sof_sdw_rt712_sdca - Helpers to handle RT712-SDCA from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <linux/soundwire/sdw.h> #include <linux/soundwire/sdw_type.h> #include <sound/control.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dapm.h> #include "sof_sdw_common.h" static const struct snd_soc_dapm_widget rt712_spk_widgets[] = { SND_SOC_DAPM_SPK("Speaker", NULL), }; /* * dapm routes for rt712 spk will be registered dynamically according * to the number of rt712 spk used. The first two entries will be registered * for one codec case, and the last two entries are also registered * if two rt712s are used. */ static const struct snd_soc_dapm_route rt712_spk_map[] = { { "Speaker", NULL, "rt712 SPOL" }, { "Speaker", NULL, "rt712 SPOR" }, }; static const struct snd_kcontrol_new rt712_spk_controls[] = { SOC_DAPM_PIN_SWITCH("Speaker"), }; static int rt712_spk_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s spk:rt712", card->components); if (!card->components) return -ENOMEM; ret = snd_soc_add_card_controls(card, rt712_spk_controls, ARRAY_SIZE(rt712_spk_controls)); if (ret) { dev_err(card->dev, "rt712 spk controls addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_new_controls(&card->dapm, rt712_spk_widgets, ARRAY_SIZE(rt712_spk_widgets)); if (ret) { dev_err(card->dev, "rt712 spk widgets addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, rt712_spk_map, ARRAY_SIZE(rt712_spk_map)); if (ret) dev_err(rtd->dev, "failed to add SPK map: %d\n", ret); return ret; } int sof_sdw_rt712_spk_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { dai_links->init = rt712_spk_init; return 0; } static int rt712_sdca_dmic_rtd_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s mic:rt712-sdca-dmic", card->components); if (!card->components) return -ENOMEM; return 0; } int sof_sdw_rt712_sdca_dmic_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { dai_links->init = rt712_sdca_dmic_rtd_init; return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_rt712_sdca.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Kabylake I2S Machine Driver with MAXIM98927 * RT5514 and RT5663 Codecs * * Copyright (C) 2017, Intel Corporation. All rights reserved. * * Modified from: * Intel Kabylake I2S Machine driver supporting MAXIM98927 and * RT5663 codecs */ #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/rt5514.h" #include "../../codecs/rt5663.h" #include "../../codecs/hdac_hdmi.h" #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #define KBL_REALTEK_CODEC_DAI "rt5663-aif" #define KBL_REALTEK_DMIC_CODEC_DAI "rt5514-aif1" #define KBL_MAXIM_CODEC_DAI "max98927-aif1" #define MAXIM_DEV0_NAME "i2c-MX98927:00" #define MAXIM_DEV1_NAME "i2c-MX98927:01" #define RT5514_DEV_NAME "i2c-10EC5514:00" #define RT5663_DEV_NAME "i2c-10EC5663:00" #define RT5514_AIF1_BCLK_FREQ (48000 * 8 * 16) #define RT5514_AIF1_SYSCLK_FREQ 12288000 #define NAME_SIZE 32 #define DMIC_CH(p) p->list[p->count-1] static struct snd_soc_card kabylake_audio_card; static const struct snd_pcm_hw_constraint_list *dmic_constraints; struct kbl_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct kbl_codec_private { struct snd_soc_jack kabylake_headset; struct list_head hdmi_pcm_list; struct snd_soc_jack kabylake_hdmi[2]; struct clk *mclk; struct clk *sclk; }; enum { KBL_DPCM_AUDIO_PB = 0, KBL_DPCM_AUDIO_CP, KBL_DPCM_AUDIO_HS_PB, KBL_DPCM_AUDIO_ECHO_REF_CP, KBL_DPCM_AUDIO_DMIC_CP, KBL_DPCM_AUDIO_RT5514_DSP, KBL_DPCM_AUDIO_HDMI1_PB, KBL_DPCM_AUDIO_HDMI2_PB, }; static const struct snd_kcontrol_new kabylake_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Left Spk"), SOC_DAPM_PIN_SWITCH("Right Spk"), SOC_DAPM_PIN_SWITCH("DMIC"), }; static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct kbl_codec_private *priv = snd_soc_card_get_drvdata(card); int ret = 0; /* * MCLK/SCLK need to be ON early for a successful synchronization of * codec internal clock. And the clocks are turned off during * POST_PMD after the stream is stopped. */ switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Enable MCLK */ ret = clk_set_rate(priv->mclk, 24000000); if (ret < 0) { dev_err(card->dev, "Can't set rate for mclk, err: %d\n", ret); return ret; } ret = clk_prepare_enable(priv->mclk); if (ret < 0) { dev_err(card->dev, "Can't enable mclk, err: %d\n", ret); return ret; } /* Enable SCLK */ ret = clk_set_rate(priv->sclk, 3072000); if (ret < 0) { dev_err(card->dev, "Can't set rate for sclk, err: %d\n", ret); clk_disable_unprepare(priv->mclk); return ret; } ret = clk_prepare_enable(priv->sclk); if (ret < 0) { dev_err(card->dev, "Can't enable sclk, err: %d\n", ret); clk_disable_unprepare(priv->mclk); } break; case SND_SOC_DAPM_POST_PMD: clk_disable_unprepare(priv->mclk); clk_disable_unprepare(priv->sclk); break; default: return 0; } return 0; } static const struct snd_soc_dapm_widget kabylake_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_SPK("Left Spk", NULL), SND_SOC_DAPM_SPK("Right Spk", NULL), SND_SOC_DAPM_MIC("DMIC", NULL), SND_SOC_DAPM_SPK("HDMI1", NULL), SND_SOC_DAPM_SPK("HDMI2", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static const struct snd_soc_dapm_route kabylake_map[] = { /* Headphones */ { "Headphone Jack", NULL, "Platform Clock" }, { "Headphone Jack", NULL, "HPOL" }, { "Headphone Jack", NULL, "HPOR" }, /* speaker */ { "Left Spk", NULL, "Left BE_OUT" }, { "Right Spk", NULL, "Right BE_OUT" }, /* other jacks */ { "Headset Mic", NULL, "Platform Clock" }, { "IN1P", NULL, "Headset Mic" }, { "IN1N", NULL, "Headset Mic" }, /* CODEC BE connections */ { "Left HiFi Playback", NULL, "ssp0 Tx" }, { "Right HiFi Playback", NULL, "ssp0 Tx" }, { "ssp0 Tx", NULL, "spk_out" }, { "AIF Playback", NULL, "ssp1 Tx" }, { "ssp1 Tx", NULL, "codec1_out" }, { "hs_in", NULL, "ssp1 Rx" }, { "ssp1 Rx", NULL, "AIF Capture" }, { "codec1_in", NULL, "ssp0 Rx" }, { "ssp0 Rx", NULL, "AIF1 Capture" }, /* IV feedback path */ { "codec0_fb_in", NULL, "ssp0 Rx"}, { "ssp0 Rx", NULL, "Left HiFi Capture" }, { "ssp0 Rx", NULL, "Right HiFi Capture" }, /* DMIC */ { "DMIC1L", NULL, "DMIC" }, { "DMIC1R", NULL, "DMIC" }, { "DMIC2L", NULL, "DMIC" }, { "DMIC2R", NULL, "DMIC" }, { "hifi2", NULL, "iDisp2 Tx" }, { "iDisp2 Tx", NULL, "iDisp2_out" }, { "hifi1", NULL, "iDisp1 Tx" }, { "iDisp1 Tx", NULL, "iDisp1_out" }, }; static struct snd_soc_codec_conf max98927_codec_conf[] = { { .dlc = COMP_CODEC_CONF(MAXIM_DEV0_NAME), .name_prefix = "Right", }, { .dlc = COMP_CODEC_CONF(MAXIM_DEV1_NAME), .name_prefix = "Left", }, }; static int kabylake_rt5663_fe_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dapm_context *dapm; struct snd_soc_component *component = asoc_rtd_to_cpu(rtd, 0)->component; int ret; dapm = snd_soc_component_get_dapm(component); ret = snd_soc_dapm_ignore_suspend(dapm, "Reference Capture"); if (ret) dev_err(rtd->dev, "Ref Cap -Ignore suspend failed = %d\n", ret); return ret; } static int kabylake_rt5663_codec_init(struct snd_soc_pcm_runtime *rtd) { int ret; struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_jack *jack; /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(&kabylake_audio_card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &ctx->kabylake_headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed %d\n", ret); return ret; } jack = &ctx->kabylake_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); snd_soc_component_set_jack(component, &ctx->kabylake_headset, NULL); ret = snd_soc_dapm_ignore_suspend(&rtd->card->dapm, "DMIC"); if (ret) dev_err(rtd->dev, "DMIC - Ignore suspend failed = %d\n", ret); return ret; } static int kabylake_hdmi_init(struct snd_soc_pcm_runtime *rtd, int device) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct kbl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = device; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int kabylake_hdmi1_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI1_PB); } static int kabylake_hdmi2_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI2_PB); } static const unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static const unsigned int channels[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static int kbl_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* * On this platform for PCM device we support, * 48Khz * stereo * 16 bit audio */ runtime->hw.channels_max = 2; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); return 0; } static const struct snd_soc_ops kabylake_rt5663_fe_ops = { .startup = kbl_fe_startup, }; static int kabylake_ssp_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); struct snd_soc_dpcm *dpcm, *rtd_dpcm = NULL; /* * The following loop will be called only for playback stream * In this platform, there is only one playback device on every SSP */ for_each_dpcm_fe(rtd, SNDRV_PCM_STREAM_PLAYBACK, dpcm) { rtd_dpcm = dpcm; break; } /* * This following loop will be called only for capture stream * In this platform, there is only one capture device on every SSP */ for_each_dpcm_fe(rtd, SNDRV_PCM_STREAM_CAPTURE, dpcm) { rtd_dpcm = dpcm; break; } if (!rtd_dpcm) return -EINVAL; /* * The above 2 loops are mutually exclusive based on the stream direction, * thus rtd_dpcm variable will never be overwritten */ /* * The ADSP will convert the FE rate to 48k, stereo, 24 bit */ if (!strcmp(rtd_dpcm->fe->dai_link->name, "Kbl Audio Port") || !strcmp(rtd_dpcm->fe->dai_link->name, "Kbl Audio Headset Playback") || !strcmp(rtd_dpcm->fe->dai_link->name, "Kbl Audio Capture Port")) { rate->min = rate->max = 48000; chan->min = chan->max = 2; snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); } else if (!strcmp(rtd_dpcm->fe->dai_link->name, "Kbl Audio DMIC cap")) { if (params_channels(params) == 2 || DMIC_CH(dmic_constraints) == 2) chan->min = chan->max = 2; else chan->min = chan->max = 4; } /* * The speaker on the SSP0 supports S16_LE and not S24_LE. * thus changing the mask here */ if (!strcmp(rtd_dpcm->be->dai_link->name, "SSP0-Codec")) snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S16_LE); return 0; } static int kabylake_rt5663_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; /* use ASRC for internal clocks, as PLL rate isn't multiple of BCLK */ rt5663_sel_asrc_clk_src(codec_dai->component, RT5663_DA_STEREO_FILTER | RT5663_AD_STEREO_FILTER, RT5663_CLK_SEL_I2S1_ASRC); ret = snd_soc_dai_set_sysclk(codec_dai, RT5663_SCLK_S_MCLK, 24576000, SND_SOC_CLOCK_IN); if (ret < 0) dev_err(rtd->dev, "snd_soc_dai_set_sysclk err = %d\n", ret); return ret; } static struct snd_soc_ops kabylake_rt5663_ops = { .hw_params = kabylake_rt5663_hw_params, }; static int kabylake_ssp0_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; int ret = 0, j; for_each_rtd_codec_dais(rtd, j, codec_dai) { if (!strcmp(codec_dai->component->name, RT5514_DEV_NAME)) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0xF, 0, 8, 16); if (ret < 0) { dev_err(rtd->dev, "set TDM slot err:%d\n", ret); return ret; } ret = snd_soc_dai_set_sysclk(codec_dai, RT5514_SCLK_S_MCLK, 24576000, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "set sysclk err: %d\n", ret); return ret; } } if (!strcmp(codec_dai->component->name, MAXIM_DEV0_NAME)) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x30, 3, 8, 16); if (ret < 0) { dev_err(rtd->dev, "DEV0 TDM slot err:%d\n", ret); return ret; } } if (!strcmp(codec_dai->component->name, MAXIM_DEV1_NAME)) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0xC0, 3, 8, 16); if (ret < 0) { dev_err(rtd->dev, "DEV1 TDM slot err:%d\n", ret); return ret; } } } return ret; } static struct snd_soc_ops kabylake_ssp0_ops = { .hw_params = kabylake_ssp0_hw_params, }; static const unsigned int channels_dmic[] = { 4, }; static const struct snd_pcm_hw_constraint_list constraints_dmic_channels = { .count = ARRAY_SIZE(channels_dmic), .list = channels_dmic, .mask = 0, }; static const unsigned int dmic_2ch[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_dmic_2ch = { .count = ARRAY_SIZE(dmic_2ch), .list = dmic_2ch, .mask = 0, }; static int kabylake_dmic_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_max = DMIC_CH(dmic_constraints); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, dmic_constraints); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static struct snd_soc_ops kabylake_dmic_ops = { .startup = kabylake_dmic_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(system2, DAILINK_COMP_ARRAY(COMP_CPU("System Pin2"))); SND_SOC_DAILINK_DEF(echoref, DAILINK_COMP_ARRAY(COMP_CPU("Echoref Pin"))); SND_SOC_DAILINK_DEF(spi_cpu, DAILINK_COMP_ARRAY(COMP_CPU("spi-PRP0001:00"))); SND_SOC_DAILINK_DEF(spi_platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("spi-PRP0001:00"))); SND_SOC_DAILINK_DEF(dmic, DAILINK_COMP_ARRAY(COMP_CPU("DMIC Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY( /* Left */ COMP_CODEC(MAXIM_DEV0_NAME, KBL_MAXIM_CODEC_DAI), /* Right */COMP_CODEC(MAXIM_DEV1_NAME, KBL_MAXIM_CODEC_DAI), /* dmic */ COMP_CODEC(RT5514_DEV_NAME, KBL_REALTEK_DMIC_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP1 Pin"))); SND_SOC_DAILINK_DEF(ssp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC(RT5663_DEV_NAME, KBL_REALTEK_CODEC_DAI))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); /* kabylake digital audio interface glue - connects codec <--> CPU */ static struct snd_soc_dai_link kabylake_dais[] = { /* Front End DAI links */ [KBL_DPCM_AUDIO_PB] = { .name = "Kbl Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .init = kabylake_rt5663_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &kabylake_rt5663_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_CP] = { .name = "Kbl Audio Capture Port", .stream_name = "Audio Record", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, .ops = &kabylake_rt5663_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_HS_PB] = { .name = "Kbl Audio Headset Playback", .stream_name = "Headset Audio", .dpcm_playback = 1, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(system2, dummy, platform), }, [KBL_DPCM_AUDIO_ECHO_REF_CP] = { .name = "Kbl Audio Echo Reference cap", .stream_name = "Echoreference Capture", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, SND_SOC_DAILINK_REG(echoref, dummy, platform), }, [KBL_DPCM_AUDIO_RT5514_DSP] = { .name = "rt5514 dsp", .stream_name = "Wake on Voice", SND_SOC_DAILINK_REG(spi_cpu, dummy, spi_platform), }, [KBL_DPCM_AUDIO_DMIC_CP] = { .name = "Kbl Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &kabylake_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI1_PB] = { .name = "Kbl HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI2_PB] = { .name = "Kbl HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, /* Back End DAI links */ /* single Back end dai for both max speakers and dmic */ { /* SSP0 - Codec */ .name = "SSP0-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp_fixup, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &kabylake_ssp0_ops, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec, platform), }, { .name = "SSP1-Codec", .id = 1, .no_pcm = 1, .init = kabylake_rt5663_codec_init, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp_fixup, .ops = &kabylake_rt5663_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_codec, platform), }, { .name = "iDisp1", .id = 3, .dpcm_playback = 1, .init = kabylake_hdmi1_init, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = kabylake_hdmi2_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, }; static int kabylake_set_bias_level(struct snd_soc_card *card, struct snd_soc_dapm_context *dapm, enum snd_soc_bias_level level) { struct snd_soc_component *component = dapm->component; struct kbl_codec_private *priv = snd_soc_card_get_drvdata(card); int ret = 0; if (!component || strcmp(component->name, RT5514_DEV_NAME)) return 0; if (IS_ERR(priv->mclk)) return 0; /* * It's required to control mclk directly in the set_bias_level * function for rt5514 codec or the recording function could * break. */ switch (level) { case SND_SOC_BIAS_PREPARE: if (dapm->bias_level == SND_SOC_BIAS_ON) { if (!__clk_is_enabled(priv->mclk)) return 0; dev_dbg(card->dev, "Disable mclk"); clk_disable_unprepare(priv->mclk); } else { dev_dbg(card->dev, "Enable mclk"); ret = clk_set_rate(priv->mclk, 24000000); if (ret) { dev_err(card->dev, "Can't set rate for mclk, err: %d\n", ret); return ret; } ret = clk_prepare_enable(priv->mclk); if (ret) { dev_err(card->dev, "Can't enable mclk, err: %d\n", ret); /* mclk is already enabled in FW */ ret = 0; } } break; default: break; } return ret; } static int kabylake_card_late_probe(struct snd_soc_card *card) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(card); struct kbl_hdmi_pcm *pcm; struct snd_soc_component *component = NULL; int err, i = 0; char jack_name[NAME_SIZE]; list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP,pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &ctx->kabylake_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &ctx->kabylake_hdmi[i]); if (err < 0) return err; i++; } if (!component) return -EINVAL; return hdac_hdmi_jack_port_init(component, &card->dapm); } /* * kabylake audio machine driver for MAX98927 + RT5514 + RT5663 */ static struct snd_soc_card kabylake_audio_card = { .name = "kbl-r5514-5663-max", .owner = THIS_MODULE, .dai_link = kabylake_dais, .num_links = ARRAY_SIZE(kabylake_dais), .set_bias_level = kabylake_set_bias_level, .controls = kabylake_controls, .num_controls = ARRAY_SIZE(kabylake_controls), .dapm_widgets = kabylake_widgets, .num_dapm_widgets = ARRAY_SIZE(kabylake_widgets), .dapm_routes = kabylake_map, .num_dapm_routes = ARRAY_SIZE(kabylake_map), .codec_conf = max98927_codec_conf, .num_configs = ARRAY_SIZE(max98927_codec_conf), .fully_routed = true, .late_probe = kabylake_card_late_probe, }; static int kabylake_audio_probe(struct platform_device *pdev) { struct kbl_codec_private *ctx; struct snd_soc_acpi_mach *mach; int ret; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); kabylake_audio_card.dev = &pdev->dev; snd_soc_card_set_drvdata(&kabylake_audio_card, ctx); mach = pdev->dev.platform_data; if (mach) dmic_constraints = mach->mach_params.dmic_num == 2 ? &constraints_dmic_2ch : &constraints_dmic_channels; ctx->mclk = devm_clk_get(&pdev->dev, "ssp1_mclk"); if (IS_ERR(ctx->mclk)) { ret = PTR_ERR(ctx->mclk); if (ret == -ENOENT) { dev_info(&pdev->dev, "Failed to get ssp1_mclk, defer probe\n"); return -EPROBE_DEFER; } dev_err(&pdev->dev, "Failed to get ssp1_mclk with err:%d\n", ret); return ret; } ctx->sclk = devm_clk_get(&pdev->dev, "ssp1_sclk"); if (IS_ERR(ctx->sclk)) { ret = PTR_ERR(ctx->sclk); if (ret == -ENOENT) { dev_info(&pdev->dev, "Failed to get ssp1_sclk, defer probe\n"); return -EPROBE_DEFER; } dev_err(&pdev->dev, "Failed to get ssp1_sclk with err:%d\n", ret); return ret; } return devm_snd_soc_register_card(&pdev->dev, &kabylake_audio_card); } static const struct platform_device_id kbl_board_ids[] = { { .name = "kbl_r5514_5663_max" }, { } }; MODULE_DEVICE_TABLE(platform, kbl_board_ids); static struct platform_driver kabylake_audio = { .probe = kabylake_audio_probe, .driver = { .name = "kbl_r5514_5663_max", .pm = &snd_soc_pm_ops, }, .id_table = kbl_board_ids, }; module_platform_driver(kabylake_audio) /* Module information */ MODULE_DESCRIPTION("Audio Machine driver-RT5663 RT5514 & MAX98927"); MODULE_AUTHOR("Harsha Priya <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/boards/kbl_rt5663_rt5514_max98927.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2018-2020 Intel Corporation. /* * Intel SOF Machine Driver for Intel platforms with TI PCM512x codec, * e.g. Up or Up2 with Hifiberry DAC+ HAT */ #include <linux/clk.h> #include <linux/dmi.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/types.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/pcm512x.h" #include "../common/soc-intel-quirks.h" #include "hda_dsp_common.h" #define NAME_SIZE 32 #define SOF_PCM512X_SSP_CODEC(quirk) ((quirk) & GENMASK(3, 0)) #define SOF_PCM512X_SSP_CODEC_MASK (GENMASK(3, 0)) #define SOF_PCM512X_ENABLE_SSP_CAPTURE BIT(4) #define SOF_PCM512X_ENABLE_DMIC BIT(5) #define IDISP_CODEC_MASK 0x4 /* Default: SSP5 */ static unsigned long sof_pcm512x_quirk = SOF_PCM512X_SSP_CODEC(5) | SOF_PCM512X_ENABLE_SSP_CAPTURE | SOF_PCM512X_ENABLE_DMIC; static bool is_legacy_cpu; struct sof_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct sof_card_private { struct list_head hdmi_pcm_list; bool idisp_codec; }; static int sof_pcm512x_quirk_cb(const struct dmi_system_id *id) { sof_pcm512x_quirk = (unsigned long)id->driver_data; return 1; } static const struct dmi_system_id sof_pcm512x_quirk_table[] = { { .callback = sof_pcm512x_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "AAEON"), DMI_MATCH(DMI_PRODUCT_NAME, "UP-CHT01"), }, .driver_data = (void *)(SOF_PCM512X_SSP_CODEC(2)), }, {} }; static int sof_hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct sof_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; /* dai_link id is 1:1 mapped to the PCM device */ pcm->device = rtd->dai_link->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int sof_pcm512x_codec_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *codec = asoc_rtd_to_codec(rtd, 0)->component; snd_soc_component_update_bits(codec, PCM512x_GPIO_EN, 0x08, 0x08); snd_soc_component_update_bits(codec, PCM512x_GPIO_OUTPUT_4, 0x0f, 0x02); snd_soc_component_update_bits(codec, PCM512x_GPIO_CONTROL_1, 0x08, 0x08); return 0; } static int aif1_startup(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_component *codec = asoc_rtd_to_codec(rtd, 0)->component; snd_soc_component_update_bits(codec, PCM512x_GPIO_CONTROL_1, 0x08, 0x08); return 0; } static void aif1_shutdown(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_component *codec = asoc_rtd_to_codec(rtd, 0)->component; snd_soc_component_update_bits(codec, PCM512x_GPIO_CONTROL_1, 0x08, 0x00); } static const struct snd_soc_ops sof_pcm512x_ops = { .startup = aif1_startup, .shutdown = aif1_shutdown, }; static struct snd_soc_dai_link_component platform_component[] = { { /* name might be overridden during probe */ .name = "0000:00:1f.3" } }; static int sof_card_late_probe(struct snd_soc_card *card) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(card); struct sof_hdmi_pcm *pcm; /* HDMI is not supported by SOF on Baytrail/CherryTrail */ if (is_legacy_cpu) return 0; if (list_empty(&ctx->hdmi_pcm_list)) return -EINVAL; if (!ctx->idisp_codec) return 0; pcm = list_first_entry(&ctx->hdmi_pcm_list, struct sof_hdmi_pcm, head); return hda_dsp_hdmi_build_controls(card, pcm->codec_dai->component); } static const struct snd_kcontrol_new sof_controls[] = { SOC_DAPM_PIN_SWITCH("Ext Spk"), }; static const struct snd_soc_dapm_widget sof_widgets[] = { SND_SOC_DAPM_SPK("Ext Spk", NULL), }; static const struct snd_soc_dapm_widget dmic_widgets[] = { SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_route sof_map[] = { /* Speaker */ {"Ext Spk", NULL, "OUTR"}, {"Ext Spk", NULL, "OUTL"}, }; static const struct snd_soc_dapm_route dmic_map[] = { /* digital mics */ {"DMic", NULL, "SoC DMIC"}, }; static int dmic_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_new_controls(&card->dapm, dmic_widgets, ARRAY_SIZE(dmic_widgets)); if (ret) { dev_err(card->dev, "DMic widget addition failed: %d\n", ret); /* Don't need to add routes if widget addition failed */ return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, dmic_map, ARRAY_SIZE(dmic_map)); if (ret) dev_err(card->dev, "DMic map addition failed: %d\n", ret); return ret; } /* sof audio machine driver for pcm512x codec */ static struct snd_soc_card sof_audio_card_pcm512x = { .name = "pcm512x", .owner = THIS_MODULE, .controls = sof_controls, .num_controls = ARRAY_SIZE(sof_controls), .dapm_widgets = sof_widgets, .num_dapm_widgets = ARRAY_SIZE(sof_widgets), .dapm_routes = sof_map, .num_dapm_routes = ARRAY_SIZE(sof_map), .fully_routed = true, .late_probe = sof_card_late_probe, }; SND_SOC_DAILINK_DEF(pcm512x_component, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-104C5122:00", "pcm512x-hifi"))); SND_SOC_DAILINK_DEF(dmic_component, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); static struct snd_soc_dai_link *sof_card_dai_links_create(struct device *dev, int ssp_codec, int dmic_be_num, int hdmi_num, bool idisp_codec) { struct snd_soc_dai_link_component *idisp_components; struct snd_soc_dai_link_component *cpus; struct snd_soc_dai_link *links; int i, id = 0; links = devm_kcalloc(dev, sof_audio_card_pcm512x.num_links, sizeof(struct snd_soc_dai_link), GFP_KERNEL); cpus = devm_kcalloc(dev, sof_audio_card_pcm512x.num_links, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!links || !cpus) goto devm_err; /* codec SSP */ links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-Codec", ssp_codec); if (!links[id].name) goto devm_err; links[id].id = id; links[id].codecs = pcm512x_component; links[id].num_codecs = ARRAY_SIZE(pcm512x_component); links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].init = sof_pcm512x_codec_init; links[id].ops = &sof_pcm512x_ops; links[id].dpcm_playback = 1; /* * capture only supported with specific versions of the Hifiberry DAC+ */ if (sof_pcm512x_quirk & SOF_PCM512X_ENABLE_SSP_CAPTURE) links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; if (is_legacy_cpu) { links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "ssp%d-port", ssp_codec); if (!links[id].cpus->dai_name) goto devm_err; } else { links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", ssp_codec); if (!links[id].cpus->dai_name) goto devm_err; } id++; /* dmic */ if (dmic_be_num > 0) { /* at least we have dmic01 */ links[id].name = "dmic01"; links[id].cpus = &cpus[id]; links[id].cpus->dai_name = "DMIC01 Pin"; links[id].init = dmic_init; if (dmic_be_num > 1) { /* set up 2 BE links at most */ links[id + 1].name = "dmic16k"; links[id + 1].cpus = &cpus[id + 1]; links[id + 1].cpus->dai_name = "DMIC16k Pin"; dmic_be_num = 2; } } for (i = 0; i < dmic_be_num; i++) { links[id].id = id; links[id].num_cpus = 1; links[id].codecs = dmic_component; links[id].num_codecs = ARRAY_SIZE(dmic_component); links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].ignore_suspend = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; id++; } /* HDMI */ if (hdmi_num > 0) { idisp_components = devm_kcalloc(dev, hdmi_num, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!idisp_components) goto devm_err; } for (i = 1; i <= hdmi_num; i++) { links[id].name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d", i); if (!links[id].name) goto devm_err; links[id].id = id; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d Pin", i); if (!links[id].cpus->dai_name) goto devm_err; /* * topology cannot be loaded if codec is missing, so * use the dummy codec if needed */ if (idisp_codec) { idisp_components[i - 1].name = "ehdaudio0D2"; idisp_components[i - 1].dai_name = devm_kasprintf(dev, GFP_KERNEL, "intel-hdmi-hifi%d", i); } else { idisp_components[i - 1] = asoc_dummy_dlc; } if (!idisp_components[i - 1].dai_name) goto devm_err; links[id].codecs = &idisp_components[i - 1]; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].init = sof_hdmi_init; links[id].dpcm_playback = 1; links[id].no_pcm = 1; id++; } return links; devm_err: return NULL; } static int sof_audio_probe(struct platform_device *pdev) { struct snd_soc_acpi_mach *mach = pdev->dev.platform_data; struct snd_soc_dai_link *dai_links; struct sof_card_private *ctx; int dmic_be_num, hdmi_num; int ret, ssp_codec; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; hdmi_num = 0; if (soc_intel_is_byt() || soc_intel_is_cht()) { is_legacy_cpu = true; dmic_be_num = 0; /* default quirk for legacy cpu */ sof_pcm512x_quirk = SOF_PCM512X_SSP_CODEC(2); } else { dmic_be_num = 2; if (mach->mach_params.common_hdmi_codec_drv && (mach->mach_params.codec_mask & IDISP_CODEC_MASK)) ctx->idisp_codec = true; /* links are always present in topology */ hdmi_num = 3; } dmi_check_system(sof_pcm512x_quirk_table); dev_dbg(&pdev->dev, "sof_pcm512x_quirk = %lx\n", sof_pcm512x_quirk); ssp_codec = sof_pcm512x_quirk & SOF_PCM512X_SSP_CODEC_MASK; if (!(sof_pcm512x_quirk & SOF_PCM512X_ENABLE_DMIC)) dmic_be_num = 0; /* compute number of dai links */ sof_audio_card_pcm512x.num_links = 1 + dmic_be_num + hdmi_num; dai_links = sof_card_dai_links_create(&pdev->dev, ssp_codec, dmic_be_num, hdmi_num, ctx->idisp_codec); if (!dai_links) return -ENOMEM; sof_audio_card_pcm512x.dai_link = dai_links; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); sof_audio_card_pcm512x.dev = &pdev->dev; /* set platform name for each dailink */ ret = snd_soc_fixup_dai_links_platform_name(&sof_audio_card_pcm512x, mach->mach_params.platform); if (ret) return ret; snd_soc_card_set_drvdata(&sof_audio_card_pcm512x, ctx); return devm_snd_soc_register_card(&pdev->dev, &sof_audio_card_pcm512x); } static void sof_pcm512x_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); struct snd_soc_component *component; for_each_card_components(card, component) { if (!strcmp(component->name, pcm512x_component[0].name)) { snd_soc_component_set_jack(component, NULL, NULL); break; } } } static struct platform_driver sof_audio = { .probe = sof_audio_probe, .remove_new = sof_pcm512x_remove, .driver = { .name = "sof_pcm512x", .pm = &snd_soc_pm_ops, }, }; module_platform_driver(sof_audio) MODULE_DESCRIPTION("ASoC Intel(R) SOF + PCM512x Machine driver"); MODULE_AUTHOR("Pierre-Louis Bossart"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:sof_pcm512x"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON);
linux-master
sound/soc/intel/boards/sof_pcm512x.c
// SPDX-License-Identifier: GPL-2.0-only /* * bytcht_nocodec.c - ASoc Machine driver for MinnowBoard Max and Up * to make I2S signals observable on the Low-Speed connector. Audio codec * is not managed by ASoC/DAPM * * Copyright (C) 2015-2017 Intel Corp * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/module.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include "../atom/sst-atom-controls.h" static const struct snd_soc_dapm_widget widgets[] = { SND_SOC_DAPM_MIC("Mic", NULL), SND_SOC_DAPM_SPK("Speaker", NULL), }; static const struct snd_kcontrol_new controls[] = { SOC_DAPM_PIN_SWITCH("Mic"), SOC_DAPM_PIN_SWITCH("Speaker"), }; static const struct snd_soc_dapm_route audio_map[] = { {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx"}, {"codec_in1", NULL, "ssp2 Rx"}, {"ssp2 Rx", NULL, "Mic"}, {"Speaker", NULL, "ssp2 Tx"}, }; static int codec_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); int ret; /* The DSP will convert the FE rate to 48k, stereo, 24bits */ rate->min = rate->max = 48000; channels->min = channels->max = 2; /* set SSP2 to 24-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S24_LE); /* * Default mode for SSP configuration is TDM 4 slot, override config * with explicit setting to I2S 2ch 24-bit. The word length is set with * dai_set_tdm_slot() since there is no other API exposed */ ret = snd_soc_dai_set_fmt(asoc_rtd_to_cpu(rtd, 0), SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BP_FP); if (ret < 0) { dev_err(rtd->dev, "can't set format to I2S, err %d\n", ret); return ret; } ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_cpu(rtd, 0), 0x3, 0x3, 2, 24); if (ret < 0) { dev_err(rtd->dev, "can't set I2S config, err %d\n", ret); return ret; } return 0; } static const unsigned int rates_48000[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_48000 = { .count = ARRAY_SIZE(rates_48000), .list = rates_48000, }; static int aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_48000); } static const struct snd_soc_ops aif1_ops = { .startup = aif1_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp2_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp2-port"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link dais[] = { [MERR_DPCM_AUDIO] = { .name = "Audio Port", .stream_name = "Audio", .ignore_suspend = 1, .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .ignore_suspend = 1, .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* CODEC<->CODEC link */ /* back ends */ { .name = "SSP2-LowSpeed Connector", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .be_hw_params_fixup = codec_fixup, .ignore_suspend = 1, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp2_port, dummy, platform), }, }; /* SoC card */ static struct snd_soc_card bytcht_nocodec_card = { .name = "bytcht-nocodec", .owner = THIS_MODULE, .dai_link = dais, .num_links = ARRAY_SIZE(dais), .dapm_widgets = widgets, .num_dapm_widgets = ARRAY_SIZE(widgets), .dapm_routes = audio_map, .num_dapm_routes = ARRAY_SIZE(audio_map), .controls = controls, .num_controls = ARRAY_SIZE(controls), .fully_routed = true, }; static int snd_bytcht_nocodec_mc_probe(struct platform_device *pdev) { int ret_val = 0; /* register the soc card */ bytcht_nocodec_card.dev = &pdev->dev; ret_val = devm_snd_soc_register_card(&pdev->dev, &bytcht_nocodec_card); if (ret_val) { dev_err(&pdev->dev, "devm_snd_soc_register_card failed %d\n", ret_val); return ret_val; } platform_set_drvdata(pdev, &bytcht_nocodec_card); return ret_val; } static struct platform_driver snd_bytcht_nocodec_mc_driver = { .driver = { .name = "bytcht_nocodec", }, .probe = snd_bytcht_nocodec_mc_probe, }; module_platform_driver(snd_bytcht_nocodec_mc_driver); MODULE_DESCRIPTION("ASoC Intel(R) Baytrail/Cherrytrail Nocodec Machine driver"); MODULE_AUTHOR("Pierre-Louis Bossart <pierre-louis.bossart at linux.intel.com>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:bytcht_nocodec");
linux-master
sound/soc/intel/boards/bytcht_nocodec.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2022 Intel Corporation /* * sof_sdw_rt_amp - Helpers to handle RT1308/RT1316/RT1318 from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <sound/control.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dapm.h> #include <linux/soundwire/sdw.h> #include <linux/soundwire/sdw_type.h> #include <linux/dmi.h> #include "sof_sdw_common.h" #include "sof_sdw_amp_coeff_tables.h" #include "../../codecs/rt1308.h" #define CODEC_NAME_SIZE 7 /* choose a larger value to resolve compatibility issues */ #define RT_AMP_MAX_BQ_REG RT1316_MAX_BQ_REG struct rt_amp_platform_data { const unsigned char *bq_params; const unsigned int bq_params_cnt; }; static const struct rt_amp_platform_data dell_0a5d_platform_data = { .bq_params = dell_0a5d_bq_params, .bq_params_cnt = ARRAY_SIZE(dell_0a5d_bq_params), }; static const struct rt_amp_platform_data dell_0b00_platform_data = { .bq_params = dell_0b00_bq_params, .bq_params_cnt = ARRAY_SIZE(dell_0b00_bq_params), }; static const struct dmi_system_id dmi_platform_data[] = { /* CometLake devices */ { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0990") }, .driver_data = (void *)&dell_0a5d_platform_data, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "098F") }, .driver_data = (void *)&dell_0a5d_platform_data, }, /* TigerLake devices */ { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0A5D") }, .driver_data = (void *)&dell_0a5d_platform_data, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0A5E") }, .driver_data = (void *)&dell_0a5d_platform_data, }, /* AlderLake devices */ { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0B00") }, .driver_data = (void *)&dell_0b00_platform_data, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0B01") }, .driver_data = (void *)&dell_0b00_platform_data, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0AFF") }, .driver_data = (void *)&dell_0b00_platform_data, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "0AFE") }, .driver_data = (void *)&dell_0b00_platform_data, }, {}, }; static int rt_amp_add_device_props(struct device *sdw_dev) { struct property_entry props[3] = {}; struct fwnode_handle *fwnode; const struct dmi_system_id *dmi_data; const struct rt_amp_platform_data *pdata; unsigned char params[RT_AMP_MAX_BQ_REG]; int ret; dmi_data = dmi_first_match(dmi_platform_data); if (!dmi_data) return 0; pdata = dmi_data->driver_data; memcpy(&params, pdata->bq_params, sizeof(unsigned char) * pdata->bq_params_cnt); props[0] = PROPERTY_ENTRY_U8_ARRAY("realtek,bq-params", params); props[1] = PROPERTY_ENTRY_U32("realtek,bq-params-cnt", pdata->bq_params_cnt); fwnode = fwnode_create_software_node(props, NULL); if (IS_ERR(fwnode)) return PTR_ERR(fwnode); ret = device_add_software_node(sdw_dev, to_software_node(fwnode)); fwnode_handle_put(fwnode); return ret; } static const struct snd_kcontrol_new rt_amp_controls[] = { SOC_DAPM_PIN_SWITCH("Speaker"), }; static const struct snd_soc_dapm_widget rt_amp_widgets[] = { SND_SOC_DAPM_SPK("Speaker", NULL), }; /* * dapm routes for rt1308/rt1316/rt1318 will be registered dynamically * according to the number of rt1308/rt1316/rt1318 used. The first two * entries will be registered for one codec case, and the last two entries * are also registered if two 1308s/1316s/1318s are used. */ static const struct snd_soc_dapm_route rt1308_map[] = { { "Speaker", NULL, "rt1308-1 SPOL" }, { "Speaker", NULL, "rt1308-1 SPOR" }, { "Speaker", NULL, "rt1308-2 SPOL" }, { "Speaker", NULL, "rt1308-2 SPOR" }, }; static const struct snd_soc_dapm_route rt1316_map[] = { { "Speaker", NULL, "rt1316-1 SPOL" }, { "Speaker", NULL, "rt1316-1 SPOR" }, { "Speaker", NULL, "rt1316-2 SPOL" }, { "Speaker", NULL, "rt1316-2 SPOR" }, }; static const struct snd_soc_dapm_route rt1318_map[] = { { "Speaker", NULL, "rt1318-1 SPOL" }, { "Speaker", NULL, "rt1318-1 SPOR" }, { "Speaker", NULL, "rt1318-2 SPOL" }, { "Speaker", NULL, "rt1318-2 SPOR" }, }; static const struct snd_soc_dapm_route *get_codec_name_and_route(struct snd_soc_pcm_runtime *rtd, char *codec_name) { const char *dai_name; dai_name = rtd->dai_link->codecs->dai_name; /* get the codec name */ snprintf(codec_name, CODEC_NAME_SIZE, "%s", dai_name); /* choose the right codec's map */ if (strcmp(codec_name, "rt1308") == 0) return rt1308_map; else if (strcmp(codec_name, "rt1316") == 0) return rt1316_map; else return rt1318_map; } static int first_spk_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; const struct snd_soc_dapm_route *rt_amp_map; char codec_name[CODEC_NAME_SIZE]; int ret; rt_amp_map = get_codec_name_and_route(rtd, codec_name); card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s spk:%s", card->components, codec_name); if (!card->components) return -ENOMEM; ret = snd_soc_add_card_controls(card, rt_amp_controls, ARRAY_SIZE(rt_amp_controls)); if (ret) { dev_err(card->dev, "%s controls addition failed: %d\n", codec_name, ret); return ret; } ret = snd_soc_dapm_new_controls(&card->dapm, rt_amp_widgets, ARRAY_SIZE(rt_amp_widgets)); if (ret) { dev_err(card->dev, "%s widgets addition failed: %d\n", codec_name, ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, rt_amp_map, 2); if (ret) dev_err(rtd->dev, "failed to add first SPK map: %d\n", ret); return ret; } static int second_spk_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; const struct snd_soc_dapm_route *rt_amp_map; char codec_name[CODEC_NAME_SIZE]; int ret; rt_amp_map = get_codec_name_and_route(rtd, codec_name); ret = snd_soc_dapm_add_routes(&card->dapm, rt_amp_map + 2, 2); if (ret) dev_err(rtd->dev, "failed to add second SPK map: %d\n", ret); return ret; } static int all_spk_init(struct snd_soc_pcm_runtime *rtd) { int ret; ret = first_spk_init(rtd); if (ret) return ret; return second_spk_init(rtd); } static int rt1308_i2s_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_card *card = rtd->card; struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int clk_id, clk_freq, pll_out; int err; clk_id = RT1308_PLL_S_MCLK; clk_freq = 38400000; pll_out = params_rate(params) * 512; /* Set rt1308 pll */ err = snd_soc_dai_set_pll(codec_dai, 0, clk_id, clk_freq, pll_out); if (err < 0) { dev_err(card->dev, "Failed to set RT1308 PLL: %d\n", err); return err; } /* Set rt1308 sysclk */ err = snd_soc_dai_set_sysclk(codec_dai, RT1308_FS_SYS_S_PLL, pll_out, SND_SOC_CLOCK_IN); if (err < 0) { dev_err(card->dev, "Failed to set RT1308 SYSCLK: %d\n", err); return err; } return 0; } /* machine stream operations */ struct snd_soc_ops sof_sdw_rt1308_i2s_ops = { .hw_params = rt1308_i2s_hw_params, }; int sof_sdw_rt_amp_exit(struct snd_soc_card *card, struct snd_soc_dai_link *dai_link) { struct mc_private *ctx = snd_soc_card_get_drvdata(card); if (ctx->amp_dev1) { device_remove_software_node(ctx->amp_dev1); put_device(ctx->amp_dev1); } if (ctx->amp_dev2) { device_remove_software_node(ctx->amp_dev2); put_device(ctx->amp_dev2); } return 0; } int sof_sdw_rt_amp_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { struct mc_private *ctx = snd_soc_card_get_drvdata(card); struct device *sdw_dev1, *sdw_dev2; int ret; /* Count amp number and do init on playback link only. */ if (!playback) return 0; info->amp_num++; if (info->amp_num == 1) dai_links->init = first_spk_init; if (info->amp_num == 2) { sdw_dev1 = bus_find_device_by_name(&sdw_bus_type, NULL, dai_links->codecs[0].name); if (!sdw_dev1) return -EPROBE_DEFER; ret = rt_amp_add_device_props(sdw_dev1); if (ret < 0) { put_device(sdw_dev1); return ret; } ctx->amp_dev1 = sdw_dev1; sdw_dev2 = bus_find_device_by_name(&sdw_bus_type, NULL, dai_links->codecs[1].name); if (!sdw_dev2) return -EPROBE_DEFER; ret = rt_amp_add_device_props(sdw_dev2); if (ret < 0) { put_device(sdw_dev2); return ret; } ctx->amp_dev2 = sdw_dev2; /* * if two amps are in one dai link, the init function * in this dai link will be first set for the first speaker, * and it should be reset to initialize all speakers when * the second speaker is found. */ if (dai_links->init) dai_links->init = all_spk_init; else dai_links->init = second_spk_init; } return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_rt_amp.c
// SPDX-License-Identifier: GPL-2.0-only /* * Sound card driver for Intel Haswell Lynx Point with Realtek 5640 * * Copyright (C) 2013, Intel Corporation. All rights reserved. */ #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/rt5640.h" static const struct snd_soc_dapm_widget card_widgets[] = { SND_SOC_DAPM_HP("Headphones", NULL), SND_SOC_DAPM_MIC("Mic", NULL), }; static const struct snd_soc_dapm_route card_routes[] = { {"Headphones", NULL, "HPOR"}, {"Headphones", NULL, "HPOL"}, {"IN2P", NULL, "Mic"}, /* CODEC BE connections */ {"SSP0 CODEC IN", NULL, "AIF1 Capture"}, {"AIF1 Playback", NULL, "SSP0 CODEC OUT"}, }; static int codec_link_hw_params_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); /* The ADSP will convert the FE rate to 48k, stereo. */ rate->min = rate->max = 48000; channels->min = channels->max = 2; /* Set SSP0 to 16 bit. */ params_set_format(params, SNDRV_PCM_FORMAT_S16_LE); return 0; } static int codec_link_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, RT5640_SCLK_S_MCLK, 12288000, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "set codec sysclk failed: %d\n", ret); return ret; } /* Set correct codec filter for DAI format and clock config. */ snd_soc_component_update_bits(codec_dai->component, 0x83, 0xffff, 0x8000); return ret; } static const struct snd_soc_ops codec_link_ops = { .hw_params = codec_link_hw_params, }; SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(offload0, DAILINK_COMP_ARRAY(COMP_CPU("Offload0 Pin"))); SND_SOC_DAILINK_DEF(offload1, DAILINK_COMP_ARRAY(COMP_CPU("Offload1 Pin"))); SND_SOC_DAILINK_DEF(loopback, DAILINK_COMP_ARRAY(COMP_CPU("Loopback Pin"))); SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-INT33CA:00", "rt5640-aif1"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("haswell-pcm-audio"))); SND_SOC_DAILINK_DEF(ssp0_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp0-port"))); static struct snd_soc_dai_link card_dai_links[] = { /* Front End DAI links */ { .name = "System", .stream_name = "System Playback/Capture", .nonatomic = 1, .dynamic = 1, .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(system, dummy, platform), }, { .name = "Offload0", .stream_name = "Offload0 Playback", .nonatomic = 1, .dynamic = 1, .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, SND_SOC_DAILINK_REG(offload0, dummy, platform), }, { .name = "Offload1", .stream_name = "Offload1 Playback", .nonatomic = 1, .dynamic = 1, .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, SND_SOC_DAILINK_REG(offload1, dummy, platform), }, { .name = "Loopback", .stream_name = "Loopback", .nonatomic = 1, .dynamic = 1, .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, SND_SOC_DAILINK_REG(loopback, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "Codec", .id = 0, .nonatomic = 1, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = codec_link_hw_params_fixup, .ops = &codec_link_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp0_port, codec, platform), }, }; static struct snd_soc_card hsw_rt5640_card = { .name = "haswell-rt5640", .owner = THIS_MODULE, .dai_link = card_dai_links, .num_links = ARRAY_SIZE(card_dai_links), .dapm_widgets = card_widgets, .num_dapm_widgets = ARRAY_SIZE(card_widgets), .dapm_routes = card_routes, .num_dapm_routes = ARRAY_SIZE(card_routes), .fully_routed = true, }; static int hsw_rt5640_probe(struct platform_device *pdev) { struct snd_soc_acpi_mach *mach; struct device *dev = &pdev->dev; int ret; hsw_rt5640_card.dev = dev; mach = dev_get_platdata(dev); ret = snd_soc_fixup_dai_links_platform_name(&hsw_rt5640_card, mach->mach_params.platform); if (ret) return ret; return devm_snd_soc_register_card(dev, &hsw_rt5640_card); } static struct platform_driver hsw_rt5640_driver = { .probe = hsw_rt5640_probe, .driver = { .name = "hsw_rt5640", .pm = &snd_soc_pm_ops, }, }; module_platform_driver(hsw_rt5640_driver) MODULE_AUTHOR("Liam Girdwood, Xingchao Wang"); MODULE_DESCRIPTION("Sound card driver for Intel Haswell Lynx Point with Realtek 5640"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:hsw_rt5640");
linux-master
sound/soc/intel/boards/hsw_rt5640.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Kabylake I2S Machine Driver with MAXIM98927 * and RT5663 Codecs * * Copyright (C) 2017, Intel Corporation. All rights reserved. * * Modified from: * Intel Skylake I2S Machine driver */ #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/rt5663.h" #include "../../codecs/hdac_hdmi.h" #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #define KBL_REALTEK_CODEC_DAI "rt5663-aif" #define KBL_MAXIM_CODEC_DAI "max98927-aif1" #define DMIC_CH(p) p->list[p->count-1] #define MAXIM_DEV0_NAME "i2c-MX98927:00" #define MAXIM_DEV1_NAME "i2c-MX98927:01" static struct snd_soc_card *kabylake_audio_card; static const struct snd_pcm_hw_constraint_list *dmic_constraints; static struct snd_soc_jack skylake_hdmi[3]; struct kbl_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct kbl_rt5663_private { struct snd_soc_jack kabylake_headset; struct list_head hdmi_pcm_list; struct clk *mclk; struct clk *sclk; }; enum { KBL_DPCM_AUDIO_PB = 0, KBL_DPCM_AUDIO_CP, KBL_DPCM_AUDIO_HS_PB, KBL_DPCM_AUDIO_ECHO_REF_CP, KBL_DPCM_AUDIO_REF_CP, KBL_DPCM_AUDIO_DMIC_CP, KBL_DPCM_AUDIO_HDMI1_PB, KBL_DPCM_AUDIO_HDMI2_PB, KBL_DPCM_AUDIO_HDMI3_PB, }; static const struct snd_kcontrol_new kabylake_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Left Spk"), SOC_DAPM_PIN_SWITCH("Right Spk"), }; static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct kbl_rt5663_private *priv = snd_soc_card_get_drvdata(card); int ret = 0; /* * MCLK/SCLK need to be ON early for a successful synchronization of * codec internal clock. And the clocks are turned off during * POST_PMD after the stream is stopped. */ switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Enable MCLK */ ret = clk_set_rate(priv->mclk, 24000000); if (ret < 0) { dev_err(card->dev, "Can't set rate for mclk, err: %d\n", ret); return ret; } ret = clk_prepare_enable(priv->mclk); if (ret < 0) { dev_err(card->dev, "Can't enable mclk, err: %d\n", ret); return ret; } /* Enable SCLK */ ret = clk_set_rate(priv->sclk, 3072000); if (ret < 0) { dev_err(card->dev, "Can't set rate for sclk, err: %d\n", ret); clk_disable_unprepare(priv->mclk); return ret; } ret = clk_prepare_enable(priv->sclk); if (ret < 0) { dev_err(card->dev, "Can't enable sclk, err: %d\n", ret); clk_disable_unprepare(priv->mclk); } break; case SND_SOC_DAPM_POST_PMD: clk_disable_unprepare(priv->mclk); clk_disable_unprepare(priv->sclk); break; default: return 0; } return 0; } static const struct snd_soc_dapm_widget kabylake_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_SPK("Left Spk", NULL), SND_SOC_DAPM_SPK("Right Spk", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), SND_SOC_DAPM_SPK("HDMI1", NULL), SND_SOC_DAPM_SPK("HDMI2", NULL), SND_SOC_DAPM_SPK("HDMI3", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static const struct snd_soc_dapm_route kabylake_map[] = { /* HP jack connectors - unknown if we have jack detection */ { "Headphone Jack", NULL, "Platform Clock" }, { "Headphone Jack", NULL, "HPOL" }, { "Headphone Jack", NULL, "HPOR" }, /* speaker */ { "Left Spk", NULL, "Left BE_OUT" }, { "Right Spk", NULL, "Right BE_OUT" }, /* other jacks */ { "Headset Mic", NULL, "Platform Clock" }, { "IN1P", NULL, "Headset Mic" }, { "IN1N", NULL, "Headset Mic" }, { "DMic", NULL, "SoC DMIC" }, {"HDMI1", NULL, "hif5-0 Output"}, {"HDMI2", NULL, "hif6-0 Output"}, {"HDMI3", NULL, "hif7-0 Output"}, /* CODEC BE connections */ { "Left HiFi Playback", NULL, "ssp0 Tx" }, { "Right HiFi Playback", NULL, "ssp0 Tx" }, { "ssp0 Tx", NULL, "spk_out" }, { "AIF Playback", NULL, "ssp1 Tx" }, { "ssp1 Tx", NULL, "codec1_out" }, { "hs_in", NULL, "ssp1 Rx" }, { "ssp1 Rx", NULL, "AIF Capture" }, /* IV feedback path */ { "codec0_fb_in", NULL, "ssp0 Rx"}, { "ssp0 Rx", NULL, "Left HiFi Capture" }, { "ssp0 Rx", NULL, "Right HiFi Capture" }, /* DMIC */ { "dmic01_hifi", NULL, "DMIC01 Rx" }, { "DMIC01 Rx", NULL, "DMIC AIF" }, { "hifi3", NULL, "iDisp3 Tx"}, { "iDisp3 Tx", NULL, "iDisp3_out"}, { "hifi2", NULL, "iDisp2 Tx"}, { "iDisp2 Tx", NULL, "iDisp2_out"}, { "hifi1", NULL, "iDisp1 Tx"}, { "iDisp1 Tx", NULL, "iDisp1_out"}, }; enum { KBL_DPCM_AUDIO_5663_PB = 0, KBL_DPCM_AUDIO_5663_CP, KBL_DPCM_AUDIO_5663_HDMI1_PB, KBL_DPCM_AUDIO_5663_HDMI2_PB, }; static const struct snd_kcontrol_new kabylake_5663_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), }; static const struct snd_soc_dapm_widget kabylake_5663_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_SPK("HDMI1", NULL), SND_SOC_DAPM_SPK("HDMI2", NULL), SND_SOC_DAPM_SPK("HDMI3", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static const struct snd_soc_dapm_route kabylake_5663_map[] = { { "Headphone Jack", NULL, "Platform Clock" }, { "Headphone Jack", NULL, "HPOL" }, { "Headphone Jack", NULL, "HPOR" }, /* other jacks */ { "Headset Mic", NULL, "Platform Clock" }, { "IN1P", NULL, "Headset Mic" }, { "IN1N", NULL, "Headset Mic" }, {"HDMI1", NULL, "hif5-0 Output"}, {"HDMI2", NULL, "hif6-0 Output"}, {"HDMI3", NULL, "hif7-0 Output"}, /* CODEC BE connections */ { "AIF Playback", NULL, "ssp1 Tx" }, { "ssp1 Tx", NULL, "codec1_out" }, { "codec0_in", NULL, "ssp1 Rx" }, { "ssp1 Rx", NULL, "AIF Capture" }, { "hifi2", NULL, "iDisp2 Tx"}, { "iDisp2 Tx", NULL, "iDisp2_out"}, { "hifi1", NULL, "iDisp1 Tx"}, { "iDisp1 Tx", NULL, "iDisp1_out"}, }; static struct snd_soc_codec_conf max98927_codec_conf[] = { { .dlc = COMP_CODEC_CONF(MAXIM_DEV0_NAME), .name_prefix = "Right", }, { .dlc = COMP_CODEC_CONF(MAXIM_DEV1_NAME), .name_prefix = "Left", }, }; static int kabylake_rt5663_fe_init(struct snd_soc_pcm_runtime *rtd) { int ret; struct snd_soc_dapm_context *dapm; struct snd_soc_component *component = asoc_rtd_to_cpu(rtd, 0)->component; dapm = snd_soc_component_get_dapm(component); ret = snd_soc_dapm_ignore_suspend(dapm, "Reference Capture"); if (ret) { dev_err(rtd->dev, "Ref Cap ignore suspend failed %d\n", ret); return ret; } return ret; } static int kabylake_rt5663_codec_init(struct snd_soc_pcm_runtime *rtd) { int ret; struct kbl_rt5663_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_jack *jack; /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(kabylake_audio_card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &ctx->kabylake_headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed %d\n", ret); return ret; } jack = &ctx->kabylake_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); snd_soc_component_set_jack(component, &ctx->kabylake_headset, NULL); return ret; } static int kabylake_rt5663_max98927_codec_init(struct snd_soc_pcm_runtime *rtd) { int ret; ret = kabylake_rt5663_codec_init(rtd); if (ret) return ret; ret = snd_soc_dapm_ignore_suspend(&rtd->card->dapm, "SoC DMIC"); if (ret) { dev_err(rtd->dev, "SoC DMIC ignore suspend failed %d\n", ret); return ret; } return ret; } static int kabylake_hdmi_init(struct snd_soc_pcm_runtime *rtd, int device) { struct kbl_rt5663_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct kbl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = device; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int kabylake_hdmi1_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI1_PB); } static int kabylake_hdmi2_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI2_PB); } static int kabylake_hdmi3_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI3_PB); } static int kabylake_5663_hdmi1_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_5663_HDMI1_PB); } static int kabylake_5663_hdmi2_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_5663_HDMI2_PB); } static unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static unsigned int channels[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static int kbl_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* * On this platform for PCM device we support, * 48Khz * stereo * 16 bit audio */ runtime->hw.channels_max = 2; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); return 0; } static const struct snd_soc_ops kabylake_rt5663_fe_ops = { .startup = kbl_fe_startup, }; static int kabylake_ssp_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); struct snd_soc_dpcm *dpcm, *rtd_dpcm = NULL; /* * The following loop will be called only for playback stream * In this platform, there is only one playback device on every SSP */ for_each_dpcm_fe(rtd, SNDRV_PCM_STREAM_PLAYBACK, dpcm) { rtd_dpcm = dpcm; break; } /* * This following loop will be called only for capture stream * In this platform, there is only one capture device on every SSP */ for_each_dpcm_fe(rtd, SNDRV_PCM_STREAM_CAPTURE, dpcm) { rtd_dpcm = dpcm; break; } if (!rtd_dpcm) return -EINVAL; /* * The above 2 loops are mutually exclusive based on the stream direction, * thus rtd_dpcm variable will never be overwritten */ /* * The ADSP will convert the FE rate to 48k, stereo, 24 bit */ if (!strcmp(rtd_dpcm->fe->dai_link->name, "Kbl Audio Port") || !strcmp(rtd_dpcm->fe->dai_link->name, "Kbl Audio Headset Playback") || !strcmp(rtd_dpcm->fe->dai_link->name, "Kbl Audio Capture Port")) { rate->min = rate->max = 48000; chan->min = chan->max = 2; snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); } /* * The speaker on the SSP0 supports S16_LE and not S24_LE. * thus changing the mask here */ if (!strcmp(rtd_dpcm->be->dai_link->name, "SSP0-Codec")) snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S16_LE); return 0; } static int kabylake_rt5663_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; /* use ASRC for internal clocks, as PLL rate isn't multiple of BCLK */ rt5663_sel_asrc_clk_src(codec_dai->component, RT5663_DA_STEREO_FILTER | RT5663_AD_STEREO_FILTER, RT5663_CLK_SEL_I2S1_ASRC); ret = snd_soc_dai_set_sysclk(codec_dai, RT5663_SCLK_S_MCLK, 24576000, SND_SOC_CLOCK_IN); if (ret < 0) dev_err(rtd->dev, "snd_soc_dai_set_sysclk err = %d\n", ret); return ret; } static struct snd_soc_ops kabylake_rt5663_ops = { .hw_params = kabylake_rt5663_hw_params, }; static int kabylake_dmic_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); if (params_channels(params) == 2 || DMIC_CH(dmic_constraints) == 2) chan->min = chan->max = 2; else chan->min = chan->max = 4; return 0; } static int kabylake_ssp0_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; int ret = 0, j; for_each_rtd_codec_dais(rtd, j, codec_dai) { if (!strcmp(codec_dai->component->name, MAXIM_DEV0_NAME)) { /* * Use channel 4 and 5 for the first amp */ ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x30, 3, 8, 16); if (ret < 0) { dev_err(rtd->dev, "set TDM slot err:%d\n", ret); return ret; } } if (!strcmp(codec_dai->component->name, MAXIM_DEV1_NAME)) { /* * Use channel 6 and 7 for the second amp */ ret = snd_soc_dai_set_tdm_slot(codec_dai, 0xC0, 3, 8, 16); if (ret < 0) { dev_err(rtd->dev, "set TDM slot err:%d\n", ret); return ret; } } } return ret; } static struct snd_soc_ops kabylake_ssp0_ops = { .hw_params = kabylake_ssp0_hw_params, }; static unsigned int channels_dmic[] = { 2, 4, }; static struct snd_pcm_hw_constraint_list constraints_dmic_channels = { .count = ARRAY_SIZE(channels_dmic), .list = channels_dmic, .mask = 0, }; static const unsigned int dmic_2ch[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_dmic_2ch = { .count = ARRAY_SIZE(dmic_2ch), .list = dmic_2ch, .mask = 0, }; static int kabylake_dmic_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_max = DMIC_CH(dmic_constraints); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, dmic_constraints); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static struct snd_soc_ops kabylake_dmic_ops = { .startup = kabylake_dmic_startup, }; static unsigned int rates_16000[] = { 16000, }; static const struct snd_pcm_hw_constraint_list constraints_16000 = { .count = ARRAY_SIZE(rates_16000), .list = rates_16000, }; static const unsigned int ch_mono[] = { 1, }; static const struct snd_pcm_hw_constraint_list constraints_refcap = { .count = ARRAY_SIZE(ch_mono), .list = ch_mono, }; static int kabylake_refcap_startup(struct snd_pcm_substream *substream) { substream->runtime->hw.channels_max = 1; snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_refcap); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_16000); } static struct snd_soc_ops skylake_refcap_ops = { .startup = kabylake_refcap_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(system2, DAILINK_COMP_ARRAY(COMP_CPU("System Pin2"))); SND_SOC_DAILINK_DEF(echoref, DAILINK_COMP_ARRAY(COMP_CPU("Echoref Pin"))); SND_SOC_DAILINK_DEF(reference, DAILINK_COMP_ARRAY(COMP_CPU("Reference Pin"))); SND_SOC_DAILINK_DEF(dmic, DAILINK_COMP_ARRAY(COMP_CPU("DMIC Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(hdmi3, DAILINK_COMP_ARRAY(COMP_CPU("HDMI3 Pin"))); SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY( /* Left */ COMP_CODEC(MAXIM_DEV0_NAME, KBL_MAXIM_CODEC_DAI), /* Right */ COMP_CODEC(MAXIM_DEV1_NAME, KBL_MAXIM_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP1 Pin"))); SND_SOC_DAILINK_DEF(ssp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10EC5663:00", KBL_REALTEK_CODEC_DAI))); SND_SOC_DAILINK_DEF(dmic01_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); /* kabylake digital audio interface glue - connects codec <--> CPU */ static struct snd_soc_dai_link kabylake_dais[] = { /* Front End DAI links */ [KBL_DPCM_AUDIO_PB] = { .name = "Kbl Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .init = kabylake_rt5663_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &kabylake_rt5663_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_CP] = { .name = "Kbl Audio Capture Port", .stream_name = "Audio Record", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, .ops = &kabylake_rt5663_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_HS_PB] = { .name = "Kbl Audio Headset Playback", .stream_name = "Headset Audio", .dpcm_playback = 1, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(system2, dummy, platform), }, [KBL_DPCM_AUDIO_ECHO_REF_CP] = { .name = "Kbl Audio Echo Reference cap", .stream_name = "Echoreference Capture", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, SND_SOC_DAILINK_REG(echoref, dummy, platform), }, [KBL_DPCM_AUDIO_REF_CP] = { .name = "Kbl Audio Reference cap", .stream_name = "Wake on Voice", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &skylake_refcap_ops, SND_SOC_DAILINK_REG(reference, dummy, platform), }, [KBL_DPCM_AUDIO_DMIC_CP] = { .name = "Kbl Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &kabylake_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI1_PB] = { .name = "Kbl HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI2_PB] = { .name = "Kbl HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI3_PB] = { .name = "Kbl HDMI Port3", .stream_name = "Hdmi3", .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "SSP0-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp_fixup, .dpcm_playback = 1, .ops = &kabylake_ssp0_ops, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec, platform), }, { /* SSP1 - Codec */ .name = "SSP1-Codec", .id = 1, .no_pcm = 1, .init = kabylake_rt5663_max98927_codec_init, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp_fixup, .ops = &kabylake_rt5663_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_codec, platform), }, { .name = "dmic01", .id = 2, .be_hw_params_fixup = kabylake_dmic_fixup, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic01_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 3, .dpcm_playback = 1, .init = kabylake_hdmi1_init, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = kabylake_hdmi2_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 5, .init = kabylake_hdmi3_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, }; static struct snd_soc_dai_link kabylake_5663_dais[] = { /* Front End DAI links */ [KBL_DPCM_AUDIO_5663_PB] = { .name = "Kbl Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &kabylake_rt5663_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_5663_CP] = { .name = "Kbl Audio Capture Port", .stream_name = "Audio Record", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, .ops = &kabylake_rt5663_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_5663_HDMI1_PB] = { .name = "Kbl HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [KBL_DPCM_AUDIO_5663_HDMI2_PB] = { .name = "Kbl HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, /* Back End DAI links */ { /* SSP1 - Codec */ .name = "SSP1-Codec", .id = 0, .no_pcm = 1, .init = kabylake_rt5663_codec_init, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp_fixup, .ops = &kabylake_rt5663_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_codec, platform), }, { .name = "iDisp1", .id = 1, .dpcm_playback = 1, .init = kabylake_5663_hdmi1_init, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 2, .init = kabylake_5663_hdmi2_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, }; #define NAME_SIZE 32 static int kabylake_card_late_probe(struct snd_soc_card *card) { struct kbl_rt5663_private *ctx = snd_soc_card_get_drvdata(card); struct kbl_hdmi_pcm *pcm; struct snd_soc_component *component = NULL; int err, i = 0; char jack_name[NAME_SIZE]; list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &skylake_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &skylake_hdmi[i]); if (err < 0) return err; i++; } if (!component) return -EINVAL; return hdac_hdmi_jack_port_init(component, &card->dapm); } /* kabylake audio machine driver for SPT + RT5663 */ static struct snd_soc_card kabylake_audio_card_rt5663_m98927 = { .name = "kblrt5663max", .owner = THIS_MODULE, .dai_link = kabylake_dais, .num_links = ARRAY_SIZE(kabylake_dais), .controls = kabylake_controls, .num_controls = ARRAY_SIZE(kabylake_controls), .dapm_widgets = kabylake_widgets, .num_dapm_widgets = ARRAY_SIZE(kabylake_widgets), .dapm_routes = kabylake_map, .num_dapm_routes = ARRAY_SIZE(kabylake_map), .codec_conf = max98927_codec_conf, .num_configs = ARRAY_SIZE(max98927_codec_conf), .fully_routed = true, .late_probe = kabylake_card_late_probe, }; /* kabylake audio machine driver for RT5663 */ static struct snd_soc_card kabylake_audio_card_rt5663 = { .name = "kblrt5663", .owner = THIS_MODULE, .dai_link = kabylake_5663_dais, .num_links = ARRAY_SIZE(kabylake_5663_dais), .controls = kabylake_5663_controls, .num_controls = ARRAY_SIZE(kabylake_5663_controls), .dapm_widgets = kabylake_5663_widgets, .num_dapm_widgets = ARRAY_SIZE(kabylake_5663_widgets), .dapm_routes = kabylake_5663_map, .num_dapm_routes = ARRAY_SIZE(kabylake_5663_map), .fully_routed = true, .late_probe = kabylake_card_late_probe, }; static int kabylake_audio_probe(struct platform_device *pdev) { struct kbl_rt5663_private *ctx; struct snd_soc_acpi_mach *mach; int ret; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); kabylake_audio_card = (struct snd_soc_card *)pdev->id_entry->driver_data; kabylake_audio_card->dev = &pdev->dev; snd_soc_card_set_drvdata(kabylake_audio_card, ctx); mach = pdev->dev.platform_data; if (mach) dmic_constraints = mach->mach_params.dmic_num == 2 ? &constraints_dmic_2ch : &constraints_dmic_channels; ctx->mclk = devm_clk_get(&pdev->dev, "ssp1_mclk"); if (IS_ERR(ctx->mclk)) { ret = PTR_ERR(ctx->mclk); if (ret == -ENOENT) { dev_info(&pdev->dev, "Failed to get ssp1_sclk, defer probe\n"); return -EPROBE_DEFER; } dev_err(&pdev->dev, "Failed to get ssp1_mclk with err:%d\n", ret); return ret; } ctx->sclk = devm_clk_get(&pdev->dev, "ssp1_sclk"); if (IS_ERR(ctx->sclk)) { ret = PTR_ERR(ctx->sclk); if (ret == -ENOENT) { dev_info(&pdev->dev, "Failed to get ssp1_sclk, defer probe\n"); return -EPROBE_DEFER; } dev_err(&pdev->dev, "Failed to get ssp1_sclk with err:%d\n", ret); return ret; } return devm_snd_soc_register_card(&pdev->dev, kabylake_audio_card); } static const struct platform_device_id kbl_board_ids[] = { { .name = "kbl_rt5663", .driver_data = (kernel_ulong_t)&kabylake_audio_card_rt5663, }, { .name = "kbl_rt5663_m98927", .driver_data = (kernel_ulong_t)&kabylake_audio_card_rt5663_m98927, }, { } }; MODULE_DEVICE_TABLE(platform, kbl_board_ids); static struct platform_driver kabylake_audio = { .probe = kabylake_audio_probe, .driver = { .name = "kbl_rt5663_m98927", .pm = &snd_soc_pm_ops, }, .id_table = kbl_board_ids, }; module_platform_driver(kabylake_audio) /* Module information */ MODULE_DESCRIPTION("Audio Machine driver-RT5663 & MAX98927 in I2S mode"); MODULE_AUTHOR("Naveen M <[email protected]>"); MODULE_AUTHOR("Harsha Priya <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/boards/kbl_rt5663_max98927.c
// SPDX-License-Identifier: GPL-2.0-only /* * bytcr_rt5651.c - ASoc Machine driver for Intel Byt CR platform * (derived from bytcr_rt5640.c) * * Copyright (C) 2015 Intel Corp * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/init.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/acpi.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/dmi.h> #include <linux/input.h> #include <linux/gpio/consumer.h> #include <linux/gpio/machine.h> #include <linux/slab.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/jack.h> #include <sound/soc-acpi.h> #include "../../codecs/rt5651.h" #include "../atom/sst-atom-controls.h" #include "../common/soc-intel-quirks.h" enum { BYT_RT5651_DMIC_MAP, BYT_RT5651_IN1_MAP, BYT_RT5651_IN2_MAP, BYT_RT5651_IN1_IN2_MAP, }; enum { BYT_RT5651_JD_NULL = (RT5651_JD_NULL << 4), BYT_RT5651_JD1_1 = (RT5651_JD1_1 << 4), BYT_RT5651_JD1_2 = (RT5651_JD1_2 << 4), BYT_RT5651_JD2 = (RT5651_JD2 << 4), }; enum { BYT_RT5651_OVCD_TH_600UA = (6 << 8), BYT_RT5651_OVCD_TH_1500UA = (15 << 8), BYT_RT5651_OVCD_TH_2000UA = (20 << 8), }; enum { BYT_RT5651_OVCD_SF_0P5 = (RT5651_OVCD_SF_0P5 << 13), BYT_RT5651_OVCD_SF_0P75 = (RT5651_OVCD_SF_0P75 << 13), BYT_RT5651_OVCD_SF_1P0 = (RT5651_OVCD_SF_1P0 << 13), BYT_RT5651_OVCD_SF_1P5 = (RT5651_OVCD_SF_1P5 << 13), }; #define BYT_RT5651_MAP(quirk) ((quirk) & GENMASK(3, 0)) #define BYT_RT5651_JDSRC(quirk) (((quirk) & GENMASK(7, 4)) >> 4) #define BYT_RT5651_OVCD_TH(quirk) (((quirk) & GENMASK(12, 8)) >> 8) #define BYT_RT5651_OVCD_SF(quirk) (((quirk) & GENMASK(14, 13)) >> 13) #define BYT_RT5651_DMIC_EN BIT(16) #define BYT_RT5651_MCLK_EN BIT(17) #define BYT_RT5651_MCLK_25MHZ BIT(18) #define BYT_RT5651_SSP2_AIF2 BIT(19) /* default is using AIF1 */ #define BYT_RT5651_SSP0_AIF1 BIT(20) #define BYT_RT5651_SSP0_AIF2 BIT(21) #define BYT_RT5651_HP_LR_SWAPPED BIT(22) #define BYT_RT5651_MONO_SPEAKER BIT(23) #define BYT_RT5651_JD_NOT_INV BIT(24) #define BYT_RT5651_DEFAULT_QUIRKS (BYT_RT5651_MCLK_EN | \ BYT_RT5651_JD1_1 | \ BYT_RT5651_OVCD_TH_2000UA | \ BYT_RT5651_OVCD_SF_0P75) /* jack-detect-source + inv + dmic-en + ovcd-th + -sf + terminating entry */ #define MAX_NO_PROPS 6 struct byt_rt5651_private { struct clk *mclk; struct gpio_desc *ext_amp_gpio; struct gpio_desc *hp_detect; struct snd_soc_jack jack; struct device *codec_dev; }; static const struct acpi_gpio_mapping *byt_rt5651_gpios; /* Default: jack-detect on JD1_1, internal mic on in2, headsetmic on in3 */ static unsigned long byt_rt5651_quirk = BYT_RT5651_DEFAULT_QUIRKS | BYT_RT5651_IN2_MAP; static int quirk_override = -1; module_param_named(quirk, quirk_override, int, 0444); MODULE_PARM_DESC(quirk, "Board-specific quirk override"); static void log_quirks(struct device *dev) { if (BYT_RT5651_MAP(byt_rt5651_quirk) == BYT_RT5651_DMIC_MAP) dev_info(dev, "quirk DMIC_MAP enabled"); if (BYT_RT5651_MAP(byt_rt5651_quirk) == BYT_RT5651_IN1_MAP) dev_info(dev, "quirk IN1_MAP enabled"); if (BYT_RT5651_MAP(byt_rt5651_quirk) == BYT_RT5651_IN2_MAP) dev_info(dev, "quirk IN2_MAP enabled"); if (BYT_RT5651_MAP(byt_rt5651_quirk) == BYT_RT5651_IN1_IN2_MAP) dev_info(dev, "quirk IN1_IN2_MAP enabled"); if (BYT_RT5651_JDSRC(byt_rt5651_quirk)) { dev_info(dev, "quirk realtek,jack-detect-source %ld\n", BYT_RT5651_JDSRC(byt_rt5651_quirk)); dev_info(dev, "quirk realtek,over-current-threshold-microamp %ld\n", BYT_RT5651_OVCD_TH(byt_rt5651_quirk) * 100); dev_info(dev, "quirk realtek,over-current-scale-factor %ld\n", BYT_RT5651_OVCD_SF(byt_rt5651_quirk)); } if (byt_rt5651_quirk & BYT_RT5651_DMIC_EN) dev_info(dev, "quirk DMIC enabled"); if (byt_rt5651_quirk & BYT_RT5651_MCLK_EN) dev_info(dev, "quirk MCLK_EN enabled"); if (byt_rt5651_quirk & BYT_RT5651_MCLK_25MHZ) dev_info(dev, "quirk MCLK_25MHZ enabled"); if (byt_rt5651_quirk & BYT_RT5651_SSP2_AIF2) dev_info(dev, "quirk SSP2_AIF2 enabled\n"); if (byt_rt5651_quirk & BYT_RT5651_SSP0_AIF1) dev_info(dev, "quirk SSP0_AIF1 enabled\n"); if (byt_rt5651_quirk & BYT_RT5651_SSP0_AIF2) dev_info(dev, "quirk SSP0_AIF2 enabled\n"); if (byt_rt5651_quirk & BYT_RT5651_MONO_SPEAKER) dev_info(dev, "quirk MONO_SPEAKER enabled\n"); if (byt_rt5651_quirk & BYT_RT5651_JD_NOT_INV) dev_info(dev, "quirk JD_NOT_INV enabled\n"); } #define BYT_CODEC_DAI1 "rt5651-aif1" #define BYT_CODEC_DAI2 "rt5651-aif2" static int byt_rt5651_prepare_and_enable_pll1(struct snd_soc_dai *codec_dai, int rate, int bclk_ratio) { int clk_id, clk_freq, ret; /* Configure the PLL before selecting it */ if (!(byt_rt5651_quirk & BYT_RT5651_MCLK_EN)) { clk_id = RT5651_PLL1_S_BCLK1; clk_freq = rate * bclk_ratio; } else { clk_id = RT5651_PLL1_S_MCLK; if (byt_rt5651_quirk & BYT_RT5651_MCLK_25MHZ) clk_freq = 25000000; else clk_freq = 19200000; } ret = snd_soc_dai_set_pll(codec_dai, 0, clk_id, clk_freq, rate * 512); if (ret < 0) { dev_err(codec_dai->component->dev, "can't set pll: %d\n", ret); return ret; } ret = snd_soc_dai_set_sysclk(codec_dai, RT5651_SCLK_S_PLL1, rate * 512, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(codec_dai->component->dev, "can't set clock %d\n", ret); return ret; } return 0; } static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; struct byt_rt5651_private *priv = snd_soc_card_get_drvdata(card); int ret; codec_dai = snd_soc_card_get_codec_dai(card, BYT_CODEC_DAI1); if (!codec_dai) codec_dai = snd_soc_card_get_codec_dai(card, BYT_CODEC_DAI2); if (!codec_dai) { dev_err(card->dev, "Codec dai not found; Unable to set platform clock\n"); return -EIO; } if (SND_SOC_DAPM_EVENT_ON(event)) { ret = clk_prepare_enable(priv->mclk); if (ret < 0) { dev_err(card->dev, "could not configure MCLK state"); return ret; } ret = byt_rt5651_prepare_and_enable_pll1(codec_dai, 48000, 50); } else { /* * Set codec clock source to internal clock before * turning off the platform clock. Codec needs clock * for Jack detection and button press */ ret = snd_soc_dai_set_sysclk(codec_dai, RT5651_SCLK_S_RCCLK, 48000 * 512, SND_SOC_CLOCK_IN); if (!ret) clk_disable_unprepare(priv->mclk); } if (ret < 0) { dev_err(card->dev, "can't set codec sysclk: %d\n", ret); return ret; } return 0; } static int rt5651_ext_amp_power_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_card *card = w->dapm->card; struct byt_rt5651_private *priv = snd_soc_card_get_drvdata(card); if (SND_SOC_DAPM_EVENT_ON(event)) gpiod_set_value_cansleep(priv->ext_amp_gpio, 1); else gpiod_set_value_cansleep(priv->ext_amp_gpio, 0); return 0; } static const struct snd_soc_dapm_widget byt_rt5651_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Internal Mic", NULL), SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_LINE("Line In", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("Ext Amp Power", SND_SOC_NOPM, 0, 0, rt5651_ext_amp_power_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), }; static const struct snd_soc_dapm_route byt_rt5651_audio_map[] = { {"Headphone", NULL, "Platform Clock"}, {"Headset Mic", NULL, "Platform Clock"}, {"Internal Mic", NULL, "Platform Clock"}, {"Speaker", NULL, "Platform Clock"}, {"Speaker", NULL, "Ext Amp Power"}, {"Line In", NULL, "Platform Clock"}, {"Headset Mic", NULL, "micbias1"}, /* lowercase for rt5651 */ {"Headphone", NULL, "HPOL"}, {"Headphone", NULL, "HPOR"}, {"Speaker", NULL, "LOUTL"}, {"Speaker", NULL, "LOUTR"}, {"IN2P", NULL, "Line In"}, {"IN2N", NULL, "Line In"}, }; static const struct snd_soc_dapm_route byt_rt5651_intmic_dmic_map[] = { {"DMIC L1", NULL, "Internal Mic"}, {"DMIC R1", NULL, "Internal Mic"}, {"IN2P", NULL, "Headset Mic"}, }; static const struct snd_soc_dapm_route byt_rt5651_intmic_in1_map[] = { {"Internal Mic", NULL, "micbias1"}, {"IN1P", NULL, "Internal Mic"}, {"IN3P", NULL, "Headset Mic"}, }; static const struct snd_soc_dapm_route byt_rt5651_intmic_in2_map[] = { {"Internal Mic", NULL, "micbias1"}, {"IN2P", NULL, "Internal Mic"}, {"IN3P", NULL, "Headset Mic"}, }; static const struct snd_soc_dapm_route byt_rt5651_intmic_in1_in2_map[] = { {"Internal Mic", NULL, "micbias1"}, {"IN1P", NULL, "Internal Mic"}, {"IN2P", NULL, "Internal Mic"}, {"IN3P", NULL, "Headset Mic"}, }; static const struct snd_soc_dapm_route byt_rt5651_ssp0_aif1_map[] = { {"ssp0 Tx", NULL, "modem_out"}, {"modem_in", NULL, "ssp0 Rx"}, {"AIF1 Playback", NULL, "ssp0 Tx"}, {"ssp0 Rx", NULL, "AIF1 Capture"}, }; static const struct snd_soc_dapm_route byt_rt5651_ssp0_aif2_map[] = { {"ssp0 Tx", NULL, "modem_out"}, {"modem_in", NULL, "ssp0 Rx"}, {"AIF2 Playback", NULL, "ssp0 Tx"}, {"ssp0 Rx", NULL, "AIF2 Capture"}, }; static const struct snd_soc_dapm_route byt_rt5651_ssp2_aif1_map[] = { {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx"}, {"codec_in1", NULL, "ssp2 Rx"}, {"AIF1 Playback", NULL, "ssp2 Tx"}, {"ssp2 Rx", NULL, "AIF1 Capture"}, }; static const struct snd_soc_dapm_route byt_rt5651_ssp2_aif2_map[] = { {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx"}, {"codec_in1", NULL, "ssp2 Rx"}, {"AIF2 Playback", NULL, "ssp2 Tx"}, {"ssp2 Rx", NULL, "AIF2 Capture"}, }; static const struct snd_kcontrol_new byt_rt5651_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Internal Mic"), SOC_DAPM_PIN_SWITCH("Speaker"), SOC_DAPM_PIN_SWITCH("Line In"), }; static struct snd_soc_jack_pin bytcr_jack_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int byt_rt5651_aif1_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); snd_pcm_format_t format = params_format(params); int rate = params_rate(params); int bclk_ratio; if (format == SNDRV_PCM_FORMAT_S16_LE) bclk_ratio = 32; else bclk_ratio = 50; return byt_rt5651_prepare_and_enable_pll1(codec_dai, rate, bclk_ratio); } static const struct acpi_gpio_params pov_p1006w_hp_detect = { 1, 0, false }; static const struct acpi_gpio_params pov_p1006w_ext_amp_en = { 2, 0, true }; static const struct acpi_gpio_mapping byt_rt5651_pov_p1006w_gpios[] = { { "hp-detect-gpios", &pov_p1006w_hp_detect, 1, }, { "ext-amp-enable-gpios", &pov_p1006w_ext_amp_en, 1, }, { }, }; static int byt_rt5651_pov_p1006w_quirk_cb(const struct dmi_system_id *id) { byt_rt5651_quirk = (unsigned long)id->driver_data; byt_rt5651_gpios = byt_rt5651_pov_p1006w_gpios; return 1; } static int byt_rt5651_quirk_cb(const struct dmi_system_id *id) { byt_rt5651_quirk = (unsigned long)id->driver_data; return 1; } static const struct dmi_system_id byt_rt5651_quirk_table[] = { { /* Chuwi Hi8 Pro (CWI513) */ .callback = byt_rt5651_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hampoo"), DMI_MATCH(DMI_PRODUCT_NAME, "X1D3_C806N"), }, .driver_data = (void *)(BYT_RT5651_DEFAULT_QUIRKS | BYT_RT5651_IN2_MAP | BYT_RT5651_HP_LR_SWAPPED | BYT_RT5651_MONO_SPEAKER), }, { /* Chuwi Vi8 Plus (CWI519) */ .callback = byt_rt5651_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hampoo"), DMI_MATCH(DMI_PRODUCT_NAME, "D2D3_Vi8A1"), }, .driver_data = (void *)(BYT_RT5651_DEFAULT_QUIRKS | BYT_RT5651_IN2_MAP | BYT_RT5651_HP_LR_SWAPPED | BYT_RT5651_MONO_SPEAKER), }, { /* Complet Electro Serv MY8307 */ .callback = byt_rt5651_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Complet Electro Serv"), DMI_MATCH(DMI_PRODUCT_NAME, "MY8307"), }, .driver_data = (void *)(BYT_RT5651_DEFAULT_QUIRKS | BYT_RT5651_IN2_MAP | BYT_RT5651_MONO_SPEAKER | BYT_RT5651_JD_NOT_INV), }, { /* I.T.Works TW701, Ployer Momo7w and Trekstor ST70416-6 * (these all use the same mainboard) */ .callback = byt_rt5651_quirk_cb, .matches = { DMI_MATCH(DMI_BIOS_VENDOR, "INSYDE Corp."), /* Partial match for all of itWORKS.G.WI71C.JGBMRBA, * TREK.G.WI71C.JGBMRBA0x and MOMO.G.WI71C.MABMRBA02 */ DMI_MATCH(DMI_BIOS_VERSION, ".G.WI71C."), }, .driver_data = (void *)(BYT_RT5651_DEFAULT_QUIRKS | BYT_RT5651_IN2_MAP | BYT_RT5651_SSP0_AIF1 | BYT_RT5651_MONO_SPEAKER), }, { /* Jumper EZpad 7 */ .callback = byt_rt5651_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Jumper"), DMI_MATCH(DMI_PRODUCT_NAME, "EZpad"), /* Jumper12x.WJ2012.bsBKRCP05 with the version dropped */ DMI_MATCH(DMI_BIOS_VERSION, "Jumper12x.WJ2012.bsBKRCP"), }, .driver_data = (void *)(BYT_RT5651_DEFAULT_QUIRKS | BYT_RT5651_IN2_MAP | BYT_RT5651_JD_NOT_INV), }, { /* KIANO SlimNote 14.2 */ .callback = byt_rt5651_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "KIANO"), DMI_MATCH(DMI_PRODUCT_NAME, "KIANO SlimNote 14.2"), }, .driver_data = (void *)(BYT_RT5651_DEFAULT_QUIRKS | BYT_RT5651_IN1_IN2_MAP), }, { /* Minnowboard Max B3 */ .callback = byt_rt5651_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Circuitco"), DMI_MATCH(DMI_PRODUCT_NAME, "Minnowboard Max B3 PLATFORM"), }, .driver_data = (void *)(BYT_RT5651_IN1_MAP), }, { /* Minnowboard Turbot */ .callback = byt_rt5651_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ADI"), DMI_MATCH(DMI_PRODUCT_NAME, "Minnowboard Turbot"), }, .driver_data = (void *)(BYT_RT5651_MCLK_EN | BYT_RT5651_IN1_MAP), }, { /* Point of View mobii wintab p1006w (v1.0) */ .callback = byt_rt5651_pov_p1006w_quirk_cb, .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Insyde"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "BayTrail"), /* Note 105b is Foxcon's USB/PCI vendor id */ DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "105B"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "0E57"), }, .driver_data = (void *)(BYT_RT5651_DMIC_MAP | BYT_RT5651_OVCD_TH_2000UA | BYT_RT5651_OVCD_SF_0P75 | BYT_RT5651_DMIC_EN | BYT_RT5651_MCLK_EN | BYT_RT5651_SSP0_AIF1), }, { /* VIOS LTH17 */ .callback = byt_rt5651_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "VIOS"), DMI_MATCH(DMI_PRODUCT_NAME, "LTH17"), }, .driver_data = (void *)(BYT_RT5651_IN1_IN2_MAP | BYT_RT5651_JD1_1 | BYT_RT5651_OVCD_TH_2000UA | BYT_RT5651_OVCD_SF_1P0 | BYT_RT5651_MCLK_EN), }, { /* Yours Y8W81 (and others using the same mainboard) */ .callback = byt_rt5651_quirk_cb, .matches = { DMI_MATCH(DMI_BIOS_VENDOR, "INSYDE Corp."), /* Partial match for all devs with a W86C mainboard */ DMI_MATCH(DMI_BIOS_VERSION, ".F.W86C."), }, .driver_data = (void *)(BYT_RT5651_DEFAULT_QUIRKS | BYT_RT5651_IN2_MAP | BYT_RT5651_SSP0_AIF1 | BYT_RT5651_MONO_SPEAKER), }, {} }; /* * Note this MUST be called before snd_soc_register_card(), so that the props * are in place before the codec component driver's probe function parses them. */ static int byt_rt5651_add_codec_device_props(struct device *i2c_dev, struct byt_rt5651_private *priv) { struct property_entry props[MAX_NO_PROPS] = {}; struct fwnode_handle *fwnode; int cnt = 0; int ret; props[cnt++] = PROPERTY_ENTRY_U32("realtek,jack-detect-source", BYT_RT5651_JDSRC(byt_rt5651_quirk)); props[cnt++] = PROPERTY_ENTRY_U32("realtek,over-current-threshold-microamp", BYT_RT5651_OVCD_TH(byt_rt5651_quirk) * 100); props[cnt++] = PROPERTY_ENTRY_U32("realtek,over-current-scale-factor", BYT_RT5651_OVCD_SF(byt_rt5651_quirk)); if (byt_rt5651_quirk & BYT_RT5651_DMIC_EN) props[cnt++] = PROPERTY_ENTRY_BOOL("realtek,dmic-en"); if (byt_rt5651_quirk & BYT_RT5651_JD_NOT_INV) props[cnt++] = PROPERTY_ENTRY_BOOL("realtek,jack-detect-not-inverted"); fwnode = fwnode_create_software_node(props, NULL); if (IS_ERR(fwnode)) { /* put_device(i2c_dev) is handled in caller */ return PTR_ERR(fwnode); } ret = device_add_software_node(i2c_dev, to_software_node(fwnode)); fwnode_handle_put(fwnode); return ret; } static int byt_rt5651_init(struct snd_soc_pcm_runtime *runtime) { struct snd_soc_card *card = runtime->card; struct snd_soc_component *codec = asoc_rtd_to_codec(runtime, 0)->component; struct byt_rt5651_private *priv = snd_soc_card_get_drvdata(card); const struct snd_soc_dapm_route *custom_map; int num_routes; int report; int ret; card->dapm.idle_bias_off = true; /* Start with RC clk for jack-detect (we disable MCLK below) */ if (byt_rt5651_quirk & BYT_RT5651_MCLK_EN) snd_soc_component_update_bits(codec, RT5651_GLB_CLK, RT5651_SCLK_SRC_MASK, RT5651_SCLK_SRC_RCCLK); switch (BYT_RT5651_MAP(byt_rt5651_quirk)) { case BYT_RT5651_IN1_MAP: custom_map = byt_rt5651_intmic_in1_map; num_routes = ARRAY_SIZE(byt_rt5651_intmic_in1_map); break; case BYT_RT5651_IN2_MAP: custom_map = byt_rt5651_intmic_in2_map; num_routes = ARRAY_SIZE(byt_rt5651_intmic_in2_map); break; case BYT_RT5651_IN1_IN2_MAP: custom_map = byt_rt5651_intmic_in1_in2_map; num_routes = ARRAY_SIZE(byt_rt5651_intmic_in1_in2_map); break; default: custom_map = byt_rt5651_intmic_dmic_map; num_routes = ARRAY_SIZE(byt_rt5651_intmic_dmic_map); } ret = snd_soc_dapm_add_routes(&card->dapm, custom_map, num_routes); if (ret) return ret; if (byt_rt5651_quirk & BYT_RT5651_SSP2_AIF2) { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5651_ssp2_aif2_map, ARRAY_SIZE(byt_rt5651_ssp2_aif2_map)); } else if (byt_rt5651_quirk & BYT_RT5651_SSP0_AIF1) { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5651_ssp0_aif1_map, ARRAY_SIZE(byt_rt5651_ssp0_aif1_map)); } else if (byt_rt5651_quirk & BYT_RT5651_SSP0_AIF2) { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5651_ssp0_aif2_map, ARRAY_SIZE(byt_rt5651_ssp0_aif2_map)); } else { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5651_ssp2_aif1_map, ARRAY_SIZE(byt_rt5651_ssp2_aif1_map)); } if (ret) return ret; ret = snd_soc_add_card_controls(card, byt_rt5651_controls, ARRAY_SIZE(byt_rt5651_controls)); if (ret) { dev_err(card->dev, "unable to add card controls\n"); return ret; } /* * The firmware might enable the clock at boot (this information * may or may not be reflected in the enable clock register). * To change the rate we must disable the clock first to cover * these cases. Due to common clock framework restrictions that * do not allow to disable a clock that has not been enabled, * we need to enable the clock first. */ ret = clk_prepare_enable(priv->mclk); if (!ret) clk_disable_unprepare(priv->mclk); if (byt_rt5651_quirk & BYT_RT5651_MCLK_25MHZ) ret = clk_set_rate(priv->mclk, 25000000); else ret = clk_set_rate(priv->mclk, 19200000); if (ret) dev_err(card->dev, "unable to set MCLK rate\n"); report = 0; if (BYT_RT5651_JDSRC(byt_rt5651_quirk)) report = SND_JACK_HEADSET | SND_JACK_BTN_0; else if (priv->hp_detect) report = SND_JACK_HEADSET; if (report) { ret = snd_soc_card_jack_new_pins(runtime->card, "Headset", report, &priv->jack, bytcr_jack_pins, ARRAY_SIZE(bytcr_jack_pins)); if (ret) { dev_err(runtime->dev, "jack creation failed %d\n", ret); return ret; } if (report & SND_JACK_BTN_0) snd_jack_set_key(priv->jack.jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); ret = snd_soc_component_set_jack(codec, &priv->jack, priv->hp_detect); if (ret) return ret; } return 0; } static int byt_rt5651_codec_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); int ret, bits; /* The DSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; channels->min = channels->max = 2; if ((byt_rt5651_quirk & BYT_RT5651_SSP0_AIF1) || (byt_rt5651_quirk & BYT_RT5651_SSP0_AIF2)) { /* set SSP0 to 16-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S16_LE); bits = 16; } else { /* set SSP2 to 24-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S24_LE); bits = 24; } /* * Default mode for SSP configuration is TDM 4 slot, override config * with explicit setting to I2S 2ch. The word length is set with * dai_set_tdm_slot() since there is no other API exposed */ ret = snd_soc_dai_set_fmt(asoc_rtd_to_cpu(rtd, 0), SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BP_FP ); if (ret < 0) { dev_err(rtd->dev, "can't set format to I2S, err %d\n", ret); return ret; } ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_cpu(rtd, 0), 0x3, 0x3, 2, bits); if (ret < 0) { dev_err(rtd->dev, "can't set I2S config, err %d\n", ret); return ret; } return 0; } static const unsigned int rates_48000[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_48000 = { .count = ARRAY_SIZE(rates_48000), .list = rates_48000, }; static int byt_rt5651_aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_48000); } static const struct snd_soc_ops byt_rt5651_aif1_ops = { .startup = byt_rt5651_aif1_startup, }; static const struct snd_soc_ops byt_rt5651_be_ssp2_ops = { .hw_params = byt_rt5651_aif1_hw_params, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp2_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp2-port"))); SND_SOC_DAILINK_DEF(ssp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10EC5651:00", "rt5651-aif1"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link byt_rt5651_dais[] = { [MERR_DPCM_AUDIO] = { .name = "Audio Port", .stream_name = "Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &byt_rt5651_aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &byt_rt5651_aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* CODEC<->CODEC link */ /* back ends */ { .name = "SSP2-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .be_hw_params_fixup = byt_rt5651_codec_fixup, .dpcm_playback = 1, .dpcm_capture = 1, .init = byt_rt5651_init, .ops = &byt_rt5651_be_ssp2_ops, SND_SOC_DAILINK_REG(ssp2_port, ssp2_codec, platform), }, }; /* SoC card */ static char byt_rt5651_codec_name[SND_ACPI_I2C_ID_LEN]; #if !IS_ENABLED(CONFIG_SND_SOC_INTEL_USER_FRIENDLY_LONG_NAMES) static char byt_rt5651_long_name[50]; /* = "bytcr-rt5651-*-spk-*-mic[-swapped-hp]" */ #endif static char byt_rt5651_components[50]; /* = "cfg-spk:* cfg-mic:*" */ static int byt_rt5651_suspend(struct snd_soc_card *card) { struct snd_soc_component *component; if (!BYT_RT5651_JDSRC(byt_rt5651_quirk)) return 0; for_each_card_components(card, component) { if (!strcmp(component->name, byt_rt5651_codec_name)) { dev_dbg(component->dev, "disabling jack detect before suspend\n"); snd_soc_component_set_jack(component, NULL, NULL); break; } } return 0; } static int byt_rt5651_resume(struct snd_soc_card *card) { struct byt_rt5651_private *priv = snd_soc_card_get_drvdata(card); struct snd_soc_component *component; if (!BYT_RT5651_JDSRC(byt_rt5651_quirk)) return 0; for_each_card_components(card, component) { if (!strcmp(component->name, byt_rt5651_codec_name)) { dev_dbg(component->dev, "re-enabling jack detect after resume\n"); snd_soc_component_set_jack(component, &priv->jack, priv->hp_detect); break; } } return 0; } /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bytcht rt5651" /* card name will be 'sof-bytcht rt5651' */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "bytcr-rt5651" #define DRIVER_NAME NULL /* card name will be used for driver name */ static struct snd_soc_card byt_rt5651_card = { .name = CARD_NAME, .driver_name = DRIVER_NAME, .owner = THIS_MODULE, .dai_link = byt_rt5651_dais, .num_links = ARRAY_SIZE(byt_rt5651_dais), .dapm_widgets = byt_rt5651_widgets, .num_dapm_widgets = ARRAY_SIZE(byt_rt5651_widgets), .dapm_routes = byt_rt5651_audio_map, .num_dapm_routes = ARRAY_SIZE(byt_rt5651_audio_map), .fully_routed = true, .suspend_pre = byt_rt5651_suspend, .resume_post = byt_rt5651_resume, }; static const struct acpi_gpio_params ext_amp_enable_gpios = { 0, 0, false }; static const struct acpi_gpio_mapping cht_rt5651_gpios[] = { /* * Some boards have I2cSerialBusV2, GpioIo, GpioInt as ACPI resources, * other boards may have I2cSerialBusV2, GpioInt, GpioIo instead. * We want the GpioIo one for the ext-amp-enable-gpio. */ { "ext-amp-enable-gpios", &ext_amp_enable_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO }, { }, }; struct acpi_chan_package { /* ACPICA seems to require 64 bit integers */ u64 aif_value; /* 1: AIF1, 2: AIF2 */ u64 mclock_value; /* usually 25MHz (0x17d7940), ignored */ }; static int snd_byt_rt5651_mc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; static const char * const mic_name[] = { "dmic", "in1", "in2", "in12" }; struct snd_soc_acpi_mach *mach = dev_get_platdata(dev); struct byt_rt5651_private *priv; const char *platform_name; struct acpi_device *adev; struct device *codec_dev; bool sof_parent; bool is_bytcr = false; int ret_val = 0; int dai_index = 0; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; /* register the soc card */ byt_rt5651_card.dev = dev; snd_soc_card_set_drvdata(&byt_rt5651_card, priv); /* fix index of codec dai */ for (i = 0; i < ARRAY_SIZE(byt_rt5651_dais); i++) { if (!strcmp(byt_rt5651_dais[i].codecs->name, "i2c-10EC5651:00")) { dai_index = i; break; } } /* fixup codec name based on HID */ adev = acpi_dev_get_first_match_dev(mach->id, NULL, -1); if (adev) { snprintf(byt_rt5651_codec_name, sizeof(byt_rt5651_codec_name), "i2c-%s", acpi_dev_name(adev)); byt_rt5651_dais[dai_index].codecs->name = byt_rt5651_codec_name; } else { dev_err(dev, "Error cannot find '%s' dev\n", mach->id); return -ENXIO; } codec_dev = acpi_get_first_physical_node(adev); acpi_dev_put(adev); if (!codec_dev) return -EPROBE_DEFER; priv->codec_dev = get_device(codec_dev); /* * swap SSP0 if bytcr is detected * (will be overridden if DMI quirk is detected) */ if (soc_intel_is_byt()) { if (mach->mach_params.acpi_ipc_irq_index == 0) is_bytcr = true; } if (is_bytcr) { /* * Baytrail CR platforms may have CHAN package in BIOS, try * to find relevant routing quirk based as done on Windows * platforms. We have to read the information directly from the * BIOS, at this stage the card is not created and the links * with the codec driver/pdata are non-existent */ struct acpi_chan_package chan_package = { 0 }; /* format specified: 2 64-bit integers */ struct acpi_buffer format = {sizeof("NN"), "NN"}; struct acpi_buffer state = {0, NULL}; struct snd_soc_acpi_package_context pkg_ctx; bool pkg_found = false; state.length = sizeof(chan_package); state.pointer = &chan_package; pkg_ctx.name = "CHAN"; pkg_ctx.length = 2; pkg_ctx.format = &format; pkg_ctx.state = &state; pkg_ctx.data_valid = false; pkg_found = snd_soc_acpi_find_package_from_hid(mach->id, &pkg_ctx); if (pkg_found) { if (chan_package.aif_value == 1) { dev_info(dev, "BIOS Routing: AIF1 connected\n"); byt_rt5651_quirk |= BYT_RT5651_SSP0_AIF1; } else if (chan_package.aif_value == 2) { dev_info(dev, "BIOS Routing: AIF2 connected\n"); byt_rt5651_quirk |= BYT_RT5651_SSP0_AIF2; } else { dev_info(dev, "BIOS Routing isn't valid, ignored\n"); pkg_found = false; } } if (!pkg_found) { /* no BIOS indications, assume SSP0-AIF2 connection */ byt_rt5651_quirk |= BYT_RT5651_SSP0_AIF2; } } /* check quirks before creating card */ dmi_check_system(byt_rt5651_quirk_table); if (quirk_override != -1) { dev_info(dev, "Overriding quirk 0x%lx => 0x%x\n", byt_rt5651_quirk, quirk_override); byt_rt5651_quirk = quirk_override; } /* Must be called before register_card, also see declaration comment. */ ret_val = byt_rt5651_add_codec_device_props(codec_dev, priv); if (ret_val) goto err_device; /* Cherry Trail devices use an external amplifier enable gpio */ if (soc_intel_is_cht() && !byt_rt5651_gpios) byt_rt5651_gpios = cht_rt5651_gpios; if (byt_rt5651_gpios) { devm_acpi_dev_add_driver_gpios(codec_dev, byt_rt5651_gpios); priv->ext_amp_gpio = devm_fwnode_gpiod_get(dev, codec_dev->fwnode, "ext-amp-enable", GPIOD_OUT_LOW, "speaker-amp"); if (IS_ERR(priv->ext_amp_gpio)) { ret_val = PTR_ERR(priv->ext_amp_gpio); switch (ret_val) { case -ENOENT: priv->ext_amp_gpio = NULL; break; default: dev_err(dev, "Failed to get ext-amp-enable GPIO: %d\n", ret_val); fallthrough; case -EPROBE_DEFER: goto err; } } priv->hp_detect = devm_fwnode_gpiod_get(dev, codec_dev->fwnode, "hp-detect", GPIOD_IN, "hp-detect"); if (IS_ERR(priv->hp_detect)) { ret_val = PTR_ERR(priv->hp_detect); switch (ret_val) { case -ENOENT: priv->hp_detect = NULL; break; default: dev_err(dev, "Failed to get hp-detect GPIO: %d\n", ret_val); fallthrough; case -EPROBE_DEFER: goto err; } } } log_quirks(dev); if ((byt_rt5651_quirk & BYT_RT5651_SSP2_AIF2) || (byt_rt5651_quirk & BYT_RT5651_SSP0_AIF2)) byt_rt5651_dais[dai_index].codecs->dai_name = "rt5651-aif2"; if ((byt_rt5651_quirk & BYT_RT5651_SSP0_AIF1) || (byt_rt5651_quirk & BYT_RT5651_SSP0_AIF2)) byt_rt5651_dais[dai_index].cpus->dai_name = "ssp0-port"; if (byt_rt5651_quirk & BYT_RT5651_MCLK_EN) { priv->mclk = devm_clk_get_optional(dev, "pmc_plt_clk_3"); if (IS_ERR(priv->mclk)) { ret_val = dev_err_probe(dev, PTR_ERR(priv->mclk), "Failed to get MCLK from pmc_plt_clk_3\n"); goto err; } /* * Fall back to bit clock usage when clock is not * available likely due to missing dependencies. */ if (!priv->mclk) byt_rt5651_quirk &= ~BYT_RT5651_MCLK_EN; } snprintf(byt_rt5651_components, sizeof(byt_rt5651_components), "cfg-spk:%s cfg-mic:%s%s", (byt_rt5651_quirk & BYT_RT5651_MONO_SPEAKER) ? "1" : "2", mic_name[BYT_RT5651_MAP(byt_rt5651_quirk)], (byt_rt5651_quirk & BYT_RT5651_HP_LR_SWAPPED) ? " cfg-hp:lrswap" : ""); byt_rt5651_card.components = byt_rt5651_components; #if !IS_ENABLED(CONFIG_SND_SOC_INTEL_USER_FRIENDLY_LONG_NAMES) snprintf(byt_rt5651_long_name, sizeof(byt_rt5651_long_name), "bytcr-rt5651-%s-spk-%s-mic%s", (byt_rt5651_quirk & BYT_RT5651_MONO_SPEAKER) ? "mono" : "stereo", mic_name[BYT_RT5651_MAP(byt_rt5651_quirk)], (byt_rt5651_quirk & BYT_RT5651_HP_LR_SWAPPED) ? "-hp-swapped" : ""); byt_rt5651_card.long_name = byt_rt5651_long_name; #endif /* override platform name, if required */ platform_name = mach->mach_params.platform; ret_val = snd_soc_fixup_dai_links_platform_name(&byt_rt5651_card, platform_name); if (ret_val) goto err; sof_parent = snd_soc_acpi_sof_parent(dev); /* set card and driver name */ if (sof_parent) { byt_rt5651_card.name = SOF_CARD_NAME; byt_rt5651_card.driver_name = SOF_DRIVER_NAME; } else { byt_rt5651_card.name = CARD_NAME; byt_rt5651_card.driver_name = DRIVER_NAME; } /* set pm ops */ if (sof_parent) dev->driver->pm = &snd_soc_pm_ops; ret_val = devm_snd_soc_register_card(dev, &byt_rt5651_card); if (ret_val) { dev_err(dev, "devm_snd_soc_register_card failed %d\n", ret_val); goto err; } platform_set_drvdata(pdev, &byt_rt5651_card); return ret_val; err: device_remove_software_node(priv->codec_dev); err_device: put_device(priv->codec_dev); return ret_val; } static void snd_byt_rt5651_mc_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); struct byt_rt5651_private *priv = snd_soc_card_get_drvdata(card); device_remove_software_node(priv->codec_dev); put_device(priv->codec_dev); } static struct platform_driver snd_byt_rt5651_mc_driver = { .driver = { .name = "bytcr_rt5651", }, .probe = snd_byt_rt5651_mc_probe, .remove_new = snd_byt_rt5651_mc_remove, }; module_platform_driver(snd_byt_rt5651_mc_driver); MODULE_DESCRIPTION("ASoC Intel(R) Baytrail CR Machine driver for RT5651"); MODULE_AUTHOR("Pierre-Louis Bossart <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:bytcr_rt5651");
linux-master
sound/soc/intel/boards/bytcr_rt5651.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation /* * sof_sdw_dmic - Helpers to handle dmic from generic machine driver */ #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dapm.h> #include "sof_sdw_common.h" static const struct snd_soc_dapm_widget dmic_widgets[] = { SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_route dmic_map[] = { /* digital mics */ {"DMic", NULL, "SoC DMIC"}, }; int sof_sdw_dmic_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_new_controls(&card->dapm, dmic_widgets, ARRAY_SIZE(dmic_widgets)); if (ret) { dev_err(card->dev, "DMic widget addition failed: %d\n", ret); /* Don't need to add routes if widget addition failed */ return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, dmic_map, ARRAY_SIZE(dmic_map)); if (ret) dev_err(card->dev, "DMic map addition failed: %d\n", ret); return ret; }
linux-master
sound/soc/intel/boards/sof_sdw_dmic.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation /* * sof_sdw_rt711 - Helpers to handle RT711 from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <linux/input.h> #include <linux/soundwire/sdw.h> #include <linux/soundwire/sdw_type.h> #include <sound/control.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dapm.h> #include <sound/jack.h> #include "sof_sdw_common.h" /* * Note this MUST be called before snd_soc_register_card(), so that the props * are in place before the codec component driver's probe function parses them. */ static int rt711_add_codec_device_props(struct device *sdw_dev) { struct property_entry props[MAX_NO_PROPS] = {}; struct fwnode_handle *fwnode; int ret; if (!SOF_JACK_JDSRC(sof_sdw_quirk)) return 0; props[0] = PROPERTY_ENTRY_U32("realtek,jd-src", SOF_JACK_JDSRC(sof_sdw_quirk)); fwnode = fwnode_create_software_node(props, NULL); if (IS_ERR(fwnode)) return PTR_ERR(fwnode); ret = device_add_software_node(sdw_dev, to_software_node(fwnode)); fwnode_handle_put(fwnode); return ret; } static const struct snd_soc_dapm_widget rt711_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), }; static const struct snd_soc_dapm_route rt711_map[] = { /* Headphones */ { "Headphone", NULL, "rt711 HP" }, { "rt711 MIC2", NULL, "Headset Mic" }, }; static const struct snd_kcontrol_new rt711_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), }; static struct snd_soc_jack_pin rt711_jack_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int rt711_rtd_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; struct mc_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_component *component = codec_dai->component; struct snd_soc_jack *jack; int ret; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s hs:rt711", card->components); if (!card->components) return -ENOMEM; ret = snd_soc_add_card_controls(card, rt711_controls, ARRAY_SIZE(rt711_controls)); if (ret) { dev_err(card->dev, "rt711 controls addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_new_controls(&card->dapm, rt711_widgets, ARRAY_SIZE(rt711_widgets)); if (ret) { dev_err(card->dev, "rt711 widgets addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, rt711_map, ARRAY_SIZE(rt711_map)); if (ret) { dev_err(card->dev, "rt711 map addition failed: %d\n", ret); return ret; } ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &ctx->sdw_headset, rt711_jack_pins, ARRAY_SIZE(rt711_jack_pins)); if (ret) { dev_err(rtd->card->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->sdw_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); ret = snd_soc_component_set_jack(component, jack, NULL); if (ret) dev_err(rtd->card->dev, "Headset Jack call-back failed: %d\n", ret); return ret; } int sof_sdw_rt711_exit(struct snd_soc_card *card, struct snd_soc_dai_link *dai_link) { struct mc_private *ctx = snd_soc_card_get_drvdata(card); if (!ctx->headset_codec_dev) return 0; device_remove_software_node(ctx->headset_codec_dev); put_device(ctx->headset_codec_dev); return 0; } int sof_sdw_rt711_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { struct mc_private *ctx = snd_soc_card_get_drvdata(card); struct device *sdw_dev; int ret; /* * headset should be initialized once. * Do it with dai link for playback. */ if (!playback) return 0; sdw_dev = bus_find_device_by_name(&sdw_bus_type, NULL, dai_links->codecs[0].name); if (!sdw_dev) return -EPROBE_DEFER; ret = rt711_add_codec_device_props(sdw_dev); if (ret < 0) { put_device(sdw_dev); return ret; } ctx->headset_codec_dev = sdw_dev; dai_links->init = rt711_rtd_init; return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_rt711.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2023 Intel Corporation /* * sof_sdw_cs42l42 - Helpers to handle CS42L42 from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <linux/input.h> #include <linux/soundwire/sdw.h> #include <linux/soundwire/sdw_type.h> #include <sound/control.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dapm.h> #include <sound/jack.h> #include "sof_sdw_common.h" static const struct snd_soc_dapm_widget cs42l42_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), }; static const struct snd_soc_dapm_route cs42l42_map[] = { /* HP jack connectors - unknown if we have jack detection */ {"Headphone", NULL, "cs42l42 HP"}, /* other jacks */ {"cs42l42 HS", NULL, "Headset Mic"}, }; static const struct snd_kcontrol_new cs42l42_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), }; static struct snd_soc_jack_pin cs42l42_jack_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int cs42l42_rtd_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; struct mc_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_component *component = codec_dai->component; struct snd_soc_jack *jack; int ret; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s hs:cs42l42", card->components); if (!card->components) return -ENOMEM; ret = snd_soc_add_card_controls(card, cs42l42_controls, ARRAY_SIZE(cs42l42_controls)); if (ret) { dev_err(card->dev, "cs42l42 control addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_new_controls(&card->dapm, cs42l42_widgets, ARRAY_SIZE(cs42l42_widgets)); if (ret) { dev_err(card->dev, "cs42l42 widgets addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, cs42l42_map, ARRAY_SIZE(cs42l42_map)); if (ret) { dev_err(card->dev, "cs42l42 map addition failed: %d\n", ret); return ret; } ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &ctx->sdw_headset, cs42l42_jack_pins, ARRAY_SIZE(cs42l42_jack_pins)); if (ret) { dev_err(rtd->card->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->sdw_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEDOWN); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOICECOMMAND); ret = snd_soc_component_set_jack(component, jack, NULL); if (ret) dev_err(rtd->card->dev, "Headset Jack call-back failed: %d\n", ret); return ret; } int sof_sdw_cs42l42_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { /* * headset should be initialized once. * Do it with dai link for playback. */ if (!playback) return 0; dai_links->init = cs42l42_rtd_init; return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_cs42l42.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2021 Intel Corporation. // Copyright(c) 2021 Nuvoton Corporation. /* * Intel SOF Machine Driver with Nuvoton headphone codec NAU8825 * and speaker codec RT1019P MAX98360a or MAX98373 */ #include <linux/i2c.h> #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/dmi.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/sof.h> #include <sound/soc-acpi.h> #include "../../codecs/nau8825.h" #include "../common/soc-intel-quirks.h" #include "hda_dsp_common.h" #include "sof_realtek_common.h" #include "sof_maxim_common.h" #define NAME_SIZE 32 #define SOF_NAU8825_SSP_CODEC(quirk) ((quirk) & GENMASK(2, 0)) #define SOF_NAU8825_SSP_CODEC_MASK (GENMASK(2, 0)) #define SOF_SPEAKER_AMP_PRESENT BIT(3) #define SOF_NAU8825_SSP_AMP_SHIFT 4 #define SOF_NAU8825_SSP_AMP_MASK (GENMASK(6, 4)) #define SOF_NAU8825_SSP_AMP(quirk) \ (((quirk) << SOF_NAU8825_SSP_AMP_SHIFT) & SOF_NAU8825_SSP_AMP_MASK) #define SOF_NAU8825_NUM_HDMIDEV_SHIFT 7 #define SOF_NAU8825_NUM_HDMIDEV_MASK (GENMASK(9, 7)) #define SOF_NAU8825_NUM_HDMIDEV(quirk) \ (((quirk) << SOF_NAU8825_NUM_HDMIDEV_SHIFT) & SOF_NAU8825_NUM_HDMIDEV_MASK) /* BT audio offload: reserve 3 bits for future */ #define SOF_BT_OFFLOAD_SSP_SHIFT 10 #define SOF_BT_OFFLOAD_SSP_MASK (GENMASK(12, 10)) #define SOF_BT_OFFLOAD_SSP(quirk) \ (((quirk) << SOF_BT_OFFLOAD_SSP_SHIFT) & SOF_BT_OFFLOAD_SSP_MASK) #define SOF_SSP_BT_OFFLOAD_PRESENT BIT(13) #define SOF_RT1019P_SPEAKER_AMP_PRESENT BIT(14) #define SOF_MAX98373_SPEAKER_AMP_PRESENT BIT(15) #define SOF_MAX98360A_SPEAKER_AMP_PRESENT BIT(16) #define SOF_RT1015P_SPEAKER_AMP_PRESENT BIT(17) #define SOF_NAU8318_SPEAKER_AMP_PRESENT BIT(18) static unsigned long sof_nau8825_quirk = SOF_NAU8825_SSP_CODEC(0); struct sof_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct sof_card_private { struct clk *mclk; struct snd_soc_jack sof_headset; struct list_head hdmi_pcm_list; }; static int sof_hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct sof_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; /* dai_link id is 1:1 mapped to the PCM device */ pcm->device = rtd->dai_link->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int sof_nau8825_codec_init(struct snd_soc_pcm_runtime *rtd) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_jack *jack; int ret; /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &ctx->sof_headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->sof_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); ret = snd_soc_component_set_jack(component, jack, NULL); if (ret) { dev_err(rtd->dev, "Headset Jack call-back failed: %d\n", ret); return ret; } return ret; }; static void sof_nau8825_codec_exit(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; snd_soc_component_set_jack(component, NULL, NULL); } static int sof_nau8825_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int clk_freq, ret; clk_freq = sof_dai_get_bclk(rtd); /* BCLK freq */ if (clk_freq <= 0) { dev_err(rtd->dev, "get bclk freq failed: %d\n", clk_freq); return -EINVAL; } /* Configure clock for codec */ ret = snd_soc_dai_set_sysclk(codec_dai, NAU8825_CLK_FLL_BLK, 0, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(codec_dai->dev, "can't set BCLK clock %d\n", ret); return ret; } /* Configure pll for codec */ ret = snd_soc_dai_set_pll(codec_dai, 0, 0, clk_freq, params_rate(params) * 256); if (ret < 0) { dev_err(codec_dai->dev, "can't set BCLK: %d\n", ret); return ret; } return ret; } static struct snd_soc_ops sof_nau8825_ops = { .hw_params = sof_nau8825_hw_params, }; static struct snd_soc_dai_link_component platform_component[] = { { /* name might be overridden during probe */ .name = "0000:00:1f.3" } }; static int sof_card_late_probe(struct snd_soc_card *card) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_dapm_context *dapm = &card->dapm; struct sof_hdmi_pcm *pcm; int err; if (sof_nau8825_quirk & SOF_MAX98373_SPEAKER_AMP_PRESENT) { /* Disable Left and Right Spk pin after boot */ snd_soc_dapm_disable_pin(dapm, "Left Spk"); snd_soc_dapm_disable_pin(dapm, "Right Spk"); err = snd_soc_dapm_sync(dapm); if (err < 0) return err; } if (list_empty(&ctx->hdmi_pcm_list)) return -EINVAL; pcm = list_first_entry(&ctx->hdmi_pcm_list, struct sof_hdmi_pcm, head); return hda_dsp_hdmi_build_controls(card, pcm->codec_dai->component); } static const struct snd_kcontrol_new sof_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Left Spk"), SOC_DAPM_PIN_SWITCH("Right Spk"), }; static const struct snd_kcontrol_new speaker_controls[] = { SOC_DAPM_PIN_SWITCH("Spk"), }; static const struct snd_soc_dapm_widget sof_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_SPK("Left Spk", NULL), SND_SOC_DAPM_SPK("Right Spk", NULL), }; static const struct snd_soc_dapm_widget speaker_widgets[] = { SND_SOC_DAPM_SPK("Spk", NULL), }; static const struct snd_soc_dapm_widget dmic_widgets[] = { SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_route sof_map[] = { /* HP jack connectors - unknown if we have jack detection */ { "Headphone Jack", NULL, "HPOL" }, { "Headphone Jack", NULL, "HPOR" }, /* other jacks */ { "MIC", NULL, "Headset Mic" }, }; static const struct snd_soc_dapm_route speaker_map[] = { /* speaker */ { "Spk", NULL, "Speaker" }, }; static const struct snd_soc_dapm_route dmic_map[] = { /* digital mics */ {"DMic", NULL, "SoC DMIC"}, }; static int speaker_codec_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_new_controls(&card->dapm, speaker_widgets, ARRAY_SIZE(speaker_widgets)); if (ret) { dev_err(rtd->dev, "unable to add dapm controls, ret %d\n", ret); /* Don't need to add routes if widget addition failed */ return ret; } ret = snd_soc_add_card_controls(card, speaker_controls, ARRAY_SIZE(speaker_controls)); if (ret) { dev_err(rtd->dev, "unable to add card controls, ret %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, speaker_map, ARRAY_SIZE(speaker_map)); if (ret) dev_err(rtd->dev, "Speaker map addition failed: %d\n", ret); return ret; } static int dmic_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_new_controls(&card->dapm, dmic_widgets, ARRAY_SIZE(dmic_widgets)); if (ret) { dev_err(card->dev, "DMic widget addition failed: %d\n", ret); /* Don't need to add routes if widget addition failed */ return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, dmic_map, ARRAY_SIZE(dmic_map)); if (ret) dev_err(card->dev, "DMic map addition failed: %d\n", ret); return ret; } /* sof audio machine driver for nau8825 codec */ static struct snd_soc_card sof_audio_card_nau8825 = { .name = "nau8825", /* the sof- prefix is added by the core */ .owner = THIS_MODULE, .controls = sof_controls, .num_controls = ARRAY_SIZE(sof_controls), .dapm_widgets = sof_widgets, .num_dapm_widgets = ARRAY_SIZE(sof_widgets), .dapm_routes = sof_map, .num_dapm_routes = ARRAY_SIZE(sof_map), .fully_routed = true, .late_probe = sof_card_late_probe, }; static struct snd_soc_dai_link_component nau8825_component[] = { { .name = "i2c-10508825:00", .dai_name = "nau8825-hifi", } }; static struct snd_soc_dai_link_component dmic_component[] = { { .name = "dmic-codec", .dai_name = "dmic-hifi", } }; static struct snd_soc_dai_link_component rt1019p_component[] = { { .name = "RTL1019:00", .dai_name = "HiFi", } }; static struct snd_soc_dai_link_component nau8318_components[] = { { .name = "NVTN2012:00", .dai_name = "nau8315-hifi", } }; static struct snd_soc_dai_link *sof_card_dai_links_create(struct device *dev, int ssp_codec, int ssp_amp, int dmic_be_num, int hdmi_num) { struct snd_soc_dai_link_component *idisp_components; struct snd_soc_dai_link_component *cpus; struct snd_soc_dai_link *links; int i, id = 0; links = devm_kcalloc(dev, sof_audio_card_nau8825.num_links, sizeof(struct snd_soc_dai_link), GFP_KERNEL); cpus = devm_kcalloc(dev, sof_audio_card_nau8825.num_links, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!links || !cpus) goto devm_err; /* codec SSP */ links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-Codec", ssp_codec); if (!links[id].name) goto devm_err; links[id].id = id; links[id].codecs = nau8825_component; links[id].num_codecs = ARRAY_SIZE(nau8825_component); links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].init = sof_nau8825_codec_init; links[id].exit = sof_nau8825_codec_exit; links[id].ops = &sof_nau8825_ops; links[id].dpcm_playback = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", ssp_codec); if (!links[id].cpus->dai_name) goto devm_err; id++; /* dmic */ if (dmic_be_num > 0) { /* at least we have dmic01 */ links[id].name = "dmic01"; links[id].cpus = &cpus[id]; links[id].cpus->dai_name = "DMIC01 Pin"; links[id].init = dmic_init; if (dmic_be_num > 1) { /* set up 2 BE links at most */ links[id + 1].name = "dmic16k"; links[id + 1].cpus = &cpus[id + 1]; links[id + 1].cpus->dai_name = "DMIC16k Pin"; dmic_be_num = 2; } } for (i = 0; i < dmic_be_num; i++) { links[id].id = id; links[id].num_cpus = 1; links[id].codecs = dmic_component; links[id].num_codecs = ARRAY_SIZE(dmic_component); links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].ignore_suspend = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; id++; } /* HDMI */ if (hdmi_num > 0) { idisp_components = devm_kcalloc(dev, hdmi_num, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!idisp_components) goto devm_err; } for (i = 1; i <= hdmi_num; i++) { links[id].name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d", i); if (!links[id].name) goto devm_err; links[id].id = id; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d Pin", i); if (!links[id].cpus->dai_name) goto devm_err; idisp_components[i - 1].name = "ehdaudio0D2"; idisp_components[i - 1].dai_name = devm_kasprintf(dev, GFP_KERNEL, "intel-hdmi-hifi%d", i); if (!idisp_components[i - 1].dai_name) goto devm_err; links[id].codecs = &idisp_components[i - 1]; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].init = sof_hdmi_init; links[id].dpcm_playback = 1; links[id].no_pcm = 1; id++; } /* speaker amp */ if (sof_nau8825_quirk & SOF_SPEAKER_AMP_PRESENT) { links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-Codec", ssp_amp); if (!links[id].name) goto devm_err; links[id].id = id; if (sof_nau8825_quirk & SOF_RT1019P_SPEAKER_AMP_PRESENT) { links[id].codecs = rt1019p_component; links[id].num_codecs = ARRAY_SIZE(rt1019p_component); links[id].init = speaker_codec_init; } else if (sof_nau8825_quirk & SOF_MAX98373_SPEAKER_AMP_PRESENT) { links[id].codecs = max_98373_components; links[id].num_codecs = ARRAY_SIZE(max_98373_components); links[id].init = max_98373_spk_codec_init; links[id].ops = &max_98373_ops; } else if (sof_nau8825_quirk & SOF_MAX98360A_SPEAKER_AMP_PRESENT) { max_98360a_dai_link(&links[id]); } else if (sof_nau8825_quirk & SOF_RT1015P_SPEAKER_AMP_PRESENT) { sof_rt1015p_dai_link(&links[id]); } else if (sof_nau8825_quirk & SOF_NAU8318_SPEAKER_AMP_PRESENT) { links[id].codecs = nau8318_components; links[id].num_codecs = ARRAY_SIZE(nau8318_components); links[id].init = speaker_codec_init; } else { goto devm_err; } links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].dpcm_playback = 1; /* feedback stream or firmware-generated echo reference */ links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", ssp_amp); if (!links[id].cpus->dai_name) goto devm_err; id++; } /* BT audio offload */ if (sof_nau8825_quirk & SOF_SSP_BT_OFFLOAD_PRESENT) { int port = (sof_nau8825_quirk & SOF_BT_OFFLOAD_SSP_MASK) >> SOF_BT_OFFLOAD_SSP_SHIFT; links[id].id = id; links[id].cpus = &cpus[id]; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", port); if (!links[id].cpus->dai_name) goto devm_err; links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-BT", port); if (!links[id].name) goto devm_err; links[id].codecs = &asoc_dummy_dlc; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].dpcm_playback = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].num_cpus = 1; } return links; devm_err: return NULL; } static int sof_audio_probe(struct platform_device *pdev) { struct snd_soc_dai_link *dai_links; struct snd_soc_acpi_mach *mach; struct sof_card_private *ctx; int dmic_be_num, hdmi_num; int ret, ssp_amp, ssp_codec; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; if (pdev->id_entry && pdev->id_entry->driver_data) sof_nau8825_quirk = (unsigned long)pdev->id_entry->driver_data; mach = pdev->dev.platform_data; /* A speaker amp might not be present when the quirk claims one is. * Detect this via whether the machine driver match includes quirk_data. */ if ((sof_nau8825_quirk & SOF_SPEAKER_AMP_PRESENT) && !mach->quirk_data) sof_nau8825_quirk &= ~SOF_SPEAKER_AMP_PRESENT; dev_dbg(&pdev->dev, "sof_nau8825_quirk = %lx\n", sof_nau8825_quirk); /* default number of DMIC DAI's */ dmic_be_num = 2; hdmi_num = (sof_nau8825_quirk & SOF_NAU8825_NUM_HDMIDEV_MASK) >> SOF_NAU8825_NUM_HDMIDEV_SHIFT; /* default number of HDMI DAI's */ if (!hdmi_num) hdmi_num = 3; ssp_amp = (sof_nau8825_quirk & SOF_NAU8825_SSP_AMP_MASK) >> SOF_NAU8825_SSP_AMP_SHIFT; ssp_codec = sof_nau8825_quirk & SOF_NAU8825_SSP_CODEC_MASK; /* compute number of dai links */ sof_audio_card_nau8825.num_links = 1 + dmic_be_num + hdmi_num; if (sof_nau8825_quirk & SOF_SPEAKER_AMP_PRESENT) sof_audio_card_nau8825.num_links++; if (sof_nau8825_quirk & SOF_MAX98373_SPEAKER_AMP_PRESENT) max_98373_set_codec_conf(&sof_audio_card_nau8825); else if (sof_nau8825_quirk & SOF_RT1015P_SPEAKER_AMP_PRESENT) sof_rt1015p_codec_conf(&sof_audio_card_nau8825); if (sof_nau8825_quirk & SOF_SSP_BT_OFFLOAD_PRESENT) sof_audio_card_nau8825.num_links++; dai_links = sof_card_dai_links_create(&pdev->dev, ssp_codec, ssp_amp, dmic_be_num, hdmi_num); if (!dai_links) return -ENOMEM; sof_audio_card_nau8825.dai_link = dai_links; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); sof_audio_card_nau8825.dev = &pdev->dev; /* set platform name for each dailink */ ret = snd_soc_fixup_dai_links_platform_name(&sof_audio_card_nau8825, mach->mach_params.platform); if (ret) return ret; snd_soc_card_set_drvdata(&sof_audio_card_nau8825, ctx); return devm_snd_soc_register_card(&pdev->dev, &sof_audio_card_nau8825); } static const struct platform_device_id board_ids[] = { { .name = "sof_nau8825", .driver_data = (kernel_ulong_t)(SOF_NAU8825_SSP_CODEC(0) | SOF_NAU8825_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "adl_rt1019p_8825", .driver_data = (kernel_ulong_t)(SOF_NAU8825_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1019P_SPEAKER_AMP_PRESENT | SOF_NAU8825_SSP_AMP(2) | SOF_NAU8825_NUM_HDMIDEV(4)), }, { .name = "adl_max98373_8825", .driver_data = (kernel_ulong_t)(SOF_NAU8825_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98373_SPEAKER_AMP_PRESENT | SOF_NAU8825_SSP_AMP(1) | SOF_NAU8825_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { /* The limitation of length of char array, shorten the name */ .name = "adl_mx98360a_8825", .driver_data = (kernel_ulong_t)(SOF_NAU8825_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98360A_SPEAKER_AMP_PRESENT | SOF_NAU8825_SSP_AMP(1) | SOF_NAU8825_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "adl_rt1015p_8825", .driver_data = (kernel_ulong_t)(SOF_NAU8825_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_RT1015P_SPEAKER_AMP_PRESENT | SOF_NAU8825_SSP_AMP(1) | SOF_NAU8825_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "adl_nau8318_8825", .driver_data = (kernel_ulong_t)(SOF_NAU8825_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_NAU8318_SPEAKER_AMP_PRESENT | SOF_NAU8825_SSP_AMP(1) | SOF_NAU8825_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "rpl_max98373_8825", .driver_data = (kernel_ulong_t)(SOF_NAU8825_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_MAX98373_SPEAKER_AMP_PRESENT | SOF_NAU8825_SSP_AMP(1) | SOF_NAU8825_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { .name = "rpl_nau8318_8825", .driver_data = (kernel_ulong_t)(SOF_NAU8825_SSP_CODEC(0) | SOF_SPEAKER_AMP_PRESENT | SOF_NAU8318_SPEAKER_AMP_PRESENT | SOF_NAU8825_SSP_AMP(1) | SOF_NAU8825_NUM_HDMIDEV(4) | SOF_BT_OFFLOAD_SSP(2) | SOF_SSP_BT_OFFLOAD_PRESENT), }, { } }; MODULE_DEVICE_TABLE(platform, board_ids); static struct platform_driver sof_audio = { .probe = sof_audio_probe, .driver = { .name = "sof_nau8825", .pm = &snd_soc_pm_ops, }, .id_table = board_ids, }; module_platform_driver(sof_audio) /* Module information */ MODULE_DESCRIPTION("SOF Audio Machine driver for NAU8825"); MODULE_AUTHOR("David Lin <[email protected]>"); MODULE_AUTHOR("Mac Chiang <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON); MODULE_IMPORT_NS(SND_SOC_INTEL_SOF_MAXIM_COMMON); MODULE_IMPORT_NS(SND_SOC_INTEL_SOF_REALTEK_COMMON);
linux-master
sound/soc/intel/boards/sof_nau8825.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Skylake I2S Machine Driver * * Copyright (C) 2014-2015, Intel Corporation. All rights reserved. * * Modified from: * Intel Broadwell Wildcatpoint SST Audio * * Copyright (C) 2013, Intel Corporation. All rights reserved. */ #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/soc.h> #include <sound/jack.h> #include <sound/pcm_params.h> #include "../../codecs/rt286.h" #include "../../codecs/hdac_hdmi.h" static struct snd_soc_jack skylake_headset; static struct snd_soc_jack skylake_hdmi[3]; struct skl_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct skl_rt286_private { struct list_head hdmi_pcm_list; }; enum { SKL_DPCM_AUDIO_PB = 0, SKL_DPCM_AUDIO_DB_PB, SKL_DPCM_AUDIO_CP, SKL_DPCM_AUDIO_REF_CP, SKL_DPCM_AUDIO_DMIC_CP, SKL_DPCM_AUDIO_HDMI1_PB, SKL_DPCM_AUDIO_HDMI2_PB, SKL_DPCM_AUDIO_HDMI3_PB, }; /* Headset jack detection DAPM pins */ static struct snd_soc_jack_pin skylake_headset_pins[] = { { .pin = "Mic Jack", .mask = SND_JACK_MICROPHONE, }, { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, }; static const struct snd_kcontrol_new skylake_controls[] = { SOC_DAPM_PIN_SWITCH("Speaker"), SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Mic Jack"), }; static const struct snd_soc_dapm_widget skylake_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_MIC("Mic Jack", NULL), SND_SOC_DAPM_MIC("DMIC2", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), SND_SOC_DAPM_SPK("HDMI1", NULL), SND_SOC_DAPM_SPK("HDMI2", NULL), SND_SOC_DAPM_SPK("HDMI3", NULL), }; static const struct snd_soc_dapm_route skylake_rt286_map[] = { /* speaker */ {"Speaker", NULL, "SPOR"}, {"Speaker", NULL, "SPOL"}, /* HP jack connectors - unknown if we have jack deteck */ {"Headphone Jack", NULL, "HPO Pin"}, /* other jacks */ {"MIC1", NULL, "Mic Jack"}, /* digital mics */ {"DMIC1 Pin", NULL, "DMIC2"}, {"DMic", NULL, "SoC DMIC"}, /* CODEC BE connections */ { "AIF1 Playback", NULL, "ssp0 Tx"}, { "ssp0 Tx", NULL, "codec0_out"}, { "ssp0 Tx", NULL, "codec1_out"}, { "codec0_in", NULL, "ssp0 Rx" }, { "codec1_in", NULL, "ssp0 Rx" }, { "ssp0 Rx", NULL, "AIF1 Capture" }, { "dmic01_hifi", NULL, "DMIC01 Rx" }, { "DMIC01 Rx", NULL, "DMIC AIF" }, { "hifi3", NULL, "iDisp3 Tx"}, { "iDisp3 Tx", NULL, "iDisp3_out"}, { "hifi2", NULL, "iDisp2 Tx"}, { "iDisp2 Tx", NULL, "iDisp2_out"}, { "hifi1", NULL, "iDisp1 Tx"}, { "iDisp1 Tx", NULL, "iDisp1_out"}, }; static int skylake_rt286_fe_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dapm_context *dapm; struct snd_soc_component *component = asoc_rtd_to_cpu(rtd, 0)->component; dapm = snd_soc_component_get_dapm(component); snd_soc_dapm_ignore_suspend(dapm, "Reference Capture"); return 0; } static int skylake_rt286_codec_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; int ret; ret = snd_soc_card_jack_new_pins(rtd->card, "Headset", SND_JACK_HEADSET | SND_JACK_BTN_0, &skylake_headset, skylake_headset_pins, ARRAY_SIZE(skylake_headset_pins)); if (ret) return ret; snd_soc_component_set_jack(component, &skylake_headset, NULL); snd_soc_dapm_ignore_suspend(&rtd->card->dapm, "SoC DMIC"); return 0; } static int skylake_hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct skl_rt286_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct skl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = SKL_DPCM_AUDIO_HDMI1_PB + dai->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static const unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static const unsigned int channels[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static int skl_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* * on this platform for PCM device we support, * 48Khz * stereo * 16 bit audio */ runtime->hw.channels_max = 2; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); return 0; } static const struct snd_soc_ops skylake_rt286_fe_ops = { .startup = skl_fe_startup, }; static int skylake_ssp0_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); /* The output is 48KHz, stereo, 16bits */ rate->min = rate->max = 48000; chan->min = chan->max = 2; /* set SSP0 to 24 bit */ snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); return 0; } static int skylake_rt286_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, RT286_SCLK_S_PLL, 24000000, SND_SOC_CLOCK_IN); if (ret < 0) dev_err(rtd->dev, "set codec sysclk failed: %d\n", ret); return ret; } static const struct snd_soc_ops skylake_rt286_ops = { .hw_params = skylake_rt286_hw_params, }; static int skylake_dmic_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); if (params_channels(params) == 2) chan->min = chan->max = 2; else chan->min = chan->max = 4; return 0; } static const unsigned int channels_dmic[] = { 2, 4, }; static const struct snd_pcm_hw_constraint_list constraints_dmic_channels = { .count = ARRAY_SIZE(channels_dmic), .list = channels_dmic, .mask = 0, }; static int skylake_dmic_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_max = 4; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_dmic_channels); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static const struct snd_soc_ops skylake_dmic_ops = { .startup = skylake_dmic_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("Deepbuffer Pin"))); SND_SOC_DAILINK_DEF(reference, DAILINK_COMP_ARRAY(COMP_CPU("Reference Pin"))); SND_SOC_DAILINK_DEF(dmic, DAILINK_COMP_ARRAY(COMP_CPU("DMIC Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(hdmi3, DAILINK_COMP_ARRAY(COMP_CPU("HDMI3 Pin"))); SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-INT343A:00", "rt286-aif1"))); SND_SOC_DAILINK_DEF(dmic01_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); /* skylake digital audio interface glue - connects codec <--> CPU */ static struct snd_soc_dai_link skylake_rt286_dais[] = { /* Front End DAI links */ [SKL_DPCM_AUDIO_PB] = { .name = "Skl Audio Port", .stream_name = "Audio", .nonatomic = 1, .dynamic = 1, .init = skylake_rt286_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST }, .dpcm_playback = 1, .ops = &skylake_rt286_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [SKL_DPCM_AUDIO_DB_PB] = { .name = "Skl Deepbuffer Port", .stream_name = "Deep Buffer Audio", .nonatomic = 1, .dynamic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST }, .dpcm_playback = 1, .ops = &skylake_rt286_fe_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, [SKL_DPCM_AUDIO_CP] = { .name = "Skl Audio Capture Port", .stream_name = "Audio Record", .nonatomic = 1, .dynamic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST }, .dpcm_capture = 1, .ops = &skylake_rt286_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [SKL_DPCM_AUDIO_REF_CP] = { .name = "Skl Audio Reference cap", .stream_name = "refcap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(reference, dummy, platform), }, [SKL_DPCM_AUDIO_DMIC_CP] = { .name = "Skl Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &skylake_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [SKL_DPCM_AUDIO_HDMI1_PB] = { .name = "Skl HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [SKL_DPCM_AUDIO_HDMI2_PB] = { .name = "Skl HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [SKL_DPCM_AUDIO_HDMI3_PB] = { .name = "Skl HDMI Port3", .stream_name = "Hdmi3", .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "SSP0-Codec", .id = 0, .no_pcm = 1, .init = skylake_rt286_codec_init, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = skylake_ssp0_fixup, .ops = &skylake_rt286_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec, platform), }, { .name = "dmic01", .id = 1, .be_hw_params_fixup = skylake_dmic_fixup, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic01_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 2, .init = skylake_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 3, .init = skylake_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 4, .init = skylake_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, }; #define NAME_SIZE 32 static int skylake_card_late_probe(struct snd_soc_card *card) { struct skl_rt286_private *ctx = snd_soc_card_get_drvdata(card); struct skl_hdmi_pcm *pcm; struct snd_soc_component *component = NULL; int err, i = 0; char jack_name[NAME_SIZE]; list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &skylake_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &skylake_hdmi[i]); if (err < 0) return err; i++; } if (!component) return -EINVAL; return hdac_hdmi_jack_port_init(component, &card->dapm); } /* skylake audio machine driver for SPT + RT286S */ static struct snd_soc_card skylake_rt286 = { .name = "skylake-rt286", .owner = THIS_MODULE, .dai_link = skylake_rt286_dais, .num_links = ARRAY_SIZE(skylake_rt286_dais), .controls = skylake_controls, .num_controls = ARRAY_SIZE(skylake_controls), .dapm_widgets = skylake_widgets, .num_dapm_widgets = ARRAY_SIZE(skylake_widgets), .dapm_routes = skylake_rt286_map, .num_dapm_routes = ARRAY_SIZE(skylake_rt286_map), .fully_routed = true, .late_probe = skylake_card_late_probe, }; static int skylake_audio_probe(struct platform_device *pdev) { struct skl_rt286_private *ctx; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); skylake_rt286.dev = &pdev->dev; snd_soc_card_set_drvdata(&skylake_rt286, ctx); return devm_snd_soc_register_card(&pdev->dev, &skylake_rt286); } static const struct platform_device_id skl_board_ids[] = { { .name = "skl_alc286s_i2s" }, { .name = "kbl_alc286s_i2s" }, { } }; MODULE_DEVICE_TABLE(platform, skl_board_ids); static struct platform_driver skylake_audio = { .probe = skylake_audio_probe, .driver = { .name = "skl_alc286s_i2s", .pm = &snd_soc_pm_ops, }, .id_table = skl_board_ids, }; module_platform_driver(skylake_audio) /* Module information */ MODULE_AUTHOR("Omair Mohammed Abdullah <[email protected]>"); MODULE_DESCRIPTION("Intel SST Audio for Skylake"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/boards/skl_rt286.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation // // sof_sdw_maxim - Helpers to handle maxim codecs // codec devices from generic machine driver #include <linux/device.h> #include <linux/errno.h> #include <sound/control.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dapm.h> #include "sof_sdw_common.h" #include "sof_maxim_common.h" static int maxim_part_id; #define SOF_SDW_PART_ID_MAX98363 0x8363 #define SOF_SDW_PART_ID_MAX98373 0x8373 static const struct snd_soc_dapm_widget maxim_widgets[] = { SND_SOC_DAPM_SPK("Left Spk", NULL), SND_SOC_DAPM_SPK("Right Spk", NULL), }; static const struct snd_kcontrol_new maxim_controls[] = { SOC_DAPM_PIN_SWITCH("Left Spk"), SOC_DAPM_PIN_SWITCH("Right Spk"), }; static int spk_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s spk:mx%04x", card->components, maxim_part_id); if (!card->components) return -ENOMEM; dev_dbg(card->dev, "soundwire maxim card components assigned : %s\n", card->components); ret = snd_soc_add_card_controls(card, maxim_controls, ARRAY_SIZE(maxim_controls)); if (ret) { dev_err(card->dev, "mx%04x ctrls addition failed: %d\n", maxim_part_id, ret); return ret; } ret = snd_soc_dapm_new_controls(&card->dapm, maxim_widgets, ARRAY_SIZE(maxim_widgets)); if (ret) { dev_err(card->dev, "mx%04x widgets addition failed: %d\n", maxim_part_id, ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, max_98373_dapm_routes, 2); if (ret) dev_err(rtd->dev, "failed to add first SPK map: %d\n", ret); return ret; } static int mx8373_enable_spk_pin(struct snd_pcm_substream *substream, bool enable) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; struct snd_soc_dai *cpu_dai; int ret; int j; /* set spk pin by playback only */ if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) return 0; cpu_dai = asoc_rtd_to_cpu(rtd, 0); for_each_rtd_codec_dais(rtd, j, codec_dai) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(cpu_dai->component); char pin_name[16]; snprintf(pin_name, ARRAY_SIZE(pin_name), "%s Spk", codec_dai->component->name_prefix); if (enable) ret = snd_soc_dapm_enable_pin(dapm, pin_name); else ret = snd_soc_dapm_disable_pin(dapm, pin_name); if (!ret) snd_soc_dapm_sync(dapm); } return 0; } static int mx8373_sdw_prepare(struct snd_pcm_substream *substream) { int ret; /* according to soc_pcm_prepare dai link prepare is called first */ ret = sdw_prepare(substream); if (ret < 0) return ret; return mx8373_enable_spk_pin(substream, true); } static int mx8373_sdw_hw_free(struct snd_pcm_substream *substream) { int ret; /* according to soc_pcm_hw_free dai link free is called first */ ret = sdw_hw_free(substream); if (ret < 0) return ret; return mx8373_enable_spk_pin(substream, false); } static const struct snd_soc_ops max_98373_sdw_ops = { .startup = sdw_startup, .prepare = mx8373_sdw_prepare, .trigger = sdw_trigger, .hw_params = sdw_hw_params, .hw_free = mx8373_sdw_hw_free, .shutdown = sdw_shutdown, }; static int mx8373_sdw_late_probe(struct snd_soc_card *card) { struct snd_soc_dapm_context *dapm = &card->dapm; /* Disable Left and Right Spk pin after boot */ snd_soc_dapm_disable_pin(dapm, "Left Spk"); snd_soc_dapm_disable_pin(dapm, "Right Spk"); return snd_soc_dapm_sync(dapm); } int sof_sdw_maxim_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { info->amp_num++; if (info->amp_num == 2) dai_links->init = spk_init; maxim_part_id = info->part_id; switch (maxim_part_id) { case SOF_SDW_PART_ID_MAX98363: /* Default ops are set in function init_dai_link. * called as part of function create_sdw_dailink */ break; case SOF_SDW_PART_ID_MAX98373: info->codec_card_late_probe = mx8373_sdw_late_probe; dai_links->ops = &max_98373_sdw_ops; break; default: dev_err(card->dev, "Invalid maxim_part_id %#x\n", maxim_part_id); return -EINVAL; } return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_maxim.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2020 Intel Corporation. All rights reserved. #include <linux/module.h> #include <linux/string.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dai.h> #include <sound/soc-dapm.h> #include <uapi/sound/asound.h> #include "sof_maxim_common.h" /* helper function to get the number of specific codec */ static unsigned int get_num_codecs(const char *hid) { struct acpi_device *adev; unsigned int dev_num = 0; for_each_acpi_dev_match(adev, hid, NULL, -1) dev_num++; return dev_num; } #define MAX_98373_PIN_NAME 16 const struct snd_soc_dapm_route max_98373_dapm_routes[] = { /* speaker */ { "Left Spk", NULL, "Left BE_OUT" }, { "Right Spk", NULL, "Right BE_OUT" }, }; EXPORT_SYMBOL_NS(max_98373_dapm_routes, SND_SOC_INTEL_SOF_MAXIM_COMMON); static struct snd_soc_codec_conf max_98373_codec_conf[] = { { .dlc = COMP_CODEC_CONF(MAX_98373_DEV0_NAME), .name_prefix = "Right", }, { .dlc = COMP_CODEC_CONF(MAX_98373_DEV1_NAME), .name_prefix = "Left", }, }; struct snd_soc_dai_link_component max_98373_components[] = { { /* For Right */ .name = MAX_98373_DEV0_NAME, .dai_name = MAX_98373_CODEC_DAI, }, { /* For Left */ .name = MAX_98373_DEV1_NAME, .dai_name = MAX_98373_CODEC_DAI, }, }; EXPORT_SYMBOL_NS(max_98373_components, SND_SOC_INTEL_SOF_MAXIM_COMMON); static int max_98373_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; int j; for_each_rtd_codec_dais(rtd, j, codec_dai) { if (!strcmp(codec_dai->component->name, MAX_98373_DEV0_NAME)) { /* DEV0 tdm slot configuration */ snd_soc_dai_set_tdm_slot(codec_dai, 0x03, 3, 8, 32); } if (!strcmp(codec_dai->component->name, MAX_98373_DEV1_NAME)) { /* DEV1 tdm slot configuration */ snd_soc_dai_set_tdm_slot(codec_dai, 0x0C, 3, 8, 32); } } return 0; } int max_98373_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; struct snd_soc_dai *cpu_dai; int j; int ret = 0; /* set spk pin by playback only */ if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) return 0; cpu_dai = asoc_rtd_to_cpu(rtd, 0); for_each_rtd_codec_dais(rtd, j, codec_dai) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(cpu_dai->component); char pin_name[MAX_98373_PIN_NAME]; snprintf(pin_name, ARRAY_SIZE(pin_name), "%s Spk", codec_dai->component->name_prefix); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: ret = snd_soc_dapm_enable_pin(dapm, pin_name); if (!ret) snd_soc_dapm_sync(dapm); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: ret = snd_soc_dapm_disable_pin(dapm, pin_name); if (!ret) snd_soc_dapm_sync(dapm); break; default: break; } } return ret; } EXPORT_SYMBOL_NS(max_98373_trigger, SND_SOC_INTEL_SOF_MAXIM_COMMON); struct snd_soc_ops max_98373_ops = { .hw_params = max_98373_hw_params, .trigger = max_98373_trigger, }; EXPORT_SYMBOL_NS(max_98373_ops, SND_SOC_INTEL_SOF_MAXIM_COMMON); int max_98373_spk_codec_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_add_routes(&card->dapm, max_98373_dapm_routes, ARRAY_SIZE(max_98373_dapm_routes)); if (ret) dev_err(rtd->dev, "Speaker map addition failed: %d\n", ret); return ret; } EXPORT_SYMBOL_NS(max_98373_spk_codec_init, SND_SOC_INTEL_SOF_MAXIM_COMMON); void max_98373_set_codec_conf(struct snd_soc_card *card) { card->codec_conf = max_98373_codec_conf; card->num_configs = ARRAY_SIZE(max_98373_codec_conf); } EXPORT_SYMBOL_NS(max_98373_set_codec_conf, SND_SOC_INTEL_SOF_MAXIM_COMMON); /* * Maxim MAX98390 */ static const struct snd_soc_dapm_route max_98390_dapm_routes[] = { /* speaker */ { "Left Spk", NULL, "Left BE_OUT" }, { "Right Spk", NULL, "Right BE_OUT" }, }; static const struct snd_kcontrol_new max_98390_tt_kcontrols[] = { SOC_DAPM_PIN_SWITCH("TL Spk"), SOC_DAPM_PIN_SWITCH("TR Spk"), }; static const struct snd_soc_dapm_widget max_98390_tt_dapm_widgets[] = { SND_SOC_DAPM_SPK("TL Spk", NULL), SND_SOC_DAPM_SPK("TR Spk", NULL), }; static const struct snd_soc_dapm_route max_98390_tt_dapm_routes[] = { /* Tweeter speaker */ { "TL Spk", NULL, "Tweeter Left BE_OUT" }, { "TR Spk", NULL, "Tweeter Right BE_OUT" }, }; static struct snd_soc_codec_conf max_98390_codec_conf[] = { { .dlc = COMP_CODEC_CONF(MAX_98390_DEV0_NAME), .name_prefix = "Right", }, { .dlc = COMP_CODEC_CONF(MAX_98390_DEV1_NAME), .name_prefix = "Left", }, { .dlc = COMP_CODEC_CONF(MAX_98390_DEV2_NAME), .name_prefix = "Tweeter Right", }, { .dlc = COMP_CODEC_CONF(MAX_98390_DEV3_NAME), .name_prefix = "Tweeter Left", }, }; static struct snd_soc_dai_link_component max_98390_components[] = { { .name = MAX_98390_DEV0_NAME, .dai_name = MAX_98390_CODEC_DAI, }, { .name = MAX_98390_DEV1_NAME, .dai_name = MAX_98390_CODEC_DAI, }, { .name = MAX_98390_DEV2_NAME, .dai_name = MAX_98390_CODEC_DAI, }, { .name = MAX_98390_DEV3_NAME, .dai_name = MAX_98390_CODEC_DAI, }, }; static const struct { unsigned int tx; unsigned int rx; } max_98390_tdm_mask[] = { {.tx = 0x01, .rx = 0x3}, {.tx = 0x02, .rx = 0x3}, {.tx = 0x04, .rx = 0x3}, {.tx = 0x08, .rx = 0x3}, }; static int max_98390_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; int i, ret; for_each_rtd_codec_dais(rtd, i, codec_dai) { if (i >= ARRAY_SIZE(max_98390_tdm_mask)) { dev_err(codec_dai->dev, "invalid codec index %d\n", i); return -ENODEV; } ret = snd_soc_dai_set_tdm_slot(codec_dai, max_98390_tdm_mask[i].tx, max_98390_tdm_mask[i].rx, 4, params_width(params)); if (ret < 0) { dev_err(codec_dai->dev, "fail to set tdm slot, ret %d\n", ret); return ret; } } return 0; } static int max_98390_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; unsigned int num_codecs = get_num_codecs(MAX_98390_ACPI_HID); int ret; switch (num_codecs) { case 4: /* add widgets/controls/dapm for tweeter speakers */ ret = snd_soc_dapm_new_controls(&card->dapm, max_98390_tt_dapm_widgets, ARRAY_SIZE(max_98390_tt_dapm_widgets)); if (ret) { dev_err(rtd->dev, "unable to add tweeter dapm widgets, ret %d\n", ret); /* Don't need to add routes if widget addition failed */ return ret; } ret = snd_soc_add_card_controls(card, max_98390_tt_kcontrols, ARRAY_SIZE(max_98390_tt_kcontrols)); if (ret) { dev_err(rtd->dev, "unable to add tweeter controls, ret %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, max_98390_tt_dapm_routes, ARRAY_SIZE(max_98390_tt_dapm_routes)); if (ret) { dev_err(rtd->dev, "unable to add tweeter dapm routes, ret %d\n", ret); return ret; } fallthrough; case 2: /* add regular speakers dapm route */ ret = snd_soc_dapm_add_routes(&card->dapm, max_98390_dapm_routes, ARRAY_SIZE(max_98390_dapm_routes)); if (ret) { dev_err(rtd->dev, "unable to add dapm routes, ret %d\n", ret); return ret; } break; default: dev_err(rtd->dev, "invalid codec number %d\n", num_codecs); return -EINVAL; } return ret; } static const struct snd_soc_ops max_98390_ops = { .hw_params = max_98390_hw_params, }; void max_98390_dai_link(struct device *dev, struct snd_soc_dai_link *link) { unsigned int num_codecs = get_num_codecs(MAX_98390_ACPI_HID); link->codecs = max_98390_components; switch (num_codecs) { case 2: case 4: link->num_codecs = num_codecs; break; default: dev_err(dev, "invalid codec number %d for %s\n", num_codecs, MAX_98390_ACPI_HID); break; } link->init = max_98390_init; link->ops = &max_98390_ops; } EXPORT_SYMBOL_NS(max_98390_dai_link, SND_SOC_INTEL_SOF_MAXIM_COMMON); void max_98390_set_codec_conf(struct device *dev, struct snd_soc_card *card) { unsigned int num_codecs = get_num_codecs(MAX_98390_ACPI_HID); card->codec_conf = max_98390_codec_conf; switch (num_codecs) { case 2: case 4: card->num_configs = num_codecs; break; default: dev_err(dev, "invalid codec number %d for %s\n", num_codecs, MAX_98390_ACPI_HID); break; } } EXPORT_SYMBOL_NS(max_98390_set_codec_conf, SND_SOC_INTEL_SOF_MAXIM_COMMON); /* * Maxim MAX98357A/MAX98360A */ static const struct snd_kcontrol_new max_98357a_kcontrols[] = { SOC_DAPM_PIN_SWITCH("Spk"), }; static const struct snd_soc_dapm_widget max_98357a_dapm_widgets[] = { SND_SOC_DAPM_SPK("Spk", NULL), }; static const struct snd_soc_dapm_route max_98357a_dapm_routes[] = { /* speaker */ {"Spk", NULL, "Speaker"}, }; static struct snd_soc_dai_link_component max_98357a_components[] = { { .name = MAX_98357A_DEV0_NAME, .dai_name = MAX_98357A_CODEC_DAI, } }; static struct snd_soc_dai_link_component max_98360a_components[] = { { .name = MAX_98360A_DEV0_NAME, .dai_name = MAX_98357A_CODEC_DAI, } }; static int max_98357a_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_new_controls(&card->dapm, max_98357a_dapm_widgets, ARRAY_SIZE(max_98357a_dapm_widgets)); if (ret) { dev_err(rtd->dev, "unable to add dapm controls, ret %d\n", ret); /* Don't need to add routes if widget addition failed */ return ret; } ret = snd_soc_add_card_controls(card, max_98357a_kcontrols, ARRAY_SIZE(max_98357a_kcontrols)); if (ret) { dev_err(rtd->dev, "unable to add card controls, ret %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, max_98357a_dapm_routes, ARRAY_SIZE(max_98357a_dapm_routes)); if (ret) dev_err(rtd->dev, "unable to add dapm routes, ret %d\n", ret); return ret; } void max_98357a_dai_link(struct snd_soc_dai_link *link) { link->codecs = max_98357a_components; link->num_codecs = ARRAY_SIZE(max_98357a_components); link->init = max_98357a_init; } EXPORT_SYMBOL_NS(max_98357a_dai_link, SND_SOC_INTEL_SOF_MAXIM_COMMON); void max_98360a_dai_link(struct snd_soc_dai_link *link) { link->codecs = max_98360a_components; link->num_codecs = ARRAY_SIZE(max_98360a_components); link->init = max_98357a_init; } EXPORT_SYMBOL_NS(max_98360a_dai_link, SND_SOC_INTEL_SOF_MAXIM_COMMON); MODULE_DESCRIPTION("ASoC Intel SOF Maxim helpers"); MODULE_LICENSE("GPL");
linux-master
sound/soc/intel/boards/sof_maxim_common.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation /* * sof_sdw_rt715 - Helpers to handle RT715 from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "sof_sdw_common.h" static int rt715_rtd_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s mic:rt715", card->components); if (!card->components) return -ENOMEM; return 0; } int sof_sdw_rt715_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { dai_links->init = rt715_rtd_init; return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_rt715.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2018 Intel Corporation. /* * Intel Geminilake I2S Machine Driver with MAX98357A & RT5682 Codecs * * Modified from: * Intel Apollolake I2S Machine driver */ #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/rt5682.h" #include "../../codecs/rt5682s.h" #include "../../codecs/hdac_hdmi.h" #include "hda_dsp_common.h" /* The platform clock outputs 19.2Mhz clock to codec as I2S MCLK */ #define GLK_PLAT_CLK_FREQ 19200000 #define RT5682_PLL_FREQ (48000 * 512) #define RT5682_DAI_NAME "rt5682-aif1" #define RT5682S_DAI_NAME "rt5682s-aif1" #define GLK_MAXIM_CODEC_DAI "HiFi" #define RT5682_DEV0_NAME "i2c-10EC5682:00" #define RT5682S_DEV0_NAME "i2c-RTL5682:00" #define MAXIM_DEV0_NAME "MX98357A:00" #define DUAL_CHANNEL 2 #define QUAD_CHANNEL 4 #define NAME_SIZE 32 static struct snd_soc_jack geminilake_hdmi[3]; struct glk_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct glk_card_private { struct snd_soc_jack geminilake_headset; struct list_head hdmi_pcm_list; bool common_hdmi_codec_drv; int is_rt5682s; }; enum { GLK_DPCM_AUDIO_PB = 0, GLK_DPCM_AUDIO_CP, GLK_DPCM_AUDIO_HS_PB, GLK_DPCM_AUDIO_ECHO_REF_CP, GLK_DPCM_AUDIO_REF_CP, GLK_DPCM_AUDIO_DMIC_CP, GLK_DPCM_AUDIO_HDMI1_PB, GLK_DPCM_AUDIO_HDMI2_PB, GLK_DPCM_AUDIO_HDMI3_PB, }; static const struct snd_kcontrol_new geminilake_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Spk"), }; static const struct snd_soc_dapm_widget geminilake_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_SPK("Spk", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), SND_SOC_DAPM_SPK("HDMI1", NULL), SND_SOC_DAPM_SPK("HDMI2", NULL), SND_SOC_DAPM_SPK("HDMI3", NULL), }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static const struct snd_soc_dapm_route geminilake_map[] = { /* HP jack connectors - unknown if we have jack detection */ { "Headphone Jack", NULL, "HPOL" }, { "Headphone Jack", NULL, "HPOR" }, /* speaker */ { "Spk", NULL, "Speaker" }, /* other jacks */ { "IN1P", NULL, "Headset Mic" }, /* digital mics */ { "DMic", NULL, "SoC DMIC" }, /* CODEC BE connections */ { "HiFi Playback", NULL, "ssp1 Tx" }, { "ssp1 Tx", NULL, "codec0_out" }, { "AIF1 Playback", NULL, "ssp2 Tx" }, { "ssp2 Tx", NULL, "codec1_out" }, { "codec0_in", NULL, "ssp2 Rx" }, { "ssp2 Rx", NULL, "AIF1 Capture" }, { "HDMI1", NULL, "hif5-0 Output" }, { "HDMI2", NULL, "hif6-0 Output" }, { "HDMI2", NULL, "hif7-0 Output" }, { "hifi3", NULL, "iDisp3 Tx" }, { "iDisp3 Tx", NULL, "iDisp3_out" }, { "hifi2", NULL, "iDisp2 Tx" }, { "iDisp2 Tx", NULL, "iDisp2_out" }, { "hifi1", NULL, "iDisp1 Tx" }, { "iDisp1 Tx", NULL, "iDisp1_out" }, /* DMIC */ { "dmic01_hifi", NULL, "DMIC01 Rx" }, { "DMIC01 Rx", NULL, "DMIC AIF" }, }; static int geminilake_ssp_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); /* The ADSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; chan->min = chan->max = DUAL_CHANNEL; /* set SSP to 24 bit */ snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); return 0; } static int geminilake_rt5682_codec_init(struct snd_soc_pcm_runtime *rtd) { struct glk_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_jack *jack; int pll_id, pll_source, clk_id, ret; if (ctx->is_rt5682s) { pll_id = RT5682S_PLL2; pll_source = RT5682S_PLL_S_MCLK; clk_id = RT5682S_SCLK_S_PLL2; } else { pll_id = RT5682_PLL1; pll_source = RT5682_PLL1_S_MCLK; clk_id = RT5682_SCLK_S_PLL1; } ret = snd_soc_dai_set_pll(codec_dai, pll_id, pll_source, GLK_PLAT_CLK_FREQ, RT5682_PLL_FREQ); if (ret < 0) { dev_err(rtd->dev, "can't set codec pll: %d\n", ret); return ret; } /* Configure sysclk for codec */ ret = snd_soc_dai_set_sysclk(codec_dai, clk_id, RT5682_PLL_FREQ, SND_SOC_CLOCK_IN); if (ret < 0) dev_err(rtd->dev, "snd_soc_dai_set_sysclk err = %d\n", ret); /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3 | SND_JACK_LINEOUT, &ctx->geminilake_headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->geminilake_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); ret = snd_soc_component_set_jack(component, jack, NULL); if (ret) { dev_err(rtd->dev, "Headset Jack call-back failed: %d\n", ret); return ret; } return ret; }; static int geminilake_rt5682_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; /* Set valid bitmask & configuration for I2S in 24 bit */ ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x0, 0x0, 2, 24); if (ret < 0) { dev_err(rtd->dev, "set TDM slot err:%d\n", ret); return ret; } return ret; } static struct snd_soc_ops geminilake_rt5682_ops = { .hw_params = geminilake_rt5682_hw_params, }; static int geminilake_hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct glk_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct glk_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = GLK_DPCM_AUDIO_HDMI1_PB + dai->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int geminilake_rt5682_fe_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *component = asoc_rtd_to_cpu(rtd, 0)->component; struct snd_soc_dapm_context *dapm; int ret; dapm = snd_soc_component_get_dapm(component); ret = snd_soc_dapm_ignore_suspend(dapm, "Reference Capture"); if (ret) { dev_err(rtd->dev, "Ref Cap ignore suspend failed %d\n", ret); return ret; } return ret; } static const unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static unsigned int channels_quad[] = { QUAD_CHANNEL, }; static struct snd_pcm_hw_constraint_list constraints_channels_quad = { .count = ARRAY_SIZE(channels_quad), .list = channels_quad, .mask = 0, }; static int geminilake_dmic_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); /* * set BE channel constraint as user FE channels */ chan->min = chan->max = 4; return 0; } static int geminilake_dmic_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_min = runtime->hw.channels_max = QUAD_CHANNEL; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels_quad); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static const struct snd_soc_ops geminilake_dmic_ops = { .startup = geminilake_dmic_startup, }; static const unsigned int rates_16000[] = { 16000, }; static const struct snd_pcm_hw_constraint_list constraints_16000 = { .count = ARRAY_SIZE(rates_16000), .list = rates_16000, }; static int geminilake_refcap_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_16000); }; static const struct snd_soc_ops geminilake_refcap_ops = { .startup = geminilake_refcap_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(system2, DAILINK_COMP_ARRAY(COMP_CPU("System Pin2"))); SND_SOC_DAILINK_DEF(echoref, DAILINK_COMP_ARRAY(COMP_CPU("Echoref Pin"))); SND_SOC_DAILINK_DEF(reference, DAILINK_COMP_ARRAY(COMP_CPU("Reference Pin"))); SND_SOC_DAILINK_DEF(dmic, DAILINK_COMP_ARRAY(COMP_CPU("DMIC Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(hdmi3, DAILINK_COMP_ARRAY(COMP_CPU("HDMI3 Pin"))); SND_SOC_DAILINK_DEF(ssp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP1 Pin"))); SND_SOC_DAILINK_DEF(ssp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC(MAXIM_DEV0_NAME, GLK_MAXIM_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP2 Pin"))); SND_SOC_DAILINK_DEF(ssp2_codec_5682, DAILINK_COMP_ARRAY(COMP_CODEC(RT5682_DEV0_NAME, RT5682_DAI_NAME))); SND_SOC_DAILINK_DEF(ssp2_codec_5682s, DAILINK_COMP_ARRAY(COMP_CODEC(RT5682S_DEV0_NAME, RT5682S_DAI_NAME))); SND_SOC_DAILINK_DEF(dmic_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:0e.0"))); /* geminilake digital audio interface glue - connects codec <--> CPU */ static struct snd_soc_dai_link geminilake_dais[] = { /* Front End DAI links */ [GLK_DPCM_AUDIO_PB] = { .name = "Glk Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .init = geminilake_rt5682_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, SND_SOC_DAILINK_REG(system, dummy, platform), }, [GLK_DPCM_AUDIO_CP] = { .name = "Glk Audio Capture Port", .stream_name = "Audio Record", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, SND_SOC_DAILINK_REG(system, dummy, platform), }, [GLK_DPCM_AUDIO_HS_PB] = { .name = "Glk Audio Headset Playback", .stream_name = "Headset Audio", .dpcm_playback = 1, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(system2, dummy, platform), }, [GLK_DPCM_AUDIO_ECHO_REF_CP] = { .name = "Glk Audio Echo Reference cap", .stream_name = "Echoreference Capture", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(echoref, dummy, platform), }, [GLK_DPCM_AUDIO_REF_CP] = { .name = "Glk Audio Reference cap", .stream_name = "Refcap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &geminilake_refcap_ops, SND_SOC_DAILINK_REG(reference, dummy, platform), }, [GLK_DPCM_AUDIO_DMIC_CP] = { .name = "Glk Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &geminilake_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [GLK_DPCM_AUDIO_HDMI1_PB] = { .name = "Glk HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [GLK_DPCM_AUDIO_HDMI2_PB] = { .name = "Glk HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [GLK_DPCM_AUDIO_HDMI3_PB] = { .name = "Glk HDMI Port3", .stream_name = "Hdmi3", .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, /* Back End DAI links */ { /* SSP1 - Codec */ .name = "SSP1-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = geminilake_ssp_fixup, .dpcm_playback = 1, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_codec, platform), }, { /* SSP2 - Codec */ .name = "SSP2-Codec", .id = 1, .no_pcm = 1, .init = geminilake_rt5682_codec_init, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = geminilake_ssp_fixup, .ops = &geminilake_rt5682_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp2_pin, ssp2_codec_5682, platform), }, { .name = "dmic01", .id = 2, .ignore_suspend = 1, .be_hw_params_fixup = geminilake_dmic_fixup, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 3, .init = geminilake_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = geminilake_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 5, .init = geminilake_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, }; static int glk_card_late_probe(struct snd_soc_card *card) { struct glk_card_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_component *component = NULL; char jack_name[NAME_SIZE]; struct glk_hdmi_pcm *pcm; int err; int i = 0; if (list_empty(&ctx->hdmi_pcm_list)) return -EINVAL; if (ctx->common_hdmi_codec_drv) { pcm = list_first_entry(&ctx->hdmi_pcm_list, struct glk_hdmi_pcm, head); component = pcm->codec_dai->component; return hda_dsp_hdmi_build_controls(card, component); } list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &geminilake_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &geminilake_hdmi[i]); if (err < 0) return err; i++; } return hdac_hdmi_jack_port_init(component, &card->dapm); } /* geminilake audio machine driver for SPT + RT5682 */ static struct snd_soc_card glk_audio_card_rt5682_m98357a = { .name = "glkrt5682max", .owner = THIS_MODULE, .dai_link = geminilake_dais, .num_links = ARRAY_SIZE(geminilake_dais), .controls = geminilake_controls, .num_controls = ARRAY_SIZE(geminilake_controls), .dapm_widgets = geminilake_widgets, .num_dapm_widgets = ARRAY_SIZE(geminilake_widgets), .dapm_routes = geminilake_map, .num_dapm_routes = ARRAY_SIZE(geminilake_map), .fully_routed = true, .late_probe = glk_card_late_probe, }; static int geminilake_audio_probe(struct platform_device *pdev) { struct glk_card_private *ctx; struct snd_soc_acpi_mach *mach; const char *platform_name; struct snd_soc_card *card; int ret, i; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; /* Detect the headset codec variant */ if (acpi_dev_present("RTL5682", NULL, -1)) { /* ALC5682I-VS is detected */ ctx->is_rt5682s = 1; for (i = 0; i < glk_audio_card_rt5682_m98357a.num_links; i++) { if (strcmp(geminilake_dais[i].name, "SSP2-Codec")) continue; /* update the dai link to use rt5682s codec */ geminilake_dais[i].codecs = ssp2_codec_5682s; geminilake_dais[i].num_codecs = ARRAY_SIZE(ssp2_codec_5682s); break; } } INIT_LIST_HEAD(&ctx->hdmi_pcm_list); card = &glk_audio_card_rt5682_m98357a; card->dev = &pdev->dev; snd_soc_card_set_drvdata(card, ctx); /* override platform name, if required */ mach = pdev->dev.platform_data; platform_name = mach->mach_params.platform; ret = snd_soc_fixup_dai_links_platform_name(card, platform_name); if (ret) return ret; ctx->common_hdmi_codec_drv = mach->mach_params.common_hdmi_codec_drv; return devm_snd_soc_register_card(&pdev->dev, card); } static const struct platform_device_id glk_board_ids[] = { { .name = "glk_rt5682_mx98357a", .driver_data = (kernel_ulong_t)&glk_audio_card_rt5682_m98357a, }, { } }; MODULE_DEVICE_TABLE(platform, glk_board_ids); static struct platform_driver geminilake_audio = { .probe = geminilake_audio_probe, .driver = { .name = "glk_rt5682_max98357a", .pm = &snd_soc_pm_ops, }, .id_table = glk_board_ids, }; module_platform_driver(geminilake_audio) /* Module information */ MODULE_DESCRIPTION("Geminilake Audio Machine driver-RT5682 & MAX98357A in I2S mode"); MODULE_AUTHOR("Naveen Manohar <[email protected]>"); MODULE_AUTHOR("Harsha Priya <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON);
linux-master
sound/soc/intel/boards/glk_rt5682_max98357a.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Broxton-P I2S Machine Driver * * Copyright (C) 2014-2016, Intel Corporation. All rights reserved. * * Modified from: * Intel Skylake I2S Machine driver */ #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/jack.h> #include <sound/pcm_params.h> #include "../../codecs/hdac_hdmi.h" #include "../../codecs/rt298.h" #include "hda_dsp_common.h" /* Headset jack detection DAPM pins */ static struct snd_soc_jack broxton_headset; static struct snd_soc_jack broxton_hdmi[3]; struct bxt_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct bxt_rt286_private { struct list_head hdmi_pcm_list; bool common_hdmi_codec_drv; }; enum { BXT_DPCM_AUDIO_PB = 0, BXT_DPCM_AUDIO_CP, BXT_DPCM_AUDIO_REF_CP, BXT_DPCM_AUDIO_DMIC_CP, BXT_DPCM_AUDIO_HDMI1_PB, BXT_DPCM_AUDIO_HDMI2_PB, BXT_DPCM_AUDIO_HDMI3_PB, }; static struct snd_soc_jack_pin broxton_headset_pins[] = { { .pin = "Mic Jack", .mask = SND_JACK_MICROPHONE, }, { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, }; static const struct snd_kcontrol_new broxton_controls[] = { SOC_DAPM_PIN_SWITCH("Speaker"), SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Mic Jack"), }; static const struct snd_soc_dapm_widget broxton_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_MIC("Mic Jack", NULL), SND_SOC_DAPM_MIC("DMIC2", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), SND_SOC_DAPM_SPK("HDMI1", NULL), SND_SOC_DAPM_SPK("HDMI2", NULL), SND_SOC_DAPM_SPK("HDMI3", NULL), }; static const struct snd_soc_dapm_route broxton_rt298_map[] = { /* speaker */ {"Speaker", NULL, "SPOR"}, {"Speaker", NULL, "SPOL"}, /* HP jack connectors - unknown if we have jack detect */ {"Headphone Jack", NULL, "HPO Pin"}, /* other jacks */ {"MIC1", NULL, "Mic Jack"}, /* digital mics */ {"DMIC1 Pin", NULL, "DMIC2"}, {"DMic", NULL, "SoC DMIC"}, {"HDMI1", NULL, "hif5-0 Output"}, {"HDMI2", NULL, "hif6-0 Output"}, {"HDMI2", NULL, "hif7-0 Output"}, /* CODEC BE connections */ { "AIF1 Playback", NULL, "ssp5 Tx"}, { "ssp5 Tx", NULL, "codec0_out"}, { "ssp5 Tx", NULL, "codec1_out"}, { "codec0_in", NULL, "ssp5 Rx" }, { "ssp5 Rx", NULL, "AIF1 Capture" }, { "dmic01_hifi", NULL, "DMIC01 Rx" }, { "DMIC01 Rx", NULL, "Capture" }, { "hifi3", NULL, "iDisp3 Tx"}, { "iDisp3 Tx", NULL, "iDisp3_out"}, { "hifi2", NULL, "iDisp2 Tx"}, { "iDisp2 Tx", NULL, "iDisp2_out"}, { "hifi1", NULL, "iDisp1 Tx"}, { "iDisp1 Tx", NULL, "iDisp1_out"}, }; static const struct snd_soc_dapm_route geminilake_rt298_map[] = { /* speaker */ {"Speaker", NULL, "SPOR"}, {"Speaker", NULL, "SPOL"}, /* HP jack connectors - unknown if we have jack detect */ {"Headphone Jack", NULL, "HPO Pin"}, /* other jacks */ {"MIC1", NULL, "Mic Jack"}, /* digital mics */ {"DMIC1 Pin", NULL, "DMIC2"}, {"DMic", NULL, "SoC DMIC"}, {"HDMI1", NULL, "hif5-0 Output"}, {"HDMI2", NULL, "hif6-0 Output"}, {"HDMI2", NULL, "hif7-0 Output"}, /* CODEC BE connections */ { "AIF1 Playback", NULL, "ssp2 Tx"}, { "ssp2 Tx", NULL, "codec0_out"}, { "ssp2 Tx", NULL, "codec1_out"}, { "codec0_in", NULL, "ssp2 Rx" }, { "ssp2 Rx", NULL, "AIF1 Capture" }, { "dmic01_hifi", NULL, "DMIC01 Rx" }, { "DMIC01 Rx", NULL, "Capture" }, { "dmic_voice", NULL, "DMIC16k Rx" }, { "DMIC16k Rx", NULL, "Capture" }, { "hifi3", NULL, "iDisp3 Tx"}, { "iDisp3 Tx", NULL, "iDisp3_out"}, { "hifi2", NULL, "iDisp2 Tx"}, { "iDisp2 Tx", NULL, "iDisp2_out"}, { "hifi1", NULL, "iDisp1 Tx"}, { "iDisp1 Tx", NULL, "iDisp1_out"}, }; static int broxton_rt298_fe_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dapm_context *dapm; struct snd_soc_component *component = asoc_rtd_to_cpu(rtd, 0)->component; dapm = snd_soc_component_get_dapm(component); snd_soc_dapm_ignore_suspend(dapm, "Reference Capture"); return 0; } static int broxton_rt298_codec_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; int ret = 0; ret = snd_soc_card_jack_new_pins(rtd->card, "Headset", SND_JACK_HEADSET | SND_JACK_BTN_0, &broxton_headset, broxton_headset_pins, ARRAY_SIZE(broxton_headset_pins)); if (ret) return ret; snd_soc_component_set_jack(component, &broxton_headset, NULL); snd_soc_dapm_ignore_suspend(&rtd->card->dapm, "SoC DMIC"); return 0; } static int broxton_hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct bxt_rt286_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct bxt_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = BXT_DPCM_AUDIO_HDMI1_PB + dai->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int broxton_ssp5_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); /* The ADSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; chan->min = chan->max = 2; /* set SSP5 to 24 bit */ snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); return 0; } static int broxton_rt298_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, RT298_SCLK_S_PLL, 19200000, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "can't set codec sysclk configuration\n"); return ret; } return ret; } static const struct snd_soc_ops broxton_rt298_ops = { .hw_params = broxton_rt298_hw_params, }; static const unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static int broxton_dmic_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); chan->min = chan->max = 4; return 0; } static const unsigned int channels_dmic[] = { 1, 2, 3, 4, }; static const struct snd_pcm_hw_constraint_list constraints_dmic_channels = { .count = ARRAY_SIZE(channels_dmic), .list = channels_dmic, .mask = 0, }; static int broxton_dmic_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_max = 4; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_dmic_channels); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static const struct snd_soc_ops broxton_dmic_ops = { .startup = broxton_dmic_startup, }; static const unsigned int channels[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static int bxt_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* * on this platform for PCM device we support: * 48Khz * stereo * 16-bit audio */ runtime->hw.channels_max = 2; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); return 0; } static const struct snd_soc_ops broxton_rt286_fe_ops = { .startup = bxt_fe_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(reference, DAILINK_COMP_ARRAY(COMP_CPU("Reference Pin"))); SND_SOC_DAILINK_DEF(dmic, DAILINK_COMP_ARRAY(COMP_CPU("DMIC Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(hdmi3, DAILINK_COMP_ARRAY(COMP_CPU("HDMI3 Pin"))); SND_SOC_DAILINK_DEF(ssp5_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP5 Pin"))); SND_SOC_DAILINK_DEF(ssp5_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-INT343A:00", "rt298-aif1"))); SND_SOC_DAILINK_DEF(dmic_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(dmic16k, DAILINK_COMP_ARRAY(COMP_CPU("DMIC16k Pin"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:0e.0"))); /* broxton digital audio interface glue - connects codec <--> CPU */ static struct snd_soc_dai_link broxton_rt298_dais[] = { /* Front End DAI links */ [BXT_DPCM_AUDIO_PB] = { .name = "Bxt Audio Port", .stream_name = "Audio", .nonatomic = 1, .dynamic = 1, .init = broxton_rt298_fe_init, .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &broxton_rt286_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [BXT_DPCM_AUDIO_CP] = { .name = "Bxt Audio Capture Port", .stream_name = "Audio Record", .nonatomic = 1, .dynamic = 1, .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, .ops = &broxton_rt286_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [BXT_DPCM_AUDIO_REF_CP] = { .name = "Bxt Audio Reference cap", .stream_name = "refcap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(reference, dummy, platform), }, [BXT_DPCM_AUDIO_DMIC_CP] = { .name = "Bxt Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &broxton_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [BXT_DPCM_AUDIO_HDMI1_PB] = { .name = "Bxt HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [BXT_DPCM_AUDIO_HDMI2_PB] = { .name = "Bxt HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [BXT_DPCM_AUDIO_HDMI3_PB] = { .name = "Bxt HDMI Port3", .stream_name = "Hdmi3", .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, /* Back End DAI links */ { /* SSP5 - Codec */ .name = "SSP5-Codec", .id = 0, .no_pcm = 1, .init = broxton_rt298_codec_init, .dai_fmt = SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = broxton_ssp5_fixup, .ops = &broxton_rt298_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp5_pin, ssp5_codec, platform), }, { .name = "dmic01", .id = 1, .be_hw_params_fixup = broxton_dmic_fixup, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "dmic16k", .id = 2, .be_hw_params_fixup = broxton_dmic_fixup, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic16k, dmic_codec, platform), }, { .name = "iDisp1", .id = 3, .init = broxton_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = broxton_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 5, .init = broxton_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, }; #define NAME_SIZE 32 static int bxt_card_late_probe(struct snd_soc_card *card) { struct bxt_rt286_private *ctx = snd_soc_card_get_drvdata(card); struct bxt_hdmi_pcm *pcm; struct snd_soc_component *component = NULL; int err, i = 0; char jack_name[NAME_SIZE]; if (list_empty(&ctx->hdmi_pcm_list)) return -EINVAL; if (ctx->common_hdmi_codec_drv) { pcm = list_first_entry(&ctx->hdmi_pcm_list, struct bxt_hdmi_pcm, head); component = pcm->codec_dai->component; return hda_dsp_hdmi_build_controls(card, component); } list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &broxton_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &broxton_hdmi[i]); if (err < 0) return err; i++; } return hdac_hdmi_jack_port_init(component, &card->dapm); } /* broxton audio machine driver for SPT + RT298S */ static struct snd_soc_card broxton_rt298 = { .name = "broxton-rt298", .owner = THIS_MODULE, .dai_link = broxton_rt298_dais, .num_links = ARRAY_SIZE(broxton_rt298_dais), .controls = broxton_controls, .num_controls = ARRAY_SIZE(broxton_controls), .dapm_widgets = broxton_widgets, .num_dapm_widgets = ARRAY_SIZE(broxton_widgets), .dapm_routes = broxton_rt298_map, .num_dapm_routes = ARRAY_SIZE(broxton_rt298_map), .fully_routed = true, .late_probe = bxt_card_late_probe, }; static struct snd_soc_card geminilake_rt298 = { .name = "geminilake-rt298", .owner = THIS_MODULE, .dai_link = broxton_rt298_dais, .num_links = ARRAY_SIZE(broxton_rt298_dais), .controls = broxton_controls, .num_controls = ARRAY_SIZE(broxton_controls), .dapm_widgets = broxton_widgets, .num_dapm_widgets = ARRAY_SIZE(broxton_widgets), .dapm_routes = geminilake_rt298_map, .num_dapm_routes = ARRAY_SIZE(geminilake_rt298_map), .fully_routed = true, .late_probe = bxt_card_late_probe, }; static int broxton_audio_probe(struct platform_device *pdev) { struct bxt_rt286_private *ctx; struct snd_soc_card *card = (struct snd_soc_card *)pdev->id_entry->driver_data; struct snd_soc_acpi_mach *mach; const char *platform_name; int ret; int i; for (i = 0; i < ARRAY_SIZE(broxton_rt298_dais); i++) { if (!strncmp(card->dai_link[i].codecs->name, "i2c-INT343A:00", I2C_NAME_SIZE)) { if (!strncmp(card->name, "broxton-rt298", PLATFORM_NAME_SIZE)) { card->dai_link[i].name = "SSP5-Codec"; card->dai_link[i].cpus->dai_name = "SSP5 Pin"; } else if (!strncmp(card->name, "geminilake-rt298", PLATFORM_NAME_SIZE)) { card->dai_link[i].name = "SSP2-Codec"; card->dai_link[i].cpus->dai_name = "SSP2 Pin"; } } } ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); card->dev = &pdev->dev; snd_soc_card_set_drvdata(card, ctx); /* override platform name, if required */ mach = pdev->dev.platform_data; platform_name = mach->mach_params.platform; ret = snd_soc_fixup_dai_links_platform_name(card, platform_name); if (ret) return ret; ctx->common_hdmi_codec_drv = mach->mach_params.common_hdmi_codec_drv; return devm_snd_soc_register_card(&pdev->dev, card); } static const struct platform_device_id bxt_board_ids[] = { { .name = "bxt_alc298s_i2s", .driver_data = (unsigned long)&broxton_rt298 }, { .name = "glk_alc298s_i2s", .driver_data = (unsigned long)&geminilake_rt298 }, {} }; MODULE_DEVICE_TABLE(platform, bxt_board_ids); static struct platform_driver broxton_audio = { .probe = broxton_audio_probe, .driver = { .name = "bxt_alc298s_i2s", .pm = &snd_soc_pm_ops, }, .id_table = bxt_board_ids, }; module_platform_driver(broxton_audio) /* Module information */ MODULE_AUTHOR("Ramesh Babu <[email protected]>"); MODULE_AUTHOR("Senthilnathan Veppur <[email protected]>"); MODULE_DESCRIPTION("Intel SST Audio for Broxton"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON);
linux-master
sound/soc/intel/boards/bxt_rt298.c
// SPDX-License-Identifier: GPL-2.0-only /* * Sound card driver for Intel Broadwell Wildcat Point with Realtek 286 * * Copyright (C) 2013, Intel Corporation. All rights reserved. */ #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/rt286.h" static struct snd_soc_jack card_headset; static struct snd_soc_jack_pin card_headset_pins[] = { { .pin = "Mic Jack", .mask = SND_JACK_MICROPHONE, }, { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, }; static const struct snd_kcontrol_new card_controls[] = { SOC_DAPM_PIN_SWITCH("Speaker"), SOC_DAPM_PIN_SWITCH("Headphone Jack"), }; static const struct snd_soc_dapm_widget card_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_MIC("Mic Jack", NULL), SND_SOC_DAPM_MIC("DMIC1", NULL), SND_SOC_DAPM_MIC("DMIC2", NULL), SND_SOC_DAPM_LINE("Line Jack", NULL), }; static const struct snd_soc_dapm_route card_routes[] = { {"Speaker", NULL, "SPOR"}, {"Speaker", NULL, "SPOL"}, {"Headphone Jack", NULL, "HPO Pin"}, {"MIC1", NULL, "Mic Jack"}, {"LINE1", NULL, "Line Jack"}, {"DMIC1 Pin", NULL, "DMIC1"}, {"DMIC2 Pin", NULL, "DMIC2"}, /* CODEC BE connections */ {"SSP0 CODEC IN", NULL, "AIF1 Capture"}, {"AIF1 Playback", NULL, "SSP0 CODEC OUT"}, }; static int codec_link_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *codec = asoc_rtd_to_codec(rtd, 0)->component; int ret; ret = snd_soc_card_jack_new_pins(rtd->card, "Headset", SND_JACK_HEADSET | SND_JACK_BTN_0, &card_headset, card_headset_pins, ARRAY_SIZE(card_headset_pins)); if (ret) return ret; return snd_soc_component_set_jack(codec, &card_headset, NULL); } static void codec_link_exit(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *codec = asoc_rtd_to_codec(rtd, 0)->component; snd_soc_component_set_jack(codec, NULL, NULL); } static int codec_link_hw_params_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); /* The ADSP will convert the FE rate to 48kHz, stereo. */ rate->min = rate->max = 48000; channels->min = channels->max = 2; /* Set SSP0 to 16 bit. */ params_set_format(params, SNDRV_PCM_FORMAT_S16_LE); return 0; } static int codec_link_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, RT286_SCLK_S_PLL, 24000000, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "set codec sysclk failed: %d\n", ret); return ret; } return ret; } static const struct snd_soc_ops codec_link_ops = { .hw_params = codec_link_hw_params, }; SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(offload0, DAILINK_COMP_ARRAY(COMP_CPU("Offload0 Pin"))); SND_SOC_DAILINK_DEF(offload1, DAILINK_COMP_ARRAY(COMP_CPU("Offload1 Pin"))); SND_SOC_DAILINK_DEF(loopback, DAILINK_COMP_ARRAY(COMP_CPU("Loopback Pin"))); SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("haswell-pcm-audio"))); SND_SOC_DAILINK_DEF(codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-INT343A:00", "rt286-aif1"))); SND_SOC_DAILINK_DEF(ssp0_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp0-port"))); static struct snd_soc_dai_link card_dai_links[] = { /* Front End DAI links */ { .name = "System PCM", .stream_name = "System Playback/Capture", .nonatomic = 1, .dynamic = 1, .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(system, dummy, platform), }, { .name = "Offload0", .stream_name = "Offload0 Playback", .nonatomic = 1, .dynamic = 1, .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, SND_SOC_DAILINK_REG(offload0, dummy, platform), }, { .name = "Offload1", .stream_name = "Offload1 Playback", .nonatomic = 1, .dynamic = 1, .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, SND_SOC_DAILINK_REG(offload1, dummy, platform), }, { .name = "Loopback PCM", .stream_name = "Loopback", .nonatomic = 1, .dynamic = 1, .trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, SND_SOC_DAILINK_REG(loopback, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "Codec", .id = 0, .nonatomic = 1, .no_pcm = 1, .init = codec_link_init, .exit = codec_link_exit, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = codec_link_hw_params_fixup, .ops = &codec_link_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp0_port, codec, platform), }, }; static int card_suspend_pre(struct snd_soc_card *card) { struct snd_soc_dai *codec_dai = snd_soc_card_get_codec_dai(card, "rt286-aif1"); if (!codec_dai) return 0; return snd_soc_component_set_jack(codec_dai->component, NULL, NULL); } static int card_resume_post(struct snd_soc_card *card) { struct snd_soc_dai *codec_dai = snd_soc_card_get_codec_dai(card, "rt286-aif1"); if (!codec_dai) return 0; return snd_soc_component_set_jack(codec_dai->component, &card_headset, NULL); } static struct snd_soc_card bdw_rt286_card = { .owner = THIS_MODULE, .suspend_pre = card_suspend_pre, .resume_post = card_resume_post, .dai_link = card_dai_links, .num_links = ARRAY_SIZE(card_dai_links), .controls = card_controls, .num_controls = ARRAY_SIZE(card_controls), .dapm_widgets = card_widgets, .num_dapm_widgets = ARRAY_SIZE(card_widgets), .dapm_routes = card_routes, .num_dapm_routes = ARRAY_SIZE(card_routes), .fully_routed = true, }; /* Use space before codec name to simplify card ID, and simplify driver name. */ #define SOF_CARD_NAME "bdw rt286" /* card name will be 'sof-bdw rt286' */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "broadwell-rt286" static int bdw_rt286_probe(struct platform_device *pdev) { struct snd_soc_acpi_mach *mach; struct device *dev = &pdev->dev; int ret; bdw_rt286_card.dev = dev; mach = dev_get_platdata(dev); ret = snd_soc_fixup_dai_links_platform_name(&bdw_rt286_card, mach->mach_params.platform); if (ret) return ret; if (snd_soc_acpi_sof_parent(dev)) { bdw_rt286_card.name = SOF_CARD_NAME; bdw_rt286_card.driver_name = SOF_DRIVER_NAME; } else { bdw_rt286_card.name = CARD_NAME; } return devm_snd_soc_register_card(dev, &bdw_rt286_card); } static struct platform_driver bdw_rt286_driver = { .probe = bdw_rt286_probe, .driver = { .name = "bdw_rt286", .pm = &snd_soc_pm_ops }, }; module_platform_driver(bdw_rt286_driver) MODULE_AUTHOR("Liam Girdwood, Xingchao Wang"); MODULE_DESCRIPTION("Sound card driver for Intel Broadwell Wildcat Point with Realtek 286"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:bdw_rt286");
linux-master
sound/soc/intel/boards/bdw_rt286.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation /* * sof_sdw_rt715_sdca - Helpers to handle RT715-SDCA from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "sof_sdw_common.h" static int rt715_sdca_rtd_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s mic:rt715-sdca", card->components); if (!card->components) return -ENOMEM; return 0; } int sof_sdw_rt715_sdca_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { dai_links->init = rt715_sdca_rtd_init; return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_rt715_sdca.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2021 Intel Corporation. /* * Intel SOF Machine Driver with es8336 Codec */ #include <linux/device.h> #include <linux/dmi.h> #include <linux/gpio/consumer.h> #include <linux/gpio/machine.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "hda_dsp_common.h" /* jd-inv + terminating entry */ #define MAX_NO_PROPS 2 #define SOF_ES8336_SSP_CODEC(quirk) ((quirk) & GENMASK(3, 0)) #define SOF_ES8336_SSP_CODEC_MASK (GENMASK(3, 0)) #define SOF_ES8336_SPEAKERS_EN_GPIO1_QUIRK BIT(4) /* HDMI capture*/ #define SOF_SSP_HDMI_CAPTURE_PRESENT BIT(14) #define SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT 15 #define SOF_NO_OF_HDMI_CAPTURE_SSP_MASK (GENMASK(16, 15)) #define SOF_NO_OF_HDMI_CAPTURE_SSP(quirk) \ (((quirk) << SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT) & SOF_NO_OF_HDMI_CAPTURE_SSP_MASK) #define SOF_HDMI_CAPTURE_1_SSP_SHIFT 7 #define SOF_HDMI_CAPTURE_1_SSP_MASK (GENMASK(9, 7)) #define SOF_HDMI_CAPTURE_1_SSP(quirk) \ (((quirk) << SOF_HDMI_CAPTURE_1_SSP_SHIFT) & SOF_HDMI_CAPTURE_1_SSP_MASK) #define SOF_HDMI_CAPTURE_2_SSP_SHIFT 10 #define SOF_HDMI_CAPTURE_2_SSP_MASK (GENMASK(12, 10)) #define SOF_HDMI_CAPTURE_2_SSP(quirk) \ (((quirk) << SOF_HDMI_CAPTURE_2_SSP_SHIFT) & SOF_HDMI_CAPTURE_2_SSP_MASK) #define SOF_ES8336_ENABLE_DMIC BIT(5) #define SOF_ES8336_JD_INVERTED BIT(6) #define SOF_ES8336_HEADPHONE_GPIO BIT(7) #define SOC_ES8336_HEADSET_MIC1 BIT(8) static unsigned long quirk; static int quirk_override = -1; module_param_named(quirk, quirk_override, int, 0444); MODULE_PARM_DESC(quirk, "Board-specific quirk override"); struct sof_es8336_private { struct device *codec_dev; struct gpio_desc *gpio_speakers, *gpio_headphone; struct snd_soc_jack jack; struct list_head hdmi_pcm_list; bool speaker_en; struct delayed_work pcm_pop_work; }; struct sof_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; static const struct acpi_gpio_params enable_gpio0 = { 0, 0, true }; static const struct acpi_gpio_params enable_gpio1 = { 1, 0, true }; static const struct acpi_gpio_mapping acpi_speakers_enable_gpio0[] = { { "speakers-enable-gpios", &enable_gpio0, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO }, { } }; static const struct acpi_gpio_mapping acpi_speakers_enable_gpio1[] = { { "speakers-enable-gpios", &enable_gpio1, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO }, }; static const struct acpi_gpio_mapping acpi_enable_both_gpios[] = { { "speakers-enable-gpios", &enable_gpio0, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO }, { "headphone-enable-gpios", &enable_gpio1, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO }, { } }; static const struct acpi_gpio_mapping acpi_enable_both_gpios_rev_order[] = { { "speakers-enable-gpios", &enable_gpio1, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO }, { "headphone-enable-gpios", &enable_gpio0, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO }, { } }; static void log_quirks(struct device *dev) { dev_info(dev, "quirk mask %#lx\n", quirk); dev_info(dev, "quirk SSP%ld\n", SOF_ES8336_SSP_CODEC(quirk)); if (quirk & SOF_ES8336_ENABLE_DMIC) dev_info(dev, "quirk DMIC enabled\n"); if (quirk & SOF_ES8336_SPEAKERS_EN_GPIO1_QUIRK) dev_info(dev, "Speakers GPIO1 quirk enabled\n"); if (quirk & SOF_ES8336_HEADPHONE_GPIO) dev_info(dev, "quirk headphone GPIO enabled\n"); if (quirk & SOF_ES8336_JD_INVERTED) dev_info(dev, "quirk JD inverted enabled\n"); if (quirk & SOC_ES8336_HEADSET_MIC1) dev_info(dev, "quirk headset at mic1 port enabled\n"); } static void pcm_pop_work_events(struct work_struct *work) { struct sof_es8336_private *priv = container_of(work, struct sof_es8336_private, pcm_pop_work.work); gpiod_set_value_cansleep(priv->gpio_speakers, priv->speaker_en); if (quirk & SOF_ES8336_HEADPHONE_GPIO) gpiod_set_value_cansleep(priv->gpio_headphone, priv->speaker_en); } static int sof_8336_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_card *card = rtd->card; struct sof_es8336_private *priv = snd_soc_card_get_drvdata(card); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: if (priv->speaker_en == false) if (substream->stream == 0) { cancel_delayed_work(&priv->pcm_pop_work); gpiod_set_value_cansleep(priv->gpio_speakers, true); } break; default: return -EINVAL; } return 0; } static int sof_es8316_speaker_power_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_card *card = w->dapm->card; struct sof_es8336_private *priv = snd_soc_card_get_drvdata(card); if (priv->speaker_en == !SND_SOC_DAPM_EVENT_ON(event)) return 0; priv->speaker_en = !SND_SOC_DAPM_EVENT_ON(event); queue_delayed_work(system_wq, &priv->pcm_pop_work, msecs_to_jiffies(70)); return 0; } static const struct snd_soc_dapm_widget sof_es8316_widgets[] = { SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Internal Mic", NULL), SND_SOC_DAPM_SUPPLY("Speaker Power", SND_SOC_NOPM, 0, 0, sof_es8316_speaker_power_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), }; static const struct snd_soc_dapm_widget dmic_widgets[] = { SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_route sof_es8316_audio_map[] = { {"Headphone", NULL, "HPOL"}, {"Headphone", NULL, "HPOR"}, /* * There is no separate speaker output instead the speakers are muxed to * the HP outputs. The mux is controlled Speaker and/or headphone switch. */ {"Speaker", NULL, "HPOL"}, {"Speaker", NULL, "HPOR"}, {"Speaker", NULL, "Speaker Power"}, }; static const struct snd_soc_dapm_route sof_es8316_headset_mic2_map[] = { {"MIC1", NULL, "Internal Mic"}, {"MIC2", NULL, "Headset Mic"}, }; static const struct snd_soc_dapm_route sof_es8316_headset_mic1_map[] = { {"MIC2", NULL, "Internal Mic"}, {"MIC1", NULL, "Headset Mic"}, }; static const struct snd_soc_dapm_route dmic_map[] = { /* digital mics */ {"DMic", NULL, "SoC DMIC"}, }; static const struct snd_kcontrol_new sof_es8316_controls[] = { SOC_DAPM_PIN_SWITCH("Speaker"), SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Internal Mic"), }; static struct snd_soc_jack_pin sof_es8316_jack_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int dmic_init(struct snd_soc_pcm_runtime *runtime) { struct snd_soc_card *card = runtime->card; int ret; ret = snd_soc_dapm_new_controls(&card->dapm, dmic_widgets, ARRAY_SIZE(dmic_widgets)); if (ret) { dev_err(card->dev, "DMic widget addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, dmic_map, ARRAY_SIZE(dmic_map)); if (ret) dev_err(card->dev, "DMic map addition failed: %d\n", ret); return ret; } static int sof_hdmi_init(struct snd_soc_pcm_runtime *runtime) { struct sof_es8336_private *priv = snd_soc_card_get_drvdata(runtime->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(runtime, 0); struct sof_hdmi_pcm *pcm; pcm = devm_kzalloc(runtime->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; /* dai_link id is 1:1 mapped to the PCM device */ pcm->device = runtime->dai_link->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &priv->hdmi_pcm_list); return 0; } static int sof_es8316_init(struct snd_soc_pcm_runtime *runtime) { struct snd_soc_component *codec = asoc_rtd_to_codec(runtime, 0)->component; struct snd_soc_card *card = runtime->card; struct sof_es8336_private *priv = snd_soc_card_get_drvdata(card); const struct snd_soc_dapm_route *custom_map; int num_routes; int ret; card->dapm.idle_bias_off = true; if (quirk & SOC_ES8336_HEADSET_MIC1) { custom_map = sof_es8316_headset_mic1_map; num_routes = ARRAY_SIZE(sof_es8316_headset_mic1_map); } else { custom_map = sof_es8316_headset_mic2_map; num_routes = ARRAY_SIZE(sof_es8316_headset_mic2_map); } ret = snd_soc_dapm_add_routes(&card->dapm, custom_map, num_routes); if (ret) return ret; ret = snd_soc_card_jack_new_pins(card, "Headset", SND_JACK_HEADSET | SND_JACK_BTN_0, &priv->jack, sof_es8316_jack_pins, ARRAY_SIZE(sof_es8316_jack_pins)); if (ret) { dev_err(card->dev, "jack creation failed %d\n", ret); return ret; } snd_jack_set_key(priv->jack.jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_soc_component_set_jack(codec, &priv->jack, NULL); return 0; } static void sof_es8316_exit(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; snd_soc_component_set_jack(component, NULL, NULL); } static int sof_es8336_quirk_cb(const struct dmi_system_id *id) { quirk = (unsigned long)id->driver_data; return 1; } /* * this table should only be used to add GPIO or jack-detection quirks * that cannot be detected from ACPI tables. The SSP and DMIC * information are providing by the platform driver and are aligned * with the topology used. * * If the GPIO support is missing, the quirk parameter can be used to * enable speakers. In that case it's recommended to keep the SSP and DMIC * information consistent, overriding the SSP and DMIC can only be done * if the topology file is modified as well. */ static const struct dmi_system_id sof_es8336_quirk_table[] = { { .callback = sof_es8336_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "IP3 tech"), DMI_MATCH(DMI_BOARD_NAME, "WN1"), }, .driver_data = (void *)(SOF_ES8336_SPEAKERS_EN_GPIO1_QUIRK) }, { .callback = sof_es8336_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HUAWEI"), DMI_MATCH(DMI_BOARD_NAME, "BOHB-WAX9-PCB-B2"), }, .driver_data = (void *)(SOF_ES8336_HEADPHONE_GPIO | SOC_ES8336_HEADSET_MIC1) }, {} }; static int sof_es8336_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); const int sysclk = 19200000; int ret; ret = snd_soc_dai_set_sysclk(codec_dai, 1, sysclk, SND_SOC_CLOCK_OUT); if (ret < 0) { dev_err(rtd->dev, "%s, Failed to set ES8336 SYSCLK: %d\n", __func__, ret); return ret; } return 0; } /* machine stream operations */ static struct snd_soc_ops sof_es8336_ops = { .hw_params = sof_es8336_hw_params, .trigger = sof_8336_trigger, }; static struct snd_soc_dai_link_component platform_component[] = { { /* name might be overridden during probe */ .name = "0000:00:1f.3" } }; SND_SOC_DAILINK_DEF(es8336_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-ESSX8336:00", "ES8316 HiFi"))); static struct snd_soc_dai_link_component dmic_component[] = { { .name = "dmic-codec", .dai_name = "dmic-hifi", } }; static int sof_es8336_late_probe(struct snd_soc_card *card) { struct sof_es8336_private *priv = snd_soc_card_get_drvdata(card); struct sof_hdmi_pcm *pcm; if (list_empty(&priv->hdmi_pcm_list)) return -ENOENT; pcm = list_first_entry(&priv->hdmi_pcm_list, struct sof_hdmi_pcm, head); return hda_dsp_hdmi_build_controls(card, pcm->codec_dai->component); } /* SoC card */ static struct snd_soc_card sof_es8336_card = { .name = "essx8336", /* sof- prefix added automatically */ .owner = THIS_MODULE, .dapm_widgets = sof_es8316_widgets, .num_dapm_widgets = ARRAY_SIZE(sof_es8316_widgets), .dapm_routes = sof_es8316_audio_map, .num_dapm_routes = ARRAY_SIZE(sof_es8316_audio_map), .controls = sof_es8316_controls, .num_controls = ARRAY_SIZE(sof_es8316_controls), .fully_routed = true, .late_probe = sof_es8336_late_probe, .num_links = 1, }; static struct snd_soc_dai_link *sof_card_dai_links_create(struct device *dev, int ssp_codec, int dmic_be_num, int hdmi_num) { struct snd_soc_dai_link_component *cpus; struct snd_soc_dai_link *links; struct snd_soc_dai_link_component *idisp_components; int hdmi_id_offset = 0; int id = 0; int i; links = devm_kcalloc(dev, sof_es8336_card.num_links, sizeof(struct snd_soc_dai_link), GFP_KERNEL); cpus = devm_kcalloc(dev, sof_es8336_card.num_links, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!links || !cpus) goto devm_err; /* codec SSP */ links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-Codec", ssp_codec); if (!links[id].name) goto devm_err; links[id].id = id; links[id].codecs = es8336_codec; links[id].num_codecs = ARRAY_SIZE(es8336_codec); links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].init = sof_es8316_init; links[id].exit = sof_es8316_exit; links[id].ops = &sof_es8336_ops; links[id].nonatomic = true; links[id].dpcm_playback = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", ssp_codec); if (!links[id].cpus->dai_name) goto devm_err; id++; /* dmic */ if (dmic_be_num > 0) { /* at least we have dmic01 */ links[id].name = "dmic01"; links[id].cpus = &cpus[id]; links[id].cpus->dai_name = "DMIC01 Pin"; links[id].init = dmic_init; if (dmic_be_num > 1) { /* set up 2 BE links at most */ links[id + 1].name = "dmic16k"; links[id + 1].cpus = &cpus[id + 1]; links[id + 1].cpus->dai_name = "DMIC16k Pin"; dmic_be_num = 2; } } else { /* HDMI dai link starts at 3 according to current topology settings */ hdmi_id_offset = 2; } for (i = 0; i < dmic_be_num; i++) { links[id].id = id; links[id].num_cpus = 1; links[id].codecs = dmic_component; links[id].num_codecs = ARRAY_SIZE(dmic_component); links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].ignore_suspend = 1; links[id].dpcm_capture = 1; links[id].no_pcm = 1; id++; } /* HDMI */ if (hdmi_num > 0) { idisp_components = devm_kcalloc(dev, hdmi_num, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!idisp_components) goto devm_err; } for (i = 1; i <= hdmi_num; i++) { links[id].name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d", i); if (!links[id].name) goto devm_err; links[id].id = id + hdmi_id_offset; links[id].cpus = &cpus[id]; links[id].num_cpus = 1; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "iDisp%d Pin", i); if (!links[id].cpus->dai_name) goto devm_err; idisp_components[i - 1].name = "ehdaudio0D2"; idisp_components[i - 1].dai_name = devm_kasprintf(dev, GFP_KERNEL, "intel-hdmi-hifi%d", i); if (!idisp_components[i - 1].dai_name) goto devm_err; links[id].codecs = &idisp_components[i - 1]; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].init = sof_hdmi_init; links[id].dpcm_playback = 1; links[id].no_pcm = 1; id++; } /* HDMI-In SSP */ if (quirk & SOF_SSP_HDMI_CAPTURE_PRESENT) { int num_of_hdmi_ssp = (quirk & SOF_NO_OF_HDMI_CAPTURE_SSP_MASK) >> SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT; for (i = 1; i <= num_of_hdmi_ssp; i++) { int port = (i == 1 ? (quirk & SOF_HDMI_CAPTURE_1_SSP_MASK) >> SOF_HDMI_CAPTURE_1_SSP_SHIFT : (quirk & SOF_HDMI_CAPTURE_2_SSP_MASK) >> SOF_HDMI_CAPTURE_2_SSP_SHIFT); links[id].cpus = &cpus[id]; links[id].cpus->dai_name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d Pin", port); if (!links[id].cpus->dai_name) return NULL; links[id].name = devm_kasprintf(dev, GFP_KERNEL, "SSP%d-HDMI", port); if (!links[id].name) return NULL; links[id].id = id + hdmi_id_offset; links[id].codecs = &asoc_dummy_dlc; links[id].num_codecs = 1; links[id].platforms = platform_component; links[id].num_platforms = ARRAY_SIZE(platform_component); links[id].dpcm_capture = 1; links[id].no_pcm = 1; links[id].num_cpus = 1; id++; } } return links; devm_err: return NULL; } static char soc_components[30]; /* i2c-<HID>:00 with HID being 8 chars */ static char codec_name[SND_ACPI_I2C_ID_LEN]; static int sof_es8336_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct snd_soc_card *card; struct snd_soc_acpi_mach *mach = pdev->dev.platform_data; struct property_entry props[MAX_NO_PROPS] = {}; struct sof_es8336_private *priv; struct fwnode_handle *fwnode; struct acpi_device *adev; struct snd_soc_dai_link *dai_links; struct device *codec_dev; const struct acpi_gpio_mapping *gpio_mapping; unsigned int cnt = 0; int dmic_be_num = 0; int hdmi_num = 3; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; card = &sof_es8336_card; card->dev = dev; if (pdev->id_entry && pdev->id_entry->driver_data) quirk = (unsigned long)pdev->id_entry->driver_data; /* check GPIO DMI quirks */ dmi_check_system(sof_es8336_quirk_table); /* Use NHLT configuration only for Non-HDMI capture use case. * Because more than one SSP will be enabled for HDMI capture hence wrong codec * SSP will be set. */ if (mach->tplg_quirk_mask & SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER) { if (!mach->mach_params.i2s_link_mask) { dev_warn(dev, "No I2S link information provided, using SSP0. This may need to be modified with the quirk module parameter\n"); } else { /* * Set configuration based on platform NHLT. * In this machine driver, we can only support one SSP for the * ES8336 link. * In some cases multiple SSPs can be reported by NHLT, starting MSB-first * seems to pick the right connection. */ unsigned long ssp; /* fls returns 1-based results, SSPs indices are 0-based */ ssp = fls(mach->mach_params.i2s_link_mask) - 1; quirk |= ssp; } } if (mach->mach_params.dmic_num) quirk |= SOF_ES8336_ENABLE_DMIC; if (quirk_override != -1) { dev_info(dev, "Overriding quirk 0x%lx => 0x%x\n", quirk, quirk_override); quirk = quirk_override; } log_quirks(dev); if (quirk & SOF_ES8336_ENABLE_DMIC) dmic_be_num = 2; /* compute number of dai links */ sof_es8336_card.num_links = 1 + dmic_be_num + hdmi_num; if (quirk & SOF_SSP_HDMI_CAPTURE_PRESENT) sof_es8336_card.num_links += (quirk & SOF_NO_OF_HDMI_CAPTURE_SSP_MASK) >> SOF_NO_OF_HDMI_CAPTURE_SSP_SHIFT; dai_links = sof_card_dai_links_create(dev, SOF_ES8336_SSP_CODEC(quirk), dmic_be_num, hdmi_num); if (!dai_links) return -ENOMEM; sof_es8336_card.dai_link = dai_links; /* fixup codec name based on HID */ adev = acpi_dev_get_first_match_dev(mach->id, NULL, -1); if (adev) { snprintf(codec_name, sizeof(codec_name), "i2c-%s", acpi_dev_name(adev)); dai_links[0].codecs->name = codec_name; /* also fixup codec dai name if relevant */ if (!strncmp(mach->id, "ESSX8326", SND_ACPI_I2C_ID_LEN)) dai_links[0].codecs->dai_name = "ES8326 HiFi"; } else { dev_err(dev, "Error cannot find '%s' dev\n", mach->id); return -ENXIO; } codec_dev = acpi_get_first_physical_node(adev); acpi_dev_put(adev); if (!codec_dev) return -EPROBE_DEFER; priv->codec_dev = get_device(codec_dev); ret = snd_soc_fixup_dai_links_platform_name(&sof_es8336_card, mach->mach_params.platform); if (ret) { put_device(codec_dev); return ret; } if (quirk & SOF_ES8336_JD_INVERTED) props[cnt++] = PROPERTY_ENTRY_BOOL("everest,jack-detect-inverted"); if (cnt) { fwnode = fwnode_create_software_node(props, NULL); if (IS_ERR(fwnode)) { put_device(codec_dev); return PTR_ERR(fwnode); } ret = device_add_software_node(codec_dev, to_software_node(fwnode)); fwnode_handle_put(fwnode); if (ret) { put_device(codec_dev); return ret; } } /* get speaker enable GPIO */ if (quirk & SOF_ES8336_HEADPHONE_GPIO) { if (quirk & SOF_ES8336_SPEAKERS_EN_GPIO1_QUIRK) gpio_mapping = acpi_enable_both_gpios; else gpio_mapping = acpi_enable_both_gpios_rev_order; } else if (quirk & SOF_ES8336_SPEAKERS_EN_GPIO1_QUIRK) { gpio_mapping = acpi_speakers_enable_gpio1; } else { gpio_mapping = acpi_speakers_enable_gpio0; } ret = devm_acpi_dev_add_driver_gpios(codec_dev, gpio_mapping); if (ret) dev_warn(codec_dev, "unable to add GPIO mapping table\n"); priv->gpio_speakers = gpiod_get_optional(codec_dev, "speakers-enable", GPIOD_OUT_LOW); if (IS_ERR(priv->gpio_speakers)) { ret = dev_err_probe(dev, PTR_ERR(priv->gpio_speakers), "could not get speakers-enable GPIO\n"); goto err_put_codec; } priv->gpio_headphone = gpiod_get_optional(codec_dev, "headphone-enable", GPIOD_OUT_LOW); if (IS_ERR(priv->gpio_headphone)) { ret = dev_err_probe(dev, PTR_ERR(priv->gpio_headphone), "could not get headphone-enable GPIO\n"); goto err_put_codec; } INIT_LIST_HEAD(&priv->hdmi_pcm_list); INIT_DELAYED_WORK(&priv->pcm_pop_work, pcm_pop_work_events); snd_soc_card_set_drvdata(card, priv); if (mach->mach_params.dmic_num > 0) { snprintf(soc_components, sizeof(soc_components), "cfg-dmics:%d", mach->mach_params.dmic_num); card->components = soc_components; } ret = devm_snd_soc_register_card(dev, card); if (ret) { gpiod_put(priv->gpio_speakers); dev_err(dev, "snd_soc_register_card failed: %d\n", ret); goto err_put_codec; } platform_set_drvdata(pdev, &sof_es8336_card); return 0; err_put_codec: device_remove_software_node(priv->codec_dev); put_device(codec_dev); return ret; } static void sof_es8336_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); struct sof_es8336_private *priv = snd_soc_card_get_drvdata(card); cancel_delayed_work_sync(&priv->pcm_pop_work); gpiod_put(priv->gpio_speakers); device_remove_software_node(priv->codec_dev); put_device(priv->codec_dev); } static const struct platform_device_id board_ids[] = { { .name = "sof-essx8336", /* default quirk == 0 */ }, { .name = "adl_es83x6_c1_h02", .driver_data = (kernel_ulong_t)(SOF_ES8336_SSP_CODEC(1) | SOF_NO_OF_HDMI_CAPTURE_SSP(2) | SOF_HDMI_CAPTURE_1_SSP(0) | SOF_HDMI_CAPTURE_2_SSP(2) | SOF_SSP_HDMI_CAPTURE_PRESENT | SOF_ES8336_SPEAKERS_EN_GPIO1_QUIRK | SOF_ES8336_JD_INVERTED), }, { .name = "rpl_es83x6_c1_h02", .driver_data = (kernel_ulong_t)(SOF_ES8336_SSP_CODEC(1) | SOF_NO_OF_HDMI_CAPTURE_SSP(2) | SOF_HDMI_CAPTURE_1_SSP(0) | SOF_HDMI_CAPTURE_2_SSP(2) | SOF_SSP_HDMI_CAPTURE_PRESENT | SOF_ES8336_SPEAKERS_EN_GPIO1_QUIRK | SOF_ES8336_JD_INVERTED), }, { } }; MODULE_DEVICE_TABLE(platform, board_ids); static struct platform_driver sof_es8336_driver = { .driver = { .name = "sof-essx8336", .pm = &snd_soc_pm_ops, }, .probe = sof_es8336_probe, .remove_new = sof_es8336_remove, .id_table = board_ids, }; module_platform_driver(sof_es8336_driver); MODULE_DESCRIPTION("ASoC Intel(R) SOF + ES8336 Machine driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON);
linux-master
sound/soc/intel/boards/sof_es8336.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation /* * sof_sdw_rt700 - Helpers to handle RT700 from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <linux/input.h> #include <sound/control.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dapm.h> #include <sound/jack.h> #include "sof_sdw_common.h" static const struct snd_soc_dapm_widget rt700_widgets[] = { SND_SOC_DAPM_HP("Headphones", NULL), SND_SOC_DAPM_MIC("AMIC", NULL), SND_SOC_DAPM_SPK("Speaker", NULL), }; static const struct snd_soc_dapm_route rt700_map[] = { /* Headphones */ { "Headphones", NULL, "rt700 HP" }, { "Speaker", NULL, "rt700 SPK" }, { "rt700 MIC2", NULL, "AMIC" }, }; static const struct snd_kcontrol_new rt700_controls[] = { SOC_DAPM_PIN_SWITCH("Headphones"), SOC_DAPM_PIN_SWITCH("AMIC"), SOC_DAPM_PIN_SWITCH("Speaker"), }; static struct snd_soc_jack_pin rt700_jack_pins[] = { { .pin = "Headphones", .mask = SND_JACK_HEADPHONE, }, { .pin = "AMIC", .mask = SND_JACK_MICROPHONE, }, }; static int rt700_rtd_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; struct mc_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_component *component = codec_dai->component; struct snd_soc_jack *jack; int ret; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s hs:rt700", card->components); if (!card->components) return -ENOMEM; ret = snd_soc_add_card_controls(card, rt700_controls, ARRAY_SIZE(rt700_controls)); if (ret) { dev_err(card->dev, "rt700 controls addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_new_controls(&card->dapm, rt700_widgets, ARRAY_SIZE(rt700_widgets)); if (ret) { dev_err(card->dev, "rt700 widgets addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, rt700_map, ARRAY_SIZE(rt700_map)); if (ret) { dev_err(card->dev, "rt700 map addition failed: %d\n", ret); return ret; } ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &ctx->sdw_headset, rt700_jack_pins, ARRAY_SIZE(rt700_jack_pins)); if (ret) { dev_err(rtd->card->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->sdw_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); ret = snd_soc_component_set_jack(component, jack, NULL); if (ret) dev_err(rtd->card->dev, "Headset Jack call-back failed: %d\n", ret); return ret; } int sof_sdw_rt700_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { /* * headset should be initialized once. * Do it with dai link for playback. */ if (!playback) return 0; dai_links->init = rt700_rtd_init; return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_rt700.c
// SPDX-License-Identifier: GPL-2.0-only /* * ASoC machine driver for Intel Broadwell platforms with RT5677 codec * * Copyright (c) 2014, The Chromium OS Authors. All rights reserved. */ #include <linux/acpi.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/gpio/consumer.h> #include <linux/delay.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/soc.h> #include <sound/pcm_params.h> #include <sound/jack.h> #include <sound/soc-acpi.h> #include "../../codecs/rt5677.h" struct bdw_rt5677_priv { struct gpio_desc *gpio_hp_en; struct snd_soc_component *component; }; static int bdw_rt5677_event_hp(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct bdw_rt5677_priv *bdw_rt5677 = snd_soc_card_get_drvdata(card); if (SND_SOC_DAPM_EVENT_ON(event)) msleep(70); gpiod_set_value_cansleep(bdw_rt5677->gpio_hp_en, SND_SOC_DAPM_EVENT_ON(event)); return 0; } static const struct snd_soc_dapm_widget bdw_rt5677_widgets[] = { SND_SOC_DAPM_HP("Headphone", bdw_rt5677_event_hp), SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Local DMICs", NULL), SND_SOC_DAPM_MIC("Remote DMICs", NULL), }; static const struct snd_soc_dapm_route bdw_rt5677_map[] = { /* Speakers */ {"Speaker", NULL, "PDM1L"}, {"Speaker", NULL, "PDM1R"}, /* Headset jack connectors */ {"Headphone", NULL, "LOUT1"}, {"Headphone", NULL, "LOUT2"}, {"IN1P", NULL, "Headset Mic"}, {"IN1N", NULL, "Headset Mic"}, /* Digital MICs * Local DMICs: the two DMICs on the mainboard * Remote DMICs: the two DMICs on the camera module */ {"DMIC L1", NULL, "Remote DMICs"}, {"DMIC R1", NULL, "Remote DMICs"}, {"DMIC L2", NULL, "Local DMICs"}, {"DMIC R2", NULL, "Local DMICs"}, /* CODEC BE connections */ {"SSP0 CODEC IN", NULL, "AIF1 Capture"}, {"AIF1 Playback", NULL, "SSP0 CODEC OUT"}, {"DSP Capture", NULL, "DSP Buffer"}, /* DSP Clock Connections */ { "DSP Buffer", NULL, "SSP0 CODEC IN" }, { "SSP0 CODEC IN", NULL, "DSPTX" }, }; static const struct snd_kcontrol_new bdw_rt5677_controls[] = { SOC_DAPM_PIN_SWITCH("Speaker"), SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Local DMICs"), SOC_DAPM_PIN_SWITCH("Remote DMICs"), }; static struct snd_soc_jack headphone_jack; static struct snd_soc_jack mic_jack; static struct snd_soc_jack_pin headphone_jack_pin = { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }; static struct snd_soc_jack_pin mic_jack_pin = { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }; static struct snd_soc_jack_gpio headphone_jack_gpio = { .name = "plug-det", .report = SND_JACK_HEADPHONE, .debounce_time = 200, }; static struct snd_soc_jack_gpio mic_jack_gpio = { .name = "mic-present", .report = SND_JACK_MICROPHONE, .debounce_time = 200, .invert = 1, }; /* GPIO indexes defined by ACPI */ enum { RT5677_GPIO_PLUG_DET = 0, RT5677_GPIO_MIC_PRESENT_L = 1, RT5677_GPIO_HOTWORD_DET_L = 2, RT5677_GPIO_DSP_INT = 3, RT5677_GPIO_HP_AMP_SHDN_L = 4, }; static const struct acpi_gpio_params plug_det_gpio = { RT5677_GPIO_PLUG_DET, 0, false }; static const struct acpi_gpio_params mic_present_gpio = { RT5677_GPIO_MIC_PRESENT_L, 0, false }; static const struct acpi_gpio_params headphone_enable_gpio = { RT5677_GPIO_HP_AMP_SHDN_L, 0, false }; static const struct acpi_gpio_mapping bdw_rt5677_gpios[] = { { "plug-det-gpios", &plug_det_gpio, 1 }, { "mic-present-gpios", &mic_present_gpio, 1 }, { "headphone-enable-gpios", &headphone_enable_gpio, 1 }, { NULL }, }; static int broadwell_ssp0_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); /* The ADSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; chan->min = chan->max = 2; /* set SSP0 to 16 bit */ params_set_format(params, SNDRV_PCM_FORMAT_S16_LE); return 0; } static int bdw_rt5677_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, RT5677_SCLK_S_MCLK, 24576000, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "can't set codec sysclk configuration\n"); return ret; } return ret; } static int bdw_rt5677_dsp_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, RT5677_SCLK_S_PLL1, 24576000, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "can't set codec sysclk configuration\n"); return ret; } ret = snd_soc_dai_set_pll(codec_dai, 0, RT5677_PLL1_S_MCLK, 24000000, 24576000); if (ret < 0) { dev_err(rtd->dev, "can't set codec pll configuration\n"); return ret; } return 0; } static const struct snd_soc_ops bdw_rt5677_ops = { .hw_params = bdw_rt5677_hw_params, }; static const struct snd_soc_ops bdw_rt5677_dsp_ops = { .hw_params = bdw_rt5677_dsp_hw_params, }; static const unsigned int channels[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static int bdw_rt5677_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* Board supports stereo configuration only */ runtime->hw.channels_max = 2; return snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); } static const struct snd_soc_ops bdw_rt5677_fe_ops = { .startup = bdw_rt5677_fe_startup, }; static int bdw_rt5677_init(struct snd_soc_pcm_runtime *rtd) { struct bdw_rt5677_priv *bdw_rt5677 = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); int ret; ret = devm_acpi_dev_add_driver_gpios(component->dev, bdw_rt5677_gpios); if (ret) dev_warn(component->dev, "Failed to add driver gpios\n"); /* Enable codec ASRC function for Stereo DAC/Stereo1 ADC/DMIC/I2S1. * The ASRC clock source is clk_i2s1_asrc. */ rt5677_sel_asrc_clk_src(component, RT5677_DA_STEREO_FILTER | RT5677_AD_STEREO1_FILTER | RT5677_I2S1_SOURCE, RT5677_CLK_SEL_I2S1_ASRC); /* Enable codec ASRC function for Mono ADC L. * The ASRC clock source is clk_sys2_asrc. */ rt5677_sel_asrc_clk_src(component, RT5677_AD_MONO_L_FILTER, RT5677_CLK_SEL_SYS2); /* Request rt5677 GPIO for headphone amp control */ bdw_rt5677->gpio_hp_en = gpiod_get(component->dev, "headphone-enable", GPIOD_OUT_LOW); if (IS_ERR(bdw_rt5677->gpio_hp_en)) { dev_err(component->dev, "Can't find HP_AMP_SHDN_L gpio\n"); return PTR_ERR(bdw_rt5677->gpio_hp_en); } /* Create and initialize headphone jack */ if (!snd_soc_card_jack_new_pins(rtd->card, "Headphone Jack", SND_JACK_HEADPHONE, &headphone_jack, &headphone_jack_pin, 1)) { headphone_jack_gpio.gpiod_dev = component->dev; if (snd_soc_jack_add_gpios(&headphone_jack, 1, &headphone_jack_gpio)) dev_err(component->dev, "Can't add headphone jack gpio\n"); } else { dev_err(component->dev, "Can't create headphone jack\n"); } /* Create and initialize mic jack */ if (!snd_soc_card_jack_new_pins(rtd->card, "Mic Jack", SND_JACK_MICROPHONE, &mic_jack, &mic_jack_pin, 1)) { mic_jack_gpio.gpiod_dev = component->dev; if (snd_soc_jack_add_gpios(&mic_jack, 1, &mic_jack_gpio)) dev_err(component->dev, "Can't add mic jack gpio\n"); } else { dev_err(component->dev, "Can't create mic jack\n"); } bdw_rt5677->component = component; snd_soc_dapm_force_enable_pin(dapm, "MICBIAS1"); return 0; } static void bdw_rt5677_exit(struct snd_soc_pcm_runtime *rtd) { struct bdw_rt5677_priv *bdw_rt5677 = snd_soc_card_get_drvdata(rtd->card); /* * The .exit() can be reached without going through the .init() * so explicitly test if the gpiod is valid */ if (!IS_ERR_OR_NULL(bdw_rt5677->gpio_hp_en)) gpiod_put(bdw_rt5677->gpio_hp_en); } /* broadwell digital audio interface glue - connects codec <--> CPU */ SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(fe, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("haswell-pcm-audio"))); SND_SOC_DAILINK_DEF(be, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-RT5677CE:00", "rt5677-aif1"))); SND_SOC_DAILINK_DEF(ssp0_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp0-port"))); /* Wake on voice interface */ SND_SOC_DAILINK_DEFS(dsp, DAILINK_COMP_ARRAY(COMP_CPU("spi-RT5677AA:00")), DAILINK_COMP_ARRAY(COMP_CODEC("i2c-RT5677CE:00", "rt5677-dspbuffer")), DAILINK_COMP_ARRAY(COMP_PLATFORM("spi-RT5677AA:00"))); static struct snd_soc_dai_link bdw_rt5677_dais[] = { /* Front End DAI links */ { .name = "System PCM", .stream_name = "System Playback/Capture", .nonatomic = 1, .dynamic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST }, .dpcm_capture = 1, .dpcm_playback = 1, .ops = &bdw_rt5677_fe_ops, SND_SOC_DAILINK_REG(fe, dummy, platform), }, /* Non-DPCM links */ { .name = "Codec DSP", .stream_name = "Wake on Voice", .capture_only = 1, .ops = &bdw_rt5677_dsp_ops, SND_SOC_DAILINK_REG(dsp), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "Codec", .id = 0, .nonatomic = 1, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = broadwell_ssp0_fixup, .ops = &bdw_rt5677_ops, .dpcm_playback = 1, .dpcm_capture = 1, .init = bdw_rt5677_init, .exit = bdw_rt5677_exit, SND_SOC_DAILINK_REG(ssp0_port, be, platform), }, }; static int bdw_rt5677_suspend_pre(struct snd_soc_card *card) { struct bdw_rt5677_priv *bdw_rt5677 = snd_soc_card_get_drvdata(card); struct snd_soc_dapm_context *dapm; if (bdw_rt5677->component) { dapm = snd_soc_component_get_dapm(bdw_rt5677->component); snd_soc_dapm_disable_pin(dapm, "MICBIAS1"); } return 0; } static int bdw_rt5677_resume_post(struct snd_soc_card *card) { struct bdw_rt5677_priv *bdw_rt5677 = snd_soc_card_get_drvdata(card); struct snd_soc_dapm_context *dapm; if (bdw_rt5677->component) { dapm = snd_soc_component_get_dapm(bdw_rt5677->component); snd_soc_dapm_force_enable_pin(dapm, "MICBIAS1"); } return 0; } /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bdw rt5677" /* card name will be 'sof-bdw rt5677' */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "bdw-rt5677" #define DRIVER_NAME NULL /* card name will be used for driver name */ /* ASoC machine driver for Broadwell DSP + RT5677 */ static struct snd_soc_card bdw_rt5677_card = { .name = CARD_NAME, .driver_name = DRIVER_NAME, .owner = THIS_MODULE, .dai_link = bdw_rt5677_dais, .num_links = ARRAY_SIZE(bdw_rt5677_dais), .dapm_widgets = bdw_rt5677_widgets, .num_dapm_widgets = ARRAY_SIZE(bdw_rt5677_widgets), .dapm_routes = bdw_rt5677_map, .num_dapm_routes = ARRAY_SIZE(bdw_rt5677_map), .controls = bdw_rt5677_controls, .num_controls = ARRAY_SIZE(bdw_rt5677_controls), .fully_routed = true, .suspend_pre = bdw_rt5677_suspend_pre, .resume_post = bdw_rt5677_resume_post, }; static int bdw_rt5677_probe(struct platform_device *pdev) { struct bdw_rt5677_priv *bdw_rt5677; struct snd_soc_acpi_mach *mach; int ret; bdw_rt5677_card.dev = &pdev->dev; /* Allocate driver private struct */ bdw_rt5677 = devm_kzalloc(&pdev->dev, sizeof(struct bdw_rt5677_priv), GFP_KERNEL); if (!bdw_rt5677) return -ENOMEM; /* override platform name, if required */ mach = pdev->dev.platform_data; ret = snd_soc_fixup_dai_links_platform_name(&bdw_rt5677_card, mach->mach_params.platform); if (ret) return ret; /* set card and driver name */ if (snd_soc_acpi_sof_parent(&pdev->dev)) { bdw_rt5677_card.name = SOF_CARD_NAME; bdw_rt5677_card.driver_name = SOF_DRIVER_NAME; } else { bdw_rt5677_card.name = CARD_NAME; bdw_rt5677_card.driver_name = DRIVER_NAME; } snd_soc_card_set_drvdata(&bdw_rt5677_card, bdw_rt5677); return devm_snd_soc_register_card(&pdev->dev, &bdw_rt5677_card); } static struct platform_driver bdw_rt5677_audio = { .probe = bdw_rt5677_probe, .driver = { .name = "bdw-rt5677", .pm = &snd_soc_pm_ops }, }; module_platform_driver(bdw_rt5677_audio) /* Module information */ MODULE_AUTHOR("Ben Zhang"); MODULE_DESCRIPTION("Intel Broadwell RT5677 machine driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:bdw-rt5677");
linux-master
sound/soc/intel/boards/bdw-rt5677.c
// SPDX-License-Identifier: GPL-2.0-only /* * This file defines data structures and functions used in Machine * Driver for Intel platforms with Cirrus Logic Codecs. * * Copyright 2022 Intel Corporation. */ #include <linux/module.h> #include <sound/sof.h> #include "../../codecs/cs35l41.h" #include "sof_cirrus_common.h" #define CS35L41_HID "CSC3541" #define CS35L41_MAX_AMPS 4 /* * Cirrus Logic CS35L41/CS35L53 */ static const struct snd_kcontrol_new cs35l41_kcontrols[] = { SOC_DAPM_PIN_SWITCH("WL Spk"), SOC_DAPM_PIN_SWITCH("WR Spk"), SOC_DAPM_PIN_SWITCH("TL Spk"), SOC_DAPM_PIN_SWITCH("TR Spk"), }; static const struct snd_soc_dapm_widget cs35l41_dapm_widgets[] = { SND_SOC_DAPM_SPK("WL Spk", NULL), SND_SOC_DAPM_SPK("WR Spk", NULL), SND_SOC_DAPM_SPK("TL Spk", NULL), SND_SOC_DAPM_SPK("TR Spk", NULL), }; static const struct snd_soc_dapm_route cs35l41_dapm_routes[] = { /* speaker */ {"WL Spk", NULL, "WL SPK"}, {"WR Spk", NULL, "WR SPK"}, {"TL Spk", NULL, "TL SPK"}, {"TR Spk", NULL, "TR SPK"}, }; static struct snd_soc_dai_link_component cs35l41_components[CS35L41_MAX_AMPS]; /* * Mapping between ACPI instance id and speaker position. */ static struct snd_soc_codec_conf cs35l41_codec_conf[CS35L41_MAX_AMPS]; static int cs35l41_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_new_controls(&card->dapm, cs35l41_dapm_widgets, ARRAY_SIZE(cs35l41_dapm_widgets)); if (ret) { dev_err(rtd->dev, "fail to add dapm controls, ret %d\n", ret); return ret; } ret = snd_soc_add_card_controls(card, cs35l41_kcontrols, ARRAY_SIZE(cs35l41_kcontrols)); if (ret) { dev_err(rtd->dev, "fail to add card controls, ret %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, cs35l41_dapm_routes, ARRAY_SIZE(cs35l41_dapm_routes)); if (ret) dev_err(rtd->dev, "fail to add dapm routes, ret %d\n", ret); return ret; } /* * Channel map: * * TL/WL: ASPRX1 on slot 0, ASPRX2 on slot 1 (default) * TR/WR: ASPRX1 on slot 1, ASPRX2 on slot 0 */ static const struct { unsigned int rx[2]; } cs35l41_channel_map[] = { {.rx = {0, 1}}, /* WL */ {.rx = {1, 0}}, /* WR */ {.rx = {0, 1}}, /* TL */ {.rx = {1, 0}}, /* TR */ }; static int cs35l41_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; int clk_freq, i, ret; clk_freq = sof_dai_get_bclk(rtd); /* BCLK freq */ if (clk_freq <= 0) { dev_err(rtd->dev, "fail to get bclk freq, ret %d\n", clk_freq); return -EINVAL; } for_each_rtd_codec_dais(rtd, i, codec_dai) { /* call dai driver's set_sysclk() callback */ ret = snd_soc_dai_set_sysclk(codec_dai, CS35L41_CLKID_SCLK, clk_freq, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(codec_dai->dev, "fail to set sysclk, ret %d\n", ret); return ret; } /* call component driver's set_sysclk() callback */ ret = snd_soc_component_set_sysclk(codec_dai->component, CS35L41_CLKID_SCLK, 0, clk_freq, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(codec_dai->dev, "fail to set component sysclk, ret %d\n", ret); return ret; } /* setup channel map */ ret = snd_soc_dai_set_channel_map(codec_dai, 0, NULL, ARRAY_SIZE(cs35l41_channel_map[i].rx), (unsigned int *)cs35l41_channel_map[i].rx); if (ret < 0) { dev_err(codec_dai->dev, "fail to set channel map, ret %d\n", ret); return ret; } } return 0; } static const struct snd_soc_ops cs35l41_ops = { .hw_params = cs35l41_hw_params, }; static const char * const cs35l41_name_prefixes[] = { "WL", "WR", "TL", "TR" }; /* * Expected UIDs are integers (stored as strings). * UID Mapping is fixed: * UID 0x0 -> WL * UID 0x1 -> WR * UID 0x2 -> TL * UID 0x3 -> TR * Note: If there are less than 4 Amps, UIDs still map to WL/WR/TL/TR. Dynamic code will only create * dai links for UIDs which exist, and ignore non-existant ones. Only 2 or 4 amps are expected. * Return number of codecs found. */ static int cs35l41_compute_codec_conf(void) { static const char * const uid_strings[] = { "0", "1", "2", "3" }; unsigned int uid, sz = 0; struct acpi_device *adev; struct device *physdev; for (uid = 0; uid < CS35L41_MAX_AMPS; uid++) { adev = acpi_dev_get_first_match_dev(CS35L41_HID, uid_strings[uid], -1); if (!adev) { pr_devel("Cannot find match for HID %s UID %u (%s)\n", CS35L41_HID, uid, cs35l41_name_prefixes[uid]); continue; } physdev = get_device(acpi_get_first_physical_node(adev)); acpi_dev_put(adev); if (!physdev) { pr_devel("Cannot find physical node for HID %s UID %u (%s)\n", CS35L41_HID, uid, cs35l41_name_prefixes[uid]); return 0; } cs35l41_components[sz].name = dev_name(physdev); cs35l41_components[sz].dai_name = CS35L41_CODEC_DAI; cs35l41_codec_conf[sz].dlc.name = dev_name(physdev); cs35l41_codec_conf[sz].name_prefix = cs35l41_name_prefixes[uid]; sz++; } if (sz != 2 && sz != 4) pr_warn("Invalid number of cs35l41 amps found: %d, expected 2 or 4\n", sz); return sz; } void cs35l41_set_dai_link(struct snd_soc_dai_link *link) { link->num_codecs = cs35l41_compute_codec_conf(); link->codecs = cs35l41_components; link->init = cs35l41_init; link->ops = &cs35l41_ops; } EXPORT_SYMBOL_NS(cs35l41_set_dai_link, SND_SOC_INTEL_SOF_CIRRUS_COMMON); void cs35l41_set_codec_conf(struct snd_soc_card *card) { card->codec_conf = cs35l41_codec_conf; card->num_configs = ARRAY_SIZE(cs35l41_codec_conf); } EXPORT_SYMBOL_NS(cs35l41_set_codec_conf, SND_SOC_INTEL_SOF_CIRRUS_COMMON); MODULE_DESCRIPTION("ASoC Intel SOF Cirrus Logic helpers"); MODULE_LICENSE("GPL");
linux-master
sound/soc/intel/boards/sof_cirrus_common.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation /* * sof_sdw_hdmi - Helpers to handle HDMI from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/list.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/jack.h> #include "sof_sdw_common.h" #include "hda_dsp_common.h" struct hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; int sof_sdw_hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct mc_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; /* dai_link id is 1:1 mapped to the PCM device */ pcm->device = rtd->dai_link->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } #define NAME_SIZE 32 int sof_sdw_hdmi_card_late_probe(struct snd_soc_card *card) { struct mc_private *ctx = snd_soc_card_get_drvdata(card); struct hdmi_pcm *pcm; struct snd_soc_component *component = NULL; if (!ctx->idisp_codec) return 0; if (list_empty(&ctx->hdmi_pcm_list)) return -EINVAL; pcm = list_first_entry(&ctx->hdmi_pcm_list, struct hdmi_pcm, head); component = pcm->codec_dai->component; return hda_dsp_hdmi_build_controls(card, component); }
linux-master
sound/soc/intel/boards/sof_sdw_hdmi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Broxton-P I2S Machine Driver * * Copyright (C) 2016, Intel Corporation. All rights reserved. * * Modified from: * Intel Skylake I2S Machine driver */ #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/hdac_hdmi.h" #include "../../codecs/da7219.h" #include "../common/soc-intel-quirks.h" #include "hda_dsp_common.h" #define BXT_DIALOG_CODEC_DAI "da7219-hifi" #define BXT_MAXIM_CODEC_DAI "HiFi" #define MAX98390_DEV0_NAME "i2c-MX98390:00" #define MAX98390_DEV1_NAME "i2c-MX98390:01" #define DUAL_CHANNEL 2 #define QUAD_CHANNEL 4 #define SPKAMP_MAX98357A 1 #define SPKAMP_MAX98390 2 static struct snd_soc_jack broxton_headset; static struct snd_soc_jack broxton_hdmi[3]; struct bxt_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct bxt_card_private { struct list_head hdmi_pcm_list; bool common_hdmi_codec_drv; int spkamp; }; enum { BXT_DPCM_AUDIO_PB = 0, BXT_DPCM_AUDIO_CP, BXT_DPCM_AUDIO_HS_PB, BXT_DPCM_AUDIO_REF_CP, BXT_DPCM_AUDIO_DMIC_CP, BXT_DPCM_AUDIO_HDMI1_PB, BXT_DPCM_AUDIO_HDMI2_PB, BXT_DPCM_AUDIO_HDMI3_PB, }; static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { int ret = 0; struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; codec_dai = snd_soc_card_get_codec_dai(card, BXT_DIALOG_CODEC_DAI); if (!codec_dai) { dev_err(card->dev, "Codec dai not found; Unable to set/unset codec pll\n"); return -EIO; } if (SND_SOC_DAPM_EVENT_OFF(event)) { ret = snd_soc_dai_set_pll(codec_dai, 0, DA7219_SYSCLK_MCLK, 0, 0); if (ret) dev_err(card->dev, "failed to stop PLL: %d\n", ret); } else if(SND_SOC_DAPM_EVENT_ON(event)) { ret = snd_soc_dai_set_pll(codec_dai, 0, DA7219_SYSCLK_PLL_SRM, 0, DA7219_PLL_FREQ_OUT_98304); if (ret) dev_err(card->dev, "failed to start PLL: %d\n", ret); } return ret; } static const struct snd_kcontrol_new broxton_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Line Out"), }; static const struct snd_kcontrol_new max98357a_controls[] = { SOC_DAPM_PIN_SWITCH("Spk"), }; static const struct snd_kcontrol_new max98390_controls[] = { SOC_DAPM_PIN_SWITCH("Left Spk"), SOC_DAPM_PIN_SWITCH("Right Spk"), }; static const struct snd_soc_dapm_widget broxton_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_LINE("Line Out", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), SND_SOC_DAPM_SPK("HDMI1", NULL), SND_SOC_DAPM_SPK("HDMI2", NULL), SND_SOC_DAPM_SPK("HDMI3", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_POST_PMD|SND_SOC_DAPM_PRE_PMU), }; static const struct snd_soc_dapm_widget max98357a_widgets[] = { SND_SOC_DAPM_SPK("Spk", NULL), }; static const struct snd_soc_dapm_widget max98390_widgets[] = { SND_SOC_DAPM_SPK("Left Spk", NULL), SND_SOC_DAPM_SPK("Right Spk", NULL), }; static const struct snd_soc_dapm_route audio_map[] = { /* HP jack connectors - unknown if we have jack detection */ {"Headphone Jack", NULL, "HPL"}, {"Headphone Jack", NULL, "HPR"}, /* other jacks */ {"MIC", NULL, "Headset Mic"}, /* digital mics */ {"DMic", NULL, "SoC DMIC"}, /* CODEC BE connections */ {"HDMI1", NULL, "hif5-0 Output"}, {"HDMI2", NULL, "hif6-0 Output"}, {"HDMI2", NULL, "hif7-0 Output"}, {"hifi3", NULL, "iDisp3 Tx"}, {"iDisp3 Tx", NULL, "iDisp3_out"}, {"hifi2", NULL, "iDisp2 Tx"}, {"iDisp2 Tx", NULL, "iDisp2_out"}, {"hifi1", NULL, "iDisp1 Tx"}, {"iDisp1 Tx", NULL, "iDisp1_out"}, /* DMIC */ {"dmic01_hifi", NULL, "DMIC01 Rx"}, {"DMIC01 Rx", NULL, "DMIC AIF"}, { "Headphone Jack", NULL, "Platform Clock" }, { "Headset Mic", NULL, "Platform Clock" }, { "Line Out", NULL, "Platform Clock" }, }; static const struct snd_soc_dapm_route max98357a_routes[] = { /* speaker */ {"Spk", NULL, "Speaker"}, }; static const struct snd_soc_dapm_route max98390_routes[] = { /* Speaker */ {"Left Spk", NULL, "Left BE_OUT"}, {"Right Spk", NULL, "Right BE_OUT"}, }; static const struct snd_soc_dapm_route broxton_map[] = { {"HiFi Playback", NULL, "ssp5 Tx"}, {"ssp5 Tx", NULL, "codec0_out"}, {"Playback", NULL, "ssp1 Tx"}, {"ssp1 Tx", NULL, "codec1_out"}, {"codec0_in", NULL, "ssp1 Rx"}, {"ssp1 Rx", NULL, "Capture"}, }; static const struct snd_soc_dapm_route gemini_map[] = { {"HiFi Playback", NULL, "ssp1 Tx"}, {"ssp1 Tx", NULL, "codec0_out"}, {"Playback", NULL, "ssp2 Tx"}, {"ssp2 Tx", NULL, "codec1_out"}, {"codec0_in", NULL, "ssp2 Rx"}, {"ssp2 Rx", NULL, "Capture"}, }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, { .pin = "Line Out", .mask = SND_JACK_LINEOUT, }, }; static int broxton_ssp_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); /* The ADSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; chan->min = chan->max = DUAL_CHANNEL; /* set SSP to 24 bit */ snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); return 0; } static int broxton_da7219_codec_init(struct snd_soc_pcm_runtime *rtd) { int ret; struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; int clk_freq; /* Configure sysclk for codec */ if (soc_intel_is_cml()) clk_freq = 24000000; else clk_freq = 19200000; ret = snd_soc_dai_set_sysclk(codec_dai, DA7219_CLKSRC_MCLK, clk_freq, SND_SOC_CLOCK_IN); if (ret) { dev_err(rtd->dev, "can't set codec sysclk configuration\n"); return ret; } /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3 | SND_JACK_LINEOUT, &broxton_headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed: %d\n", ret); return ret; } snd_jack_set_key(broxton_headset.jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(broxton_headset.jack, SND_JACK_BTN_1, KEY_VOLUMEUP); snd_jack_set_key(broxton_headset.jack, SND_JACK_BTN_2, KEY_VOLUMEDOWN); snd_jack_set_key(broxton_headset.jack, SND_JACK_BTN_3, KEY_VOICECOMMAND); snd_soc_component_set_jack(component, &broxton_headset, NULL); snd_soc_dapm_ignore_suspend(&rtd->card->dapm, "SoC DMIC"); return ret; } static int broxton_hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct bxt_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct bxt_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = BXT_DPCM_AUDIO_HDMI1_PB + dai->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int broxton_da7219_fe_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dapm_context *dapm; struct snd_soc_component *component = asoc_rtd_to_cpu(rtd, 0)->component; dapm = snd_soc_component_get_dapm(component); snd_soc_dapm_ignore_suspend(dapm, "Reference Capture"); return 0; } static const unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static const unsigned int channels[] = { DUAL_CHANNEL, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static const unsigned int channels_quad[] = { QUAD_CHANNEL, }; static const struct snd_pcm_hw_constraint_list constraints_channels_quad = { .count = ARRAY_SIZE(channels_quad), .list = channels_quad, .mask = 0, }; static int bxt_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* * On this platform for PCM device we support, * 48Khz * stereo * 16 bit audio */ runtime->hw.channels_max = DUAL_CHANNEL; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); return 0; } static const struct snd_soc_ops broxton_da7219_fe_ops = { .startup = bxt_fe_startup, }; static int broxton_dmic_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); if (params_channels(params) == 2) chan->min = chan->max = 2; else chan->min = chan->max = 4; return 0; } static int broxton_dmic_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_min = runtime->hw.channels_max = QUAD_CHANNEL; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels_quad); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static const struct snd_soc_ops broxton_dmic_ops = { .startup = broxton_dmic_startup, }; static const unsigned int rates_16000[] = { 16000, }; static const struct snd_pcm_hw_constraint_list constraints_16000 = { .count = ARRAY_SIZE(rates_16000), .list = rates_16000, }; static const unsigned int ch_mono[] = { 1, }; static const struct snd_pcm_hw_constraint_list constraints_refcap = { .count = ARRAY_SIZE(ch_mono), .list = ch_mono, }; static int broxton_refcap_startup(struct snd_pcm_substream *substream) { substream->runtime->hw.channels_max = 1; snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_refcap); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_16000); }; static const struct snd_soc_ops broxton_refcap_ops = { .startup = broxton_refcap_startup, }; /* broxton digital audio interface glue - connects codec <--> CPU */ SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(system2, DAILINK_COMP_ARRAY(COMP_CPU("System Pin2"))); SND_SOC_DAILINK_DEF(reference, DAILINK_COMP_ARRAY(COMP_CPU("Reference Pin"))); SND_SOC_DAILINK_DEF(dmic, DAILINK_COMP_ARRAY(COMP_CPU("DMIC Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(hdmi3, DAILINK_COMP_ARRAY(COMP_CPU("HDMI3 Pin"))); /* Back End DAI */ SND_SOC_DAILINK_DEF(ssp5_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP5 Pin"))); SND_SOC_DAILINK_DEF(ssp5_codec, DAILINK_COMP_ARRAY(COMP_CODEC("MX98357A:00", BXT_MAXIM_CODEC_DAI))); SND_SOC_DAILINK_DEF(max98390_codec, DAILINK_COMP_ARRAY( /* Left */ COMP_CODEC(MAX98390_DEV0_NAME, "max98390-aif1"), /* Right */ COMP_CODEC(MAX98390_DEV1_NAME, "max98390-aif1"))); SND_SOC_DAILINK_DEF(ssp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP1 Pin"))); SND_SOC_DAILINK_DEF(ssp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-DLGS7219:00", BXT_DIALOG_CODEC_DAI))); SND_SOC_DAILINK_DEF(dmic_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic16k_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC16k Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:0e.0"))); static struct snd_soc_dai_link broxton_dais[] = { /* Front End DAI links */ [BXT_DPCM_AUDIO_PB] = { .name = "Bxt Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .init = broxton_da7219_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &broxton_da7219_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [BXT_DPCM_AUDIO_CP] = { .name = "Bxt Audio Capture Port", .stream_name = "Audio Record", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, .ops = &broxton_da7219_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [BXT_DPCM_AUDIO_HS_PB] = { .name = "Bxt Audio Headset Playback", .stream_name = "Headset Playback", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &broxton_da7219_fe_ops, SND_SOC_DAILINK_REG(system2, dummy, platform), }, [BXT_DPCM_AUDIO_REF_CP] = { .name = "Bxt Audio Reference cap", .stream_name = "Refcap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &broxton_refcap_ops, SND_SOC_DAILINK_REG(reference, dummy, platform), }, [BXT_DPCM_AUDIO_DMIC_CP] = { .name = "Bxt Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &broxton_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [BXT_DPCM_AUDIO_HDMI1_PB] = { .name = "Bxt HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [BXT_DPCM_AUDIO_HDMI2_PB] = { .name = "Bxt HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [BXT_DPCM_AUDIO_HDMI3_PB] = { .name = "Bxt HDMI Port3", .stream_name = "Hdmi3", .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, /* Back End DAI links */ { /* SSP5 - Codec */ .name = "SSP5-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = broxton_ssp_fixup, .dpcm_playback = 1, SND_SOC_DAILINK_REG(ssp5_pin, ssp5_codec, platform), }, { /* SSP1 - Codec */ .name = "SSP1-Codec", .id = 1, .no_pcm = 1, .init = broxton_da7219_codec_init, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = broxton_ssp_fixup, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_codec, platform), }, { .name = "dmic01", .id = 2, .ignore_suspend = 1, .be_hw_params_fixup = broxton_dmic_fixup, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 3, .init = broxton_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = broxton_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 5, .init = broxton_hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, { .name = "dmic16k", .id = 6, .be_hw_params_fixup = broxton_dmic_fixup, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic16k_pin, dmic_codec, platform), }, }; static struct snd_soc_codec_conf max98390_codec_confs[] = { { .dlc = COMP_CODEC_CONF(MAX98390_DEV0_NAME), .name_prefix = "Left", }, { .dlc = COMP_CODEC_CONF(MAX98390_DEV1_NAME), .name_prefix = "Right", }, }; #define NAME_SIZE 32 static int bxt_card_late_probe(struct snd_soc_card *card) { struct bxt_card_private *ctx = snd_soc_card_get_drvdata(card); struct bxt_hdmi_pcm *pcm; struct snd_soc_component *component = NULL; const struct snd_kcontrol_new *controls; const struct snd_soc_dapm_widget *widgets; const struct snd_soc_dapm_route *routes; int num_controls, num_widgets, num_routes, err, i = 0; char jack_name[NAME_SIZE]; switch (ctx->spkamp) { case SPKAMP_MAX98357A: controls = max98357a_controls; num_controls = ARRAY_SIZE(max98357a_controls); widgets = max98357a_widgets; num_widgets = ARRAY_SIZE(max98357a_widgets); routes = max98357a_routes; num_routes = ARRAY_SIZE(max98357a_routes); break; case SPKAMP_MAX98390: controls = max98390_controls; num_controls = ARRAY_SIZE(max98390_controls); widgets = max98390_widgets; num_widgets = ARRAY_SIZE(max98390_widgets); routes = max98390_routes; num_routes = ARRAY_SIZE(max98390_routes); break; default: dev_err(card->dev, "Invalid speaker amplifier %d\n", ctx->spkamp); return -EINVAL; } err = snd_soc_dapm_new_controls(&card->dapm, widgets, num_widgets); if (err) { dev_err(card->dev, "Fail to new widgets\n"); return err; } err = snd_soc_add_card_controls(card, controls, num_controls); if (err) { dev_err(card->dev, "Fail to add controls\n"); return err; } err = snd_soc_dapm_add_routes(&card->dapm, routes, num_routes); if (err) { dev_err(card->dev, "Fail to add routes\n"); return err; } if (soc_intel_is_glk()) snd_soc_dapm_add_routes(&card->dapm, gemini_map, ARRAY_SIZE(gemini_map)); else snd_soc_dapm_add_routes(&card->dapm, broxton_map, ARRAY_SIZE(broxton_map)); if (list_empty(&ctx->hdmi_pcm_list)) return -EINVAL; if (ctx->common_hdmi_codec_drv) { pcm = list_first_entry(&ctx->hdmi_pcm_list, struct bxt_hdmi_pcm, head); component = pcm->codec_dai->component; return hda_dsp_hdmi_build_controls(card, component); } list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &broxton_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &broxton_hdmi[i]); if (err < 0) return err; i++; } return hdac_hdmi_jack_port_init(component, &card->dapm); } /* broxton audio machine driver for SPT + da7219 */ static struct snd_soc_card broxton_audio_card = { .name = "bxtda7219max", .owner = THIS_MODULE, .dai_link = broxton_dais, .num_links = ARRAY_SIZE(broxton_dais), .controls = broxton_controls, .num_controls = ARRAY_SIZE(broxton_controls), .dapm_widgets = broxton_widgets, .num_dapm_widgets = ARRAY_SIZE(broxton_widgets), .dapm_routes = audio_map, .num_dapm_routes = ARRAY_SIZE(audio_map), .fully_routed = true, .late_probe = bxt_card_late_probe, }; static int broxton_audio_probe(struct platform_device *pdev) { struct bxt_card_private *ctx; struct snd_soc_acpi_mach *mach; const char *platform_name; int ret; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); if (acpi_dev_present("MX98390", NULL, -1)) ctx->spkamp = SPKAMP_MAX98390; else ctx->spkamp = SPKAMP_MAX98357A; broxton_audio_card.dev = &pdev->dev; snd_soc_card_set_drvdata(&broxton_audio_card, ctx); if (soc_intel_is_glk()) { unsigned int i; broxton_audio_card.name = "glkda7219max"; /* Fixup the SSP entries for geminilake */ for (i = 0; i < ARRAY_SIZE(broxton_dais); i++) { /* MAXIM_CODEC is connected to SSP1. */ if (!strcmp(broxton_dais[i].codecs->dai_name, BXT_MAXIM_CODEC_DAI)) { broxton_dais[i].name = "SSP1-Codec"; broxton_dais[i].cpus->dai_name = "SSP1 Pin"; } /* DIALOG_CODE is connected to SSP2 */ else if (!strcmp(broxton_dais[i].codecs->dai_name, BXT_DIALOG_CODEC_DAI)) { broxton_dais[i].name = "SSP2-Codec"; broxton_dais[i].cpus->dai_name = "SSP2 Pin"; } } } else if (soc_intel_is_cml()) { unsigned int i; if (ctx->spkamp == SPKAMP_MAX98390) { broxton_audio_card.name = "cml_max98390_da7219"; broxton_audio_card.codec_conf = max98390_codec_confs; broxton_audio_card.num_configs = ARRAY_SIZE(max98390_codec_confs); } else broxton_audio_card.name = "cmlda7219max"; for (i = 0; i < ARRAY_SIZE(broxton_dais); i++) { /* MAXIM_CODEC is connected to SSP1. */ if (!strcmp(broxton_dais[i].codecs->dai_name, BXT_MAXIM_CODEC_DAI)) { broxton_dais[i].name = "SSP1-Codec"; broxton_dais[i].cpus->dai_name = "SSP1 Pin"; if (ctx->spkamp == SPKAMP_MAX98390) { broxton_dais[i].codecs = max98390_codec; broxton_dais[i].num_codecs = ARRAY_SIZE(max98390_codec); broxton_dais[i].dpcm_capture = 1; } } /* DIALOG_CODEC is connected to SSP0 */ else if (!strcmp(broxton_dais[i].codecs->dai_name, BXT_DIALOG_CODEC_DAI)) { broxton_dais[i].name = "SSP0-Codec"; broxton_dais[i].cpus->dai_name = "SSP0 Pin"; } } } /* override platform name, if required */ mach = pdev->dev.platform_data; platform_name = mach->mach_params.platform; ret = snd_soc_fixup_dai_links_platform_name(&broxton_audio_card, platform_name); if (ret) return ret; ctx->common_hdmi_codec_drv = mach->mach_params.common_hdmi_codec_drv; return devm_snd_soc_register_card(&pdev->dev, &broxton_audio_card); } static const struct platform_device_id bxt_board_ids[] = { { .name = "bxt_da7219_mx98357a" }, { .name = "glk_da7219_mx98357a" }, { .name = "cml_da7219_mx98357a" }, { } }; MODULE_DEVICE_TABLE(platform, bxt_board_ids); static struct platform_driver broxton_audio = { .probe = broxton_audio_probe, .driver = { .name = "bxt_da7219_max98357a", .pm = &snd_soc_pm_ops, }, .id_table = bxt_board_ids, }; module_platform_driver(broxton_audio) /* Module information */ MODULE_DESCRIPTION("Audio Machine driver-DA7219 & MAX98357A in I2S mode"); MODULE_AUTHOR("Sathyanarayana Nujella <[email protected]>"); MODULE_AUTHOR("Rohit Ainapure <[email protected]>"); MODULE_AUTHOR("Harsha Priya <[email protected]>"); MODULE_AUTHOR("Conrad Cooke <[email protected]>"); MODULE_AUTHOR("Naveen Manohar <[email protected]>"); MODULE_AUTHOR("Mac Chiang <[email protected]>"); MODULE_AUTHOR("Brent Lu <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON);
linux-master
sound/soc/intel/boards/bxt_da7219_max98357a.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2019 Intel Corporation. /* * Intel SOF Machine driver for DA7219 + MAX98373/MAX98360A codec */ #include <linux/input.h> #include <linux/module.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <linux/platform_device.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/da7219.h" #include "hda_dsp_common.h" #define DIALOG_CODEC_DAI "da7219-hifi" #define MAX98373_CODEC_DAI "max98373-aif1" #define MAXIM_DEV0_NAME "i2c-MX98373:00" #define MAXIM_DEV1_NAME "i2c-MX98373:01" struct hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct card_private { struct snd_soc_jack headset; struct list_head hdmi_pcm_list; struct snd_soc_jack hdmi[3]; }; static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; int ret = 0; codec_dai = snd_soc_card_get_codec_dai(card, DIALOG_CODEC_DAI); if (!codec_dai) { dev_err(card->dev, "Codec dai not found; Unable to set/unset codec pll\n"); return -EIO; } if (SND_SOC_DAPM_EVENT_OFF(event)) { ret = snd_soc_dai_set_pll(codec_dai, 0, DA7219_SYSCLK_MCLK, 0, 0); if (ret) dev_err(card->dev, "failed to stop PLL: %d\n", ret); } else if (SND_SOC_DAPM_EVENT_ON(event)) { ret = snd_soc_dai_set_pll(codec_dai, 0, DA7219_SYSCLK_PLL_SRM, 0, DA7219_PLL_FREQ_OUT_98304); if (ret) dev_err(card->dev, "failed to start PLL: %d\n", ret); } return ret; } static const struct snd_kcontrol_new controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Line Out"), SOC_DAPM_PIN_SWITCH("Left Spk"), SOC_DAPM_PIN_SWITCH("Right Spk"), }; static const struct snd_kcontrol_new m98360a_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Line Out"), SOC_DAPM_PIN_SWITCH("Spk"), }; /* For MAX98373 amp */ static const struct snd_soc_dapm_widget widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_LINE("Line Out", NULL), SND_SOC_DAPM_SPK("Left Spk", NULL), SND_SOC_DAPM_SPK("Right Spk", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_POST_PMD | SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_route audio_map[] = { { "Headphone Jack", NULL, "HPL" }, { "Headphone Jack", NULL, "HPR" }, { "MIC", NULL, "Headset Mic" }, { "Headphone Jack", NULL, "Platform Clock" }, { "Headset Mic", NULL, "Platform Clock" }, { "Line Out", NULL, "Platform Clock" }, { "Left Spk", NULL, "Left BE_OUT" }, { "Right Spk", NULL, "Right BE_OUT" }, /* digital mics */ {"DMic", NULL, "SoC DMIC"}, }; /* For MAX98360A amp */ static const struct snd_soc_dapm_widget max98360a_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_LINE("Line Out", NULL), SND_SOC_DAPM_SPK("Spk", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_POST_PMD | SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_route max98360a_map[] = { { "Headphone Jack", NULL, "HPL" }, { "Headphone Jack", NULL, "HPR" }, { "MIC", NULL, "Headset Mic" }, { "Headphone Jack", NULL, "Platform Clock" }, { "Headset Mic", NULL, "Platform Clock" }, { "Line Out", NULL, "Platform Clock" }, {"Spk", NULL, "Speaker"}, /* digital mics */ {"DMic", NULL, "SoC DMIC"}, }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, { .pin = "Line Out", .mask = SND_JACK_LINEOUT, }, }; static struct snd_soc_jack headset; static int da7219_codec_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_component *component = codec_dai->component; struct snd_soc_jack *jack; int ret; /* Configure sysclk for codec */ ret = snd_soc_dai_set_sysclk(codec_dai, DA7219_CLKSRC_MCLK, 24000000, SND_SOC_CLOCK_IN); if (ret) { dev_err(rtd->dev, "can't set codec sysclk configuration\n"); return ret; } /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3 | SND_JACK_LINEOUT, &headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEDOWN); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOICECOMMAND); snd_soc_component_set_jack(component, jack, NULL); return ret; } static int ssp1_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *runtime = asoc_substream_to_rtd(substream); int ret, j; for (j = 0; j < runtime->dai_link->num_codecs; j++) { struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(runtime, j); if (!strcmp(codec_dai->component->name, MAXIM_DEV0_NAME)) { /* vmon_slot_no = 0 imon_slot_no = 1 for TX slots */ ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x3, 3, 4, 16); if (ret < 0) { dev_err(runtime->dev, "DEV0 TDM slot err:%d\n", ret); return ret; } } if (!strcmp(codec_dai->component->name, MAXIM_DEV1_NAME)) { /* vmon_slot_no = 2 imon_slot_no = 3 for TX slots */ ret = snd_soc_dai_set_tdm_slot(codec_dai, 0xC, 3, 4, 16); if (ret < 0) { dev_err(runtime->dev, "DEV1 TDM slot err:%d\n", ret); return ret; } } } return 0; } static struct snd_soc_ops ssp1_ops = { .hw_params = ssp1_hw_params, }; static struct snd_soc_codec_conf max98373_codec_conf[] = { { .dlc = COMP_CODEC_CONF(MAXIM_DEV0_NAME), .name_prefix = "Right", }, { .dlc = COMP_CODEC_CONF(MAXIM_DEV1_NAME), .name_prefix = "Left", }, }; static int hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = dai->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int card_late_probe(struct snd_soc_card *card) { struct card_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_acpi_mach *mach = (card->dev)->platform_data; struct hdmi_pcm *pcm; if (mach->mach_params.common_hdmi_codec_drv) { pcm = list_first_entry(&ctx->hdmi_pcm_list, struct hdmi_pcm, head); return hda_dsp_hdmi_build_controls(card, pcm->codec_dai->component); } return -EINVAL; } SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-DLGS7219:00", DIALOG_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP1 Pin"))); SND_SOC_DAILINK_DEF(ssp1_amps, DAILINK_COMP_ARRAY( /* Left */ COMP_CODEC(MAXIM_DEV0_NAME, MAX98373_CODEC_DAI), /* Right */ COMP_CODEC(MAXIM_DEV1_NAME, MAX98373_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp1_m98360a, DAILINK_COMP_ARRAY(COMP_CODEC("MX98360A:00", "HiFi"))); SND_SOC_DAILINK_DEF(dmic_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(dmic16k_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC16k Pin"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, /* subject to be overridden during probe */ DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); static struct snd_soc_dai_link dais[] = { /* Back End DAI links */ { .name = "SSP1-Codec", .id = 0, .ignore_pmdown_time = 1, .no_pcm = 1, .dpcm_playback = 1, .dpcm_capture = 1, /* IV feedback */ .ops = &ssp1_ops, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_amps, platform), }, { .name = "SSP0-Codec", .id = 1, .no_pcm = 1, .init = da7219_codec_init, .ignore_pmdown_time = 1, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec, platform), }, { .name = "dmic01", .id = 2, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 3, .init = hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 5, .init = hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, { .name = "dmic16k", .id = 6, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic16k_pin, dmic_codec, platform), } }; static struct snd_soc_card card_da7219_m98373 = { .name = "da7219max", .owner = THIS_MODULE, .dai_link = dais, .num_links = ARRAY_SIZE(dais), .controls = controls, .num_controls = ARRAY_SIZE(controls), .dapm_widgets = widgets, .num_dapm_widgets = ARRAY_SIZE(widgets), .dapm_routes = audio_map, .num_dapm_routes = ARRAY_SIZE(audio_map), .codec_conf = max98373_codec_conf, .num_configs = ARRAY_SIZE(max98373_codec_conf), .fully_routed = true, .late_probe = card_late_probe, }; static struct snd_soc_card card_da7219_m98360a = { .name = "da7219max98360a", .owner = THIS_MODULE, .dai_link = dais, .num_links = ARRAY_SIZE(dais), .controls = m98360a_controls, .num_controls = ARRAY_SIZE(m98360a_controls), .dapm_widgets = max98360a_widgets, .num_dapm_widgets = ARRAY_SIZE(max98360a_widgets), .dapm_routes = max98360a_map, .num_dapm_routes = ARRAY_SIZE(max98360a_map), .fully_routed = true, .late_probe = card_late_probe, }; static int audio_probe(struct platform_device *pdev) { static struct snd_soc_card *card; struct snd_soc_acpi_mach *mach; struct card_private *ctx; int ret; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; /* By default dais[0] is configured for max98373 */ if (!strcmp(pdev->name, "sof_da7219_mx98360a")) { dais[0] = (struct snd_soc_dai_link) { .name = "SSP1-Codec", .id = 0, .no_pcm = 1, .dpcm_playback = 1, .ignore_pmdown_time = 1, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_m98360a, platform) }; } INIT_LIST_HEAD(&ctx->hdmi_pcm_list); card = (struct snd_soc_card *)pdev->id_entry->driver_data; card->dev = &pdev->dev; mach = pdev->dev.platform_data; ret = snd_soc_fixup_dai_links_platform_name(card, mach->mach_params.platform); if (ret) return ret; snd_soc_card_set_drvdata(card, ctx); return devm_snd_soc_register_card(&pdev->dev, card); } static const struct platform_device_id board_ids[] = { { .name = "sof_da7219_mx98373", .driver_data = (kernel_ulong_t)&card_da7219_m98373, }, { .name = "sof_da7219_mx98360a", .driver_data = (kernel_ulong_t)&card_da7219_m98360a, }, { } }; MODULE_DEVICE_TABLE(platform, board_ids); static struct platform_driver audio = { .probe = audio_probe, .driver = { .name = "sof_da7219_max98_360a_373", .pm = &snd_soc_pm_ops, }, .id_table = board_ids, }; module_platform_driver(audio) /* Module information */ MODULE_DESCRIPTION("ASoC Intel(R) SOF Machine driver"); MODULE_AUTHOR("Yong Zhi <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON);
linux-master
sound/soc/intel/boards/sof_da7219_max98373.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation /* * ehl_rt5660 - ASOC Machine driver for Elkhart Lake platforms * with rt5660 codec */ #include <linux/acpi.h> #include <sound/core.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/gfp.h> #include <sound/jack.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "hda_dsp_common.h" #include "../../codecs/rt5660.h" #define DUAL_CHANNEL 2 #define HDMI_LINK_START 3 #define HDMI_LINE_END 6 #define NAME_SIZE 32 #define IDISP_CODEC_MASK 0x4 struct sof_card_private { struct list_head hdmi_pcm_list; bool idisp_codec; }; static const struct snd_kcontrol_new rt5660_controls[] = { SOC_DAPM_PIN_SWITCH("Speaker"), /* There are two MICBIAS in rt5660, each for one MIC */ SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Headset Mic2"), SOC_DAPM_PIN_SWITCH("Line Out"), }; static const struct snd_soc_dapm_widget rt5660_widgets[] = { SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Headset Mic2", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), SND_SOC_DAPM_LINE("Line Out", NULL), }; static const struct snd_soc_dapm_route rt5660_map[] = { {"Speaker", NULL, "SPO"}, {"Headset Mic", NULL, "MICBIAS1"}, {"Headset Mic2", NULL, "MICBIAS2"}, {"IN1P", NULL, "Headset Mic"}, {"IN2P", NULL, "Headset Mic2"}, {"Line Out", NULL, "LOUTL"}, {"Line Out", NULL, "LOUTR"}, {"DMic", NULL, "SoC DMIC"}, }; struct sof_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; static int hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct sof_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; /* dai_link id is 1:1 mapped to the PCM device */ pcm->device = rtd->dai_link->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int card_late_probe(struct snd_soc_card *card) { struct sof_card_private *ctx = snd_soc_card_get_drvdata(card); struct sof_hdmi_pcm *pcm; if (list_empty(&ctx->hdmi_pcm_list)) return -ENOENT; if (!ctx->idisp_codec) return 0; pcm = list_first_entry(&ctx->hdmi_pcm_list, struct sof_hdmi_pcm, head); return hda_dsp_hdmi_build_controls(card, pcm->codec_dai->component); } static int rt5660_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, RT5660_SCLK_S_PLL1, params_rate(params) * 512, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "snd_soc_dai_set_sysclk err = %d\n", ret); return ret; } ret = snd_soc_dai_set_pll(codec_dai, 0, RT5660_PLL1_S_BCLK, params_rate(params) * 50, params_rate(params) * 512); if (ret < 0) dev_err(codec_dai->dev, "can't set codec pll: %d\n", ret); return ret; } static struct snd_soc_ops rt5660_ops = { .hw_params = rt5660_hw_params, }; SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(rt5660_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10EC5660:00", "rt5660-aif1"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); SND_SOC_DAILINK_DEF(dmic_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(dmic16k, DAILINK_COMP_ARRAY(COMP_CPU("DMIC16k Pin"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(idisp4_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp4 Pin"))); SND_SOC_DAILINK_DEF(idisp4_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi4"))); static struct snd_soc_dai_link ehl_rt5660_dailink[] = { /* back ends */ { .name = "SSP0-Codec", .id = 0, .no_pcm = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &rt5660_ops, SND_SOC_DAILINK_REG(ssp0_pin, rt5660_codec, platform), }, { .name = "dmic48k", .id = 1, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "dmic16k", .id = 2, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic16k, dmic_codec, platform), }, { .name = "iDisp1", .id = 5, .init = hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 6, .init = hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 7, .init = hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, { .name = "iDisp4", .id = 8, .init = hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp4_pin, idisp4_codec, platform), }, }; /* SoC card */ static struct snd_soc_card snd_soc_card_ehl_rt5660 = { .name = "ehl-rt5660", .owner = THIS_MODULE, .dai_link = ehl_rt5660_dailink, .num_links = ARRAY_SIZE(ehl_rt5660_dailink), .dapm_widgets = rt5660_widgets, .num_dapm_widgets = ARRAY_SIZE(rt5660_widgets), .dapm_routes = rt5660_map, .num_dapm_routes = ARRAY_SIZE(rt5660_map), .controls = rt5660_controls, .num_controls = ARRAY_SIZE(rt5660_controls), .fully_routed = true, .late_probe = card_late_probe, }; /* If hdmi codec is not supported, switch to use dummy codec */ static void hdmi_link_init(struct snd_soc_card *card, struct sof_card_private *ctx, struct snd_soc_acpi_mach *mach) { int i; if (mach->mach_params.common_hdmi_codec_drv && (mach->mach_params.codec_mask & IDISP_CODEC_MASK)) { ctx->idisp_codec = true; return; } /* * if HDMI is not enabled in kernel config, or * hdmi codec is not supported */ for (i = HDMI_LINK_START; i <= HDMI_LINE_END; i++) card->dai_link[i].codecs[0] = asoc_dummy_dlc; } static int snd_ehl_rt5660_probe(struct platform_device *pdev) { struct snd_soc_acpi_mach *mach; struct snd_soc_card *card = &snd_soc_card_ehl_rt5660; struct sof_card_private *ctx; int ret; card->dev = &pdev->dev; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); snd_soc_card_set_drvdata(card, ctx); mach = pdev->dev.platform_data; ret = snd_soc_fixup_dai_links_platform_name(card, mach->mach_params.platform); if (ret) return ret; hdmi_link_init(card, ctx, mach); return devm_snd_soc_register_card(&pdev->dev, card); } static const struct platform_device_id ehl_board_ids[] = { { .name = "ehl_rt5660" }, { } }; MODULE_DEVICE_TABLE(platform, ehl_board_ids); static struct platform_driver snd_ehl_rt5660_driver = { .driver = { .name = "ehl_rt5660", .pm = &snd_soc_pm_ops, }, .probe = snd_ehl_rt5660_probe, .id_table = ehl_board_ids, }; module_platform_driver(snd_ehl_rt5660_driver); MODULE_DESCRIPTION("ASoC Intel(R) Elkhartlake + rt5660 Machine driver"); MODULE_AUTHOR("[email protected]"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON);
linux-master
sound/soc/intel/boards/ehl_rt5660.c
// SPDX-License-Identifier: GPL-2.0-only /* * cht_bsw_rt5672.c - ASoc Machine driver for Intel Cherryview-based platforms * Cherrytrail and Braswell, with RT5672 codec. * * Copyright (C) 2014 Intel Corp * Author: Subhransu S. Prusty <[email protected]> * Mengdong Lin <[email protected]> */ #include <linux/gpio/consumer.h> #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/clk.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/jack.h> #include <sound/soc-acpi.h> #include "../../codecs/rt5670.h" #include "../atom/sst-atom-controls.h" #include "../common/soc-intel-quirks.h" /* The platform clock #3 outputs 19.2Mhz clock to codec as I2S MCLK */ #define CHT_PLAT_CLK_3_HZ 19200000 #define CHT_CODEC_DAI "rt5670-aif1" struct cht_mc_private { struct snd_soc_jack headset; char codec_name[SND_ACPI_I2C_ID_LEN]; struct clk *mclk; bool use_ssp0; }; /* Headset jack detection DAPM pins */ static struct snd_soc_jack_pin cht_bsw_headset_pins[] = { { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, }; static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; struct cht_mc_private *ctx = snd_soc_card_get_drvdata(card); int ret; codec_dai = snd_soc_card_get_codec_dai(card, CHT_CODEC_DAI); if (!codec_dai) { dev_err(card->dev, "Codec dai not found; Unable to set platform clock\n"); return -EIO; } if (SND_SOC_DAPM_EVENT_ON(event)) { if (ctx->mclk) { ret = clk_prepare_enable(ctx->mclk); if (ret < 0) { dev_err(card->dev, "could not configure MCLK state"); return ret; } } /* set codec PLL source to the 19.2MHz platform clock (MCLK) */ ret = snd_soc_dai_set_pll(codec_dai, 0, RT5670_PLL1_S_MCLK, CHT_PLAT_CLK_3_HZ, 48000 * 512); if (ret < 0) { dev_err(card->dev, "can't set codec pll: %d\n", ret); return ret; } /* set codec sysclk source to PLL */ ret = snd_soc_dai_set_sysclk(codec_dai, RT5670_SCLK_S_PLL1, 48000 * 512, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(card->dev, "can't set codec sysclk: %d\n", ret); return ret; } } else { /* Set codec sysclk source to its internal clock because codec * PLL will be off when idle and MCLK will also be off by ACPI * when codec is runtime suspended. Codec needs clock for jack * detection and button press. */ snd_soc_dai_set_sysclk(codec_dai, RT5670_SCLK_S_RCCLK, 48000 * 512, SND_SOC_CLOCK_IN); if (ctx->mclk) clk_disable_unprepare(ctx->mclk); } return 0; } static const struct snd_soc_dapm_widget cht_dapm_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Int Mic", NULL), SND_SOC_DAPM_SPK("Ext Spk", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static const struct snd_soc_dapm_route cht_audio_map[] = { {"IN1P", NULL, "Headset Mic"}, {"IN1N", NULL, "Headset Mic"}, {"DMIC L1", NULL, "Int Mic"}, {"DMIC R1", NULL, "Int Mic"}, {"Headphone", NULL, "HPOL"}, {"Headphone", NULL, "HPOR"}, {"Ext Spk", NULL, "SPOLP"}, {"Ext Spk", NULL, "SPOLN"}, {"Ext Spk", NULL, "SPORP"}, {"Ext Spk", NULL, "SPORN"}, {"Headphone", NULL, "Platform Clock"}, {"Headset Mic", NULL, "Platform Clock"}, {"Int Mic", NULL, "Platform Clock"}, {"Ext Spk", NULL, "Platform Clock"}, }; static const struct snd_soc_dapm_route cht_audio_ssp0_map[] = { {"AIF1 Playback", NULL, "ssp0 Tx"}, {"ssp0 Tx", NULL, "modem_out"}, {"modem_in", NULL, "ssp0 Rx"}, {"ssp0 Rx", NULL, "AIF1 Capture"}, }; static const struct snd_soc_dapm_route cht_audio_ssp2_map[] = { {"AIF1 Playback", NULL, "ssp2 Tx"}, {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx"}, {"codec_in1", NULL, "ssp2 Rx"}, {"ssp2 Rx", NULL, "AIF1 Capture"}, }; static const struct snd_kcontrol_new cht_mc_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Int Mic"), SOC_DAPM_PIN_SWITCH("Ext Spk"), }; static int cht_aif1_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; /* set codec PLL source to the 19.2MHz platform clock (MCLK) */ ret = snd_soc_dai_set_pll(codec_dai, 0, RT5670_PLL1_S_MCLK, CHT_PLAT_CLK_3_HZ, params_rate(params) * 512); if (ret < 0) { dev_err(rtd->dev, "can't set codec pll: %d\n", ret); return ret; } /* set codec sysclk source to PLL */ ret = snd_soc_dai_set_sysclk(codec_dai, RT5670_SCLK_S_PLL1, params_rate(params) * 512, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(rtd->dev, "can't set codec sysclk: %d\n", ret); return ret; } return 0; } static const struct acpi_gpio_params headset_gpios = { 0, 0, false }; static const struct acpi_gpio_mapping cht_rt5672_gpios[] = { { "headset-gpios", &headset_gpios, 1 }, {}, }; static int cht_codec_init(struct snd_soc_pcm_runtime *runtime) { int ret; struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(runtime, 0); struct snd_soc_component *component = codec_dai->component; struct cht_mc_private *ctx = snd_soc_card_get_drvdata(runtime->card); if (devm_acpi_dev_add_driver_gpios(component->dev, cht_rt5672_gpios)) dev_warn(runtime->dev, "Unable to add GPIO mapping table\n"); /* Select codec ASRC clock source to track I2S1 clock, because codec * is in slave mode and 100fs I2S format (BCLK = 100 * LRCLK) cannot * be supported by RT5672. Otherwise, ASRC will be disabled and cause * noise. */ rt5670_sel_asrc_clk_src(component, RT5670_DA_STEREO_FILTER | RT5670_DA_MONO_L_FILTER | RT5670_DA_MONO_R_FILTER | RT5670_AD_STEREO_FILTER | RT5670_AD_MONO_L_FILTER | RT5670_AD_MONO_R_FILTER, RT5670_CLK_SEL_I2S1_ASRC); if (ctx->use_ssp0) { ret = snd_soc_dapm_add_routes(&runtime->card->dapm, cht_audio_ssp0_map, ARRAY_SIZE(cht_audio_ssp0_map)); } else { ret = snd_soc_dapm_add_routes(&runtime->card->dapm, cht_audio_ssp2_map, ARRAY_SIZE(cht_audio_ssp2_map)); } if (ret) return ret; ret = snd_soc_card_jack_new_pins(runtime->card, "Headset", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2, &ctx->headset, cht_bsw_headset_pins, ARRAY_SIZE(cht_bsw_headset_pins)); if (ret) return ret; snd_jack_set_key(ctx->headset.jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(ctx->headset.jack, SND_JACK_BTN_1, KEY_VOLUMEUP); snd_jack_set_key(ctx->headset.jack, SND_JACK_BTN_2, KEY_VOLUMEDOWN); rt5670_set_jack_detect(component, &ctx->headset); if (ctx->mclk) { /* * The firmware might enable the clock at * boot (this information may or may not * be reflected in the enable clock register). * To change the rate we must disable the clock * first to cover these cases. Due to common * clock framework restrictions that do not allow * to disable a clock that has not been enabled, * we need to enable the clock first. */ ret = clk_prepare_enable(ctx->mclk); if (!ret) clk_disable_unprepare(ctx->mclk); ret = clk_set_rate(ctx->mclk, CHT_PLAT_CLK_3_HZ); if (ret) { dev_err(runtime->dev, "unable to set MCLK rate\n"); return ret; } } return 0; } static int cht_codec_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct cht_mc_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); int ret, bits; /* The DSP will convert the FE rate to 48k, stereo, 24bits */ rate->min = rate->max = 48000; channels->min = channels->max = 2; if (ctx->use_ssp0) { /* set SSP0 to 16-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S16_LE); bits = 16; } else { /* set SSP2 to 24-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S24_LE); bits = 24; } /* * The default mode for the cpu-dai is TDM 4 slot. The default mode * for the codec-dai is I2S. So we need to either set the cpu-dai to * I2S mode to match the codec-dai, or set the codec-dai to TDM 4 slot * (or program both to yet another mode). * One board, the Lenovo Miix 2 10, uses not 1 but 2 codecs connected * to SSP2. The second piggy-backed, output-only codec is inside the * keyboard-dock (which has extra speakers). Unlike the main rt5672 * codec, we cannot configure this codec, it is hard coded to use * 2 channel 24 bit I2S. For this to work we must use I2S mode on this * board. Since we only support 2 channels anyways, there is no need * for TDM on any cht-bsw-rt5672 designs. So we use I2S 2ch everywhere. */ ret = snd_soc_dai_set_fmt(asoc_rtd_to_cpu(rtd, 0), SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BP_FP); if (ret < 0) { dev_err(rtd->dev, "can't set format to I2S, err %d\n", ret); return ret; } ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_cpu(rtd, 0), 0x3, 0x3, 2, bits); if (ret < 0) { dev_err(rtd->dev, "can't set I2S config, err %d\n", ret); return ret; } return 0; } static int cht_aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_single(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 48000); } static const struct snd_soc_ops cht_aif1_ops = { .startup = cht_aif1_startup, }; static const struct snd_soc_ops cht_be_ssp2_ops = { .hw_params = cht_aif1_hw_params, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp2_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp2-port"))); SND_SOC_DAILINK_DEF(ssp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10EC5670:00", "rt5670-aif1"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link cht_dailink[] = { /* Front End DAI links */ [MERR_DPCM_AUDIO] = { .name = "Audio Port", .stream_name = "Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &cht_aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &cht_aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* Back End DAI links */ { /* SSP2 - Codec */ .name = "SSP2-Codec", .id = 0, .no_pcm = 1, .init = cht_codec_init, .be_hw_params_fixup = cht_codec_fixup, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &cht_be_ssp2_ops, SND_SOC_DAILINK_REG(ssp2_port, ssp2_codec, platform), }, }; static int cht_suspend_pre(struct snd_soc_card *card) { struct snd_soc_component *component; struct cht_mc_private *ctx = snd_soc_card_get_drvdata(card); for_each_card_components(card, component) { if (!strncmp(component->name, ctx->codec_name, sizeof(ctx->codec_name))) { dev_dbg(component->dev, "disabling jack detect before going to suspend.\n"); rt5670_jack_suspend(component); break; } } return 0; } static int cht_resume_post(struct snd_soc_card *card) { struct snd_soc_component *component; struct cht_mc_private *ctx = snd_soc_card_get_drvdata(card); for_each_card_components(card, component) { if (!strncmp(component->name, ctx->codec_name, sizeof(ctx->codec_name))) { dev_dbg(component->dev, "enabling jack detect for resume.\n"); rt5670_jack_resume(component); break; } } return 0; } /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bytcht rt5672" /* card name will be 'sof-bytcht rt5672' */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "cht-bsw-rt5672" #define DRIVER_NAME NULL /* card name will be used for driver name */ /* SoC card */ static struct snd_soc_card snd_soc_card_cht = { .owner = THIS_MODULE, .dai_link = cht_dailink, .num_links = ARRAY_SIZE(cht_dailink), .dapm_widgets = cht_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cht_dapm_widgets), .dapm_routes = cht_audio_map, .num_dapm_routes = ARRAY_SIZE(cht_audio_map), .controls = cht_mc_controls, .num_controls = ARRAY_SIZE(cht_mc_controls), .suspend_pre = cht_suspend_pre, .resume_post = cht_resume_post, }; #define RT5672_I2C_DEFAULT "i2c-10EC5670:00" static int snd_cht_mc_probe(struct platform_device *pdev) { int ret_val = 0; struct cht_mc_private *drv; struct snd_soc_acpi_mach *mach = pdev->dev.platform_data; const char *platform_name; struct acpi_device *adev; bool sof_parent; int dai_index = 0; int i; drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL); if (!drv) return -ENOMEM; strcpy(drv->codec_name, RT5672_I2C_DEFAULT); /* find index of codec dai */ for (i = 0; i < ARRAY_SIZE(cht_dailink); i++) { if (!strcmp(cht_dailink[i].codecs->name, RT5672_I2C_DEFAULT)) { dai_index = i; break; } } /* fixup codec name based on HID */ adev = acpi_dev_get_first_match_dev(mach->id, NULL, -1); if (adev) { snprintf(drv->codec_name, sizeof(drv->codec_name), "i2c-%s", acpi_dev_name(adev)); cht_dailink[dai_index].codecs->name = drv->codec_name; } acpi_dev_put(adev); /* Use SSP0 on Bay Trail CR devices */ if (soc_intel_is_byt() && mach->mach_params.acpi_ipc_irq_index == 0) { cht_dailink[dai_index].cpus->dai_name = "ssp0-port"; drv->use_ssp0 = true; } /* override platform name, if required */ snd_soc_card_cht.dev = &pdev->dev; platform_name = mach->mach_params.platform; ret_val = snd_soc_fixup_dai_links_platform_name(&snd_soc_card_cht, platform_name); if (ret_val) return ret_val; snd_soc_card_cht.components = rt5670_components(); drv->mclk = devm_clk_get(&pdev->dev, "pmc_plt_clk_3"); if (IS_ERR(drv->mclk)) { dev_err(&pdev->dev, "Failed to get MCLK from pmc_plt_clk_3: %ld\n", PTR_ERR(drv->mclk)); return PTR_ERR(drv->mclk); } snd_soc_card_set_drvdata(&snd_soc_card_cht, drv); sof_parent = snd_soc_acpi_sof_parent(&pdev->dev); /* set card and driver name */ if (sof_parent) { snd_soc_card_cht.name = SOF_CARD_NAME; snd_soc_card_cht.driver_name = SOF_DRIVER_NAME; } else { snd_soc_card_cht.name = CARD_NAME; snd_soc_card_cht.driver_name = DRIVER_NAME; } /* set pm ops */ if (sof_parent) pdev->dev.driver->pm = &snd_soc_pm_ops; /* register the soc card */ ret_val = devm_snd_soc_register_card(&pdev->dev, &snd_soc_card_cht); if (ret_val) { dev_err(&pdev->dev, "snd_soc_register_card failed %d\n", ret_val); return ret_val; } platform_set_drvdata(pdev, &snd_soc_card_cht); return ret_val; } static struct platform_driver snd_cht_mc_driver = { .driver = { .name = "cht-bsw-rt5672", }, .probe = snd_cht_mc_probe, }; module_platform_driver(snd_cht_mc_driver); MODULE_DESCRIPTION("ASoC Intel(R) Baytrail CR Machine driver"); MODULE_AUTHOR("Subhransu S. Prusty, Mengdong Lin"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:cht-bsw-rt5672");
linux-master
sound/soc/intel/boards/cht_bsw_rt5672.c
// SPDX-License-Identifier: GPL-2.0-only /* * byt_cr_dpcm_rt5640.c - ASoc Machine driver for Intel Byt CR platform * * Copyright (C) 2014 Intel Corp * Author: Subhransu S. Prusty <[email protected]> * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/i2c.h> #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/platform_device.h> #include <linux/acpi.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/dmi.h> #include <linux/gpio/consumer.h> #include <linux/gpio/machine.h> #include <linux/input.h> #include <linux/slab.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/jack.h> #include <sound/soc-acpi.h> #include <dt-bindings/sound/rt5640.h> #include "../../codecs/rt5640.h" #include "../atom/sst-atom-controls.h" #include "../common/soc-intel-quirks.h" enum { BYT_RT5640_DMIC1_MAP, BYT_RT5640_DMIC2_MAP, BYT_RT5640_IN1_MAP, BYT_RT5640_IN3_MAP, BYT_RT5640_NO_INTERNAL_MIC_MAP, }; #define RT5640_JD_SRC_EXT_GPIO 0x0f enum { BYT_RT5640_JD_SRC_GPIO1 = (RT5640_JD_SRC_GPIO1 << 4), BYT_RT5640_JD_SRC_JD1_IN4P = (RT5640_JD_SRC_JD1_IN4P << 4), BYT_RT5640_JD_SRC_JD2_IN4N = (RT5640_JD_SRC_JD2_IN4N << 4), BYT_RT5640_JD_SRC_GPIO2 = (RT5640_JD_SRC_GPIO2 << 4), BYT_RT5640_JD_SRC_GPIO3 = (RT5640_JD_SRC_GPIO3 << 4), BYT_RT5640_JD_SRC_GPIO4 = (RT5640_JD_SRC_GPIO4 << 4), BYT_RT5640_JD_SRC_EXT_GPIO = (RT5640_JD_SRC_EXT_GPIO << 4) }; enum { BYT_RT5640_OVCD_TH_600UA = (6 << 8), BYT_RT5640_OVCD_TH_1500UA = (15 << 8), BYT_RT5640_OVCD_TH_2000UA = (20 << 8), }; enum { BYT_RT5640_OVCD_SF_0P5 = (RT5640_OVCD_SF_0P5 << 13), BYT_RT5640_OVCD_SF_0P75 = (RT5640_OVCD_SF_0P75 << 13), BYT_RT5640_OVCD_SF_1P0 = (RT5640_OVCD_SF_1P0 << 13), BYT_RT5640_OVCD_SF_1P5 = (RT5640_OVCD_SF_1P5 << 13), }; #define BYT_RT5640_MAP(quirk) ((quirk) & GENMASK(3, 0)) #define BYT_RT5640_JDSRC(quirk) (((quirk) & GENMASK(7, 4)) >> 4) #define BYT_RT5640_OVCD_TH(quirk) (((quirk) & GENMASK(12, 8)) >> 8) #define BYT_RT5640_OVCD_SF(quirk) (((quirk) & GENMASK(14, 13)) >> 13) #define BYT_RT5640_JD_NOT_INV BIT(16) #define BYT_RT5640_MONO_SPEAKER BIT(17) #define BYT_RT5640_DIFF_MIC BIT(18) /* default is single-ended */ #define BYT_RT5640_SSP2_AIF2 BIT(19) /* default is using AIF1 */ #define BYT_RT5640_SSP0_AIF1 BIT(20) #define BYT_RT5640_SSP0_AIF2 BIT(21) #define BYT_RT5640_MCLK_EN BIT(22) #define BYT_RT5640_MCLK_25MHZ BIT(23) #define BYT_RT5640_NO_SPEAKERS BIT(24) #define BYT_RT5640_LINEOUT BIT(25) #define BYT_RT5640_LINEOUT_AS_HP2 BIT(26) #define BYT_RT5640_HSMIC2_ON_IN1 BIT(27) #define BYT_RT5640_JD_HP_ELITEP_1000G2 BIT(28) #define BYT_RT5640_USE_AMCR0F28 BIT(29) #define BYTCR_INPUT_DEFAULTS \ (BYT_RT5640_IN3_MAP | \ BYT_RT5640_JD_SRC_JD1_IN4P | \ BYT_RT5640_OVCD_TH_2000UA | \ BYT_RT5640_OVCD_SF_0P75 | \ BYT_RT5640_DIFF_MIC) /* in-diff or dmic-pin + jdsrc + ovcd-th + -sf + jd-inv + terminating entry */ #define MAX_NO_PROPS 6 struct byt_rt5640_private { struct snd_soc_jack jack; struct snd_soc_jack jack2; struct rt5640_set_jack_data jack_data; struct gpio_desc *hsmic_detect; struct clk *mclk; struct device *codec_dev; }; static bool is_bytcr; static unsigned long byt_rt5640_quirk = BYT_RT5640_MCLK_EN; static int quirk_override = -1; module_param_named(quirk, quirk_override, int, 0444); MODULE_PARM_DESC(quirk, "Board-specific quirk override"); static void log_quirks(struct device *dev) { int map; bool has_mclk = false; bool has_ssp0 = false; bool has_ssp0_aif1 = false; bool has_ssp0_aif2 = false; bool has_ssp2_aif2 = false; map = BYT_RT5640_MAP(byt_rt5640_quirk); switch (map) { case BYT_RT5640_DMIC1_MAP: dev_info(dev, "quirk DMIC1_MAP enabled\n"); break; case BYT_RT5640_DMIC2_MAP: dev_info(dev, "quirk DMIC2_MAP enabled\n"); break; case BYT_RT5640_IN1_MAP: dev_info(dev, "quirk IN1_MAP enabled\n"); break; case BYT_RT5640_IN3_MAP: dev_info(dev, "quirk IN3_MAP enabled\n"); break; case BYT_RT5640_NO_INTERNAL_MIC_MAP: dev_info(dev, "quirk NO_INTERNAL_MIC_MAP enabled\n"); break; default: dev_err(dev, "quirk map 0x%x is not supported, microphone input will not work\n", map); break; } if (byt_rt5640_quirk & BYT_RT5640_HSMIC2_ON_IN1) dev_info(dev, "quirk HSMIC2_ON_IN1 enabled\n"); if (BYT_RT5640_JDSRC(byt_rt5640_quirk)) { dev_info(dev, "quirk realtek,jack-detect-source %ld\n", BYT_RT5640_JDSRC(byt_rt5640_quirk)); dev_info(dev, "quirk realtek,over-current-threshold-microamp %ld\n", BYT_RT5640_OVCD_TH(byt_rt5640_quirk) * 100); dev_info(dev, "quirk realtek,over-current-scale-factor %ld\n", BYT_RT5640_OVCD_SF(byt_rt5640_quirk)); } if (byt_rt5640_quirk & BYT_RT5640_JD_NOT_INV) dev_info(dev, "quirk JD_NOT_INV enabled\n"); if (byt_rt5640_quirk & BYT_RT5640_JD_HP_ELITEP_1000G2) dev_info(dev, "quirk JD_HP_ELITEPAD_1000G2 enabled\n"); if (byt_rt5640_quirk & BYT_RT5640_MONO_SPEAKER) dev_info(dev, "quirk MONO_SPEAKER enabled\n"); if (byt_rt5640_quirk & BYT_RT5640_NO_SPEAKERS) dev_info(dev, "quirk NO_SPEAKERS enabled\n"); if (byt_rt5640_quirk & BYT_RT5640_LINEOUT) dev_info(dev, "quirk LINEOUT enabled\n"); if (byt_rt5640_quirk & BYT_RT5640_LINEOUT_AS_HP2) dev_info(dev, "quirk LINEOUT_AS_HP2 enabled\n"); if (byt_rt5640_quirk & BYT_RT5640_DIFF_MIC) dev_info(dev, "quirk DIFF_MIC enabled\n"); if (byt_rt5640_quirk & BYT_RT5640_SSP0_AIF1) { dev_info(dev, "quirk SSP0_AIF1 enabled\n"); has_ssp0 = true; has_ssp0_aif1 = true; } if (byt_rt5640_quirk & BYT_RT5640_SSP0_AIF2) { dev_info(dev, "quirk SSP0_AIF2 enabled\n"); has_ssp0 = true; has_ssp0_aif2 = true; } if (byt_rt5640_quirk & BYT_RT5640_SSP2_AIF2) { dev_info(dev, "quirk SSP2_AIF2 enabled\n"); has_ssp2_aif2 = true; } if (is_bytcr && !has_ssp0) dev_err(dev, "Invalid routing, bytcr detected but no SSP0-based quirk, audio cannot work with SSP2 on bytcr\n"); if (has_ssp0_aif1 && has_ssp0_aif2) dev_err(dev, "Invalid routing, SSP0 cannot be connected to both AIF1 and AIF2\n"); if (has_ssp0 && has_ssp2_aif2) dev_err(dev, "Invalid routing, cannot have both SSP0 and SSP2 connected to codec\n"); if (byt_rt5640_quirk & BYT_RT5640_MCLK_EN) { dev_info(dev, "quirk MCLK_EN enabled\n"); has_mclk = true; } if (byt_rt5640_quirk & BYT_RT5640_MCLK_25MHZ) { if (has_mclk) dev_info(dev, "quirk MCLK_25MHZ enabled\n"); else dev_err(dev, "quirk MCLK_25MHZ enabled but quirk MCLK not selected, will be ignored\n"); } } static int byt_rt5640_prepare_and_enable_pll1(struct snd_soc_dai *codec_dai, int rate) { int ret; /* Configure the PLL before selecting it */ if (!(byt_rt5640_quirk & BYT_RT5640_MCLK_EN)) { /* use bitclock as PLL input */ if ((byt_rt5640_quirk & BYT_RT5640_SSP0_AIF1) || (byt_rt5640_quirk & BYT_RT5640_SSP0_AIF2)) { /* 2x16 bit slots on SSP0 */ ret = snd_soc_dai_set_pll(codec_dai, 0, RT5640_PLL1_S_BCLK1, rate * 32, rate * 512); } else { /* 2x15 bit slots on SSP2 */ ret = snd_soc_dai_set_pll(codec_dai, 0, RT5640_PLL1_S_BCLK1, rate * 50, rate * 512); } } else { if (byt_rt5640_quirk & BYT_RT5640_MCLK_25MHZ) { ret = snd_soc_dai_set_pll(codec_dai, 0, RT5640_PLL1_S_MCLK, 25000000, rate * 512); } else { ret = snd_soc_dai_set_pll(codec_dai, 0, RT5640_PLL1_S_MCLK, 19200000, rate * 512); } } if (ret < 0) { dev_err(codec_dai->component->dev, "can't set pll: %d\n", ret); return ret; } ret = snd_soc_dai_set_sysclk(codec_dai, RT5640_SCLK_S_PLL1, rate * 512, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(codec_dai->component->dev, "can't set clock %d\n", ret); return ret; } return 0; } #define BYT_CODEC_DAI1 "rt5640-aif1" #define BYT_CODEC_DAI2 "rt5640-aif2" static struct snd_soc_dai *byt_rt5640_get_codec_dai(struct snd_soc_dapm_context *dapm) { struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; codec_dai = snd_soc_card_get_codec_dai(card, BYT_CODEC_DAI1); if (!codec_dai) codec_dai = snd_soc_card_get_codec_dai(card, BYT_CODEC_DAI2); if (!codec_dai) dev_err(card->dev, "Error codec dai not found\n"); return codec_dai; } static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; struct byt_rt5640_private *priv = snd_soc_card_get_drvdata(card); int ret; codec_dai = byt_rt5640_get_codec_dai(dapm); if (!codec_dai) return -EIO; if (SND_SOC_DAPM_EVENT_ON(event)) { ret = clk_prepare_enable(priv->mclk); if (ret < 0) { dev_err(card->dev, "could not configure MCLK state\n"); return ret; } ret = byt_rt5640_prepare_and_enable_pll1(codec_dai, 48000); } else { /* * Set codec clock source to internal clock before * turning off the platform clock. Codec needs clock * for Jack detection and button press */ ret = snd_soc_dai_set_sysclk(codec_dai, RT5640_SCLK_S_RCCLK, 48000 * 512, SND_SOC_CLOCK_IN); if (!ret) clk_disable_unprepare(priv->mclk); } if (ret < 0) { dev_err(card->dev, "can't set codec sysclk: %d\n", ret); return ret; } return 0; } static int byt_rt5640_event_lineout(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { unsigned int gpio_ctrl3_val = RT5640_GP1_PF_OUT; struct snd_soc_dai *codec_dai; if (!(byt_rt5640_quirk & BYT_RT5640_LINEOUT_AS_HP2)) return 0; /* * On devices which use line-out as a second headphones output, * the codec's GPIO1 pin is used to enable an external HP-amp. */ codec_dai = byt_rt5640_get_codec_dai(w->dapm); if (!codec_dai) return -EIO; if (SND_SOC_DAPM_EVENT_ON(event)) gpio_ctrl3_val |= RT5640_GP1_OUT_HI; snd_soc_component_update_bits(codec_dai->component, RT5640_GPIO_CTRL3, RT5640_GP1_PF_MASK | RT5640_GP1_OUT_MASK, gpio_ctrl3_val); return 0; } static const struct snd_soc_dapm_widget byt_rt5640_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Headset Mic 2", NULL), SND_SOC_DAPM_MIC("Internal Mic", NULL), SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_LINE("Line Out", byt_rt5640_event_lineout), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static const struct snd_soc_dapm_route byt_rt5640_audio_map[] = { {"Headphone", NULL, "Platform Clock"}, {"Headset Mic", NULL, "Platform Clock"}, {"Headset Mic", NULL, "MICBIAS1"}, {"IN2P", NULL, "Headset Mic"}, {"Headphone", NULL, "HPOL"}, {"Headphone", NULL, "HPOR"}, }; static const struct snd_soc_dapm_route byt_rt5640_intmic_dmic1_map[] = { {"Internal Mic", NULL, "Platform Clock"}, {"DMIC1", NULL, "Internal Mic"}, }; static const struct snd_soc_dapm_route byt_rt5640_intmic_dmic2_map[] = { {"Internal Mic", NULL, "Platform Clock"}, {"DMIC2", NULL, "Internal Mic"}, }; static const struct snd_soc_dapm_route byt_rt5640_intmic_in1_map[] = { {"Internal Mic", NULL, "Platform Clock"}, {"Internal Mic", NULL, "MICBIAS1"}, {"IN1P", NULL, "Internal Mic"}, }; static const struct snd_soc_dapm_route byt_rt5640_intmic_in3_map[] = { {"Internal Mic", NULL, "Platform Clock"}, {"Internal Mic", NULL, "MICBIAS1"}, {"IN3P", NULL, "Internal Mic"}, }; static const struct snd_soc_dapm_route byt_rt5640_hsmic2_in1_map[] = { {"Headset Mic 2", NULL, "Platform Clock"}, {"Headset Mic 2", NULL, "MICBIAS1"}, {"IN1P", NULL, "Headset Mic 2"}, }; static const struct snd_soc_dapm_route byt_rt5640_ssp2_aif1_map[] = { {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx"}, {"codec_in1", NULL, "ssp2 Rx"}, {"AIF1 Playback", NULL, "ssp2 Tx"}, {"ssp2 Rx", NULL, "AIF1 Capture"}, }; static const struct snd_soc_dapm_route byt_rt5640_ssp2_aif2_map[] = { {"ssp2 Tx", NULL, "codec_out0"}, {"ssp2 Tx", NULL, "codec_out1"}, {"codec_in0", NULL, "ssp2 Rx"}, {"codec_in1", NULL, "ssp2 Rx"}, {"AIF2 Playback", NULL, "ssp2 Tx"}, {"ssp2 Rx", NULL, "AIF2 Capture"}, }; static const struct snd_soc_dapm_route byt_rt5640_ssp0_aif1_map[] = { {"ssp0 Tx", NULL, "modem_out"}, {"modem_in", NULL, "ssp0 Rx"}, {"AIF1 Playback", NULL, "ssp0 Tx"}, {"ssp0 Rx", NULL, "AIF1 Capture"}, }; static const struct snd_soc_dapm_route byt_rt5640_ssp0_aif2_map[] = { {"ssp0 Tx", NULL, "modem_out"}, {"modem_in", NULL, "ssp0 Rx"}, {"AIF2 Playback", NULL, "ssp0 Tx"}, {"ssp0 Rx", NULL, "AIF2 Capture"}, }; static const struct snd_soc_dapm_route byt_rt5640_stereo_spk_map[] = { {"Speaker", NULL, "Platform Clock"}, {"Speaker", NULL, "SPOLP"}, {"Speaker", NULL, "SPOLN"}, {"Speaker", NULL, "SPORP"}, {"Speaker", NULL, "SPORN"}, }; static const struct snd_soc_dapm_route byt_rt5640_mono_spk_map[] = { {"Speaker", NULL, "Platform Clock"}, {"Speaker", NULL, "SPOLP"}, {"Speaker", NULL, "SPOLN"}, }; static const struct snd_soc_dapm_route byt_rt5640_lineout_map[] = { {"Line Out", NULL, "Platform Clock"}, {"Line Out", NULL, "LOUTR"}, {"Line Out", NULL, "LOUTL"}, }; static const struct snd_kcontrol_new byt_rt5640_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Headset Mic 2"), SOC_DAPM_PIN_SWITCH("Internal Mic"), SOC_DAPM_PIN_SWITCH("Speaker"), SOC_DAPM_PIN_SWITCH("Line Out"), }; static struct snd_soc_jack_pin rt5640_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static struct snd_soc_jack_pin rt5640_pins2[] = { { /* The 2nd headset jack uses lineout with an external HP-amp */ .pin = "Line Out", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic 2", .mask = SND_JACK_MICROPHONE, }, }; static struct snd_soc_jack_gpio rt5640_jack_gpio = { .name = "hp-detect", .report = SND_JACK_HEADSET, .invert = true, .debounce_time = 200, }; static struct snd_soc_jack_gpio rt5640_jack2_gpio = { .name = "hp2-detect", .report = SND_JACK_HEADSET, .invert = true, .debounce_time = 200, }; static const struct acpi_gpio_params acpi_gpio0 = { 0, 0, false }; static const struct acpi_gpio_params acpi_gpio1 = { 1, 0, false }; static const struct acpi_gpio_params acpi_gpio2 = { 2, 0, false }; static const struct acpi_gpio_mapping byt_rt5640_hp_elitepad_1000g2_gpios[] = { { "hp-detect-gpios", &acpi_gpio0, 1, }, { "headset-mic-detect-gpios", &acpi_gpio1, 1, }, { "hp2-detect-gpios", &acpi_gpio2, 1, }, { }, }; static int byt_rt5640_hp_elitepad_1000g2_jack1_check(void *data) { struct byt_rt5640_private *priv = data; int jack_status, mic_status; jack_status = gpiod_get_value_cansleep(rt5640_jack_gpio.desc); if (jack_status) return 0; mic_status = gpiod_get_value_cansleep(priv->hsmic_detect); if (mic_status) return SND_JACK_HEADPHONE; else return SND_JACK_HEADSET; } static int byt_rt5640_hp_elitepad_1000g2_jack2_check(void *data) { struct snd_soc_component *component = data; int jack_status, report; jack_status = gpiod_get_value_cansleep(rt5640_jack2_gpio.desc); if (jack_status) return 0; rt5640_enable_micbias1_for_ovcd(component); report = rt5640_detect_headset(component, rt5640_jack2_gpio.desc); rt5640_disable_micbias1_for_ovcd(component); return report; } static int byt_rt5640_aif1_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); return byt_rt5640_prepare_and_enable_pll1(dai, params_rate(params)); } /* Please keep this list alphabetically sorted */ static const struct dmi_system_id byt_rt5640_quirk_table[] = { { /* Acer Iconia One 7 B1-750 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Insyde"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "VESPA2"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD1_IN4P | BYT_RT5640_OVCD_TH_1500UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Acer Iconia Tab 8 W1-810 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Iconia W1-810"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD1_IN4P | BYT_RT5640_OVCD_TH_1500UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Acer One 10 S1002 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "One S1002"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_DIFF_MIC | BYT_RT5640_SSP0_AIF2 | BYT_RT5640_MCLK_EN), }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire SW5-012"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Advantech MICA-071 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Advantech"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "MICA-071"), }, /* OVCD Th = 1500uA to reliable detect head-phones vs -set */ .driver_data = (void *)(BYT_RT5640_IN3_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_1500UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_DIFF_MIC | BYT_RT5640_MCLK_EN), }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "ARCHOS"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "ARCHOS 80 Cesium"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "ARCHOS"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "ARCHOS 140 CESIUM"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "ME176C"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN | BYT_RT5640_USE_AMCR0F28), }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "T100TA"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MCLK_EN), }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "T100TAF"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_DIFF_MIC | BYT_RT5640_SSP0_AIF2 | BYT_RT5640_MCLK_EN), }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "TF103C"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_EXT_GPIO | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN | BYT_RT5640_USE_AMCR0F28), }, { /* Chuwi Vi8 (CWI506) */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Insyde"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "i86"), /* The above are too generic, also match BIOS info */ DMI_MATCH(DMI_BIOS_VERSION, "CHUWI.D86JLBNR"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Chuwi Vi10 (CWI505) */ .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "Hampoo"), DMI_MATCH(DMI_BOARD_NAME, "BYT-PF02"), DMI_MATCH(DMI_SYS_VENDOR, "ilife"), DMI_MATCH(DMI_PRODUCT_NAME, "S165"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_DIFF_MIC | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Chuwi Hi8 (CWI509) */ .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "Hampoo"), DMI_MATCH(DMI_BOARD_NAME, "BYT-PA03C"), DMI_MATCH(DMI_SYS_VENDOR, "ilife"), DMI_MATCH(DMI_PRODUCT_NAME, "S806"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_DIFF_MIC | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Circuitco"), DMI_MATCH(DMI_PRODUCT_NAME, "Minnowboard Max B3 PLATFORM"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP), }, { /* Connect Tablet 9 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Connect"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Tablet 9"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Venue 8 Pro 5830"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_MCLK_EN), }, { /* Estar Beauty HD MID 7316R */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Estar"), DMI_MATCH(DMI_PRODUCT_NAME, "eSTAR BEAUTY HD Intel Quad core"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Glavey TM800A550L */ .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"), DMI_MATCH(DMI_BOARD_NAME, "Aptio CRB"), /* Above strings are too generic, also match on BIOS version */ DMI_MATCH(DMI_BIOS_VERSION, "ZY-8-BI-PX4S70VTR400-X423B-005-D"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "HP ElitePad 1000 G2"), }, .driver_data = (void *)(BYT_RT5640_DMIC2_MAP | BYT_RT5640_MCLK_EN | BYT_RT5640_LINEOUT | BYT_RT5640_LINEOUT_AS_HP2 | BYT_RT5640_HSMIC2_ON_IN1 | BYT_RT5640_JD_HP_ELITEP_1000G2), }, { /* HP Pavilion x2 10-k0XX, 10-n0XX */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion x2 Detachable"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_1500UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* HP Pavilion x2 10-p0XX */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "HP x2 Detachable 10-p0XX"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD1_IN4P | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MCLK_EN), }, { /* HP Pro Tablet 408 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Pro Tablet 408"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_1500UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* HP Stream 7 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "HP Stream 7 Tablet"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_JD_NOT_INV | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* HP Stream 8 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "HP Stream 8 Tablet"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_JD_NOT_INV | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* I.T.Works TW891 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "To be filled by O.E.M."), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "TW891"), DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "To be filled by O.E.M."), DMI_EXACT_MATCH(DMI_BOARD_NAME, "TW891"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Lamina I8270 / T701BR.SE */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "Lamina"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "T701BR.SE"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_JD_NOT_INV | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Lenovo Miix 2 8 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "20326"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Hiking"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_MCLK_EN), }, { /* Lenovo Miix 3-830 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_EXACT_MATCH(DMI_PRODUCT_VERSION, "Lenovo MIIX 3-830"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_DIFF_MIC | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Linx Linx7 tablet */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "LINX"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "LINX7"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_JD_NOT_INV | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Mele PCG03 Mini PC */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "Mini PC"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Mini PC"), }, .driver_data = (void *)(BYT_RT5640_NO_INTERNAL_MIC_MAP | BYT_RT5640_NO_SPEAKERS | BYT_RT5640_SSP0_AIF1), }, { /* MPMAN Converter 9, similar hw as the I.T.Works TW891 2-in-1 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "MPMAN"), DMI_MATCH(DMI_PRODUCT_NAME, "Converter9"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* MPMAN MPWIN895CL */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "MPMAN"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "MPWIN8900CL"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* MSI S100 tablet */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Micro-Star International Co., Ltd."), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "S100"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_DIFF_MIC | BYT_RT5640_MCLK_EN), }, { /* Nuvison/TMax TM800W560 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "TMAX"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "TM800W560L"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_JD_NOT_INV | BYT_RT5640_DIFF_MIC | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Onda v975w */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Aptio CRB"), /* The above are too generic, also match BIOS info */ DMI_EXACT_MATCH(DMI_BIOS_VERSION, "5.6.5"), DMI_EXACT_MATCH(DMI_BIOS_DATE, "07/25/2014"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_DIFF_MIC | BYT_RT5640_MCLK_EN), }, { /* Pipo W4 */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Aptio CRB"), /* The above are too generic, also match BIOS info */ DMI_MATCH(DMI_BIOS_VERSION, "V8L_WIN32_CHIPHD"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Point of View Mobii TAB-P800W (V2.0) */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Aptio CRB"), /* The above are too generic, also match BIOS info */ DMI_EXACT_MATCH(DMI_BIOS_VERSION, "3BAIR1014"), DMI_EXACT_MATCH(DMI_BIOS_DATE, "10/24/2014"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_DIFF_MIC | BYT_RT5640_SSP0_AIF2 | BYT_RT5640_MCLK_EN), }, { /* Point of View Mobii TAB-P800W (V2.1) */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Aptio CRB"), /* The above are too generic, also match BIOS info */ DMI_EXACT_MATCH(DMI_BIOS_VERSION, "3BAIR1013"), DMI_EXACT_MATCH(DMI_BIOS_DATE, "08/22/2014"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_MONO_SPEAKER | BYT_RT5640_DIFF_MIC | BYT_RT5640_SSP0_AIF2 | BYT_RT5640_MCLK_EN), }, { /* Point of View Mobii TAB-P1005W-232 (V2.0) */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "POV"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "I102A"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_DIFF_MIC | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Prowise PT301 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Prowise"), DMI_MATCH(DMI_PRODUCT_NAME, "PT301"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_DIFF_MIC | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Teclast X89 */ .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "TECLAST"), DMI_MATCH(DMI_BOARD_NAME, "tPAD"), }, .driver_data = (void *)(BYT_RT5640_IN3_MAP | BYT_RT5640_JD_SRC_JD1_IN4P | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_1P0 | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Toshiba Satellite Click Mini L9W-B */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "SATELLITE Click Mini L9W-B"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_1500UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_SSP0_AIF1 | BYT_RT5640_MCLK_EN), }, { /* Toshiba Encore WT8-A */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "TOSHIBA WT8-A"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_JD_NOT_INV | BYT_RT5640_MCLK_EN), }, { /* Toshiba Encore WT10-A */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "TOSHIBA WT10-A-103"), }, .driver_data = (void *)(BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD1_IN4P | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_SSP0_AIF2 | BYT_RT5640_MCLK_EN), }, { /* Voyo Winpad A15 */ .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"), DMI_MATCH(DMI_BOARD_NAME, "Aptio CRB"), /* Above strings are too generic, also match on BIOS date */ DMI_MATCH(DMI_BIOS_DATE, "11/20/2014"), }, .driver_data = (void *)(BYT_RT5640_IN1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75 | BYT_RT5640_DIFF_MIC | BYT_RT5640_MCLK_EN), }, { /* Catch-all for generic Insyde tablets, must be last */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Insyde"), }, .driver_data = (void *)(BYTCR_INPUT_DEFAULTS | BYT_RT5640_MCLK_EN | BYT_RT5640_SSP0_AIF1), }, {} }; /* * Note this MUST be called before snd_soc_register_card(), so that the props * are in place before the codec component driver's probe function parses them. */ static int byt_rt5640_add_codec_device_props(struct device *i2c_dev, struct byt_rt5640_private *priv) { struct property_entry props[MAX_NO_PROPS] = {}; struct fwnode_handle *fwnode; int cnt = 0; int ret; switch (BYT_RT5640_MAP(byt_rt5640_quirk)) { case BYT_RT5640_DMIC1_MAP: props[cnt++] = PROPERTY_ENTRY_U32("realtek,dmic1-data-pin", RT5640_DMIC1_DATA_PIN_IN1P); break; case BYT_RT5640_DMIC2_MAP: props[cnt++] = PROPERTY_ENTRY_U32("realtek,dmic2-data-pin", RT5640_DMIC2_DATA_PIN_IN1N); break; case BYT_RT5640_IN1_MAP: if (byt_rt5640_quirk & BYT_RT5640_DIFF_MIC) props[cnt++] = PROPERTY_ENTRY_BOOL("realtek,in1-differential"); break; case BYT_RT5640_IN3_MAP: if (byt_rt5640_quirk & BYT_RT5640_DIFF_MIC) props[cnt++] = PROPERTY_ENTRY_BOOL("realtek,in3-differential"); break; } if (BYT_RT5640_JDSRC(byt_rt5640_quirk)) { if (BYT_RT5640_JDSRC(byt_rt5640_quirk) != RT5640_JD_SRC_EXT_GPIO) { props[cnt++] = PROPERTY_ENTRY_U32( "realtek,jack-detect-source", BYT_RT5640_JDSRC(byt_rt5640_quirk)); } props[cnt++] = PROPERTY_ENTRY_U32( "realtek,over-current-threshold-microamp", BYT_RT5640_OVCD_TH(byt_rt5640_quirk) * 100); props[cnt++] = PROPERTY_ENTRY_U32( "realtek,over-current-scale-factor", BYT_RT5640_OVCD_SF(byt_rt5640_quirk)); } if (byt_rt5640_quirk & BYT_RT5640_JD_NOT_INV) props[cnt++] = PROPERTY_ENTRY_BOOL("realtek,jack-detect-not-inverted"); fwnode = fwnode_create_software_node(props, NULL); if (IS_ERR(fwnode)) { /* put_device() is handled in caller */ return PTR_ERR(fwnode); } ret = device_add_software_node(i2c_dev, to_software_node(fwnode)); fwnode_handle_put(fwnode); return ret; } /* Some Android devs specify IRQs/GPIOS in a special AMCR0F28 ACPI device */ static const struct acpi_gpio_params amcr0f28_jd_gpio = { 1, 0, false }; static const struct acpi_gpio_mapping amcr0f28_gpios[] = { { "rt5640-jd-gpios", &amcr0f28_jd_gpio, 1 }, { } }; static int byt_rt5640_get_amcr0f28_settings(struct snd_soc_card *card) { struct byt_rt5640_private *priv = snd_soc_card_get_drvdata(card); struct rt5640_set_jack_data *data = &priv->jack_data; struct acpi_device *adev; int ret = 0; adev = acpi_dev_get_first_match_dev("AMCR0F28", "1", -1); if (!adev) { dev_err(card->dev, "error cannot find AMCR0F28 adev\n"); return -ENOENT; } data->codec_irq_override = acpi_dev_gpio_irq_get(adev, 0); if (data->codec_irq_override < 0) { ret = data->codec_irq_override; dev_err(card->dev, "error %d getting codec IRQ\n", ret); goto put_adev; } if (BYT_RT5640_JDSRC(byt_rt5640_quirk) == RT5640_JD_SRC_EXT_GPIO) { acpi_dev_add_driver_gpios(adev, amcr0f28_gpios); data->jd_gpio = devm_fwnode_gpiod_get(card->dev, acpi_fwnode_handle(adev), "rt5640-jd", GPIOD_IN, "rt5640-jd"); acpi_dev_remove_driver_gpios(adev); if (IS_ERR(data->jd_gpio)) { ret = PTR_ERR(data->jd_gpio); dev_err(card->dev, "error %d getting jd GPIO\n", ret); } } put_adev: acpi_dev_put(adev); return ret; } static int byt_rt5640_init(struct snd_soc_pcm_runtime *runtime) { struct snd_soc_card *card = runtime->card; struct byt_rt5640_private *priv = snd_soc_card_get_drvdata(card); struct rt5640_set_jack_data *jack_data = &priv->jack_data; struct snd_soc_component *component = asoc_rtd_to_codec(runtime, 0)->component; const struct snd_soc_dapm_route *custom_map = NULL; int num_routes = 0; int ret; card->dapm.idle_bias_off = true; jack_data->use_platform_clock = true; /* Start with RC clk for jack-detect (we disable MCLK below) */ if (byt_rt5640_quirk & BYT_RT5640_MCLK_EN) snd_soc_component_update_bits(component, RT5640_GLB_CLK, RT5640_SCLK_SRC_MASK, RT5640_SCLK_SRC_RCCLK); rt5640_sel_asrc_clk_src(component, RT5640_DA_STEREO_FILTER | RT5640_DA_MONO_L_FILTER | RT5640_DA_MONO_R_FILTER | RT5640_AD_STEREO_FILTER | RT5640_AD_MONO_L_FILTER | RT5640_AD_MONO_R_FILTER, RT5640_CLK_SEL_ASRC); ret = snd_soc_add_card_controls(card, byt_rt5640_controls, ARRAY_SIZE(byt_rt5640_controls)); if (ret) { dev_err(card->dev, "unable to add card controls\n"); return ret; } switch (BYT_RT5640_MAP(byt_rt5640_quirk)) { case BYT_RT5640_IN1_MAP: custom_map = byt_rt5640_intmic_in1_map; num_routes = ARRAY_SIZE(byt_rt5640_intmic_in1_map); break; case BYT_RT5640_IN3_MAP: custom_map = byt_rt5640_intmic_in3_map; num_routes = ARRAY_SIZE(byt_rt5640_intmic_in3_map); break; case BYT_RT5640_DMIC1_MAP: custom_map = byt_rt5640_intmic_dmic1_map; num_routes = ARRAY_SIZE(byt_rt5640_intmic_dmic1_map); break; case BYT_RT5640_DMIC2_MAP: custom_map = byt_rt5640_intmic_dmic2_map; num_routes = ARRAY_SIZE(byt_rt5640_intmic_dmic2_map); break; } ret = snd_soc_dapm_add_routes(&card->dapm, custom_map, num_routes); if (ret) return ret; if (byt_rt5640_quirk & BYT_RT5640_HSMIC2_ON_IN1) { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5640_hsmic2_in1_map, ARRAY_SIZE(byt_rt5640_hsmic2_in1_map)); if (ret) return ret; } if (byt_rt5640_quirk & BYT_RT5640_SSP2_AIF2) { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5640_ssp2_aif2_map, ARRAY_SIZE(byt_rt5640_ssp2_aif2_map)); } else if (byt_rt5640_quirk & BYT_RT5640_SSP0_AIF1) { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5640_ssp0_aif1_map, ARRAY_SIZE(byt_rt5640_ssp0_aif1_map)); } else if (byt_rt5640_quirk & BYT_RT5640_SSP0_AIF2) { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5640_ssp0_aif2_map, ARRAY_SIZE(byt_rt5640_ssp0_aif2_map)); } else { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5640_ssp2_aif1_map, ARRAY_SIZE(byt_rt5640_ssp2_aif1_map)); } if (ret) return ret; if (byt_rt5640_quirk & BYT_RT5640_MONO_SPEAKER) { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5640_mono_spk_map, ARRAY_SIZE(byt_rt5640_mono_spk_map)); } else if (!(byt_rt5640_quirk & BYT_RT5640_NO_SPEAKERS)) { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5640_stereo_spk_map, ARRAY_SIZE(byt_rt5640_stereo_spk_map)); } if (ret) return ret; if (byt_rt5640_quirk & BYT_RT5640_LINEOUT) { ret = snd_soc_dapm_add_routes(&card->dapm, byt_rt5640_lineout_map, ARRAY_SIZE(byt_rt5640_lineout_map)); if (ret) return ret; } /* * The firmware might enable the clock at boot (this information * may or may not be reflected in the enable clock register). * To change the rate we must disable the clock first to cover * these cases. Due to common clock framework restrictions that * do not allow to disable a clock that has not been enabled, * we need to enable the clock first. */ ret = clk_prepare_enable(priv->mclk); if (!ret) clk_disable_unprepare(priv->mclk); if (byt_rt5640_quirk & BYT_RT5640_MCLK_25MHZ) ret = clk_set_rate(priv->mclk, 25000000); else ret = clk_set_rate(priv->mclk, 19200000); if (ret) { dev_err(card->dev, "unable to set MCLK rate\n"); return ret; } if (BYT_RT5640_JDSRC(byt_rt5640_quirk)) { ret = snd_soc_card_jack_new_pins(card, "Headset", SND_JACK_HEADSET | SND_JACK_BTN_0, &priv->jack, rt5640_pins, ARRAY_SIZE(rt5640_pins)); if (ret) { dev_err(card->dev, "Jack creation failed %d\n", ret); return ret; } snd_jack_set_key(priv->jack.jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); if (byt_rt5640_quirk & BYT_RT5640_USE_AMCR0F28) { ret = byt_rt5640_get_amcr0f28_settings(card); if (ret) return ret; } snd_soc_component_set_jack(component, &priv->jack, &priv->jack_data); } if (byt_rt5640_quirk & BYT_RT5640_JD_HP_ELITEP_1000G2) { ret = snd_soc_card_jack_new_pins(card, "Headset", SND_JACK_HEADSET, &priv->jack, rt5640_pins, ARRAY_SIZE(rt5640_pins)); if (ret) return ret; ret = snd_soc_card_jack_new_pins(card, "Headset 2", SND_JACK_HEADSET, &priv->jack2, rt5640_pins2, ARRAY_SIZE(rt5640_pins2)); if (ret) return ret; rt5640_jack_gpio.data = priv; rt5640_jack_gpio.gpiod_dev = priv->codec_dev; rt5640_jack_gpio.jack_status_check = byt_rt5640_hp_elitepad_1000g2_jack1_check; ret = snd_soc_jack_add_gpios(&priv->jack, 1, &rt5640_jack_gpio); if (ret) return ret; rt5640_set_ovcd_params(component); rt5640_jack2_gpio.data = component; rt5640_jack2_gpio.gpiod_dev = priv->codec_dev; rt5640_jack2_gpio.jack_status_check = byt_rt5640_hp_elitepad_1000g2_jack2_check; ret = snd_soc_jack_add_gpios(&priv->jack2, 1, &rt5640_jack2_gpio); if (ret) { snd_soc_jack_free_gpios(&priv->jack, 1, &rt5640_jack_gpio); return ret; } } return 0; } static void byt_rt5640_exit(struct snd_soc_pcm_runtime *runtime) { struct snd_soc_card *card = runtime->card; struct byt_rt5640_private *priv = snd_soc_card_get_drvdata(card); if (byt_rt5640_quirk & BYT_RT5640_JD_HP_ELITEP_1000G2) { snd_soc_jack_free_gpios(&priv->jack2, 1, &rt5640_jack2_gpio); snd_soc_jack_free_gpios(&priv->jack, 1, &rt5640_jack_gpio); } } static int byt_rt5640_codec_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); int ret, bits; /* The DSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; channels->min = channels->max = 2; if ((byt_rt5640_quirk & BYT_RT5640_SSP0_AIF1) || (byt_rt5640_quirk & BYT_RT5640_SSP0_AIF2)) { /* set SSP0 to 16-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S16_LE); bits = 16; } else { /* set SSP2 to 24-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S24_LE); bits = 24; } /* * Default mode for SSP configuration is TDM 4 slot, override config * with explicit setting to I2S 2ch. The word length is set with * dai_set_tdm_slot() since there is no other API exposed */ ret = snd_soc_dai_set_fmt(asoc_rtd_to_cpu(rtd, 0), SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BP_FP); if (ret < 0) { dev_err(rtd->dev, "can't set format to I2S, err %d\n", ret); return ret; } ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_cpu(rtd, 0), 0x3, 0x3, 2, bits); if (ret < 0) { dev_err(rtd->dev, "can't set I2S config, err %d\n", ret); return ret; } return 0; } static int byt_rt5640_aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_single(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 48000); } static const struct snd_soc_ops byt_rt5640_aif1_ops = { .startup = byt_rt5640_aif1_startup, }; static const struct snd_soc_ops byt_rt5640_be_ssp2_ops = { .hw_params = byt_rt5640_aif1_hw_params, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp2_port, /* overwritten for ssp0 routing */ DAILINK_COMP_ARRAY(COMP_CPU("ssp2-port"))); SND_SOC_DAILINK_DEF(ssp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC( /* overwritten with HID */ "i2c-10EC5640:00", /* changed w/ quirk */ "rt5640-aif1"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link byt_rt5640_dais[] = { [MERR_DPCM_AUDIO] = { .name = "Baytrail Audio Port", .stream_name = "Baytrail Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &byt_rt5640_aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &byt_rt5640_aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* back ends */ { .name = "SSP2-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .be_hw_params_fixup = byt_rt5640_codec_fixup, .dpcm_playback = 1, .dpcm_capture = 1, .init = byt_rt5640_init, .exit = byt_rt5640_exit, .ops = &byt_rt5640_be_ssp2_ops, SND_SOC_DAILINK_REG(ssp2_port, ssp2_codec, platform), }, }; /* SoC card */ static char byt_rt5640_codec_name[SND_ACPI_I2C_ID_LEN]; #if !IS_ENABLED(CONFIG_SND_SOC_INTEL_USER_FRIENDLY_LONG_NAMES) static char byt_rt5640_long_name[40]; /* = "bytcr-rt5640-*-spk-*-mic" */ #endif static char byt_rt5640_components[64]; /* = "cfg-spk:* cfg-mic:* ..." */ static int byt_rt5640_suspend(struct snd_soc_card *card) { struct snd_soc_component *component; if (!BYT_RT5640_JDSRC(byt_rt5640_quirk)) return 0; for_each_card_components(card, component) { if (!strcmp(component->name, byt_rt5640_codec_name)) { dev_dbg(component->dev, "disabling jack detect before suspend\n"); snd_soc_component_set_jack(component, NULL, NULL); break; } } return 0; } static int byt_rt5640_resume(struct snd_soc_card *card) { struct byt_rt5640_private *priv = snd_soc_card_get_drvdata(card); struct snd_soc_component *component; if (!BYT_RT5640_JDSRC(byt_rt5640_quirk)) return 0; for_each_card_components(card, component) { if (!strcmp(component->name, byt_rt5640_codec_name)) { dev_dbg(component->dev, "re-enabling jack detect after resume\n"); snd_soc_component_set_jack(component, &priv->jack, &priv->jack_data); break; } } return 0; } /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bytcht rt5640" /* card name will be 'sof-bytcht rt5640' */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "bytcr-rt5640" #define DRIVER_NAME NULL /* card name will be used for driver name */ static struct snd_soc_card byt_rt5640_card = { .owner = THIS_MODULE, .dai_link = byt_rt5640_dais, .num_links = ARRAY_SIZE(byt_rt5640_dais), .dapm_widgets = byt_rt5640_widgets, .num_dapm_widgets = ARRAY_SIZE(byt_rt5640_widgets), .dapm_routes = byt_rt5640_audio_map, .num_dapm_routes = ARRAY_SIZE(byt_rt5640_audio_map), .fully_routed = true, .suspend_pre = byt_rt5640_suspend, .resume_post = byt_rt5640_resume, }; struct acpi_chan_package { /* ACPICA seems to require 64 bit integers */ u64 aif_value; /* 1: AIF1, 2: AIF2 */ u64 mclock_value; /* usually 25MHz (0x17d7940), ignored */ }; static int snd_byt_rt5640_mc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; static const char * const map_name[] = { "dmic1", "dmic2", "in1", "in3", "none" }; struct snd_soc_acpi_mach *mach = dev_get_platdata(dev); __maybe_unused const char *spk_type; const struct dmi_system_id *dmi_id; const char *headset2_string = ""; const char *lineout_string = ""; struct byt_rt5640_private *priv; const char *platform_name; struct acpi_device *adev; struct device *codec_dev; bool sof_parent; int ret_val = 0; int dai_index = 0; int i, cfg_spk; int aif; is_bytcr = false; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; /* register the soc card */ byt_rt5640_card.dev = dev; snd_soc_card_set_drvdata(&byt_rt5640_card, priv); /* fix index of codec dai */ for (i = 0; i < ARRAY_SIZE(byt_rt5640_dais); i++) { if (!strcmp(byt_rt5640_dais[i].codecs->name, "i2c-10EC5640:00")) { dai_index = i; break; } } /* fixup codec name based on HID */ adev = acpi_dev_get_first_match_dev(mach->id, NULL, -1); if (adev) { snprintf(byt_rt5640_codec_name, sizeof(byt_rt5640_codec_name), "i2c-%s", acpi_dev_name(adev)); byt_rt5640_dais[dai_index].codecs->name = byt_rt5640_codec_name; } else { dev_err(dev, "Error cannot find '%s' dev\n", mach->id); return -ENXIO; } codec_dev = acpi_get_first_physical_node(adev); acpi_dev_put(adev); if (!codec_dev) return -EPROBE_DEFER; priv->codec_dev = get_device(codec_dev); /* * swap SSP0 if bytcr is detected * (will be overridden if DMI quirk is detected) */ if (soc_intel_is_byt()) { if (mach->mach_params.acpi_ipc_irq_index == 0) is_bytcr = true; } if (is_bytcr) { /* * Baytrail CR platforms may have CHAN package in BIOS, try * to find relevant routing quirk based as done on Windows * platforms. We have to read the information directly from the * BIOS, at this stage the card is not created and the links * with the codec driver/pdata are non-existent */ struct acpi_chan_package chan_package = { 0 }; /* format specified: 2 64-bit integers */ struct acpi_buffer format = {sizeof("NN"), "NN"}; struct acpi_buffer state = {0, NULL}; struct snd_soc_acpi_package_context pkg_ctx; bool pkg_found = false; state.length = sizeof(chan_package); state.pointer = &chan_package; pkg_ctx.name = "CHAN"; pkg_ctx.length = 2; pkg_ctx.format = &format; pkg_ctx.state = &state; pkg_ctx.data_valid = false; pkg_found = snd_soc_acpi_find_package_from_hid(mach->id, &pkg_ctx); if (pkg_found) { if (chan_package.aif_value == 1) { dev_info(dev, "BIOS Routing: AIF1 connected\n"); byt_rt5640_quirk |= BYT_RT5640_SSP0_AIF1; } else if (chan_package.aif_value == 2) { dev_info(dev, "BIOS Routing: AIF2 connected\n"); byt_rt5640_quirk |= BYT_RT5640_SSP0_AIF2; } else { dev_info(dev, "BIOS Routing isn't valid, ignored\n"); pkg_found = false; } } if (!pkg_found) { /* no BIOS indications, assume SSP0-AIF2 connection */ byt_rt5640_quirk |= BYT_RT5640_SSP0_AIF2; } /* change defaults for Baytrail-CR capture */ byt_rt5640_quirk |= BYTCR_INPUT_DEFAULTS; } else { byt_rt5640_quirk |= BYT_RT5640_DMIC1_MAP | BYT_RT5640_JD_SRC_JD2_IN4N | BYT_RT5640_OVCD_TH_2000UA | BYT_RT5640_OVCD_SF_0P75; } /* check quirks before creating card */ dmi_id = dmi_first_match(byt_rt5640_quirk_table); if (dmi_id) byt_rt5640_quirk = (unsigned long)dmi_id->driver_data; if (quirk_override != -1) { dev_info(dev, "Overriding quirk 0x%lx => 0x%x\n", byt_rt5640_quirk, quirk_override); byt_rt5640_quirk = quirk_override; } if (byt_rt5640_quirk & BYT_RT5640_JD_HP_ELITEP_1000G2) { acpi_dev_add_driver_gpios(ACPI_COMPANION(priv->codec_dev), byt_rt5640_hp_elitepad_1000g2_gpios); priv->hsmic_detect = devm_fwnode_gpiod_get(dev, codec_dev->fwnode, "headset-mic-detect", GPIOD_IN, "headset-mic-detect"); if (IS_ERR(priv->hsmic_detect)) { ret_val = dev_err_probe(dev, PTR_ERR(priv->hsmic_detect), "getting hsmic-detect GPIO\n"); goto err_device; } } /* Must be called before register_card, also see declaration comment. */ ret_val = byt_rt5640_add_codec_device_props(codec_dev, priv); if (ret_val) goto err_remove_gpios; log_quirks(dev); if ((byt_rt5640_quirk & BYT_RT5640_SSP2_AIF2) || (byt_rt5640_quirk & BYT_RT5640_SSP0_AIF2)) { byt_rt5640_dais[dai_index].codecs->dai_name = "rt5640-aif2"; aif = 2; } else { aif = 1; } if ((byt_rt5640_quirk & BYT_RT5640_SSP0_AIF1) || (byt_rt5640_quirk & BYT_RT5640_SSP0_AIF2)) byt_rt5640_dais[dai_index].cpus->dai_name = "ssp0-port"; if (byt_rt5640_quirk & BYT_RT5640_MCLK_EN) { priv->mclk = devm_clk_get_optional(dev, "pmc_plt_clk_3"); if (IS_ERR(priv->mclk)) { ret_val = dev_err_probe(dev, PTR_ERR(priv->mclk), "Failed to get MCLK from pmc_plt_clk_3\n"); goto err; } /* * Fall back to bit clock usage when clock is not * available likely due to missing dependencies. */ if (!priv->mclk) byt_rt5640_quirk &= ~BYT_RT5640_MCLK_EN; } if (byt_rt5640_quirk & BYT_RT5640_NO_SPEAKERS) { cfg_spk = 0; spk_type = "none"; } else if (byt_rt5640_quirk & BYT_RT5640_MONO_SPEAKER) { cfg_spk = 1; spk_type = "mono"; } else { cfg_spk = 2; spk_type = "stereo"; } if (byt_rt5640_quirk & BYT_RT5640_LINEOUT) { if (byt_rt5640_quirk & BYT_RT5640_LINEOUT_AS_HP2) lineout_string = " cfg-hp2:lineout"; else lineout_string = " cfg-lineout:2"; } if (byt_rt5640_quirk & BYT_RT5640_HSMIC2_ON_IN1) headset2_string = " cfg-hs2:in1"; snprintf(byt_rt5640_components, sizeof(byt_rt5640_components), "cfg-spk:%d cfg-mic:%s aif:%d%s%s", cfg_spk, map_name[BYT_RT5640_MAP(byt_rt5640_quirk)], aif, lineout_string, headset2_string); byt_rt5640_card.components = byt_rt5640_components; #if !IS_ENABLED(CONFIG_SND_SOC_INTEL_USER_FRIENDLY_LONG_NAMES) snprintf(byt_rt5640_long_name, sizeof(byt_rt5640_long_name), "bytcr-rt5640-%s-spk-%s-mic", spk_type, map_name[BYT_RT5640_MAP(byt_rt5640_quirk)]); byt_rt5640_card.long_name = byt_rt5640_long_name; #endif /* override platform name, if required */ platform_name = mach->mach_params.platform; ret_val = snd_soc_fixup_dai_links_platform_name(&byt_rt5640_card, platform_name); if (ret_val) goto err; sof_parent = snd_soc_acpi_sof_parent(dev); /* set card and driver name */ if (sof_parent) { byt_rt5640_card.name = SOF_CARD_NAME; byt_rt5640_card.driver_name = SOF_DRIVER_NAME; } else { byt_rt5640_card.name = CARD_NAME; byt_rt5640_card.driver_name = DRIVER_NAME; } /* set pm ops */ if (sof_parent) dev->driver->pm = &snd_soc_pm_ops; ret_val = devm_snd_soc_register_card(dev, &byt_rt5640_card); if (ret_val) { dev_err(dev, "devm_snd_soc_register_card failed %d\n", ret_val); goto err; } platform_set_drvdata(pdev, &byt_rt5640_card); return ret_val; err: device_remove_software_node(priv->codec_dev); err_remove_gpios: if (byt_rt5640_quirk & BYT_RT5640_JD_HP_ELITEP_1000G2) acpi_dev_remove_driver_gpios(ACPI_COMPANION(priv->codec_dev)); err_device: put_device(priv->codec_dev); return ret_val; } static void snd_byt_rt5640_mc_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); struct byt_rt5640_private *priv = snd_soc_card_get_drvdata(card); if (byt_rt5640_quirk & BYT_RT5640_JD_HP_ELITEP_1000G2) acpi_dev_remove_driver_gpios(ACPI_COMPANION(priv->codec_dev)); device_remove_software_node(priv->codec_dev); put_device(priv->codec_dev); } static struct platform_driver snd_byt_rt5640_mc_driver = { .driver = { .name = "bytcr_rt5640", }, .probe = snd_byt_rt5640_mc_probe, .remove_new = snd_byt_rt5640_mc_remove, }; module_platform_driver(snd_byt_rt5640_mc_driver); MODULE_DESCRIPTION("ASoC Intel(R) Baytrail CR Machine driver"); MODULE_AUTHOR("Subhransu S. Prusty <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:bytcr_rt5640");
linux-master
sound/soc/intel/boards/bytcr_rt5640.c
// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2019 Intel Corporation. All rights reserved. #include <linux/module.h> #include <sound/pcm.h> #include <sound/soc.h> #include <sound/hda_codec.h> #include <sound/hda_i915.h> #include "../../codecs/hdac_hda.h" #include "hda_dsp_common.h" #if IS_ENABLED(CONFIG_SND_SOC_SOF_HDA_AUDIO_CODEC) /* * Search card topology and return PCM device number * matching Nth HDMI device (zero-based index). */ static struct snd_pcm *hda_dsp_hdmi_pcm_handle(struct snd_soc_card *card, int hdmi_idx) { struct snd_soc_pcm_runtime *rtd; struct snd_pcm *spcm; int i = 0; for_each_card_rtds(card, rtd) { spcm = rtd->pcm ? rtd->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].pcm : NULL; if (spcm && strstr(spcm->id, "HDMI")) { if (i == hdmi_idx) return rtd->pcm; ++i; } } return NULL; } /* * Search card topology and register HDMI PCM related controls * to codec driver. */ int hda_dsp_hdmi_build_controls(struct snd_soc_card *card, struct snd_soc_component *comp) { struct hdac_hda_priv *hda_pvt; struct hda_codec *hcodec; struct snd_pcm *spcm; struct hda_pcm *hpcm; int err = 0, i = 0; if (!comp) return -EINVAL; hda_pvt = snd_soc_component_get_drvdata(comp); hcodec = hda_pvt->codec; list_for_each_entry(hpcm, &hcodec->pcm_list_head, list) { spcm = hda_dsp_hdmi_pcm_handle(card, i); if (spcm) { hpcm->pcm = spcm; hpcm->device = spcm->device; dev_dbg(card->dev, "mapping HDMI converter %d to PCM %d (%p)\n", i, hpcm->device, spcm); } else { hpcm->pcm = NULL; hpcm->device = SNDRV_PCM_INVALID_DEVICE; dev_warn(card->dev, "%s: no PCM in topology for HDMI converter %d\n", __func__, i); } i++; } snd_hdac_display_power(hcodec->core.bus, HDA_CODEC_IDX_CONTROLLER, true); err = snd_hda_codec_build_controls(hcodec); if (err < 0) dev_err(card->dev, "unable to create controls %d\n", err); snd_hdac_display_power(hcodec->core.bus, HDA_CODEC_IDX_CONTROLLER, false); return err; } EXPORT_SYMBOL_NS(hda_dsp_hdmi_build_controls, SND_SOC_INTEL_HDA_DSP_COMMON); #endif MODULE_DESCRIPTION("ASoC Intel HDMI helpers"); MODULE_LICENSE("GPL");
linux-master
sound/soc/intel/boards/hda_dsp_common.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Skylake I2S Machine Driver with MAXIM98357A * and NAU88L25 * * Copyright (C) 2015, Intel Corporation. All rights reserved. */ #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/nau8825.h" #include "../../codecs/hdac_hdmi.h" #define SKL_NUVOTON_CODEC_DAI "nau8825-hifi" #define SKL_MAXIM_CODEC_DAI "HiFi" #define DMIC_CH(p) p->list[p->count-1] static struct snd_soc_jack skylake_headset; static struct snd_soc_card skylake_audio_card; static const struct snd_pcm_hw_constraint_list *dmic_constraints; static struct snd_soc_jack skylake_hdmi[3]; struct skl_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct skl_nau8825_private { struct list_head hdmi_pcm_list; }; enum { SKL_DPCM_AUDIO_PB = 0, SKL_DPCM_AUDIO_CP, SKL_DPCM_AUDIO_REF_CP, SKL_DPCM_AUDIO_DMIC_CP, SKL_DPCM_AUDIO_HDMI1_PB, SKL_DPCM_AUDIO_HDMI2_PB, SKL_DPCM_AUDIO_HDMI3_PB, }; static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; int ret; codec_dai = snd_soc_card_get_codec_dai(card, SKL_NUVOTON_CODEC_DAI); if (!codec_dai) { dev_err(card->dev, "Codec dai not found; Unable to set platform clock\n"); return -EIO; } if (SND_SOC_DAPM_EVENT_ON(event)) { ret = snd_soc_dai_set_sysclk(codec_dai, NAU8825_CLK_MCLK, 24000000, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(card->dev, "set sysclk err = %d\n", ret); return -EIO; } } else { ret = snd_soc_dai_set_sysclk(codec_dai, NAU8825_CLK_INTERNAL, 0, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(card->dev, "set sysclk err = %d\n", ret); return -EIO; } } return ret; } static const struct snd_kcontrol_new skylake_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Spk"), }; static const struct snd_soc_dapm_widget skylake_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_SPK("Spk", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), SND_SOC_DAPM_SPK("DP1", NULL), SND_SOC_DAPM_SPK("DP2", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static const struct snd_soc_dapm_route skylake_map[] = { /* HP jack connectors - unknown if we have jack detection */ { "Headphone Jack", NULL, "HPOL" }, { "Headphone Jack", NULL, "HPOR" }, /* speaker */ { "Spk", NULL, "Speaker" }, /* other jacks */ { "MIC", NULL, "Headset Mic" }, { "DMic", NULL, "SoC DMIC" }, /* CODEC BE connections */ { "HiFi Playback", NULL, "ssp0 Tx" }, { "ssp0 Tx", NULL, "codec0_out" }, { "Playback", NULL, "ssp1 Tx" }, { "ssp1 Tx", NULL, "codec1_out" }, { "codec0_in", NULL, "ssp1 Rx" }, { "ssp1 Rx", NULL, "Capture" }, /* DMIC */ { "dmic01_hifi", NULL, "DMIC01 Rx" }, { "DMIC01 Rx", NULL, "DMIC AIF" }, { "hifi3", NULL, "iDisp3 Tx"}, { "iDisp3 Tx", NULL, "iDisp3_out"}, { "hifi2", NULL, "iDisp2 Tx"}, { "iDisp2 Tx", NULL, "iDisp2_out"}, { "hifi1", NULL, "iDisp1 Tx"}, { "iDisp1 Tx", NULL, "iDisp1_out"}, { "Headphone Jack", NULL, "Platform Clock" }, { "Headset Mic", NULL, "Platform Clock" }, }; static int skylake_ssp_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); /* The ADSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; chan->min = chan->max = 2; /* set SSP0 to 24 bit */ snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); return 0; } static int skylake_nau8825_codec_init(struct snd_soc_pcm_runtime *rtd) { int ret; struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(&skylake_audio_card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &skylake_headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed %d\n", ret); return ret; } nau8825_enable_jack_detect(component, &skylake_headset); snd_soc_dapm_ignore_suspend(&rtd->card->dapm, "SoC DMIC"); return ret; } static int skylake_hdmi1_init(struct snd_soc_pcm_runtime *rtd) { struct skl_nau8825_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct skl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = SKL_DPCM_AUDIO_HDMI1_PB; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int skylake_hdmi2_init(struct snd_soc_pcm_runtime *rtd) { struct skl_nau8825_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct skl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = SKL_DPCM_AUDIO_HDMI2_PB; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int skylake_hdmi3_init(struct snd_soc_pcm_runtime *rtd) { struct skl_nau8825_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct skl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = SKL_DPCM_AUDIO_HDMI3_PB; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int skylake_nau8825_fe_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dapm_context *dapm; struct snd_soc_component *component = asoc_rtd_to_cpu(rtd, 0)->component; dapm = snd_soc_component_get_dapm(component); snd_soc_dapm_ignore_suspend(dapm, "Reference Capture"); return 0; } static const unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static const unsigned int channels[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static int skl_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* * On this platform for PCM device we support, * 48Khz * stereo * 16 bit audio */ runtime->hw.channels_max = 2; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); return 0; } static const struct snd_soc_ops skylake_nau8825_fe_ops = { .startup = skl_fe_startup, }; static int skylake_nau8825_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, NAU8825_CLK_MCLK, 24000000, SND_SOC_CLOCK_IN); if (ret < 0) dev_err(rtd->dev, "snd_soc_dai_set_sysclk err = %d\n", ret); return ret; } static const struct snd_soc_ops skylake_nau8825_ops = { .hw_params = skylake_nau8825_hw_params, }; static int skylake_dmic_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); if (params_channels(params) == 2 || DMIC_CH(dmic_constraints) == 2) chan->min = chan->max = 2; else chan->min = chan->max = 4; return 0; } static const unsigned int channels_dmic[] = { 2, 4, }; static const struct snd_pcm_hw_constraint_list constraints_dmic_channels = { .count = ARRAY_SIZE(channels_dmic), .list = channels_dmic, .mask = 0, }; static const unsigned int dmic_2ch[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_dmic_2ch = { .count = ARRAY_SIZE(dmic_2ch), .list = dmic_2ch, .mask = 0, }; static int skylake_dmic_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_max = DMIC_CH(dmic_constraints); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, dmic_constraints); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static const struct snd_soc_ops skylake_dmic_ops = { .startup = skylake_dmic_startup, }; static const unsigned int rates_16000[] = { 16000, }; static const struct snd_pcm_hw_constraint_list constraints_16000 = { .count = ARRAY_SIZE(rates_16000), .list = rates_16000, }; static const unsigned int ch_mono[] = { 1, }; static const struct snd_pcm_hw_constraint_list constraints_refcap = { .count = ARRAY_SIZE(ch_mono), .list = ch_mono, }; static int skylake_refcap_startup(struct snd_pcm_substream *substream) { substream->runtime->hw.channels_max = 1; snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_refcap); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_16000); } static const struct snd_soc_ops skylake_refcap_ops = { .startup = skylake_refcap_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(reference, DAILINK_COMP_ARRAY(COMP_CPU("Reference Pin"))); SND_SOC_DAILINK_DEF(dmic, DAILINK_COMP_ARRAY(COMP_CPU("DMIC Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(hdmi3, DAILINK_COMP_ARRAY(COMP_CPU("HDMI3 Pin"))); SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY(COMP_CODEC("MX98357A:00", SKL_MAXIM_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP1 Pin"))); SND_SOC_DAILINK_DEF(ssp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10508825:00", SKL_NUVOTON_CODEC_DAI))); SND_SOC_DAILINK_DEF(dmic_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); /* skylake digital audio interface glue - connects codec <--> CPU */ static struct snd_soc_dai_link skylake_dais[] = { /* Front End DAI links */ [SKL_DPCM_AUDIO_PB] = { .name = "Skl Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .init = skylake_nau8825_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &skylake_nau8825_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [SKL_DPCM_AUDIO_CP] = { .name = "Skl Audio Capture Port", .stream_name = "Audio Record", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, .ops = &skylake_nau8825_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [SKL_DPCM_AUDIO_REF_CP] = { .name = "Skl Audio Reference cap", .stream_name = "Wake on Voice", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &skylake_refcap_ops, SND_SOC_DAILINK_REG(reference, dummy, platform), }, [SKL_DPCM_AUDIO_DMIC_CP] = { .name = "Skl Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &skylake_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [SKL_DPCM_AUDIO_HDMI1_PB] = { .name = "Skl HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [SKL_DPCM_AUDIO_HDMI2_PB] = { .name = "Skl HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [SKL_DPCM_AUDIO_HDMI3_PB] = { .name = "Skl HDMI Port3", .stream_name = "Hdmi3", .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "SSP0-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = skylake_ssp_fixup, .dpcm_playback = 1, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec, platform), }, { /* SSP1 - Codec */ .name = "SSP1-Codec", .id = 1, .no_pcm = 1, .init = skylake_nau8825_codec_init, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = skylake_ssp_fixup, .ops = &skylake_nau8825_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_codec, platform), }, { .name = "dmic01", .id = 2, .be_hw_params_fixup = skylake_dmic_fixup, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 3, .dpcm_playback = 1, .init = skylake_hdmi1_init, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = skylake_hdmi2_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 5, .init = skylake_hdmi3_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, }; #define NAME_SIZE 32 static int skylake_card_late_probe(struct snd_soc_card *card) { struct skl_nau8825_private *ctx = snd_soc_card_get_drvdata(card); struct skl_hdmi_pcm *pcm; struct snd_soc_component *component = NULL; int err, i = 0; char jack_name[NAME_SIZE]; list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &skylake_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &skylake_hdmi[i]); if (err < 0) return err; i++; } if (!component) return -EINVAL; return hdac_hdmi_jack_port_init(component, &card->dapm); } /* skylake audio machine driver for SPT + NAU88L25 */ static struct snd_soc_card skylake_audio_card = { .name = "sklnau8825max", .owner = THIS_MODULE, .dai_link = skylake_dais, .num_links = ARRAY_SIZE(skylake_dais), .controls = skylake_controls, .num_controls = ARRAY_SIZE(skylake_controls), .dapm_widgets = skylake_widgets, .num_dapm_widgets = ARRAY_SIZE(skylake_widgets), .dapm_routes = skylake_map, .num_dapm_routes = ARRAY_SIZE(skylake_map), .fully_routed = true, .late_probe = skylake_card_late_probe, }; static int skylake_audio_probe(struct platform_device *pdev) { struct skl_nau8825_private *ctx; struct snd_soc_acpi_mach *mach; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); skylake_audio_card.dev = &pdev->dev; snd_soc_card_set_drvdata(&skylake_audio_card, ctx); mach = pdev->dev.platform_data; if (mach) dmic_constraints = mach->mach_params.dmic_num == 2 ? &constraints_dmic_2ch : &constraints_dmic_channels; return devm_snd_soc_register_card(&pdev->dev, &skylake_audio_card); } static const struct platform_device_id skl_board_ids[] = { { .name = "skl_n88l25_m98357a" }, { .name = "kbl_n88l25_m98357a" }, { } }; MODULE_DEVICE_TABLE(platform, skl_board_ids); static struct platform_driver skylake_audio = { .probe = skylake_audio_probe, .driver = { .name = "skl_n88l25_m98357a", .pm = &snd_soc_pm_ops, }, .id_table = skl_board_ids, }; module_platform_driver(skylake_audio) /* Module information */ MODULE_DESCRIPTION("Audio Machine driver-NAU88L25 & MAX98357A in I2S mode"); MODULE_AUTHOR("Rohit Ainapure <[email protected]"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/boards/skl_nau88l25_max98357a.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2018 Intel Corporation. /* * Intel Kabylake I2S Machine Driver with MAX98927, MAX98373 & DA7219 Codecs * * Modified from: * Intel Kabylake I2S Machine driver supporting MAX98927 and * RT5663 codecs */ #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include "../../codecs/da7219.h" #include "../../codecs/hdac_hdmi.h" #define KBL_DIALOG_CODEC_DAI "da7219-hifi" #define MAX98927_CODEC_DAI "max98927-aif1" #define MAX98927_DEV0_NAME "i2c-MX98927:00" #define MAX98927_DEV1_NAME "i2c-MX98927:01" #define MAX98373_CODEC_DAI "max98373-aif1" #define MAX98373_DEV0_NAME "i2c-MX98373:00" #define MAX98373_DEV1_NAME "i2c-MX98373:01" #define DUAL_CHANNEL 2 #define QUAD_CHANNEL 4 #define NAME_SIZE 32 static struct snd_soc_card *kabylake_audio_card; static struct snd_soc_jack kabylake_hdmi[3]; struct kbl_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct kbl_codec_private { struct snd_soc_jack kabylake_headset; struct list_head hdmi_pcm_list; }; enum { KBL_DPCM_AUDIO_PB = 0, KBL_DPCM_AUDIO_ECHO_REF_CP, KBL_DPCM_AUDIO_REF_CP, KBL_DPCM_AUDIO_DMIC_CP, KBL_DPCM_AUDIO_HDMI1_PB, KBL_DPCM_AUDIO_HDMI2_PB, KBL_DPCM_AUDIO_HDMI3_PB, KBL_DPCM_AUDIO_HS_PB, KBL_DPCM_AUDIO_CP, }; static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; int ret = 0; codec_dai = snd_soc_card_get_codec_dai(card, KBL_DIALOG_CODEC_DAI); if (!codec_dai) { dev_err(card->dev, "Codec dai not found; Unable to set/unset codec pll\n"); return -EIO; } /* Configure sysclk for codec */ ret = snd_soc_dai_set_sysclk(codec_dai, DA7219_CLKSRC_MCLK, 24576000, SND_SOC_CLOCK_IN); if (ret) { dev_err(card->dev, "can't set codec sysclk configuration\n"); return ret; } if (SND_SOC_DAPM_EVENT_OFF(event)) { ret = snd_soc_dai_set_pll(codec_dai, 0, DA7219_SYSCLK_MCLK, 0, 0); if (ret) dev_err(card->dev, "failed to stop PLL: %d\n", ret); } else if (SND_SOC_DAPM_EVENT_ON(event)) { ret = snd_soc_dai_set_pll(codec_dai, 0, DA7219_SYSCLK_PLL_SRM, 0, DA7219_PLL_FREQ_OUT_98304); if (ret) dev_err(card->dev, "failed to start PLL: %d\n", ret); } return ret; } static const struct snd_kcontrol_new kabylake_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Left Spk"), SOC_DAPM_PIN_SWITCH("Right Spk"), SOC_DAPM_PIN_SWITCH("Line Out"), }; static const struct snd_soc_dapm_widget kabylake_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_SPK("Left Spk", NULL), SND_SOC_DAPM_SPK("Right Spk", NULL), SND_SOC_DAPM_LINE("Line Out", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), SND_SOC_DAPM_SPK("HDMI1", NULL), SND_SOC_DAPM_SPK("HDMI2", NULL), SND_SOC_DAPM_SPK("HDMI3", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, { .pin = "Line Out", .mask = SND_JACK_MICROPHONE, }, }; static const struct snd_soc_dapm_route kabylake_map[] = { /* speaker */ { "Left Spk", NULL, "Left BE_OUT" }, { "Right Spk", NULL, "Right BE_OUT" }, /* other jacks */ { "DMic", NULL, "SoC DMIC" }, {"HDMI1", NULL, "hif5-0 Output"}, {"HDMI2", NULL, "hif6-0 Output"}, {"HDMI3", NULL, "hif7-0 Output"}, /* CODEC BE connections */ { "Left HiFi Playback", NULL, "ssp0 Tx" }, { "Right HiFi Playback", NULL, "ssp0 Tx" }, { "ssp0 Tx", NULL, "spk_out" }, /* IV feedback path */ { "codec0_fb_in", NULL, "ssp0 Rx"}, { "ssp0 Rx", NULL, "Left HiFi Capture" }, { "ssp0 Rx", NULL, "Right HiFi Capture" }, /* AEC capture path */ { "echo_ref_out", NULL, "ssp0 Rx" }, /* DMIC */ { "dmic01_hifi", NULL, "DMIC01 Rx" }, { "DMIC01 Rx", NULL, "DMIC AIF" }, { "hifi1", NULL, "iDisp1 Tx" }, { "iDisp1 Tx", NULL, "iDisp1_out" }, { "hifi2", NULL, "iDisp2 Tx" }, { "iDisp2 Tx", NULL, "iDisp2_out" }, { "hifi3", NULL, "iDisp3 Tx"}, { "iDisp3 Tx", NULL, "iDisp3_out"}, }; static const struct snd_soc_dapm_route kabylake_ssp1_map[] = { { "Headphone Jack", NULL, "HPL" }, { "Headphone Jack", NULL, "HPR" }, /* other jacks */ { "MIC", NULL, "Headset Mic" }, /* CODEC BE connections */ { "Playback", NULL, "ssp1 Tx" }, { "ssp1 Tx", NULL, "codec1_out" }, { "hs_in", NULL, "ssp1 Rx" }, { "ssp1 Rx", NULL, "Capture" }, { "Headphone Jack", NULL, "Platform Clock" }, { "Headset Mic", NULL, "Platform Clock" }, { "Line Out", NULL, "Platform Clock" }, }; static int kabylake_ssp0_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *runtime = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; int ret, j; for_each_rtd_codec_dais(runtime, j, codec_dai) { if (!strcmp(codec_dai->component->name, MAX98927_DEV0_NAME)) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x30, 3, 8, 16); if (ret < 0) { dev_err(runtime->dev, "DEV0 TDM slot err:%d\n", ret); return ret; } } if (!strcmp(codec_dai->component->name, MAX98927_DEV1_NAME)) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0xC0, 3, 8, 16); if (ret < 0) { dev_err(runtime->dev, "DEV1 TDM slot err:%d\n", ret); return ret; } } if (!strcmp(codec_dai->component->name, MAX98373_DEV0_NAME)) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x30, 3, 8, 16); if (ret < 0) { dev_err(runtime->dev, "DEV0 TDM slot err:%d\n", ret); return ret; } } if (!strcmp(codec_dai->component->name, MAX98373_DEV1_NAME)) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0xC0, 3, 8, 16); if (ret < 0) { dev_err(runtime->dev, "DEV1 TDM slot err:%d\n", ret); return ret; } } } return 0; } static int kabylake_ssp0_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; int j, ret; for_each_rtd_codec_dais(rtd, j, codec_dai) { const char *name = codec_dai->component->name; struct snd_soc_component *component = codec_dai->component; struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); char pin_name[20]; if (strcmp(name, MAX98927_DEV0_NAME) && strcmp(name, MAX98927_DEV1_NAME) && strcmp(name, MAX98373_DEV0_NAME) && strcmp(name, MAX98373_DEV1_NAME)) continue; snprintf(pin_name, ARRAY_SIZE(pin_name), "%s Spk", codec_dai->component->name_prefix); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: ret = snd_soc_dapm_enable_pin(dapm, pin_name); if (ret) { dev_err(rtd->dev, "failed to enable %s: %d\n", pin_name, ret); return ret; } snd_soc_dapm_sync(dapm); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: ret = snd_soc_dapm_disable_pin(dapm, pin_name); if (ret) { dev_err(rtd->dev, "failed to disable %s: %d\n", pin_name, ret); return ret; } snd_soc_dapm_sync(dapm); break; } } return 0; } static struct snd_soc_ops kabylake_ssp0_ops = { .hw_params = kabylake_ssp0_hw_params, .trigger = kabylake_ssp0_trigger, }; static int kabylake_ssp_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); struct snd_soc_dpcm *dpcm, *rtd_dpcm = NULL; /* * The following loop will be called only for playback stream * In this platform, there is only one playback device on every SSP */ for_each_dpcm_fe(rtd, SNDRV_PCM_STREAM_PLAYBACK, dpcm) { rtd_dpcm = dpcm; break; } /* * This following loop will be called only for capture stream * In this platform, there is only one capture device on every SSP */ for_each_dpcm_fe(rtd, SNDRV_PCM_STREAM_CAPTURE, dpcm) { rtd_dpcm = dpcm; break; } if (!rtd_dpcm) return -EINVAL; /* * The above 2 loops are mutually exclusive based on the stream direction, * thus rtd_dpcm variable will never be overwritten */ /* * The ADSP will convert the FE rate to 48k, stereo, 24 bit */ if (!strcmp(rtd_dpcm->fe->dai_link->name, "Kbl Audio Port") || !strcmp(rtd_dpcm->fe->dai_link->name, "Kbl Audio Headset Playback") || !strcmp(rtd_dpcm->fe->dai_link->name, "Kbl Audio Capture Port")) { rate->min = rate->max = 48000; chan->min = chan->max = 2; snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); } /* * The speaker on the SSP0 supports S16_LE and not S24_LE. * thus changing the mask here */ if (!strcmp(rtd_dpcm->be->dai_link->name, "SSP0-Codec")) snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S16_LE); return 0; } static int kabylake_da7219_codec_init(struct snd_soc_pcm_runtime *rtd) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_jack *jack; struct snd_soc_card *card = rtd->card; int ret; ret = snd_soc_dapm_add_routes(&card->dapm, kabylake_ssp1_map, ARRAY_SIZE(kabylake_ssp1_map)); if (ret) return ret; /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(kabylake_audio_card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3 | SND_JACK_LINEOUT, &ctx->kabylake_headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->kabylake_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEDOWN); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOICECOMMAND); snd_soc_component_set_jack(component, &ctx->kabylake_headset, NULL); return 0; } static int kabylake_dmic_init(struct snd_soc_pcm_runtime *rtd) { int ret; ret = snd_soc_dapm_ignore_suspend(&rtd->card->dapm, "SoC DMIC"); if (ret) dev_err(rtd->dev, "SoC DMIC - Ignore suspend failed %d\n", ret); return ret; } static int kabylake_hdmi_init(struct snd_soc_pcm_runtime *rtd, int device) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct kbl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = device; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int kabylake_hdmi1_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI1_PB); } static int kabylake_hdmi2_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI2_PB); } static int kabylake_hdmi3_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI3_PB); } static int kabylake_da7219_fe_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dapm_context *dapm; struct snd_soc_component *component = asoc_rtd_to_cpu(rtd, 0)->component; dapm = snd_soc_component_get_dapm(component); snd_soc_dapm_ignore_suspend(dapm, "Reference Capture"); return 0; } static const unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static const unsigned int channels[] = { DUAL_CHANNEL, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static unsigned int channels_quad[] = { QUAD_CHANNEL, }; static struct snd_pcm_hw_constraint_list constraints_channels_quad = { .count = ARRAY_SIZE(channels_quad), .list = channels_quad, .mask = 0, }; static int kbl_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* * On this platform for PCM device we support, * 48Khz * stereo * 16 bit audio */ runtime->hw.channels_max = DUAL_CHANNEL; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); return 0; } static const struct snd_soc_ops kabylake_da7219_fe_ops = { .startup = kbl_fe_startup, }; static int kabylake_dmic_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); /* * set BE channel constraint as user FE channels */ if (params_channels(params) == 2) chan->min = chan->max = 2; else chan->min = chan->max = 4; return 0; } static int kabylake_dmic_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_min = runtime->hw.channels_max = QUAD_CHANNEL; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels_quad); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static struct snd_soc_ops kabylake_dmic_ops = { .startup = kabylake_dmic_startup, }; static const unsigned int rates_16000[] = { 16000, }; static const struct snd_pcm_hw_constraint_list constraints_16000 = { .count = ARRAY_SIZE(rates_16000), .list = rates_16000, }; static const unsigned int ch_mono[] = { 1, }; static const struct snd_pcm_hw_constraint_list constraints_refcap = { .count = ARRAY_SIZE(ch_mono), .list = ch_mono, }; static int kabylake_refcap_startup(struct snd_pcm_substream *substream) { substream->runtime->hw.channels_max = 1; snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_refcap); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_16000); } static struct snd_soc_ops skylake_refcap_ops = { .startup = kabylake_refcap_startup, }; static struct snd_soc_codec_conf max98927_codec_conf[] = { { .dlc = COMP_CODEC_CONF(MAX98927_DEV0_NAME), .name_prefix = "Right", }, { .dlc = COMP_CODEC_CONF(MAX98927_DEV1_NAME), .name_prefix = "Left", }, }; static struct snd_soc_codec_conf max98373_codec_conf[] = { { .dlc = COMP_CODEC_CONF(MAX98373_DEV0_NAME), .name_prefix = "Right", }, { .dlc = COMP_CODEC_CONF(MAX98373_DEV1_NAME), .name_prefix = "Left", }, }; static struct snd_soc_dai_link_component max98373_ssp0_codec_components[] = { { /* Left */ .name = MAX98373_DEV0_NAME, .dai_name = MAX98373_CODEC_DAI, }, { /* For Right */ .name = MAX98373_DEV1_NAME, .dai_name = MAX98373_CODEC_DAI, }, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(echoref, DAILINK_COMP_ARRAY(COMP_CPU("Echoref Pin"))); SND_SOC_DAILINK_DEF(reference, DAILINK_COMP_ARRAY(COMP_CPU("Reference Pin"))); SND_SOC_DAILINK_DEF(dmic, DAILINK_COMP_ARRAY(COMP_CPU("DMIC Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(hdmi3, DAILINK_COMP_ARRAY(COMP_CPU("HDMI3 Pin"))); SND_SOC_DAILINK_DEF(system2, DAILINK_COMP_ARRAY(COMP_CPU("System Pin2"))); SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY( /* Left */ COMP_CODEC(MAX98927_DEV0_NAME, MAX98927_CODEC_DAI), /* For Right */ COMP_CODEC(MAX98927_DEV1_NAME, MAX98927_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP1 Pin"))); SND_SOC_DAILINK_DEF(ssp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-DLGS7219:00", KBL_DIALOG_CODEC_DAI))); SND_SOC_DAILINK_DEF(dmic_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); /* kabylake digital audio interface glue - connects codec <--> CPU */ static struct snd_soc_dai_link kabylake_dais[] = { /* Front End DAI links */ [KBL_DPCM_AUDIO_PB] = { .name = "Kbl Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .init = kabylake_da7219_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &kabylake_da7219_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_ECHO_REF_CP] = { .name = "Kbl Audio Echo Reference cap", .stream_name = "Echoreference Capture", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, SND_SOC_DAILINK_REG(echoref, dummy, platform), }, [KBL_DPCM_AUDIO_REF_CP] = { .name = "Kbl Audio Reference cap", .stream_name = "Wake on Voice", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &skylake_refcap_ops, SND_SOC_DAILINK_REG(reference, dummy, platform), }, [KBL_DPCM_AUDIO_DMIC_CP] = { .name = "Kbl Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &kabylake_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI1_PB] = { .name = "Kbl HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI2_PB] = { .name = "Kbl HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI3_PB] = { .name = "Kbl HDMI Port3", .stream_name = "Hdmi3", .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, [KBL_DPCM_AUDIO_HS_PB] = { .name = "Kbl Audio Headset Playback", .stream_name = "Headset Audio", .dpcm_playback = 1, .nonatomic = 1, .dynamic = 1, .init = kabylake_da7219_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .ops = &kabylake_da7219_fe_ops, SND_SOC_DAILINK_REG(system2, dummy, platform), }, [KBL_DPCM_AUDIO_CP] = { .name = "Kbl Audio Capture Port", .stream_name = "Audio Record", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, .ops = &kabylake_da7219_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "SSP0-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .dpcm_playback = 1, .dpcm_capture = 1, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp_fixup, .ops = &kabylake_ssp0_ops, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec, platform), }, { /* SSP1 - Codec */ .name = "SSP1-Codec", .id = 1, .no_pcm = 1, .init = kabylake_da7219_codec_init, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp_fixup, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_codec, platform), }, { .name = "dmic01", .id = 2, .init = kabylake_dmic_init, .be_hw_params_fixup = kabylake_dmic_fixup, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 3, .dpcm_playback = 1, .init = kabylake_hdmi1_init, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = kabylake_hdmi2_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 5, .init = kabylake_hdmi3_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, }; /* kabylake digital audio interface glue - connects codec <--> CPU */ static struct snd_soc_dai_link kabylake_max98_927_373_dais[] = { /* Front End DAI links */ [KBL_DPCM_AUDIO_PB] = { .name = "Kbl Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .init = kabylake_da7219_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &kabylake_da7219_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_ECHO_REF_CP] = { .name = "Kbl Audio Echo Reference cap", .stream_name = "Echoreference Capture", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, SND_SOC_DAILINK_REG(echoref, dummy, platform), }, [KBL_DPCM_AUDIO_REF_CP] = { .name = "Kbl Audio Reference cap", .stream_name = "Wake on Voice", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &skylake_refcap_ops, SND_SOC_DAILINK_REG(reference, dummy, platform), }, [KBL_DPCM_AUDIO_DMIC_CP] = { .name = "Kbl Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &kabylake_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI1_PB] = { .name = "Kbl HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI2_PB] = { .name = "Kbl HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI3_PB] = { .name = "Kbl HDMI Port3", .stream_name = "Hdmi3", .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "SSP0-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .dpcm_playback = 1, .dpcm_capture = 1, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp_fixup, .ops = &kabylake_ssp0_ops, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec), }, { .name = "dmic01", .id = 1, .init = kabylake_dmic_init, .be_hw_params_fixup = kabylake_dmic_fixup, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 2, .dpcm_playback = 1, .init = kabylake_hdmi1_init, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 3, .init = kabylake_hdmi2_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 4, .init = kabylake_hdmi3_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, }; static int kabylake_card_late_probe(struct snd_soc_card *card) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(card); struct kbl_hdmi_pcm *pcm; struct snd_soc_dapm_context *dapm = &card->dapm; struct snd_soc_component *component = NULL; int err, i = 0; char jack_name[NAME_SIZE]; list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &kabylake_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &kabylake_hdmi[i]); if (err < 0) return err; i++; } if (!component) return -EINVAL; err = hdac_hdmi_jack_port_init(component, &card->dapm); if (err < 0) return err; err = snd_soc_dapm_disable_pin(dapm, "Left Spk"); if (err) { dev_err(card->dev, "failed to disable Left Spk: %d\n", err); return err; } err = snd_soc_dapm_disable_pin(dapm, "Right Spk"); if (err) { dev_err(card->dev, "failed to disable Right Spk: %d\n", err); return err; } return snd_soc_dapm_sync(dapm); } /* kabylake audio machine driver for SPT + DA7219 */ static struct snd_soc_card kbl_audio_card_da7219_m98927 = { .name = "kblda7219m98927", .owner = THIS_MODULE, .dai_link = kabylake_dais, .num_links = ARRAY_SIZE(kabylake_dais), .controls = kabylake_controls, .num_controls = ARRAY_SIZE(kabylake_controls), .dapm_widgets = kabylake_widgets, .num_dapm_widgets = ARRAY_SIZE(kabylake_widgets), .dapm_routes = kabylake_map, .num_dapm_routes = ARRAY_SIZE(kabylake_map), .codec_conf = max98927_codec_conf, .num_configs = ARRAY_SIZE(max98927_codec_conf), .fully_routed = true, .late_probe = kabylake_card_late_probe, }; /* kabylake audio machine driver for Maxim98927 */ static struct snd_soc_card kbl_audio_card_max98927 = { .name = "kblmax98927", .owner = THIS_MODULE, .dai_link = kabylake_max98_927_373_dais, .num_links = ARRAY_SIZE(kabylake_max98_927_373_dais), .controls = kabylake_controls, .num_controls = ARRAY_SIZE(kabylake_controls), .dapm_widgets = kabylake_widgets, .num_dapm_widgets = ARRAY_SIZE(kabylake_widgets), .dapm_routes = kabylake_map, .num_dapm_routes = ARRAY_SIZE(kabylake_map), .codec_conf = max98927_codec_conf, .num_configs = ARRAY_SIZE(max98927_codec_conf), .fully_routed = true, .late_probe = kabylake_card_late_probe, }; static struct snd_soc_card kbl_audio_card_da7219_m98373 = { .name = "kblda7219m98373", .owner = THIS_MODULE, .dai_link = kabylake_dais, .num_links = ARRAY_SIZE(kabylake_dais), .controls = kabylake_controls, .num_controls = ARRAY_SIZE(kabylake_controls), .dapm_widgets = kabylake_widgets, .num_dapm_widgets = ARRAY_SIZE(kabylake_widgets), .dapm_routes = kabylake_map, .num_dapm_routes = ARRAY_SIZE(kabylake_map), .codec_conf = max98373_codec_conf, .num_configs = ARRAY_SIZE(max98373_codec_conf), .fully_routed = true, .late_probe = kabylake_card_late_probe, }; static struct snd_soc_card kbl_audio_card_max98373 = { .name = "kblmax98373", .owner = THIS_MODULE, .dai_link = kabylake_max98_927_373_dais, .num_links = ARRAY_SIZE(kabylake_max98_927_373_dais), .controls = kabylake_controls, .num_controls = ARRAY_SIZE(kabylake_controls), .dapm_widgets = kabylake_widgets, .num_dapm_widgets = ARRAY_SIZE(kabylake_widgets), .dapm_routes = kabylake_map, .num_dapm_routes = ARRAY_SIZE(kabylake_map), .codec_conf = max98373_codec_conf, .num_configs = ARRAY_SIZE(max98373_codec_conf), .fully_routed = true, .late_probe = kabylake_card_late_probe, }; static int kabylake_audio_probe(struct platform_device *pdev) { struct kbl_codec_private *ctx; struct snd_soc_dai_link *kbl_dai_link; struct snd_soc_dai_link_component **codecs; int i; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); kabylake_audio_card = (struct snd_soc_card *)pdev->id_entry->driver_data; kbl_dai_link = kabylake_audio_card->dai_link; /* Update codecs for SSP0 with max98373 codec info */ if (!strcmp(pdev->name, "kbl_da7219_max98373") || (!strcmp(pdev->name, "kbl_max98373"))) { for (i = 0; i < kabylake_audio_card->num_links; ++i) { if (strcmp(kbl_dai_link[i].name, "SSP0-Codec")) continue; codecs = &(kbl_dai_link[i].codecs); *codecs = max98373_ssp0_codec_components; kbl_dai_link[i].num_codecs = ARRAY_SIZE(max98373_ssp0_codec_components); break; } } kabylake_audio_card->dev = &pdev->dev; snd_soc_card_set_drvdata(kabylake_audio_card, ctx); return devm_snd_soc_register_card(&pdev->dev, kabylake_audio_card); } static const struct platform_device_id kbl_board_ids[] = { { .name = "kbl_da7219_max98927", .driver_data = (kernel_ulong_t)&kbl_audio_card_da7219_m98927, }, { .name = "kbl_max98927", .driver_data = (kernel_ulong_t)&kbl_audio_card_max98927, }, { .name = "kbl_da7219_max98373", .driver_data = (kernel_ulong_t)&kbl_audio_card_da7219_m98373, }, { .name = "kbl_max98373", .driver_data = (kernel_ulong_t)&kbl_audio_card_max98373, }, { } }; MODULE_DEVICE_TABLE(platform, kbl_board_ids); static struct platform_driver kabylake_audio = { .probe = kabylake_audio_probe, .driver = { .name = "kbl_da7219_max98_927_373", .pm = &snd_soc_pm_ops, }, .id_table = kbl_board_ids, }; module_platform_driver(kabylake_audio) /* Module information */ MODULE_DESCRIPTION("Audio KabyLake Machine driver for MAX98927/MAX98373 & DA7219"); MODULE_AUTHOR("Mac Chiang <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/boards/kbl_da7219_max98927.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2019 Intel Corporation. /* * Intel Cometlake I2S Machine driver for RT1011 + RT5682 codec */ #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/dmi.h> #include <linux/slab.h> #include <linux/acpi.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/rt5682.h> #include <sound/soc-acpi.h> #include "../../codecs/rt1011.h" #include "../../codecs/rt5682.h" #include "../../codecs/hdac_hdmi.h" #include "hda_dsp_common.h" /* The platform clock outputs 24Mhz clock to codec as I2S MCLK */ #define CML_PLAT_CLK 24000000 #define CML_RT1011_CODEC_DAI "rt1011-aif" #define CML_RT5682_CODEC_DAI "rt5682-aif1" #define NAME_SIZE 32 #define SOF_RT1011_SPEAKER_WL BIT(0) #define SOF_RT1011_SPEAKER_WR BIT(1) #define SOF_RT1011_SPEAKER_TL BIT(2) #define SOF_RT1011_SPEAKER_TR BIT(3) /* Default: Woofer speakers */ static unsigned long sof_rt1011_quirk = SOF_RT1011_SPEAKER_WL | SOF_RT1011_SPEAKER_WR; static int sof_rt1011_quirk_cb(const struct dmi_system_id *id) { sof_rt1011_quirk = (unsigned long)id->driver_data; return 1; } static const struct dmi_system_id sof_rt1011_quirk_table[] = { { .callback = sof_rt1011_quirk_cb, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Google"), DMI_MATCH(DMI_PRODUCT_NAME, "Helios"), }, .driver_data = (void *)(SOF_RT1011_SPEAKER_WL | SOF_RT1011_SPEAKER_WR | SOF_RT1011_SPEAKER_TL | SOF_RT1011_SPEAKER_TR), }, { } }; static struct snd_soc_jack hdmi_jack[3]; struct hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct card_private { char codec_name[SND_ACPI_I2C_ID_LEN]; struct snd_soc_jack headset; struct list_head hdmi_pcm_list; bool common_hdmi_codec_drv; }; static const struct snd_kcontrol_new cml_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("WL Ext Spk"), SOC_DAPM_PIN_SWITCH("WR Ext Spk"), }; static const struct snd_kcontrol_new cml_rt1011_tt_controls[] = { SOC_DAPM_PIN_SWITCH("TL Ext Spk"), SOC_DAPM_PIN_SWITCH("TR Ext Spk"), }; static const struct snd_soc_dapm_widget cml_rt1011_rt5682_widgets[] = { SND_SOC_DAPM_SPK("WL Ext Spk", NULL), SND_SOC_DAPM_SPK("WR Ext Spk", NULL), SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_widget cml_rt1011_tt_widgets[] = { SND_SOC_DAPM_SPK("TL Ext Spk", NULL), SND_SOC_DAPM_SPK("TR Ext Spk", NULL), }; static const struct snd_soc_dapm_route cml_rt1011_rt5682_map[] = { /*WL/WR speaker*/ {"WL Ext Spk", NULL, "WL SPO"}, {"WR Ext Spk", NULL, "WR SPO"}, /* HP jack connectors - unknown if we have jack detection */ { "Headphone Jack", NULL, "HPOL" }, { "Headphone Jack", NULL, "HPOR" }, /* other jacks */ { "IN1P", NULL, "Headset Mic" }, /* DMIC */ {"DMic", NULL, "SoC DMIC"}, }; static const struct snd_soc_dapm_route cml_rt1011_tt_map[] = { /*TL/TR speaker*/ {"TL Ext Spk", NULL, "TL SPO" }, {"TR Ext Spk", NULL, "TR SPO" }, }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int cml_rt5682_codec_init(struct snd_soc_pcm_runtime *rtd) { struct card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_jack *jack; int ret; /* need to enable ASRC function for 24MHz mclk rate */ rt5682_sel_asrc_clk_src(component, RT5682_DA_STEREO1_FILTER | RT5682_AD_STEREO1_FILTER, RT5682_CLK_SEL_I2S1_ASRC); /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &ctx->headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); ret = snd_soc_component_set_jack(component, jack, NULL); if (ret) dev_err(rtd->dev, "Headset Jack call-back failed: %d\n", ret); return ret; }; static void cml_rt5682_codec_exit(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; snd_soc_component_set_jack(component, NULL, NULL); } static int cml_rt1011_spk_init(struct snd_soc_pcm_runtime *rtd) { int ret = 0; struct snd_soc_card *card = rtd->card; if (sof_rt1011_quirk & (SOF_RT1011_SPEAKER_TL | SOF_RT1011_SPEAKER_TR)) { ret = snd_soc_add_card_controls(card, cml_rt1011_tt_controls, ARRAY_SIZE(cml_rt1011_tt_controls)); if (ret) return ret; ret = snd_soc_dapm_new_controls(&card->dapm, cml_rt1011_tt_widgets, ARRAY_SIZE(cml_rt1011_tt_widgets)); if (ret) return ret; ret = snd_soc_dapm_add_routes(&card->dapm, cml_rt1011_tt_map, ARRAY_SIZE(cml_rt1011_tt_map)); if (ret) return ret; } return ret; } static int cml_rt5682_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int clk_id, clk_freq, pll_out, ret; clk_id = RT5682_PLL1_S_MCLK; clk_freq = CML_PLAT_CLK; pll_out = params_rate(params) * 512; ret = snd_soc_dai_set_pll(codec_dai, 0, clk_id, clk_freq, pll_out); if (ret < 0) dev_warn(rtd->dev, "snd_soc_dai_set_pll err = %d\n", ret); /* Configure sysclk for codec */ ret = snd_soc_dai_set_sysclk(codec_dai, RT5682_SCLK_S_PLL1, pll_out, SND_SOC_CLOCK_IN); if (ret < 0) dev_warn(rtd->dev, "snd_soc_dai_set_sysclk err = %d\n", ret); /* * slot_width should be equal or large than data length, set them * be the same */ ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x0, 0x0, 2, params_width(params)); if (ret < 0) dev_warn(rtd->dev, "set TDM slot err:%d\n", ret); return ret; } static int cml_rt1011_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai; struct snd_soc_card *card = rtd->card; int srate, i, ret = 0; srate = params_rate(params); for_each_rtd_codec_dais(rtd, i, codec_dai) { /* 100 Fs to drive 24 bit data */ ret = snd_soc_dai_set_pll(codec_dai, 0, RT1011_PLL1_S_BCLK, 100 * srate, 256 * srate); if (ret < 0) { dev_err(card->dev, "codec_dai clock not set\n"); return ret; } ret = snd_soc_dai_set_sysclk(codec_dai, RT1011_FS_SYS_PRE_S_PLL1, 256 * srate, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(card->dev, "codec_dai clock not set\n"); return ret; } /* * Codec TDM is configured as 24 bit capture/ playback. * 2 CH PB is done over 4 codecs - 2 Woofers and 2 Tweeters. * The Left woofer and tweeter plays the Left playback data * and similar by the Right. * Hence 2 codecs (1 T and 1 W pair) share same Rx slot. * The feedback is captured for each codec individually. * Hence all 4 codecs use 1 Tx slot each for feedback. */ if (sof_rt1011_quirk & (SOF_RT1011_SPEAKER_WL | SOF_RT1011_SPEAKER_WR)) { if (!strcmp(codec_dai->component->name, "i2c-10EC1011:00")) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x4, 0x1, 4, 24); if (ret < 0) break; } if (!strcmp(codec_dai->component->name, "i2c-10EC1011:01")) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x8, 0x2, 4, 24); if (ret < 0) break; } } if (sof_rt1011_quirk & (SOF_RT1011_SPEAKER_TL | SOF_RT1011_SPEAKER_TR)) { if (!strcmp(codec_dai->component->name, "i2c-10EC1011:02")) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x1, 0x1, 4, 24); if (ret < 0) break; } if (!strcmp(codec_dai->component->name, "i2c-10EC1011:03")) { ret = snd_soc_dai_set_tdm_slot(codec_dai, 0x2, 0x2, 4, 24); if (ret < 0) break; } } } if (ret < 0) dev_err(rtd->dev, "set codec TDM slot for %s failed with error %d\n", codec_dai->component->name, ret); return ret; } static struct snd_soc_ops cml_rt5682_ops = { .hw_params = cml_rt5682_hw_params, }; static const struct snd_soc_ops cml_rt1011_ops = { .hw_params = cml_rt1011_hw_params, }; static int sof_card_late_probe(struct snd_soc_card *card) { struct card_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_component *component = NULL; char jack_name[NAME_SIZE]; struct hdmi_pcm *pcm; int ret, i = 0; if (list_empty(&ctx->hdmi_pcm_list)) return -EINVAL; if (ctx->common_hdmi_codec_drv) { pcm = list_first_entry(&ctx->hdmi_pcm_list, struct hdmi_pcm, head); component = pcm->codec_dai->component; return hda_dsp_hdmi_build_controls(card, component); } list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); ret = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &hdmi_jack[i]); if (ret) return ret; ret = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &hdmi_jack[i]); if (ret < 0) return ret; i++; } return hdac_hdmi_jack_port_init(component, &card->dapm); } static int hdmi_init(struct snd_soc_pcm_runtime *rtd) { struct card_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = dai->id; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } /* Cometlake digital audio interface glue - connects codec <--> CPU */ SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10EC5682:00", CML_RT5682_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP1 Pin"))); SND_SOC_DAILINK_DEF(ssp1_codec_2spk, DAILINK_COMP_ARRAY( /* WL */ COMP_CODEC("i2c-10EC1011:00", CML_RT1011_CODEC_DAI), /* WR */ COMP_CODEC("i2c-10EC1011:01", CML_RT1011_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp1_codec_4spk, DAILINK_COMP_ARRAY( /* WL */ COMP_CODEC("i2c-10EC1011:00", CML_RT1011_CODEC_DAI), /* WR */ COMP_CODEC("i2c-10EC1011:01", CML_RT1011_CODEC_DAI), /* TL */ COMP_CODEC("i2c-10EC1011:02", CML_RT1011_CODEC_DAI), /* TR */ COMP_CODEC("i2c-10EC1011:03", CML_RT1011_CODEC_DAI))); SND_SOC_DAILINK_DEF(dmic_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic16k_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC16k Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); static struct snd_soc_dai_link cml_rt1011_rt5682_dailink[] = { /* Back End DAI links */ { /* SSP0 - Codec */ .name = "SSP0-Codec", .id = 0, .init = cml_rt5682_codec_init, .exit = cml_rt5682_codec_exit, .ignore_pmdown_time = 1, .ops = &cml_rt5682_ops, .dpcm_playback = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec, platform), }, { .name = "dmic01", .id = 1, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "dmic16k", .id = 2, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic16k_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 3, .init = hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 5, .init = hdmi_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, { /* * SSP1 - Codec : added to end of list ensuring * reuse of common topologies for other end points * and changing only SSP1's codec */ .name = "SSP1-Codec", .id = 6, .dpcm_playback = 1, .dpcm_capture = 1, /* Capture stream provides Feedback */ .no_pcm = 1, .init = cml_rt1011_spk_init, .ops = &cml_rt1011_ops, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_codec_2spk, platform), }, }; static struct snd_soc_codec_conf rt1011_conf[] = { { .dlc = COMP_CODEC_CONF("i2c-10EC1011:00"), .name_prefix = "WL", }, { .dlc = COMP_CODEC_CONF("i2c-10EC1011:01"), .name_prefix = "WR", }, /* single configuration structure for 2 and 4 channels */ { .dlc = COMP_CODEC_CONF("i2c-10EC1011:02"), .name_prefix = "TL", }, { .dlc = COMP_CODEC_CONF("i2c-10EC1011:03"), .name_prefix = "TR", }, }; /* Cometlake audio machine driver for RT1011 and RT5682 */ static struct snd_soc_card snd_soc_card_cml = { .name = "cml_rt1011_rt5682", .owner = THIS_MODULE, .dai_link = cml_rt1011_rt5682_dailink, .num_links = ARRAY_SIZE(cml_rt1011_rt5682_dailink), .codec_conf = rt1011_conf, .num_configs = ARRAY_SIZE(rt1011_conf), .dapm_widgets = cml_rt1011_rt5682_widgets, .num_dapm_widgets = ARRAY_SIZE(cml_rt1011_rt5682_widgets), .dapm_routes = cml_rt1011_rt5682_map, .num_dapm_routes = ARRAY_SIZE(cml_rt1011_rt5682_map), .controls = cml_controls, .num_controls = ARRAY_SIZE(cml_controls), .fully_routed = true, .late_probe = sof_card_late_probe, }; static int snd_cml_rt1011_probe(struct platform_device *pdev) { struct snd_soc_dai_link *dai_link; struct card_private *ctx; struct snd_soc_acpi_mach *mach; const char *platform_name; int ret, i; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); mach = pdev->dev.platform_data; snd_soc_card_cml.dev = &pdev->dev; platform_name = mach->mach_params.platform; dmi_check_system(sof_rt1011_quirk_table); dev_dbg(&pdev->dev, "sof_rt1011_quirk = %lx\n", sof_rt1011_quirk); /* when 4 speaker is available, update codec config */ if (sof_rt1011_quirk & (SOF_RT1011_SPEAKER_TL | SOF_RT1011_SPEAKER_TR)) { for_each_card_prelinks(&snd_soc_card_cml, i, dai_link) { if (!strcmp(dai_link->codecs[0].dai_name, CML_RT1011_CODEC_DAI)) { dai_link->codecs = ssp1_codec_4spk; dai_link->num_codecs = ARRAY_SIZE(ssp1_codec_4spk); } } } /* set platform name for each dailink */ ret = snd_soc_fixup_dai_links_platform_name(&snd_soc_card_cml, platform_name); if (ret) return ret; ctx->common_hdmi_codec_drv = mach->mach_params.common_hdmi_codec_drv; snd_soc_card_set_drvdata(&snd_soc_card_cml, ctx); return devm_snd_soc_register_card(&pdev->dev, &snd_soc_card_cml); } static struct platform_driver snd_cml_rt1011_rt5682_driver = { .probe = snd_cml_rt1011_probe, .driver = { .name = "cml_rt1011_rt5682", .pm = &snd_soc_pm_ops, }, }; module_platform_driver(snd_cml_rt1011_rt5682_driver); /* Module information */ MODULE_DESCRIPTION("Cometlake Audio Machine driver - RT1011 and RT5682 in I2S mode"); MODULE_AUTHOR("Naveen Manohar <[email protected]>"); MODULE_AUTHOR("Sathya Prakash M R <[email protected]>"); MODULE_AUTHOR("Shuming Fan <[email protected]>"); MODULE_AUTHOR("Mac Chiang <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:cml_rt1011_rt5682"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON);
linux-master
sound/soc/intel/boards/cml_rt1011_rt5682.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2023 Intel Corporation /* * sof_sdw_cs_amp - Helpers to handle CS35L56 from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "sof_sdw_common.h" #define CODEC_NAME_SIZE 8 static int cs_spk_init(struct snd_soc_pcm_runtime *rtd) { const char *dai_name = rtd->dai_link->codecs->dai_name; struct snd_soc_card *card = rtd->card; char codec_name[CODEC_NAME_SIZE]; snprintf(codec_name, CODEC_NAME_SIZE, "%s", dai_name); card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s spk:%s", card->components, codec_name); if (!card->components) return -ENOMEM; return 0; } int sof_sdw_cs_amp_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { /* Count amp number and do init on playback link only. */ if (!playback) return 0; info->amp_num++; dai_links->init = cs_spk_init; return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_cs_amp.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Skylake I2S Machine Driver for NAU88L25+SSM4567 * * Copyright (C) 2015, Intel Corporation. All rights reserved. * * Modified from: * Intel Skylake I2S Machine Driver for NAU88L25 and SSM4567 * * Copyright (C) 2015, Intel Corporation. All rights reserved. */ #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/jack.h> #include <sound/pcm_params.h> #include "../../codecs/nau8825.h" #include "../../codecs/hdac_hdmi.h" #define SKL_NUVOTON_CODEC_DAI "nau8825-hifi" #define SKL_SSM_CODEC_DAI "ssm4567-hifi" #define DMIC_CH(p) p->list[p->count-1] static struct snd_soc_jack skylake_headset; static struct snd_soc_card skylake_audio_card; static const struct snd_pcm_hw_constraint_list *dmic_constraints; static struct snd_soc_jack skylake_hdmi[3]; struct skl_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct skl_nau88125_private { struct list_head hdmi_pcm_list; }; enum { SKL_DPCM_AUDIO_PB = 0, SKL_DPCM_AUDIO_CP, SKL_DPCM_AUDIO_REF_CP, SKL_DPCM_AUDIO_DMIC_CP, SKL_DPCM_AUDIO_HDMI1_PB, SKL_DPCM_AUDIO_HDMI2_PB, SKL_DPCM_AUDIO_HDMI3_PB, }; static const struct snd_kcontrol_new skylake_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Left Speaker"), SOC_DAPM_PIN_SWITCH("Right Speaker"), }; static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; int ret; codec_dai = snd_soc_card_get_codec_dai(card, SKL_NUVOTON_CODEC_DAI); if (!codec_dai) { dev_err(card->dev, "Codec dai not found\n"); return -EIO; } if (SND_SOC_DAPM_EVENT_ON(event)) { ret = snd_soc_dai_set_sysclk(codec_dai, NAU8825_CLK_MCLK, 24000000, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(card->dev, "set sysclk err = %d\n", ret); return -EIO; } } else { ret = snd_soc_dai_set_sysclk(codec_dai, NAU8825_CLK_INTERNAL, 0, SND_SOC_CLOCK_IN); if (ret < 0) { dev_err(card->dev, "set sysclk err = %d\n", ret); return -EIO; } } return ret; } static const struct snd_soc_dapm_widget skylake_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_SPK("Left Speaker", NULL), SND_SOC_DAPM_SPK("Right Speaker", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), SND_SOC_DAPM_SPK("DP1", NULL), SND_SOC_DAPM_SPK("DP2", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static const struct snd_soc_dapm_route skylake_map[] = { /* HP jack connectors - unknown if we have jack detection */ {"Headphone Jack", NULL, "HPOL"}, {"Headphone Jack", NULL, "HPOR"}, /* speaker */ {"Left Speaker", NULL, "Left OUT"}, {"Right Speaker", NULL, "Right OUT"}, /* other jacks */ {"MIC", NULL, "Headset Mic"}, {"DMic", NULL, "SoC DMIC"}, /* CODEC BE connections */ { "Left Playback", NULL, "ssp0 Tx"}, { "Right Playback", NULL, "ssp0 Tx"}, { "ssp0 Tx", NULL, "codec0_out"}, /* IV feedback path */ { "codec0_lp_in", NULL, "ssp0 Rx"}, { "ssp0 Rx", NULL, "Left Capture Sense" }, { "ssp0 Rx", NULL, "Right Capture Sense" }, { "Playback", NULL, "ssp1 Tx"}, { "ssp1 Tx", NULL, "codec1_out"}, { "codec0_in", NULL, "ssp1 Rx" }, { "ssp1 Rx", NULL, "Capture" }, /* DMIC */ { "dmic01_hifi", NULL, "DMIC01 Rx" }, { "DMIC01 Rx", NULL, "DMIC AIF" }, { "hifi3", NULL, "iDisp3 Tx"}, { "iDisp3 Tx", NULL, "iDisp3_out"}, { "hifi2", NULL, "iDisp2 Tx"}, { "iDisp2 Tx", NULL, "iDisp2_out"}, { "hifi1", NULL, "iDisp1 Tx"}, { "iDisp1 Tx", NULL, "iDisp1_out"}, { "Headphone Jack", NULL, "Platform Clock" }, { "Headset Mic", NULL, "Platform Clock" }, }; static struct snd_soc_codec_conf ssm4567_codec_conf[] = { { .dlc = COMP_CODEC_CONF("i2c-INT343B:00"), .name_prefix = "Left", }, { .dlc = COMP_CODEC_CONF("i2c-INT343B:01"), .name_prefix = "Right", }, }; static int skylake_ssm4567_codec_init(struct snd_soc_pcm_runtime *rtd) { int ret; /* Slot 1 for left */ ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_codec(rtd, 0), 0x01, 0x01, 2, 48); if (ret < 0) return ret; /* Slot 2 for right */ ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_codec(rtd, 1), 0x02, 0x02, 2, 48); if (ret < 0) return ret; return ret; } static int skylake_nau8825_codec_init(struct snd_soc_pcm_runtime *rtd) { int ret; struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; /* * 4 buttons here map to the google Reference headset * The use of these buttons can be decided by the user space. */ ret = snd_soc_card_jack_new_pins(&skylake_audio_card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &skylake_headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed %d\n", ret); return ret; } nau8825_enable_jack_detect(component, &skylake_headset); snd_soc_dapm_ignore_suspend(&rtd->card->dapm, "SoC DMIC"); return ret; } static int skylake_hdmi1_init(struct snd_soc_pcm_runtime *rtd) { struct skl_nau88125_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct skl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = SKL_DPCM_AUDIO_HDMI1_PB; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int skylake_hdmi2_init(struct snd_soc_pcm_runtime *rtd) { struct skl_nau88125_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct skl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = SKL_DPCM_AUDIO_HDMI2_PB; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int skylake_hdmi3_init(struct snd_soc_pcm_runtime *rtd) { struct skl_nau88125_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct skl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = SKL_DPCM_AUDIO_HDMI3_PB; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int skylake_nau8825_fe_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dapm_context *dapm; struct snd_soc_component *component = asoc_rtd_to_cpu(rtd, 0)->component; dapm = snd_soc_component_get_dapm(component); snd_soc_dapm_ignore_suspend(dapm, "Reference Capture"); return 0; } static const unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static const unsigned int channels[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static int skl_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* * on this platform for PCM device we support, * 48Khz * stereo * 16 bit audio */ runtime->hw.channels_max = 2; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); return 0; } static const struct snd_soc_ops skylake_nau8825_fe_ops = { .startup = skl_fe_startup, }; static int skylake_ssp_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); /* The ADSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; chan->min = chan->max = 2; /* set SSP0 to 24 bit */ snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); return 0; } static int skylake_dmic_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); if (params_channels(params) == 2 || DMIC_CH(dmic_constraints) == 2) chan->min = chan->max = 2; else chan->min = chan->max = 4; return 0; } static int skylake_nau8825_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); int ret; ret = snd_soc_dai_set_sysclk(codec_dai, NAU8825_CLK_MCLK, 24000000, SND_SOC_CLOCK_IN); if (ret < 0) dev_err(rtd->dev, "snd_soc_dai_set_sysclk err = %d\n", ret); return ret; } static const struct snd_soc_ops skylake_nau8825_ops = { .hw_params = skylake_nau8825_hw_params, }; static const unsigned int channels_dmic[] = { 2, 4, }; static const struct snd_pcm_hw_constraint_list constraints_dmic_channels = { .count = ARRAY_SIZE(channels_dmic), .list = channels_dmic, .mask = 0, }; static const unsigned int dmic_2ch[] = { 2, }; static const struct snd_pcm_hw_constraint_list constraints_dmic_2ch = { .count = ARRAY_SIZE(dmic_2ch), .list = dmic_2ch, .mask = 0, }; static int skylake_dmic_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_max = DMIC_CH(dmic_constraints); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, dmic_constraints); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static const struct snd_soc_ops skylake_dmic_ops = { .startup = skylake_dmic_startup, }; static const unsigned int rates_16000[] = { 16000, }; static const struct snd_pcm_hw_constraint_list constraints_16000 = { .count = ARRAY_SIZE(rates_16000), .list = rates_16000, }; static const unsigned int ch_mono[] = { 1, }; static const struct snd_pcm_hw_constraint_list constraints_refcap = { .count = ARRAY_SIZE(ch_mono), .list = ch_mono, }; static int skylake_refcap_startup(struct snd_pcm_substream *substream) { substream->runtime->hw.channels_max = 1; snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_refcap); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_16000); } static const struct snd_soc_ops skylake_refcap_ops = { .startup = skylake_refcap_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(reference, DAILINK_COMP_ARRAY(COMP_CPU("Reference Pin"))); SND_SOC_DAILINK_DEF(dmic, DAILINK_COMP_ARRAY(COMP_CPU("DMIC Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(hdmi3, DAILINK_COMP_ARRAY(COMP_CPU("HDMI3 Pin"))); SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY( /* Left */ COMP_CODEC("i2c-INT343B:00", SKL_SSM_CODEC_DAI), /* Right */ COMP_CODEC("i2c-INT343B:01", SKL_SSM_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP1 Pin"))); SND_SOC_DAILINK_DEF(ssp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-10508825:00", SKL_NUVOTON_CODEC_DAI))); SND_SOC_DAILINK_DEF(dmic01_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); /* skylake digital audio interface glue - connects codec <--> CPU */ static struct snd_soc_dai_link skylake_dais[] = { /* Front End DAI links */ [SKL_DPCM_AUDIO_PB] = { .name = "Skl Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .init = skylake_nau8825_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &skylake_nau8825_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [SKL_DPCM_AUDIO_CP] = { .name = "Skl Audio Capture Port", .stream_name = "Audio Record", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, .ops = &skylake_nau8825_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [SKL_DPCM_AUDIO_REF_CP] = { .name = "Skl Audio Reference cap", .stream_name = "Wake on Voice", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &skylake_refcap_ops, SND_SOC_DAILINK_REG(reference, dummy, platform), }, [SKL_DPCM_AUDIO_DMIC_CP] = { .name = "Skl Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &skylake_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [SKL_DPCM_AUDIO_HDMI1_PB] = { .name = "Skl HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [SKL_DPCM_AUDIO_HDMI2_PB] = { .name = "Skl HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [SKL_DPCM_AUDIO_HDMI3_PB] = { .name = "Skl HDMI Port3", .stream_name = "Hdmi3", .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "SSP0-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF | SND_SOC_DAIFMT_CBC_CFC, .init = skylake_ssm4567_codec_init, .ignore_pmdown_time = 1, .be_hw_params_fixup = skylake_ssp_fixup, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec, platform), }, { /* SSP1 - Codec */ .name = "SSP1-Codec", .id = 1, .no_pcm = 1, .init = skylake_nau8825_codec_init, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = skylake_ssp_fixup, .ops = &skylake_nau8825_ops, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_codec, platform), }, { .name = "dmic01", .id = 2, .ignore_suspend = 1, .be_hw_params_fixup = skylake_dmic_fixup, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic01_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 3, .dpcm_playback = 1, .init = skylake_hdmi1_init, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = skylake_hdmi2_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 5, .init = skylake_hdmi3_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, }; #define NAME_SIZE 32 static int skylake_card_late_probe(struct snd_soc_card *card) { struct skl_nau88125_private *ctx = snd_soc_card_get_drvdata(card); struct skl_hdmi_pcm *pcm; struct snd_soc_component *component = NULL; int err, i = 0; char jack_name[NAME_SIZE]; list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &skylake_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &skylake_hdmi[i]); if (err < 0) return err; i++; } if (!component) return -EINVAL; return hdac_hdmi_jack_port_init(component, &card->dapm); } /* skylake audio machine driver for SPT + NAU88L25 */ static struct snd_soc_card skylake_audio_card = { .name = "sklnau8825adi", .owner = THIS_MODULE, .dai_link = skylake_dais, .num_links = ARRAY_SIZE(skylake_dais), .controls = skylake_controls, .num_controls = ARRAY_SIZE(skylake_controls), .dapm_widgets = skylake_widgets, .num_dapm_widgets = ARRAY_SIZE(skylake_widgets), .dapm_routes = skylake_map, .num_dapm_routes = ARRAY_SIZE(skylake_map), .codec_conf = ssm4567_codec_conf, .num_configs = ARRAY_SIZE(ssm4567_codec_conf), .fully_routed = true, .disable_route_checks = true, .late_probe = skylake_card_late_probe, }; static int skylake_audio_probe(struct platform_device *pdev) { struct skl_nau88125_private *ctx; struct snd_soc_acpi_mach *mach; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); skylake_audio_card.dev = &pdev->dev; snd_soc_card_set_drvdata(&skylake_audio_card, ctx); mach = pdev->dev.platform_data; if (mach) dmic_constraints = mach->mach_params.dmic_num == 2 ? &constraints_dmic_2ch : &constraints_dmic_channels; return devm_snd_soc_register_card(&pdev->dev, &skylake_audio_card); } static const struct platform_device_id skl_board_ids[] = { { .name = "skl_n88l25_s4567" }, { .name = "kbl_n88l25_s4567" }, { } }; MODULE_DEVICE_TABLE(platform, skl_board_ids); static struct platform_driver skylake_audio = { .probe = skylake_audio_probe, .driver = { .name = "skl_n88l25_s4567", .pm = &snd_soc_pm_ops, }, .id_table = skl_board_ids, }; module_platform_driver(skylake_audio) /* Module information */ MODULE_AUTHOR("Conrad Cooke <[email protected]>"); MODULE_AUTHOR("Harsha Priya <[email protected]>"); MODULE_AUTHOR("Naveen M <[email protected]>"); MODULE_AUTHOR("Sathya Prakash M R <[email protected]>"); MODULE_AUTHOR("Yong Zhi <[email protected]>"); MODULE_DESCRIPTION("Intel Audio Machine driver for SKL with NAU88L25 and SSM4567 in I2S Mode"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/boards/skl_nau88l25_ssm4567.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2015-18 Intel Corporation. /* * Machine Driver for SKL+ platforms with DSP and iDisp, HDA Codecs */ #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/hdac_hdmi.h" #include "skl_hda_dsp_common.h" static const struct snd_soc_dapm_widget skl_hda_widgets[] = { SND_SOC_DAPM_HP("Analog Out", NULL), SND_SOC_DAPM_MIC("Analog In", NULL), SND_SOC_DAPM_HP("Alt Analog Out", NULL), SND_SOC_DAPM_MIC("Alt Analog In", NULL), SND_SOC_DAPM_SPK("Digital Out", NULL), SND_SOC_DAPM_MIC("Digital In", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), }; static const struct snd_soc_dapm_route skl_hda_map[] = { { "hifi3", NULL, "iDisp3 Tx"}, { "iDisp3 Tx", NULL, "iDisp3_out"}, { "hifi2", NULL, "iDisp2 Tx"}, { "iDisp2 Tx", NULL, "iDisp2_out"}, { "hifi1", NULL, "iDisp1 Tx"}, { "iDisp1 Tx", NULL, "iDisp1_out"}, { "Analog Out", NULL, "Codec Output Pin1" }, { "Digital Out", NULL, "Codec Output Pin2" }, { "Alt Analog Out", NULL, "Codec Output Pin3" }, { "Codec Input Pin1", NULL, "Analog In" }, { "Codec Input Pin2", NULL, "Digital In" }, { "Codec Input Pin3", NULL, "Alt Analog In" }, /* digital mics */ {"DMic", NULL, "SoC DMIC"}, /* CODEC BE connections */ { "Analog Codec Playback", NULL, "Analog CPU Playback" }, { "Analog CPU Playback", NULL, "codec0_out" }, { "Digital Codec Playback", NULL, "Digital CPU Playback" }, { "Digital CPU Playback", NULL, "codec1_out" }, { "Alt Analog Codec Playback", NULL, "Alt Analog CPU Playback" }, { "Alt Analog CPU Playback", NULL, "codec2_out" }, { "codec0_in", NULL, "Analog CPU Capture" }, { "Analog CPU Capture", NULL, "Analog Codec Capture" }, { "codec1_in", NULL, "Digital CPU Capture" }, { "Digital CPU Capture", NULL, "Digital Codec Capture" }, { "codec2_in", NULL, "Alt Analog CPU Capture" }, { "Alt Analog CPU Capture", NULL, "Alt Analog Codec Capture" }, }; static int skl_hda_card_late_probe(struct snd_soc_card *card) { return skl_hda_hdmi_jack_init(card); } static int skl_hda_add_dai_link(struct snd_soc_card *card, struct snd_soc_dai_link *link) { struct skl_hda_private *ctx = snd_soc_card_get_drvdata(card); int ret = 0; dev_dbg(card->dev, "dai link name - %s\n", link->name); link->platforms->name = ctx->platform_name; link->nonatomic = 1; if (!ctx->idisp_codec) return 0; if (strstr(link->name, "HDMI")) { ret = skl_hda_hdmi_add_pcm(card, ctx->pcm_count); if (ret < 0) return ret; ctx->dai_index++; } ctx->pcm_count++; return ret; } static struct snd_soc_card hda_soc_card = { .name = "hda-dsp", .owner = THIS_MODULE, .dai_link = skl_hda_be_dai_links, .dapm_widgets = skl_hda_widgets, .dapm_routes = skl_hda_map, .add_dai_link = skl_hda_add_dai_link, .fully_routed = true, .late_probe = skl_hda_card_late_probe, }; static char hda_soc_components[30]; #define IDISP_DAI_COUNT 3 #define HDAC_DAI_COUNT 2 #define DMIC_DAI_COUNT 2 /* there are two routes per iDisp output */ #define IDISP_ROUTE_COUNT (IDISP_DAI_COUNT * 2) #define IDISP_CODEC_MASK 0x4 #define HDA_CODEC_AUTOSUSPEND_DELAY_MS 1000 static int skl_hda_fill_card_info(struct snd_soc_acpi_mach_params *mach_params) { struct snd_soc_card *card = &hda_soc_card; struct skl_hda_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_dai_link *dai_link; u32 codec_count, codec_mask; int i, num_links, num_route; codec_mask = mach_params->codec_mask; codec_count = hweight_long(codec_mask); ctx->idisp_codec = !!(codec_mask & IDISP_CODEC_MASK); if (!codec_count || codec_count > 2 || (codec_count == 2 && !ctx->idisp_codec)) return -EINVAL; if (codec_mask == IDISP_CODEC_MASK) { /* topology with iDisp as the only HDA codec */ num_links = IDISP_DAI_COUNT + DMIC_DAI_COUNT; num_route = IDISP_ROUTE_COUNT; /* * rearrange the dai link array and make the * dmic dai links follow idsp dai links for only * num_links of dai links need to be registered * to ASoC. */ for (i = 0; i < DMIC_DAI_COUNT; i++) { skl_hda_be_dai_links[IDISP_DAI_COUNT + i] = skl_hda_be_dai_links[IDISP_DAI_COUNT + HDAC_DAI_COUNT + i]; } } else { /* topology with external and iDisp HDA codecs */ num_links = ARRAY_SIZE(skl_hda_be_dai_links); num_route = ARRAY_SIZE(skl_hda_map); card->dapm_widgets = skl_hda_widgets; card->num_dapm_widgets = ARRAY_SIZE(skl_hda_widgets); if (!ctx->idisp_codec) { for (i = 0; i < IDISP_DAI_COUNT; i++) { skl_hda_be_dai_links[i].codecs = &asoc_dummy_dlc; skl_hda_be_dai_links[i].num_codecs = 1; } } } card->num_links = num_links; card->num_dapm_routes = num_route; for_each_card_prelinks(card, i, dai_link) dai_link->platforms->name = mach_params->platform; return 0; } static void skl_set_hda_codec_autosuspend_delay(struct snd_soc_card *card) { struct snd_soc_pcm_runtime *rtd; struct hdac_hda_priv *hda_pvt; struct snd_soc_dai *dai; for_each_card_rtds(card, rtd) { if (!strstr(rtd->dai_link->codecs->name, "ehdaudio0D0")) continue; dai = asoc_rtd_to_codec(rtd, 0); hda_pvt = snd_soc_component_get_drvdata(dai->component); if (hda_pvt) { /* * all codecs are on the same bus, so it's sufficient * to look up only the first one */ snd_hda_set_power_save(hda_pvt->codec->bus, HDA_CODEC_AUTOSUSPEND_DELAY_MS); break; } } } static int skl_hda_audio_probe(struct platform_device *pdev) { struct snd_soc_acpi_mach *mach; struct skl_hda_private *ctx; int ret; dev_dbg(&pdev->dev, "entry\n"); ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); mach = pdev->dev.platform_data; if (!mach) return -EINVAL; snd_soc_card_set_drvdata(&hda_soc_card, ctx); ret = skl_hda_fill_card_info(&mach->mach_params); if (ret < 0) { dev_err(&pdev->dev, "Unsupported HDAudio/iDisp configuration found\n"); return ret; } ctx->pcm_count = hda_soc_card.num_links; ctx->dai_index = 1; /* hdmi codec dai name starts from index 1 */ ctx->platform_name = mach->mach_params.platform; ctx->common_hdmi_codec_drv = mach->mach_params.common_hdmi_codec_drv; hda_soc_card.dev = &pdev->dev; if (mach->mach_params.dmic_num > 0) { snprintf(hda_soc_components, sizeof(hda_soc_components), "cfg-dmics:%d", mach->mach_params.dmic_num); hda_soc_card.components = hda_soc_components; } ret = devm_snd_soc_register_card(&pdev->dev, &hda_soc_card); if (!ret) skl_set_hda_codec_autosuspend_delay(&hda_soc_card); return ret; } static struct platform_driver skl_hda_audio = { .probe = skl_hda_audio_probe, .driver = { .name = "skl_hda_dsp_generic", .pm = &snd_soc_pm_ops, }, }; module_platform_driver(skl_hda_audio) /* Module information */ MODULE_DESCRIPTION("SKL/KBL/BXT/APL HDA Generic Machine driver"); MODULE_AUTHOR("Rakesh Ughreja <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:skl_hda_dsp_generic"); MODULE_IMPORT_NS(SND_SOC_INTEL_HDA_DSP_COMMON);
linux-master
sound/soc/intel/boards/skl_hda_dsp_generic.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2020 Intel Corporation /* * sof_sdw_rt5682 - Helpers to handle RT5682 from generic machine driver */ #include <linux/device.h> #include <linux/errno.h> #include <linux/input.h> #include <linux/soundwire/sdw.h> #include <linux/soundwire/sdw_type.h> #include <sound/control.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include <sound/soc-dapm.h> #include <sound/jack.h> #include "sof_sdw_common.h" static const struct snd_soc_dapm_widget rt5682_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), }; static const struct snd_soc_dapm_route rt5682_map[] = { /*Headphones*/ { "Headphone", NULL, "rt5682 HPOL" }, { "Headphone", NULL, "rt5682 HPOR" }, { "rt5682 IN1P", NULL, "Headset Mic" }, }; static const struct snd_kcontrol_new rt5682_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), }; static struct snd_soc_jack_pin rt5682_jack_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, }; static int rt5682_rtd_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_card *card = rtd->card; struct mc_private *ctx = snd_soc_card_get_drvdata(card); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_component *component = codec_dai->component; struct snd_soc_jack *jack; int ret; card->components = devm_kasprintf(card->dev, GFP_KERNEL, "%s hs:rt5682", card->components); if (!card->components) return -ENOMEM; ret = snd_soc_add_card_controls(card, rt5682_controls, ARRAY_SIZE(rt5682_controls)); if (ret) { dev_err(card->dev, "rt5682 control addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_new_controls(&card->dapm, rt5682_widgets, ARRAY_SIZE(rt5682_widgets)); if (ret) { dev_err(card->dev, "rt5682 widgets addition failed: %d\n", ret); return ret; } ret = snd_soc_dapm_add_routes(&card->dapm, rt5682_map, ARRAY_SIZE(rt5682_map)); if (ret) { dev_err(card->dev, "rt5682 map addition failed: %d\n", ret); return ret; } ret = snd_soc_card_jack_new_pins(rtd->card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3, &ctx->sdw_headset, rt5682_jack_pins, ARRAY_SIZE(rt5682_jack_pins)); if (ret) { dev_err(rtd->card->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->sdw_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOICECOMMAND); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOLUMEDOWN); ret = snd_soc_component_set_jack(component, jack, NULL); if (ret) dev_err(rtd->card->dev, "Headset Jack call-back failed: %d\n", ret); return ret; } int sof_sdw_rt5682_init(struct snd_soc_card *card, const struct snd_soc_acpi_link_adr *link, struct snd_soc_dai_link *dai_links, struct sof_sdw_codec_info *info, bool playback) { /* * headset should be initialized once. * Do it with dai link for playback. */ if (!playback) return 0; dai_links->init = rt5682_rtd_init; return 0; }
linux-master
sound/soc/intel/boards/sof_sdw_rt5682.c
// SPDX-License-Identifier: GPL-2.0-only // Copyright(c) 2017-18 Intel Corporation. /* * Intel Kabylake I2S Machine Driver with MAX98357A & DA7219 Codecs * * Modified from: * Intel Kabylake I2S Machine driver supporting MAXIM98927 and * RT5663 codecs */ #include <linux/input.h> #include <linux/module.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include "../../codecs/da7219.h" #include "../../codecs/hdac_hdmi.h" #define KBL_DIALOG_CODEC_DAI "da7219-hifi" #define KBL_MAXIM_CODEC_DAI "HiFi" #define MAXIM_DEV0_NAME "MX98357A:00" #define DUAL_CHANNEL 2 #define QUAD_CHANNEL 4 static struct snd_soc_card *kabylake_audio_card; static struct snd_soc_jack skylake_hdmi[3]; struct kbl_hdmi_pcm { struct list_head head; struct snd_soc_dai *codec_dai; int device; }; struct kbl_codec_private { struct snd_soc_jack kabylake_headset; struct list_head hdmi_pcm_list; }; enum { KBL_DPCM_AUDIO_PB = 0, KBL_DPCM_AUDIO_CP, KBL_DPCM_AUDIO_REF_CP, KBL_DPCM_AUDIO_DMIC_CP, KBL_DPCM_AUDIO_HDMI1_PB, KBL_DPCM_AUDIO_HDMI2_PB, KBL_DPCM_AUDIO_HDMI3_PB, }; static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; int ret = 0; codec_dai = snd_soc_card_get_codec_dai(card, KBL_DIALOG_CODEC_DAI); if (!codec_dai) { dev_err(card->dev, "Codec dai not found; Unable to set/unset codec pll\n"); return -EIO; } if (SND_SOC_DAPM_EVENT_OFF(event)) { ret = snd_soc_dai_set_pll(codec_dai, 0, DA7219_SYSCLK_MCLK, 0, 0); if (ret) dev_err(card->dev, "failed to stop PLL: %d\n", ret); } else if (SND_SOC_DAPM_EVENT_ON(event)) { ret = snd_soc_dai_set_pll(codec_dai, 0, DA7219_SYSCLK_PLL_SRM, 0, DA7219_PLL_FREQ_OUT_98304); if (ret) dev_err(card->dev, "failed to start PLL: %d\n", ret); } return ret; } static const struct snd_kcontrol_new kabylake_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone Jack"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Spk"), SOC_DAPM_PIN_SWITCH("Line Out"), }; static const struct snd_soc_dapm_widget kabylake_widgets[] = { SND_SOC_DAPM_HP("Headphone Jack", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_SPK("Spk", NULL), SND_SOC_DAPM_LINE("Line Out", NULL), SND_SOC_DAPM_MIC("SoC DMIC", NULL), SND_SOC_DAPM_SPK("HDMI1", NULL), SND_SOC_DAPM_SPK("HDMI2", NULL), SND_SOC_DAPM_SPK("HDMI3", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), }; static struct snd_soc_jack_pin jack_pins[] = { { .pin = "Headphone Jack", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, { .pin = "Line Out", .mask = SND_JACK_LINEOUT, }, }; static const struct snd_soc_dapm_route kabylake_map[] = { { "Headphone Jack", NULL, "HPL" }, { "Headphone Jack", NULL, "HPR" }, /* speaker */ { "Spk", NULL, "Speaker" }, /* other jacks */ { "MIC", NULL, "Headset Mic" }, { "DMic", NULL, "SoC DMIC" }, {"HDMI1", NULL, "hif5-0 Output"}, {"HDMI2", NULL, "hif6-0 Output"}, {"HDMI3", NULL, "hif7-0 Output"}, /* CODEC BE connections */ { "HiFi Playback", NULL, "ssp0 Tx" }, { "ssp0 Tx", NULL, "codec0_out" }, { "Playback", NULL, "ssp1 Tx" }, { "ssp1 Tx", NULL, "codec1_out" }, { "codec0_in", NULL, "ssp1 Rx" }, { "ssp1 Rx", NULL, "Capture" }, /* DMIC */ { "dmic01_hifi", NULL, "DMIC01 Rx" }, { "DMIC01 Rx", NULL, "DMIC AIF" }, { "hifi1", NULL, "iDisp1 Tx" }, { "iDisp1 Tx", NULL, "iDisp1_out" }, { "hifi2", NULL, "iDisp2 Tx" }, { "iDisp2 Tx", NULL, "iDisp2_out" }, { "hifi3", NULL, "iDisp3 Tx"}, { "iDisp3 Tx", NULL, "iDisp3_out"}, { "Headphone Jack", NULL, "Platform Clock" }, { "Headset Mic", NULL, "Platform Clock" }, { "Line Out", NULL, "Platform Clock" }, }; static int kabylake_ssp_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); /* The ADSP will convert the FE rate to 48k, stereo */ rate->min = rate->max = 48000; chan->min = chan->max = DUAL_CHANNEL; /* set SSP to 24 bit */ snd_mask_none(fmt); snd_mask_set_format(fmt, SNDRV_PCM_FORMAT_S24_LE); return 0; } static int kabylake_da7219_codec_init(struct snd_soc_pcm_runtime *rtd) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_component *component = asoc_rtd_to_codec(rtd, 0)->component; struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_jack *jack; int ret; /* Configure sysclk for codec */ ret = snd_soc_dai_set_sysclk(codec_dai, DA7219_CLKSRC_MCLK, 24576000, SND_SOC_CLOCK_IN); if (ret) { dev_err(rtd->dev, "can't set codec sysclk configuration\n"); return ret; } /* * Headset buttons map to the google Reference headset. * These can be configured by userspace. */ ret = snd_soc_card_jack_new_pins(kabylake_audio_card, "Headset Jack", SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3 | SND_JACK_LINEOUT, &ctx->kabylake_headset, jack_pins, ARRAY_SIZE(jack_pins)); if (ret) { dev_err(rtd->dev, "Headset Jack creation failed: %d\n", ret); return ret; } jack = &ctx->kabylake_headset; snd_jack_set_key(jack->jack, SND_JACK_BTN_0, KEY_PLAYPAUSE); snd_jack_set_key(jack->jack, SND_JACK_BTN_1, KEY_VOLUMEUP); snd_jack_set_key(jack->jack, SND_JACK_BTN_2, KEY_VOLUMEDOWN); snd_jack_set_key(jack->jack, SND_JACK_BTN_3, KEY_VOICECOMMAND); snd_soc_component_set_jack(component, &ctx->kabylake_headset, NULL); ret = snd_soc_dapm_ignore_suspend(&rtd->card->dapm, "SoC DMIC"); if (ret) dev_err(rtd->dev, "SoC DMIC - Ignore suspend failed %d\n", ret); return ret; } static int kabylake_hdmi_init(struct snd_soc_pcm_runtime *rtd, int device) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(rtd->card); struct snd_soc_dai *dai = asoc_rtd_to_codec(rtd, 0); struct kbl_hdmi_pcm *pcm; pcm = devm_kzalloc(rtd->card->dev, sizeof(*pcm), GFP_KERNEL); if (!pcm) return -ENOMEM; pcm->device = device; pcm->codec_dai = dai; list_add_tail(&pcm->head, &ctx->hdmi_pcm_list); return 0; } static int kabylake_hdmi1_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI1_PB); } static int kabylake_hdmi2_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI2_PB); } static int kabylake_hdmi3_init(struct snd_soc_pcm_runtime *rtd) { return kabylake_hdmi_init(rtd, KBL_DPCM_AUDIO_HDMI3_PB); } static int kabylake_da7219_fe_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dapm_context *dapm; struct snd_soc_component *component = asoc_rtd_to_cpu(rtd, 0)->component; dapm = snd_soc_component_get_dapm(component); snd_soc_dapm_ignore_suspend(dapm, "Reference Capture"); return 0; } static const unsigned int rates[] = { 48000, }; static const struct snd_pcm_hw_constraint_list constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static const unsigned int channels[] = { DUAL_CHANNEL, }; static const struct snd_pcm_hw_constraint_list constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; static unsigned int channels_quad[] = { QUAD_CHANNEL, }; static struct snd_pcm_hw_constraint_list constraints_channels_quad = { .count = ARRAY_SIZE(channels_quad), .list = channels_quad, .mask = 0, }; static int kbl_fe_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; /* * On this platform for PCM device we support, * 48Khz * stereo * 16 bit audio */ runtime->hw.channels_max = DUAL_CHANNEL; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels); runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 16, 16); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); return 0; } static const struct snd_soc_ops kabylake_da7219_fe_ops = { .startup = kbl_fe_startup, }; static int kabylake_dmic_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *chan = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); /* * set BE channel constraint as user FE channels */ if (params_channels(params) == 2) chan->min = chan->max = 2; else chan->min = chan->max = 4; return 0; } static int kabylake_dmic_startup(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_min = runtime->hw.channels_max = QUAD_CHANNEL; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_channels_quad); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_rates); } static struct snd_soc_ops kabylake_dmic_ops = { .startup = kabylake_dmic_startup, }; static unsigned int rates_16000[] = { 16000, }; static const struct snd_pcm_hw_constraint_list constraints_16000 = { .count = ARRAY_SIZE(rates_16000), .list = rates_16000, }; static const unsigned int ch_mono[] = { 1, }; static const struct snd_pcm_hw_constraint_list constraints_refcap = { .count = ARRAY_SIZE(ch_mono), .list = ch_mono, }; static int kabylake_refcap_startup(struct snd_pcm_substream *substream) { substream->runtime->hw.channels_max = 1; snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &constraints_refcap); return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_16000); } static struct snd_soc_ops skylake_refcap_ops = { .startup = kabylake_refcap_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(system, DAILINK_COMP_ARRAY(COMP_CPU("System Pin"))); SND_SOC_DAILINK_DEF(reference, DAILINK_COMP_ARRAY(COMP_CPU("Reference Pin"))); SND_SOC_DAILINK_DEF(dmic, DAILINK_COMP_ARRAY(COMP_CPU("DMIC Pin"))); SND_SOC_DAILINK_DEF(hdmi1, DAILINK_COMP_ARRAY(COMP_CPU("HDMI1 Pin"))); SND_SOC_DAILINK_DEF(hdmi2, DAILINK_COMP_ARRAY(COMP_CPU("HDMI2 Pin"))); SND_SOC_DAILINK_DEF(hdmi3, DAILINK_COMP_ARRAY(COMP_CPU("HDMI3 Pin"))); SND_SOC_DAILINK_DEF(ssp0_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP0 Pin"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY(COMP_CODEC(MAXIM_DEV0_NAME, KBL_MAXIM_CODEC_DAI))); SND_SOC_DAILINK_DEF(ssp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("SSP1 Pin"))); SND_SOC_DAILINK_DEF(ssp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("i2c-DLGS7219:00", KBL_DIALOG_CODEC_DAI))); SND_SOC_DAILINK_DEF(dmic_pin, DAILINK_COMP_ARRAY(COMP_CPU("DMIC01 Pin"))); SND_SOC_DAILINK_DEF(dmic_codec, DAILINK_COMP_ARRAY(COMP_CODEC("dmic-codec", "dmic-hifi"))); SND_SOC_DAILINK_DEF(idisp1_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp1 Pin"))); SND_SOC_DAILINK_DEF(idisp1_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi1"))); SND_SOC_DAILINK_DEF(idisp2_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp2 Pin"))); SND_SOC_DAILINK_DEF(idisp2_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi2"))); SND_SOC_DAILINK_DEF(idisp3_pin, DAILINK_COMP_ARRAY(COMP_CPU("iDisp3 Pin"))); SND_SOC_DAILINK_DEF(idisp3_codec, DAILINK_COMP_ARRAY(COMP_CODEC("ehdaudio0D2", "intel-hdmi-hifi3"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("0000:00:1f.3"))); /* kabylake digital audio interface glue - connects codec <--> CPU */ static struct snd_soc_dai_link kabylake_dais[] = { /* Front End DAI links */ [KBL_DPCM_AUDIO_PB] = { .name = "Kbl Audio Port", .stream_name = "Audio", .dynamic = 1, .nonatomic = 1, .init = kabylake_da7219_fe_init, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .ops = &kabylake_da7219_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_CP] = { .name = "Kbl Audio Capture Port", .stream_name = "Audio Record", .dynamic = 1, .nonatomic = 1, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_capture = 1, .ops = &kabylake_da7219_fe_ops, SND_SOC_DAILINK_REG(system, dummy, platform), }, [KBL_DPCM_AUDIO_REF_CP] = { .name = "Kbl Audio Reference cap", .stream_name = "Wake on Voice", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &skylake_refcap_ops, SND_SOC_DAILINK_REG(reference, dummy, platform), }, [KBL_DPCM_AUDIO_DMIC_CP] = { .name = "Kbl Audio DMIC cap", .stream_name = "dmiccap", .init = NULL, .dpcm_capture = 1, .nonatomic = 1, .dynamic = 1, .ops = &kabylake_dmic_ops, SND_SOC_DAILINK_REG(dmic, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI1_PB] = { .name = "Kbl HDMI Port1", .stream_name = "Hdmi1", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi1, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI2_PB] = { .name = "Kbl HDMI Port2", .stream_name = "Hdmi2", .dpcm_playback = 1, .init = NULL, .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi2, dummy, platform), }, [KBL_DPCM_AUDIO_HDMI3_PB] = { .name = "Kbl HDMI Port3", .stream_name = "Hdmi3", .trigger = { SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST}, .dpcm_playback = 1, .init = NULL, .nonatomic = 1, .dynamic = 1, SND_SOC_DAILINK_REG(hdmi3, dummy, platform), }, /* Back End DAI links */ { /* SSP0 - Codec */ .name = "SSP0-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp_fixup, .dpcm_playback = 1, SND_SOC_DAILINK_REG(ssp0_pin, ssp0_codec, platform), }, { /* SSP1 - Codec */ .name = "SSP1-Codec", .id = 1, .no_pcm = 1, .init = kabylake_da7219_codec_init, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .ignore_pmdown_time = 1, .be_hw_params_fixup = kabylake_ssp_fixup, .dpcm_playback = 1, .dpcm_capture = 1, SND_SOC_DAILINK_REG(ssp1_pin, ssp1_codec, platform), }, { .name = "dmic01", .id = 2, .be_hw_params_fixup = kabylake_dmic_fixup, .ignore_suspend = 1, .dpcm_capture = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(dmic_pin, dmic_codec, platform), }, { .name = "iDisp1", .id = 3, .dpcm_playback = 1, .init = kabylake_hdmi1_init, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp1_pin, idisp1_codec, platform), }, { .name = "iDisp2", .id = 4, .init = kabylake_hdmi2_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp2_pin, idisp2_codec, platform), }, { .name = "iDisp3", .id = 5, .init = kabylake_hdmi3_init, .dpcm_playback = 1, .no_pcm = 1, SND_SOC_DAILINK_REG(idisp3_pin, idisp3_codec, platform), }, }; #define NAME_SIZE 32 static int kabylake_card_late_probe(struct snd_soc_card *card) { struct kbl_codec_private *ctx = snd_soc_card_get_drvdata(card); struct kbl_hdmi_pcm *pcm; struct snd_soc_component *component = NULL; int err, i = 0; char jack_name[NAME_SIZE]; list_for_each_entry(pcm, &ctx->hdmi_pcm_list, head) { component = pcm->codec_dai->component; snprintf(jack_name, sizeof(jack_name), "HDMI/DP, pcm=%d Jack", pcm->device); err = snd_soc_card_jack_new(card, jack_name, SND_JACK_AVOUT, &skylake_hdmi[i]); if (err) return err; err = hdac_hdmi_jack_init(pcm->codec_dai, pcm->device, &skylake_hdmi[i]); if (err < 0) return err; i++; } if (!component) return -EINVAL; return hdac_hdmi_jack_port_init(component, &card->dapm); } /* kabylake audio machine driver for SPT + DA7219 */ static struct snd_soc_card kabylake_audio_card_da7219_m98357a = { .name = "kblda7219max", .owner = THIS_MODULE, .dai_link = kabylake_dais, .num_links = ARRAY_SIZE(kabylake_dais), .controls = kabylake_controls, .num_controls = ARRAY_SIZE(kabylake_controls), .dapm_widgets = kabylake_widgets, .num_dapm_widgets = ARRAY_SIZE(kabylake_widgets), .dapm_routes = kabylake_map, .num_dapm_routes = ARRAY_SIZE(kabylake_map), .fully_routed = true, .late_probe = kabylake_card_late_probe, }; static int kabylake_audio_probe(struct platform_device *pdev) { struct kbl_codec_private *ctx; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; INIT_LIST_HEAD(&ctx->hdmi_pcm_list); kabylake_audio_card = (struct snd_soc_card *)pdev->id_entry->driver_data; kabylake_audio_card->dev = &pdev->dev; snd_soc_card_set_drvdata(kabylake_audio_card, ctx); return devm_snd_soc_register_card(&pdev->dev, kabylake_audio_card); } static const struct platform_device_id kbl_board_ids[] = { { .name = "kbl_da7219_mx98357a", .driver_data = (kernel_ulong_t)&kabylake_audio_card_da7219_m98357a, }, { } }; MODULE_DEVICE_TABLE(platform, kbl_board_ids); static struct platform_driver kabylake_audio = { .probe = kabylake_audio_probe, .driver = { .name = "kbl_da7219_max98357a", .pm = &snd_soc_pm_ops, }, .id_table = kbl_board_ids, }; module_platform_driver(kabylake_audio) /* Module information */ MODULE_DESCRIPTION("Audio Machine driver-DA7219 & MAX98357A in I2S mode"); MODULE_AUTHOR("Naveen Manohar <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/intel/boards/kbl_da7219_max98357a.c
// SPDX-License-Identifier: GPL-2.0-only /* * bytcr_wm5102.c - ASoc Machine driver for Intel Baytrail platforms with a * Wolfson Microelectronics WM5102 codec * * Copyright (C) 2020 Hans de Goede <[email protected]> * Loosely based on bytcr_rt5640.c which is: * Copyright (C) 2014-2020 Intel Corp * Author: Subhransu S. Prusty <[email protected]> */ #include <linux/acpi.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-acpi.h> #include "../../codecs/wm5102.h" #include "../atom/sst-atom-controls.h" #define MCLK_FREQ 25000000 #define WM5102_MAX_SYSCLK_4K 49152000 /* max sysclk for 4K family */ #define WM5102_MAX_SYSCLK_11025 45158400 /* max sysclk for 11.025K family */ struct byt_wm5102_private { struct snd_soc_jack jack; struct clk *mclk; struct gpio_desc *spkvdd_en_gpio; }; static int byt_wm5102_spkvdd_power_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_card *card = w->dapm->card; struct byt_wm5102_private *priv = snd_soc_card_get_drvdata(card); gpiod_set_value_cansleep(priv->spkvdd_en_gpio, !!SND_SOC_DAPM_EVENT_ON(event)); return 0; } static int byt_wm5102_prepare_and_enable_pll1(struct snd_soc_dai *codec_dai, int rate) { struct snd_soc_component *codec_component = codec_dai->component; int sr_mult = ((rate % 4000) == 0) ? (WM5102_MAX_SYSCLK_4K / rate) : (WM5102_MAX_SYSCLK_11025 / rate); int ret; /* Reset FLL1 */ snd_soc_dai_set_pll(codec_dai, WM5102_FLL1_REFCLK, ARIZONA_FLL_SRC_NONE, 0, 0); snd_soc_dai_set_pll(codec_dai, WM5102_FLL1, ARIZONA_FLL_SRC_NONE, 0, 0); /* Configure the FLL1 PLL before selecting it */ ret = snd_soc_dai_set_pll(codec_dai, WM5102_FLL1, ARIZONA_CLK_SRC_MCLK1, MCLK_FREQ, rate * sr_mult); if (ret) { dev_err(codec_component->dev, "Error setting PLL: %d\n", ret); return ret; } ret = snd_soc_component_set_sysclk(codec_component, ARIZONA_CLK_SYSCLK, ARIZONA_CLK_SRC_FLL1, rate * sr_mult, SND_SOC_CLOCK_IN); if (ret) { dev_err(codec_component->dev, "Error setting SYSCLK: %d\n", ret); return ret; } ret = snd_soc_dai_set_sysclk(codec_dai, ARIZONA_CLK_SYSCLK, rate * 512, SND_SOC_CLOCK_IN); if (ret) { dev_err(codec_component->dev, "Error setting clock: %d\n", ret); return ret; } return 0; } static int platform_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct snd_soc_card *card = dapm->card; struct snd_soc_dai *codec_dai; struct byt_wm5102_private *priv = snd_soc_card_get_drvdata(card); int ret; codec_dai = snd_soc_card_get_codec_dai(card, "wm5102-aif1"); if (!codec_dai) { dev_err(card->dev, "Error codec DAI not found\n"); return -EIO; } if (SND_SOC_DAPM_EVENT_ON(event)) { ret = clk_prepare_enable(priv->mclk); if (ret) { dev_err(card->dev, "Error enabling MCLK: %d\n", ret); return ret; } ret = byt_wm5102_prepare_and_enable_pll1(codec_dai, 48000); if (ret) { dev_err(card->dev, "Error setting codec sysclk: %d\n", ret); return ret; } } else { /* * The WM5102 has a separate 32KHz clock for jack-detect * so we can disable the PLL, followed by disabling the * platform clock which is the source-clock for the PLL. */ snd_soc_dai_set_pll(codec_dai, WM5102_FLL1, ARIZONA_FLL_SRC_NONE, 0, 0); clk_disable_unprepare(priv->mclk); } return 0; } static const struct snd_soc_dapm_widget byt_wm5102_widgets[] = { SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_MIC("Headset Mic", NULL), SND_SOC_DAPM_MIC("Internal Mic", NULL), SND_SOC_DAPM_SPK("Speaker", NULL), SND_SOC_DAPM_LINE("Line Out", NULL), SND_SOC_DAPM_SUPPLY("Platform Clock", SND_SOC_NOPM, 0, 0, platform_clock_control, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("Speaker VDD", SND_SOC_NOPM, 0, 0, byt_wm5102_spkvdd_power_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), }; static const struct snd_soc_dapm_route byt_wm5102_audio_map[] = { {"Headphone", NULL, "Platform Clock"}, {"Headset Mic", NULL, "Platform Clock"}, {"Internal Mic", NULL, "Platform Clock"}, {"Speaker", NULL, "Platform Clock"}, {"Line Out", NULL, "Platform Clock"}, {"Speaker", NULL, "SPKOUTLP"}, {"Speaker", NULL, "SPKOUTLN"}, {"Speaker", NULL, "SPKOUTRP"}, {"Speaker", NULL, "SPKOUTRN"}, {"Speaker", NULL, "Speaker VDD"}, {"Headphone", NULL, "HPOUT1L"}, {"Headphone", NULL, "HPOUT1R"}, {"Internal Mic", NULL, "MICBIAS3"}, {"IN3L", NULL, "Internal Mic"}, /* * The Headset Mix uses MICBIAS1 or 2 depending on if a CTIA/OMTP Headset * is connected, as the MICBIAS is applied after the CTIA/OMTP cross-switch. */ {"Headset Mic", NULL, "MICBIAS1"}, {"Headset Mic", NULL, "MICBIAS2"}, {"IN1L", NULL, "Headset Mic"}, {"AIF1 Playback", NULL, "ssp0 Tx"}, {"ssp0 Tx", NULL, "modem_out"}, {"modem_in", NULL, "ssp0 Rx"}, {"ssp0 Rx", NULL, "AIF1 Capture"}, }; static const struct snd_kcontrol_new byt_wm5102_controls[] = { SOC_DAPM_PIN_SWITCH("Headphone"), SOC_DAPM_PIN_SWITCH("Headset Mic"), SOC_DAPM_PIN_SWITCH("Internal Mic"), SOC_DAPM_PIN_SWITCH("Speaker"), SOC_DAPM_PIN_SWITCH("Line Out"), }; static struct snd_soc_jack_pin byt_wm5102_pins[] = { { .pin = "Headphone", .mask = SND_JACK_HEADPHONE, }, { .pin = "Headset Mic", .mask = SND_JACK_MICROPHONE, }, { .pin = "Line Out", .mask = SND_JACK_LINEOUT, }, }; static int byt_wm5102_init(struct snd_soc_pcm_runtime *runtime) { struct snd_soc_card *card = runtime->card; struct byt_wm5102_private *priv = snd_soc_card_get_drvdata(card); struct snd_soc_component *component = asoc_rtd_to_codec(runtime, 0)->component; int ret, jack_type; card->dapm.idle_bias_off = true; ret = snd_soc_add_card_controls(card, byt_wm5102_controls, ARRAY_SIZE(byt_wm5102_controls)); if (ret) { dev_err(card->dev, "Error adding card controls: %d\n", ret); return ret; } /* * The firmware might enable the clock at boot (this information * may or may not be reflected in the enable clock register). * To change the rate we must disable the clock first to cover these * cases. Due to common clock framework restrictions that do not allow * to disable a clock that has not been enabled, we need to enable * the clock first. */ ret = clk_prepare_enable(priv->mclk); if (!ret) clk_disable_unprepare(priv->mclk); ret = clk_set_rate(priv->mclk, MCLK_FREQ); if (ret) { dev_err(card->dev, "Error setting MCLK rate: %d\n", ret); return ret; } jack_type = ARIZONA_JACK_MASK | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3; ret = snd_soc_card_jack_new_pins(card, "Headset", jack_type, &priv->jack, byt_wm5102_pins, ARRAY_SIZE(byt_wm5102_pins)); if (ret) { dev_err(card->dev, "Error creating jack: %d\n", ret); return ret; } snd_soc_component_set_jack(component, &priv->jack, NULL); return 0; } static int byt_wm5102_codec_fixup(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params) { struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); int ret; /* The DSP will convert the FE rate to 48k, stereo */ rate->min = 48000; rate->max = 48000; channels->min = 2; channels->max = 2; /* set SSP0 to 16-bit */ params_set_format(params, SNDRV_PCM_FORMAT_S16_LE); /* * Default mode for SSP configuration is TDM 4 slot, override config * with explicit setting to I2S 2ch 16-bit. The word length is set with * dai_set_tdm_slot() since there is no other API exposed */ ret = snd_soc_dai_set_fmt(asoc_rtd_to_cpu(rtd, 0), SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_BP_FP); if (ret) { dev_err(rtd->dev, "Error setting format to I2S: %d\n", ret); return ret; } ret = snd_soc_dai_set_tdm_slot(asoc_rtd_to_cpu(rtd, 0), 0x3, 0x3, 2, 16); if (ret) { dev_err(rtd->dev, "Error setting I2S config: %d\n", ret); return ret; } return 0; } static int byt_wm5102_aif1_startup(struct snd_pcm_substream *substream) { return snd_pcm_hw_constraint_single(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 48000); } static const struct snd_soc_ops byt_wm5102_aif1_ops = { .startup = byt_wm5102_aif1_startup, }; SND_SOC_DAILINK_DEF(dummy, DAILINK_COMP_ARRAY(COMP_DUMMY())); SND_SOC_DAILINK_DEF(media, DAILINK_COMP_ARRAY(COMP_CPU("media-cpu-dai"))); SND_SOC_DAILINK_DEF(deepbuffer, DAILINK_COMP_ARRAY(COMP_CPU("deepbuffer-cpu-dai"))); SND_SOC_DAILINK_DEF(ssp0_port, DAILINK_COMP_ARRAY(COMP_CPU("ssp0-port"))); SND_SOC_DAILINK_DEF(ssp0_codec, DAILINK_COMP_ARRAY(COMP_CODEC( /* * Note there is no need to overwrite the codec-name as is done in * other bytcr machine drivers, because the codec is a MFD child-dev. */ "wm5102-codec", "wm5102-aif1"))); SND_SOC_DAILINK_DEF(platform, DAILINK_COMP_ARRAY(COMP_PLATFORM("sst-mfld-platform"))); static struct snd_soc_dai_link byt_wm5102_dais[] = { [MERR_DPCM_AUDIO] = { .name = "Baytrail Audio Port", .stream_name = "Baytrail Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .dpcm_capture = 1, .ops = &byt_wm5102_aif1_ops, SND_SOC_DAILINK_REG(media, dummy, platform), }, [MERR_DPCM_DEEP_BUFFER] = { .name = "Deep-Buffer Audio Port", .stream_name = "Deep-Buffer Audio", .nonatomic = true, .dynamic = 1, .dpcm_playback = 1, .ops = &byt_wm5102_aif1_ops, SND_SOC_DAILINK_REG(deepbuffer, dummy, platform), }, /* back ends */ { /* * This must be named SSP2-Codec even though this machine driver * always uses SSP0. Most machine drivers support both and dynamically * update the dailink to point to SSP0 or SSP2, while keeping the name * as "SSP2-Codec". The SOF tplg files hardcode the "SSP2-Codec" even * in the byt-foo-ssp0.tplg versions because the other machine-drivers * use "SSP2-Codec" even when SSP0 is used. */ .name = "SSP2-Codec", .id = 0, .no_pcm = 1, .dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBC_CFC, .be_hw_params_fixup = byt_wm5102_codec_fixup, .dpcm_playback = 1, .dpcm_capture = 1, .init = byt_wm5102_init, SND_SOC_DAILINK_REG(ssp0_port, ssp0_codec, platform), }, }; /* use space before codec name to simplify card ID, and simplify driver name */ #define SOF_CARD_NAME "bytcht wm5102" /* card name will be 'sof-bytcht wm5102' */ #define SOF_DRIVER_NAME "SOF" #define CARD_NAME "bytcr-wm5102" #define DRIVER_NAME NULL /* card name will be used for driver name */ /* SoC card */ static struct snd_soc_card byt_wm5102_card = { .owner = THIS_MODULE, .dai_link = byt_wm5102_dais, .num_links = ARRAY_SIZE(byt_wm5102_dais), .dapm_widgets = byt_wm5102_widgets, .num_dapm_widgets = ARRAY_SIZE(byt_wm5102_widgets), .dapm_routes = byt_wm5102_audio_map, .num_dapm_routes = ARRAY_SIZE(byt_wm5102_audio_map), .fully_routed = true, }; static int snd_byt_wm5102_mc_probe(struct platform_device *pdev) { char codec_name[SND_ACPI_I2C_ID_LEN]; struct device *dev = &pdev->dev; struct byt_wm5102_private *priv; struct snd_soc_acpi_mach *mach; const char *platform_name; struct acpi_device *adev; struct device *codec_dev; bool sof_parent; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; /* Get MCLK */ priv->mclk = devm_clk_get(dev, "pmc_plt_clk_3"); if (IS_ERR(priv->mclk)) return dev_err_probe(dev, PTR_ERR(priv->mclk), "getting pmc_plt_clk_3\n"); /* * Get speaker VDD enable GPIO: * 1. Get codec-device-name * 2. Get codec-device * 3. Get GPIO from codec-device */ mach = dev->platform_data; adev = acpi_dev_get_first_match_dev(mach->id, NULL, -1); if (!adev) { dev_err(dev, "Error cannot find acpi-dev for codec\n"); return -ENOENT; } snprintf(codec_name, sizeof(codec_name), "spi-%s", acpi_dev_name(adev)); codec_dev = bus_find_device_by_name(&spi_bus_type, NULL, codec_name); acpi_dev_put(adev); if (!codec_dev) return -EPROBE_DEFER; /* Note no devm_ here since we call gpiod_get on codec_dev rather then dev */ priv->spkvdd_en_gpio = gpiod_get(codec_dev, "wlf,spkvdd-ena", GPIOD_OUT_LOW); put_device(codec_dev); if (IS_ERR(priv->spkvdd_en_gpio)) { ret = PTR_ERR(priv->spkvdd_en_gpio); /* * The spkvdd gpio-lookup is registered by: drivers/mfd/arizona-spi.c, * so -ENOENT means that arizona-spi hasn't probed yet. */ if (ret == -ENOENT) ret = -EPROBE_DEFER; return dev_err_probe(dev, ret, "getting spkvdd-GPIO\n"); } /* override platform name, if required */ byt_wm5102_card.dev = dev; platform_name = mach->mach_params.platform; ret = snd_soc_fixup_dai_links_platform_name(&byt_wm5102_card, platform_name); if (ret) goto out_put_gpio; /* set card and driver name and pm-ops */ sof_parent = snd_soc_acpi_sof_parent(dev); if (sof_parent) { byt_wm5102_card.name = SOF_CARD_NAME; byt_wm5102_card.driver_name = SOF_DRIVER_NAME; dev->driver->pm = &snd_soc_pm_ops; } else { byt_wm5102_card.name = CARD_NAME; byt_wm5102_card.driver_name = DRIVER_NAME; } snd_soc_card_set_drvdata(&byt_wm5102_card, priv); ret = devm_snd_soc_register_card(dev, &byt_wm5102_card); if (ret) { dev_err_probe(dev, ret, "registering card\n"); goto out_put_gpio; } platform_set_drvdata(pdev, &byt_wm5102_card); return 0; out_put_gpio: gpiod_put(priv->spkvdd_en_gpio); return ret; } static void snd_byt_wm5102_mc_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); struct byt_wm5102_private *priv = snd_soc_card_get_drvdata(card); gpiod_put(priv->spkvdd_en_gpio); } static struct platform_driver snd_byt_wm5102_mc_driver = { .driver = { .name = "bytcr_wm5102", }, .probe = snd_byt_wm5102_mc_probe, .remove_new = snd_byt_wm5102_mc_remove, }; module_platform_driver(snd_byt_wm5102_mc_driver); MODULE_DESCRIPTION("ASoC Baytrail with WM5102 codec machine driver"); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:bytcr_wm5102");
linux-master
sound/soc/intel/boards/bytcr_wm5102.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson SA 2012 * * Author: Ola Lilja <[email protected]>, * Roger Nilsson <[email protected]> * for ST-Ericsson. */ #include <linux/module.h> #include <linux/slab.h> #include <linux/bitops.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/regulator/consumer.h> #include <linux/mfd/dbx500-prcmu.h> #include <sound/soc.h> #include <sound/soc-dai.h> #include <sound/dmaengine_pcm.h> #include "ux500_msp_i2s.h" #include "ux500_msp_dai.h" #include "ux500_pcm.h" static int setup_pcm_multichan(struct snd_soc_dai *dai, struct ux500_msp_config *msp_config) { struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); struct msp_multichannel_config *multi = &msp_config->multichannel_config; if (drvdata->slots > 1) { msp_config->multichannel_configured = 1; multi->tx_multichannel_enable = true; multi->rx_multichannel_enable = true; multi->rx_comparison_enable_mode = MSP_COMPARISON_DISABLED; multi->tx_channel_0_enable = drvdata->tx_mask; multi->tx_channel_1_enable = 0; multi->tx_channel_2_enable = 0; multi->tx_channel_3_enable = 0; multi->rx_channel_0_enable = drvdata->rx_mask; multi->rx_channel_1_enable = 0; multi->rx_channel_2_enable = 0; multi->rx_channel_3_enable = 0; dev_dbg(dai->dev, "%s: Multichannel enabled. Slots: %d, TX: %u, RX: %u\n", __func__, drvdata->slots, multi->tx_channel_0_enable, multi->rx_channel_0_enable); } return 0; } static int setup_frameper(struct snd_soc_dai *dai, unsigned int rate, struct msp_protdesc *prot_desc) { struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); switch (drvdata->slots) { case 1: switch (rate) { case 8000: prot_desc->frame_period = FRAME_PER_SINGLE_SLOT_8_KHZ; break; case 16000: prot_desc->frame_period = FRAME_PER_SINGLE_SLOT_16_KHZ; break; case 44100: prot_desc->frame_period = FRAME_PER_SINGLE_SLOT_44_1_KHZ; break; case 48000: prot_desc->frame_period = FRAME_PER_SINGLE_SLOT_48_KHZ; break; default: dev_err(dai->dev, "%s: Error: Unsupported sample-rate (freq = %d)!\n", __func__, rate); return -EINVAL; } break; case 2: prot_desc->frame_period = FRAME_PER_2_SLOTS; break; case 8: prot_desc->frame_period = FRAME_PER_8_SLOTS; break; case 16: prot_desc->frame_period = FRAME_PER_16_SLOTS; break; default: dev_err(dai->dev, "%s: Error: Unsupported slot-count (slots = %d)!\n", __func__, drvdata->slots); return -EINVAL; } prot_desc->clocks_per_frame = prot_desc->frame_period+1; dev_dbg(dai->dev, "%s: Clocks per frame: %u\n", __func__, prot_desc->clocks_per_frame); return 0; } static int setup_pcm_framing(struct snd_soc_dai *dai, unsigned int rate, struct msp_protdesc *prot_desc) { struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); u32 frame_length = MSP_FRAME_LEN_1; prot_desc->frame_width = 0; switch (drvdata->slots) { case 1: frame_length = MSP_FRAME_LEN_1; break; case 2: frame_length = MSP_FRAME_LEN_2; break; case 8: frame_length = MSP_FRAME_LEN_8; break; case 16: frame_length = MSP_FRAME_LEN_16; break; default: dev_err(dai->dev, "%s: Error: Unsupported slot-count (slots = %d)!\n", __func__, drvdata->slots); return -EINVAL; } prot_desc->tx_frame_len_1 = frame_length; prot_desc->rx_frame_len_1 = frame_length; prot_desc->tx_frame_len_2 = frame_length; prot_desc->rx_frame_len_2 = frame_length; prot_desc->tx_elem_len_1 = MSP_ELEM_LEN_16; prot_desc->rx_elem_len_1 = MSP_ELEM_LEN_16; prot_desc->tx_elem_len_2 = MSP_ELEM_LEN_16; prot_desc->rx_elem_len_2 = MSP_ELEM_LEN_16; return setup_frameper(dai, rate, prot_desc); } static int setup_clocking(struct snd_soc_dai *dai, unsigned int fmt, struct ux500_msp_config *msp_config) { switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_NB_IF: msp_config->tx_fsync_pol ^= 1 << TFSPOL_SHIFT; msp_config->rx_fsync_pol ^= 1 << RFSPOL_SHIFT; break; default: dev_err(dai->dev, "%s: Error: Unsupported inversion (fmt = 0x%x)!\n", __func__, fmt); return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BC_FC: dev_dbg(dai->dev, "%s: Codec is master.\n", __func__); msp_config->iodelay = 0x20; msp_config->rx_fsync_sel = 0; msp_config->tx_fsync_sel = 1 << TFSSEL_SHIFT; msp_config->tx_clk_sel = 0; msp_config->rx_clk_sel = 0; msp_config->srg_clk_sel = 0x2 << SCKSEL_SHIFT; break; case SND_SOC_DAIFMT_BP_FP: dev_dbg(dai->dev, "%s: Codec is slave.\n", __func__); msp_config->tx_clk_sel = TX_CLK_SEL_SRG; msp_config->tx_fsync_sel = TX_SYNC_SRG_PROG; msp_config->rx_clk_sel = RX_CLK_SEL_SRG; msp_config->rx_fsync_sel = RX_SYNC_SRG; msp_config->srg_clk_sel = 1 << SCKSEL_SHIFT; break; default: dev_err(dai->dev, "%s: Error: Unsupported master (fmt = 0x%x)!\n", __func__, fmt); return -EINVAL; } return 0; } static int setup_pcm_protdesc(struct snd_soc_dai *dai, unsigned int fmt, struct msp_protdesc *prot_desc) { prot_desc->rx_phase_mode = MSP_SINGLE_PHASE; prot_desc->tx_phase_mode = MSP_SINGLE_PHASE; prot_desc->rx_phase2_start_mode = MSP_PHASE2_START_MODE_IMEDIATE; prot_desc->tx_phase2_start_mode = MSP_PHASE2_START_MODE_IMEDIATE; prot_desc->rx_byte_order = MSP_BTF_MS_BIT_FIRST; prot_desc->tx_byte_order = MSP_BTF_MS_BIT_FIRST; prot_desc->tx_fsync_pol = MSP_FSYNC_POL(MSP_FSYNC_POL_ACT_HI); prot_desc->rx_fsync_pol = MSP_FSYNC_POL_ACT_HI << RFSPOL_SHIFT; if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_DSP_A) { dev_dbg(dai->dev, "%s: DSP_A.\n", __func__); prot_desc->rx_clk_pol = MSP_RISING_EDGE; prot_desc->tx_clk_pol = MSP_FALLING_EDGE; prot_desc->rx_data_delay = MSP_DELAY_1; prot_desc->tx_data_delay = MSP_DELAY_1; } else { dev_dbg(dai->dev, "%s: DSP_B.\n", __func__); prot_desc->rx_clk_pol = MSP_FALLING_EDGE; prot_desc->tx_clk_pol = MSP_RISING_EDGE; prot_desc->rx_data_delay = MSP_DELAY_0; prot_desc->tx_data_delay = MSP_DELAY_0; } prot_desc->rx_half_word_swap = MSP_SWAP_NONE; prot_desc->tx_half_word_swap = MSP_SWAP_NONE; prot_desc->compression_mode = MSP_COMPRESS_MODE_LINEAR; prot_desc->expansion_mode = MSP_EXPAND_MODE_LINEAR; prot_desc->frame_sync_ignore = MSP_FSYNC_IGNORE; return 0; } static int setup_i2s_protdesc(struct msp_protdesc *prot_desc) { prot_desc->rx_phase_mode = MSP_DUAL_PHASE; prot_desc->tx_phase_mode = MSP_DUAL_PHASE; prot_desc->rx_phase2_start_mode = MSP_PHASE2_START_MODE_FSYNC; prot_desc->tx_phase2_start_mode = MSP_PHASE2_START_MODE_FSYNC; prot_desc->rx_byte_order = MSP_BTF_MS_BIT_FIRST; prot_desc->tx_byte_order = MSP_BTF_MS_BIT_FIRST; prot_desc->tx_fsync_pol = MSP_FSYNC_POL(MSP_FSYNC_POL_ACT_LO); prot_desc->rx_fsync_pol = MSP_FSYNC_POL_ACT_LO << RFSPOL_SHIFT; prot_desc->rx_frame_len_1 = MSP_FRAME_LEN_1; prot_desc->rx_frame_len_2 = MSP_FRAME_LEN_1; prot_desc->tx_frame_len_1 = MSP_FRAME_LEN_1; prot_desc->tx_frame_len_2 = MSP_FRAME_LEN_1; prot_desc->rx_elem_len_1 = MSP_ELEM_LEN_16; prot_desc->rx_elem_len_2 = MSP_ELEM_LEN_16; prot_desc->tx_elem_len_1 = MSP_ELEM_LEN_16; prot_desc->tx_elem_len_2 = MSP_ELEM_LEN_16; prot_desc->rx_clk_pol = MSP_RISING_EDGE; prot_desc->tx_clk_pol = MSP_FALLING_EDGE; prot_desc->rx_data_delay = MSP_DELAY_0; prot_desc->tx_data_delay = MSP_DELAY_0; prot_desc->tx_half_word_swap = MSP_SWAP_NONE; prot_desc->rx_half_word_swap = MSP_SWAP_NONE; prot_desc->compression_mode = MSP_COMPRESS_MODE_LINEAR; prot_desc->expansion_mode = MSP_EXPAND_MODE_LINEAR; prot_desc->frame_sync_ignore = MSP_FSYNC_IGNORE; return 0; } static int setup_msp_config(struct snd_pcm_substream *substream, struct snd_soc_dai *dai, struct ux500_msp_config *msp_config) { struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); struct msp_protdesc *prot_desc = &msp_config->protdesc; struct snd_pcm_runtime *runtime = substream->runtime; unsigned int fmt = drvdata->fmt; int ret; memset(msp_config, 0, sizeof(*msp_config)); msp_config->f_inputclk = drvdata->master_clk; msp_config->tx_fifo_config = TX_FIFO_ENABLE; msp_config->rx_fifo_config = RX_FIFO_ENABLE; msp_config->def_elem_len = 1; msp_config->direction = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? MSP_DIR_TX : MSP_DIR_RX; msp_config->data_size = MSP_DATA_BITS_32; msp_config->frame_freq = runtime->rate; dev_dbg(dai->dev, "%s: f_inputclk = %u, frame_freq = %u.\n", __func__, msp_config->f_inputclk, msp_config->frame_freq); /* To avoid division by zero */ prot_desc->clocks_per_frame = 1; dev_dbg(dai->dev, "%s: rate: %u, channels: %d.\n", __func__, runtime->rate, runtime->channels); switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK)) { case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_BP_FP: dev_dbg(dai->dev, "%s: SND_SOC_DAIFMT_I2S.\n", __func__); msp_config->default_protdesc = 1; msp_config->protocol = MSP_I2S_PROTOCOL; break; case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_BC_FC: dev_dbg(dai->dev, "%s: SND_SOC_DAIFMT_I2S.\n", __func__); msp_config->data_size = MSP_DATA_BITS_16; msp_config->protocol = MSP_I2S_PROTOCOL; ret = setup_i2s_protdesc(prot_desc); if (ret < 0) return ret; break; case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_BP_FP: case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_BC_FC: case SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_BP_FP: case SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_BC_FC: dev_dbg(dai->dev, "%s: PCM format.\n", __func__); msp_config->data_size = MSP_DATA_BITS_16; msp_config->protocol = MSP_PCM_PROTOCOL; ret = setup_pcm_protdesc(dai, fmt, prot_desc); if (ret < 0) return ret; ret = setup_pcm_multichan(dai, msp_config); if (ret < 0) return ret; ret = setup_pcm_framing(dai, runtime->rate, prot_desc); if (ret < 0) return ret; break; default: dev_err(dai->dev, "%s: Error: Unsupported format (%d)!\n", __func__, fmt); return -EINVAL; } return setup_clocking(dai, fmt, msp_config); } static int ux500_msp_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { int ret = 0; struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); dev_dbg(dai->dev, "%s: MSP %d (%s): Enter.\n", __func__, dai->id, snd_pcm_stream_str(substream)); /* Enable regulator */ ret = regulator_enable(drvdata->reg_vape); if (ret != 0) { dev_err(drvdata->msp->dev, "%s: Failed to enable regulator!\n", __func__); return ret; } /* Prepare and enable clocks */ dev_dbg(dai->dev, "%s: Enabling MSP-clocks.\n", __func__); ret = clk_prepare_enable(drvdata->pclk); if (ret) { dev_err(drvdata->msp->dev, "%s: Failed to prepare/enable pclk!\n", __func__); goto err_pclk; } ret = clk_prepare_enable(drvdata->clk); if (ret) { dev_err(drvdata->msp->dev, "%s: Failed to prepare/enable clk!\n", __func__); goto err_clk; } return ret; err_clk: clk_disable_unprepare(drvdata->pclk); err_pclk: regulator_disable(drvdata->reg_vape); return ret; } static void ux500_msp_dai_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { int ret; struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); bool is_playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); dev_dbg(dai->dev, "%s: MSP %d (%s): Enter.\n", __func__, dai->id, snd_pcm_stream_str(substream)); if (drvdata->vape_opp_constraint == 1) { prcmu_qos_update_requirement(PRCMU_QOS_APE_OPP, "ux500_msp_i2s", 50); drvdata->vape_opp_constraint = 0; } if (ux500_msp_i2s_close(drvdata->msp, is_playback ? MSP_DIR_TX : MSP_DIR_RX)) { dev_err(dai->dev, "%s: Error: MSP %d (%s): Unable to close i2s.\n", __func__, dai->id, snd_pcm_stream_str(substream)); } /* Disable and unprepare clocks */ clk_disable_unprepare(drvdata->clk); clk_disable_unprepare(drvdata->pclk); /* Disable regulator */ ret = regulator_disable(drvdata->reg_vape); if (ret < 0) dev_err(dai->dev, "%s: ERROR: Failed to disable regulator (%d)!\n", __func__, ret); } static int ux500_msp_dai_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { int ret = 0; struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); struct snd_pcm_runtime *runtime = substream->runtime; struct ux500_msp_config msp_config; dev_dbg(dai->dev, "%s: MSP %d (%s): Enter (rate = %d).\n", __func__, dai->id, snd_pcm_stream_str(substream), runtime->rate); setup_msp_config(substream, dai, &msp_config); ret = ux500_msp_i2s_open(drvdata->msp, &msp_config); if (ret < 0) { dev_err(dai->dev, "%s: Error: msp_setup failed (ret = %d)!\n", __func__, ret); return ret; } /* Set OPP-level */ if ((drvdata->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) && (drvdata->msp->f_bitclk > 19200000)) { /* If the bit-clock is higher than 19.2MHz, Vape should be * run in 100% OPP. Only when bit-clock is used (MSP master) */ prcmu_qos_update_requirement(PRCMU_QOS_APE_OPP, "ux500-msp-i2s", 100); drvdata->vape_opp_constraint = 1; } else { prcmu_qos_update_requirement(PRCMU_QOS_APE_OPP, "ux500-msp-i2s", 50); drvdata->vape_opp_constraint = 0; } return ret; } static int ux500_msp_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { unsigned int mask, slots_active; struct snd_pcm_runtime *runtime = substream->runtime; struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); dev_dbg(dai->dev, "%s: MSP %d (%s): Enter.\n", __func__, dai->id, snd_pcm_stream_str(substream)); switch (drvdata->fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_CHANNELS, 1, 2); break; case SND_SOC_DAIFMT_DSP_B: case SND_SOC_DAIFMT_DSP_A: mask = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? drvdata->tx_mask : drvdata->rx_mask; slots_active = hweight32(mask); dev_dbg(dai->dev, "TDM-slots active: %d", slots_active); snd_pcm_hw_constraint_single(runtime, SNDRV_PCM_HW_PARAM_CHANNELS, slots_active); break; default: dev_err(dai->dev, "%s: Error: Unsupported protocol (fmt = 0x%x)!\n", __func__, drvdata->fmt); return -EINVAL; } return 0; } static int ux500_msp_dai_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); dev_dbg(dai->dev, "%s: MSP %d: Enter.\n", __func__, dai->id); switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK)) { case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_BP_FP: case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_BC_FC: case SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_BP_FP: case SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_BC_FC: case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_BP_FP: case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_BC_FC: break; default: dev_err(dai->dev, "%s: Error: Unsupported protocol/master (fmt = 0x%x)!\n", __func__, drvdata->fmt); return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: case SND_SOC_DAIFMT_NB_IF: case SND_SOC_DAIFMT_IB_IF: break; default: dev_err(dai->dev, "%s: Error: Unsupported inversion (fmt = 0x%x)!\n", __func__, drvdata->fmt); return -EINVAL; } drvdata->fmt = fmt; return 0; } static int ux500_msp_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); unsigned int cap; switch (slots) { case 1: cap = 0x01; break; case 2: cap = 0x03; break; case 8: cap = 0xFF; break; case 16: cap = 0xFFFF; break; default: dev_err(dai->dev, "%s: Error: Unsupported slot-count (%d)!\n", __func__, slots); return -EINVAL; } drvdata->slots = slots; if (!(slot_width == 16)) { dev_err(dai->dev, "%s: Error: Unsupported slot-width (%d)!\n", __func__, slot_width); return -EINVAL; } drvdata->slot_width = slot_width; drvdata->tx_mask = tx_mask & cap; drvdata->rx_mask = rx_mask & cap; return 0; } static int ux500_msp_dai_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); dev_dbg(dai->dev, "%s: MSP %d: Enter. clk-id: %d, freq: %u.\n", __func__, dai->id, clk_id, freq); switch (clk_id) { case UX500_MSP_MASTER_CLOCK: drvdata->master_clk = freq; break; default: dev_err(dai->dev, "%s: MSP %d: Invalid clk-id (%d)!\n", __func__, dai->id, clk_id); return -EINVAL; } return 0; } static int ux500_msp_dai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { int ret = 0; struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); dev_dbg(dai->dev, "%s: MSP %d (%s): Enter (msp->id = %d, cmd = %d).\n", __func__, dai->id, snd_pcm_stream_str(substream), (int)drvdata->msp->id, cmd); ret = ux500_msp_i2s_trigger(drvdata->msp, cmd, substream->stream); return ret; } static int ux500_msp_dai_of_probe(struct snd_soc_dai *dai) { struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(dai->dev); struct snd_dmaengine_dai_dma_data *playback_dma_data; struct snd_dmaengine_dai_dma_data *capture_dma_data; playback_dma_data = devm_kzalloc(dai->dev, sizeof(*playback_dma_data), GFP_KERNEL); if (!playback_dma_data) return -ENOMEM; capture_dma_data = devm_kzalloc(dai->dev, sizeof(*capture_dma_data), GFP_KERNEL); if (!capture_dma_data) return -ENOMEM; playback_dma_data->addr = drvdata->msp->tx_rx_addr; capture_dma_data->addr = drvdata->msp->tx_rx_addr; playback_dma_data->maxburst = 4; capture_dma_data->maxburst = 4; snd_soc_dai_init_dma_data(dai, playback_dma_data, capture_dma_data); return 0; } static const struct snd_soc_dai_ops ux500_msp_dai_ops[] = { { .probe = ux500_msp_dai_of_probe, .set_sysclk = ux500_msp_dai_set_dai_sysclk, .set_fmt = ux500_msp_dai_set_dai_fmt, .set_tdm_slot = ux500_msp_dai_set_tdm_slot, .startup = ux500_msp_dai_startup, .shutdown = ux500_msp_dai_shutdown, .prepare = ux500_msp_dai_prepare, .trigger = ux500_msp_dai_trigger, .hw_params = ux500_msp_dai_hw_params, } }; static struct snd_soc_dai_driver ux500_msp_dai_drv = { .playback.channels_min = UX500_MSP_MIN_CHANNELS, .playback.channels_max = UX500_MSP_MAX_CHANNELS, .playback.rates = UX500_I2S_RATES, .playback.formats = UX500_I2S_FORMATS, .capture.channels_min = UX500_MSP_MIN_CHANNELS, .capture.channels_max = UX500_MSP_MAX_CHANNELS, .capture.rates = UX500_I2S_RATES, .capture.formats = UX500_I2S_FORMATS, .ops = ux500_msp_dai_ops, }; static const struct snd_soc_component_driver ux500_msp_component = { .name = "ux500-msp", .legacy_dai_naming = 1, }; static int ux500_msp_drv_probe(struct platform_device *pdev) { struct ux500_msp_i2s_drvdata *drvdata; int ret = 0; drvdata = devm_kzalloc(&pdev->dev, sizeof(struct ux500_msp_i2s_drvdata), GFP_KERNEL); if (!drvdata) return -ENOMEM; drvdata->fmt = 0; drvdata->slots = 1; drvdata->tx_mask = 0x01; drvdata->rx_mask = 0x01; drvdata->slot_width = 16; drvdata->master_clk = MSP_INPUT_FREQ_APB; drvdata->reg_vape = devm_regulator_get(&pdev->dev, "v-ape"); if (IS_ERR(drvdata->reg_vape)) { ret = (int)PTR_ERR(drvdata->reg_vape); dev_err(&pdev->dev, "%s: ERROR: Failed to get Vape supply (%d)!\n", __func__, ret); return ret; } prcmu_qos_add_requirement(PRCMU_QOS_APE_OPP, (char *)pdev->name, 50); drvdata->pclk = devm_clk_get(&pdev->dev, "apb_pclk"); if (IS_ERR(drvdata->pclk)) { ret = (int)PTR_ERR(drvdata->pclk); dev_err(&pdev->dev, "%s: ERROR: devm_clk_get of pclk failed (%d)!\n", __func__, ret); return ret; } drvdata->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(drvdata->clk)) { ret = (int)PTR_ERR(drvdata->clk); dev_err(&pdev->dev, "%s: ERROR: devm_clk_get failed (%d)!\n", __func__, ret); return ret; } ret = ux500_msp_i2s_init_msp(pdev, &drvdata->msp); if (!drvdata->msp) { dev_err(&pdev->dev, "%s: ERROR: Failed to init MSP-struct (%d)!", __func__, ret); return ret; } dev_set_drvdata(&pdev->dev, drvdata); ret = snd_soc_register_component(&pdev->dev, &ux500_msp_component, &ux500_msp_dai_drv, 1); if (ret < 0) { dev_err(&pdev->dev, "Error: %s: Failed to register MSP%d!\n", __func__, drvdata->msp->id); return ret; } ret = ux500_pcm_register_platform(pdev); if (ret < 0) { dev_err(&pdev->dev, "Error: %s: Failed to register PCM platform device!\n", __func__); goto err_reg_plat; } return 0; err_reg_plat: snd_soc_unregister_component(&pdev->dev); return ret; } static void ux500_msp_drv_remove(struct platform_device *pdev) { struct ux500_msp_i2s_drvdata *drvdata = dev_get_drvdata(&pdev->dev); ux500_pcm_unregister_platform(pdev); snd_soc_unregister_component(&pdev->dev); prcmu_qos_remove_requirement(PRCMU_QOS_APE_OPP, "ux500_msp_i2s"); ux500_msp_i2s_cleanup_msp(pdev, drvdata->msp); } static const struct of_device_id ux500_msp_i2s_match[] = { { .compatible = "stericsson,ux500-msp-i2s", }, {}, }; MODULE_DEVICE_TABLE(of, ux500_msp_i2s_match); static struct platform_driver msp_i2s_driver = { .driver = { .name = "ux500-msp-i2s", .of_match_table = ux500_msp_i2s_match, }, .probe = ux500_msp_drv_probe, .remove_new = ux500_msp_drv_remove, }; module_platform_driver(msp_i2s_driver); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/ux500/ux500_msp_dai.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson SA 2012 * * Author: Ola Lilja <[email protected]>, * Roger Nilsson <[email protected]>, * Sandeep Kaushik <[email protected]> * for ST-Ericsson. */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/of.h> #include <sound/soc.h> #include "ux500_msp_i2s.h" /* Protocol desciptors */ static const struct msp_protdesc prot_descs[] = { { /* I2S */ MSP_SINGLE_PHASE, MSP_SINGLE_PHASE, MSP_PHASE2_START_MODE_IMEDIATE, MSP_PHASE2_START_MODE_IMEDIATE, MSP_BTF_MS_BIT_FIRST, MSP_BTF_MS_BIT_FIRST, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_ELEM_LEN_32, MSP_ELEM_LEN_32, MSP_ELEM_LEN_32, MSP_ELEM_LEN_32, MSP_DELAY_1, MSP_DELAY_1, MSP_RISING_EDGE, MSP_FALLING_EDGE, MSP_FSYNC_POL_ACT_LO, MSP_FSYNC_POL_ACT_LO, MSP_SWAP_NONE, MSP_SWAP_NONE, MSP_COMPRESS_MODE_LINEAR, MSP_EXPAND_MODE_LINEAR, MSP_FSYNC_IGNORE, 31, 15, 32, }, { /* PCM */ MSP_DUAL_PHASE, MSP_DUAL_PHASE, MSP_PHASE2_START_MODE_FSYNC, MSP_PHASE2_START_MODE_FSYNC, MSP_BTF_MS_BIT_FIRST, MSP_BTF_MS_BIT_FIRST, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_ELEM_LEN_16, MSP_ELEM_LEN_16, MSP_ELEM_LEN_16, MSP_ELEM_LEN_16, MSP_DELAY_0, MSP_DELAY_0, MSP_RISING_EDGE, MSP_FALLING_EDGE, MSP_FSYNC_POL_ACT_HI, MSP_FSYNC_POL_ACT_HI, MSP_SWAP_NONE, MSP_SWAP_NONE, MSP_COMPRESS_MODE_LINEAR, MSP_EXPAND_MODE_LINEAR, MSP_FSYNC_IGNORE, 255, 0, 256, }, { /* Companded PCM */ MSP_SINGLE_PHASE, MSP_SINGLE_PHASE, MSP_PHASE2_START_MODE_FSYNC, MSP_PHASE2_START_MODE_FSYNC, MSP_BTF_MS_BIT_FIRST, MSP_BTF_MS_BIT_FIRST, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_FRAME_LEN_1, MSP_ELEM_LEN_8, MSP_ELEM_LEN_8, MSP_ELEM_LEN_8, MSP_ELEM_LEN_8, MSP_DELAY_0, MSP_DELAY_0, MSP_RISING_EDGE, MSP_RISING_EDGE, MSP_FSYNC_POL_ACT_HI, MSP_FSYNC_POL_ACT_HI, MSP_SWAP_NONE, MSP_SWAP_NONE, MSP_COMPRESS_MODE_LINEAR, MSP_EXPAND_MODE_LINEAR, MSP_FSYNC_IGNORE, 255, 0, 256, }, }; static void set_prot_desc_tx(struct ux500_msp *msp, struct msp_protdesc *protdesc, enum msp_data_size data_size) { u32 temp_reg = 0; temp_reg |= MSP_P2_ENABLE_BIT(protdesc->tx_phase_mode); temp_reg |= MSP_P2_START_MODE_BIT(protdesc->tx_phase2_start_mode); temp_reg |= MSP_P1_FRAME_LEN_BITS(protdesc->tx_frame_len_1); temp_reg |= MSP_P2_FRAME_LEN_BITS(protdesc->tx_frame_len_2); if (msp->def_elem_len) { temp_reg |= MSP_P1_ELEM_LEN_BITS(protdesc->tx_elem_len_1); temp_reg |= MSP_P2_ELEM_LEN_BITS(protdesc->tx_elem_len_2); } else { temp_reg |= MSP_P1_ELEM_LEN_BITS(data_size); temp_reg |= MSP_P2_ELEM_LEN_BITS(data_size); } temp_reg |= MSP_DATA_DELAY_BITS(protdesc->tx_data_delay); temp_reg |= MSP_SET_ENDIANNES_BIT(protdesc->tx_byte_order); temp_reg |= MSP_FSYNC_POL(protdesc->tx_fsync_pol); temp_reg |= MSP_DATA_WORD_SWAP(protdesc->tx_half_word_swap); temp_reg |= MSP_SET_COMPANDING_MODE(protdesc->compression_mode); temp_reg |= MSP_SET_FSYNC_IGNORE(protdesc->frame_sync_ignore); writel(temp_reg, msp->registers + MSP_TCF); } static void set_prot_desc_rx(struct ux500_msp *msp, struct msp_protdesc *protdesc, enum msp_data_size data_size) { u32 temp_reg = 0; temp_reg |= MSP_P2_ENABLE_BIT(protdesc->rx_phase_mode); temp_reg |= MSP_P2_START_MODE_BIT(protdesc->rx_phase2_start_mode); temp_reg |= MSP_P1_FRAME_LEN_BITS(protdesc->rx_frame_len_1); temp_reg |= MSP_P2_FRAME_LEN_BITS(protdesc->rx_frame_len_2); if (msp->def_elem_len) { temp_reg |= MSP_P1_ELEM_LEN_BITS(protdesc->rx_elem_len_1); temp_reg |= MSP_P2_ELEM_LEN_BITS(protdesc->rx_elem_len_2); } else { temp_reg |= MSP_P1_ELEM_LEN_BITS(data_size); temp_reg |= MSP_P2_ELEM_LEN_BITS(data_size); } temp_reg |= MSP_DATA_DELAY_BITS(protdesc->rx_data_delay); temp_reg |= MSP_SET_ENDIANNES_BIT(protdesc->rx_byte_order); temp_reg |= MSP_FSYNC_POL(protdesc->rx_fsync_pol); temp_reg |= MSP_DATA_WORD_SWAP(protdesc->rx_half_word_swap); temp_reg |= MSP_SET_COMPANDING_MODE(protdesc->expansion_mode); temp_reg |= MSP_SET_FSYNC_IGNORE(protdesc->frame_sync_ignore); writel(temp_reg, msp->registers + MSP_RCF); } static int configure_protocol(struct ux500_msp *msp, struct ux500_msp_config *config) { struct msp_protdesc *protdesc; enum msp_data_size data_size; u32 temp_reg = 0; data_size = config->data_size; msp->def_elem_len = config->def_elem_len; if (config->default_protdesc == 1) { if (config->protocol >= MSP_INVALID_PROTOCOL) { dev_err(msp->dev, "%s: ERROR: Invalid protocol!\n", __func__); return -EINVAL; } protdesc = (struct msp_protdesc *)&prot_descs[config->protocol]; } else { protdesc = (struct msp_protdesc *)&config->protdesc; } if (data_size < MSP_DATA_BITS_DEFAULT || data_size > MSP_DATA_BITS_32) { dev_err(msp->dev, "%s: ERROR: Invalid data-size requested (data_size = %d)!\n", __func__, data_size); return -EINVAL; } if (config->direction & MSP_DIR_TX) set_prot_desc_tx(msp, protdesc, data_size); if (config->direction & MSP_DIR_RX) set_prot_desc_rx(msp, protdesc, data_size); /* The code below should not be separated. */ temp_reg = readl(msp->registers + MSP_GCR) & ~TX_CLK_POL_RISING; temp_reg |= MSP_TX_CLKPOL_BIT(~protdesc->tx_clk_pol); writel(temp_reg, msp->registers + MSP_GCR); temp_reg = readl(msp->registers + MSP_GCR) & ~RX_CLK_POL_RISING; temp_reg |= MSP_RX_CLKPOL_BIT(protdesc->rx_clk_pol); writel(temp_reg, msp->registers + MSP_GCR); return 0; } static int setup_bitclk(struct ux500_msp *msp, struct ux500_msp_config *config) { u32 reg_val_GCR; u32 frame_per = 0; u32 sck_div = 0; u32 frame_width = 0; u32 temp_reg = 0; struct msp_protdesc *protdesc = NULL; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR & ~SRG_ENABLE, msp->registers + MSP_GCR); if (config->default_protdesc) protdesc = (struct msp_protdesc *)&prot_descs[config->protocol]; else protdesc = (struct msp_protdesc *)&config->protdesc; switch (config->protocol) { case MSP_PCM_PROTOCOL: case MSP_PCM_COMPAND_PROTOCOL: frame_width = protdesc->frame_width; sck_div = config->f_inputclk / (config->frame_freq * (protdesc->clocks_per_frame)); frame_per = protdesc->frame_period; break; case MSP_I2S_PROTOCOL: frame_width = protdesc->frame_width; sck_div = config->f_inputclk / (config->frame_freq * (protdesc->clocks_per_frame)); frame_per = protdesc->frame_period; break; default: dev_err(msp->dev, "%s: ERROR: Unknown protocol (%d)!\n", __func__, config->protocol); return -EINVAL; } temp_reg = (sck_div - 1) & SCK_DIV_MASK; temp_reg |= FRAME_WIDTH_BITS(frame_width); temp_reg |= FRAME_PERIOD_BITS(frame_per); writel(temp_reg, msp->registers + MSP_SRG); msp->f_bitclk = (config->f_inputclk)/(sck_div + 1); /* Enable bit-clock */ udelay(100); reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | SRG_ENABLE, msp->registers + MSP_GCR); udelay(100); return 0; } static int configure_multichannel(struct ux500_msp *msp, struct ux500_msp_config *config) { struct msp_protdesc *protdesc; struct msp_multichannel_config *mcfg; u32 reg_val_MCR; if (config->default_protdesc == 1) { if (config->protocol >= MSP_INVALID_PROTOCOL) { dev_err(msp->dev, "%s: ERROR: Invalid protocol (%d)!\n", __func__, config->protocol); return -EINVAL; } protdesc = (struct msp_protdesc *) &prot_descs[config->protocol]; } else { protdesc = (struct msp_protdesc *)&config->protdesc; } mcfg = &config->multichannel_config; if (mcfg->tx_multichannel_enable) { if (protdesc->tx_phase_mode == MSP_SINGLE_PHASE) { reg_val_MCR = readl(msp->registers + MSP_MCR); writel(reg_val_MCR | (mcfg->tx_multichannel_enable ? 1 << TMCEN_BIT : 0), msp->registers + MSP_MCR); writel(mcfg->tx_channel_0_enable, msp->registers + MSP_TCE0); writel(mcfg->tx_channel_1_enable, msp->registers + MSP_TCE1); writel(mcfg->tx_channel_2_enable, msp->registers + MSP_TCE2); writel(mcfg->tx_channel_3_enable, msp->registers + MSP_TCE3); } else { dev_err(msp->dev, "%s: ERROR: Only single-phase supported (TX-mode: %d)!\n", __func__, protdesc->tx_phase_mode); return -EINVAL; } } if (mcfg->rx_multichannel_enable) { if (protdesc->rx_phase_mode == MSP_SINGLE_PHASE) { reg_val_MCR = readl(msp->registers + MSP_MCR); writel(reg_val_MCR | (mcfg->rx_multichannel_enable ? 1 << RMCEN_BIT : 0), msp->registers + MSP_MCR); writel(mcfg->rx_channel_0_enable, msp->registers + MSP_RCE0); writel(mcfg->rx_channel_1_enable, msp->registers + MSP_RCE1); writel(mcfg->rx_channel_2_enable, msp->registers + MSP_RCE2); writel(mcfg->rx_channel_3_enable, msp->registers + MSP_RCE3); } else { dev_err(msp->dev, "%s: ERROR: Only single-phase supported (RX-mode: %d)!\n", __func__, protdesc->rx_phase_mode); return -EINVAL; } if (mcfg->rx_comparison_enable_mode) { reg_val_MCR = readl(msp->registers + MSP_MCR); writel(reg_val_MCR | (mcfg->rx_comparison_enable_mode << RCMPM_BIT), msp->registers + MSP_MCR); writel(mcfg->comparison_mask, msp->registers + MSP_RCM); writel(mcfg->comparison_value, msp->registers + MSP_RCV); } } return 0; } static int enable_msp(struct ux500_msp *msp, struct ux500_msp_config *config) { int status = 0; u32 reg_val_DMACR, reg_val_GCR; /* Configure msp with protocol dependent settings */ configure_protocol(msp, config); setup_bitclk(msp, config); if (config->multichannel_configured == 1) { status = configure_multichannel(msp, config); if (status) dev_warn(msp->dev, "%s: WARN: configure_multichannel failed (%d)!\n", __func__, status); } reg_val_DMACR = readl(msp->registers + MSP_DMACR); if (config->direction & MSP_DIR_RX) reg_val_DMACR |= RX_DMA_ENABLE; if (config->direction & MSP_DIR_TX) reg_val_DMACR |= TX_DMA_ENABLE; writel(reg_val_DMACR, msp->registers + MSP_DMACR); writel(config->iodelay, msp->registers + MSP_IODLY); /* Enable frame generation logic */ reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | FRAME_GEN_ENABLE, msp->registers + MSP_GCR); return status; } static void flush_fifo_rx(struct ux500_msp *msp) { u32 reg_val_GCR, reg_val_FLR; u32 limit = 32; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | RX_ENABLE, msp->registers + MSP_GCR); reg_val_FLR = readl(msp->registers + MSP_FLR); while (!(reg_val_FLR & RX_FIFO_EMPTY) && limit--) { readl(msp->registers + MSP_DR); reg_val_FLR = readl(msp->registers + MSP_FLR); } writel(reg_val_GCR, msp->registers + MSP_GCR); } static void flush_fifo_tx(struct ux500_msp *msp) { u32 reg_val_GCR, reg_val_FLR; u32 limit = 32; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | TX_ENABLE, msp->registers + MSP_GCR); writel(MSP_ITCR_ITEN | MSP_ITCR_TESTFIFO, msp->registers + MSP_ITCR); reg_val_FLR = readl(msp->registers + MSP_FLR); while (!(reg_val_FLR & TX_FIFO_EMPTY) && limit--) { readl(msp->registers + MSP_TSTDR); reg_val_FLR = readl(msp->registers + MSP_FLR); } writel(0x0, msp->registers + MSP_ITCR); writel(reg_val_GCR, msp->registers + MSP_GCR); } int ux500_msp_i2s_open(struct ux500_msp *msp, struct ux500_msp_config *config) { u32 old_reg, new_reg, mask; int res; unsigned int tx_sel, rx_sel, tx_busy, rx_busy; if (in_interrupt()) { dev_err(msp->dev, "%s: ERROR: Open called in interrupt context!\n", __func__); return -1; } tx_sel = (config->direction & MSP_DIR_TX) > 0; rx_sel = (config->direction & MSP_DIR_RX) > 0; if (!tx_sel && !rx_sel) { dev_err(msp->dev, "%s: Error: No direction selected!\n", __func__); return -EINVAL; } tx_busy = (msp->dir_busy & MSP_DIR_TX) > 0; rx_busy = (msp->dir_busy & MSP_DIR_RX) > 0; if (tx_busy && tx_sel) { dev_err(msp->dev, "%s: Error: TX is in use!\n", __func__); return -EBUSY; } if (rx_busy && rx_sel) { dev_err(msp->dev, "%s: Error: RX is in use!\n", __func__); return -EBUSY; } msp->dir_busy |= (tx_sel ? MSP_DIR_TX : 0) | (rx_sel ? MSP_DIR_RX : 0); /* First do the global config register */ mask = RX_CLK_SEL_MASK | TX_CLK_SEL_MASK | RX_FSYNC_MASK | TX_FSYNC_MASK | RX_SYNC_SEL_MASK | TX_SYNC_SEL_MASK | RX_FIFO_ENABLE_MASK | TX_FIFO_ENABLE_MASK | SRG_CLK_SEL_MASK | LOOPBACK_MASK | TX_EXTRA_DELAY_MASK; new_reg = (config->tx_clk_sel | config->rx_clk_sel | config->rx_fsync_pol | config->tx_fsync_pol | config->rx_fsync_sel | config->tx_fsync_sel | config->rx_fifo_config | config->tx_fifo_config | config->srg_clk_sel | config->loopback_enable | config->tx_data_enable); old_reg = readl(msp->registers + MSP_GCR); old_reg &= ~mask; new_reg |= old_reg; writel(new_reg, msp->registers + MSP_GCR); res = enable_msp(msp, config); if (res < 0) { dev_err(msp->dev, "%s: ERROR: enable_msp failed (%d)!\n", __func__, res); return -EBUSY; } if (config->loopback_enable & 0x80) msp->loopback_enable = 1; /* Flush FIFOs */ flush_fifo_tx(msp); flush_fifo_rx(msp); msp->msp_state = MSP_STATE_CONFIGURED; return 0; } static void disable_msp_rx(struct ux500_msp *msp) { u32 reg_val_GCR, reg_val_DMACR, reg_val_IMSC; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR & ~RX_ENABLE, msp->registers + MSP_GCR); reg_val_DMACR = readl(msp->registers + MSP_DMACR); writel(reg_val_DMACR & ~RX_DMA_ENABLE, msp->registers + MSP_DMACR); reg_val_IMSC = readl(msp->registers + MSP_IMSC); writel(reg_val_IMSC & ~(RX_SERVICE_INT | RX_OVERRUN_ERROR_INT), msp->registers + MSP_IMSC); msp->dir_busy &= ~MSP_DIR_RX; } static void disable_msp_tx(struct ux500_msp *msp) { u32 reg_val_GCR, reg_val_DMACR, reg_val_IMSC; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR & ~TX_ENABLE, msp->registers + MSP_GCR); reg_val_DMACR = readl(msp->registers + MSP_DMACR); writel(reg_val_DMACR & ~TX_DMA_ENABLE, msp->registers + MSP_DMACR); reg_val_IMSC = readl(msp->registers + MSP_IMSC); writel(reg_val_IMSC & ~(TX_SERVICE_INT | TX_UNDERRUN_ERR_INT), msp->registers + MSP_IMSC); msp->dir_busy &= ~MSP_DIR_TX; } static int disable_msp(struct ux500_msp *msp, unsigned int dir) { u32 reg_val_GCR; unsigned int disable_tx, disable_rx; reg_val_GCR = readl(msp->registers + MSP_GCR); disable_tx = dir & MSP_DIR_TX; disable_rx = dir & MSP_DIR_TX; if (disable_tx && disable_rx) { reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | LOOPBACK_MASK, msp->registers + MSP_GCR); /* Flush TX-FIFO */ flush_fifo_tx(msp); /* Disable TX-channel */ writel((readl(msp->registers + MSP_GCR) & (~TX_ENABLE)), msp->registers + MSP_GCR); /* Flush RX-FIFO */ flush_fifo_rx(msp); /* Disable Loopback and Receive channel */ writel((readl(msp->registers + MSP_GCR) & (~(RX_ENABLE | LOOPBACK_MASK))), msp->registers + MSP_GCR); disable_msp_tx(msp); disable_msp_rx(msp); } else if (disable_tx) disable_msp_tx(msp); else if (disable_rx) disable_msp_rx(msp); return 0; } int ux500_msp_i2s_trigger(struct ux500_msp *msp, int cmd, int direction) { u32 reg_val_GCR, enable_bit; if (msp->msp_state == MSP_STATE_IDLE) { dev_err(msp->dev, "%s: ERROR: MSP is not configured!\n", __func__); return -EINVAL; } switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: if (direction == SNDRV_PCM_STREAM_PLAYBACK) enable_bit = TX_ENABLE; else enable_bit = RX_ENABLE; reg_val_GCR = readl(msp->registers + MSP_GCR); writel(reg_val_GCR | enable_bit, msp->registers + MSP_GCR); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: if (direction == SNDRV_PCM_STREAM_PLAYBACK) disable_msp_tx(msp); else disable_msp_rx(msp); break; default: return -EINVAL; } return 0; } int ux500_msp_i2s_close(struct ux500_msp *msp, unsigned int dir) { int status = 0; dev_dbg(msp->dev, "%s: Enter (dir = 0x%01x).\n", __func__, dir); status = disable_msp(msp, dir); if (msp->dir_busy == 0) { /* disable sample rate and frame generators */ msp->msp_state = MSP_STATE_IDLE; writel((readl(msp->registers + MSP_GCR) & (~(FRAME_GEN_ENABLE | SRG_ENABLE))), msp->registers + MSP_GCR); writel(0, msp->registers + MSP_GCR); writel(0, msp->registers + MSP_TCF); writel(0, msp->registers + MSP_RCF); writel(0, msp->registers + MSP_DMACR); writel(0, msp->registers + MSP_SRG); writel(0, msp->registers + MSP_MCR); writel(0, msp->registers + MSP_RCM); writel(0, msp->registers + MSP_RCV); writel(0, msp->registers + MSP_TCE0); writel(0, msp->registers + MSP_TCE1); writel(0, msp->registers + MSP_TCE2); writel(0, msp->registers + MSP_TCE3); writel(0, msp->registers + MSP_RCE0); writel(0, msp->registers + MSP_RCE1); writel(0, msp->registers + MSP_RCE2); writel(0, msp->registers + MSP_RCE3); } return status; } int ux500_msp_i2s_init_msp(struct platform_device *pdev, struct ux500_msp **msp_p) { struct resource *res = NULL; struct ux500_msp *msp; *msp_p = devm_kzalloc(&pdev->dev, sizeof(struct ux500_msp), GFP_KERNEL); msp = *msp_p; if (!msp) return -ENOMEM; msp->dev = &pdev->dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(&pdev->dev, "%s: ERROR: Unable to get resource!\n", __func__); return -ENOMEM; } msp->tx_rx_addr = res->start + MSP_DR; msp->registers = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (msp->registers == NULL) { dev_err(&pdev->dev, "%s: ERROR: ioremap failed!\n", __func__); return -ENOMEM; } msp->msp_state = MSP_STATE_IDLE; msp->loopback_enable = 0; return 0; } void ux500_msp_i2s_cleanup_msp(struct platform_device *pdev, struct ux500_msp *msp) { dev_dbg(msp->dev, "%s: Enter (id = %d).\n", __func__, msp->id); } MODULE_LICENSE("GPL v2");
linux-master
sound/soc/ux500/ux500_msp_i2s.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson SA 2012 * * Author: Ola Lilja <[email protected]>, * Roger Nilsson <[email protected]> * for ST-Ericsson. */ #include <asm/page.h> #include <linux/module.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/slab.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/dmaengine_pcm.h> #include "ux500_msp_i2s.h" #include "ux500_pcm.h" #define UX500_PLATFORM_PERIODS_BYTES_MIN 128 #define UX500_PLATFORM_PERIODS_BYTES_MAX (64 * PAGE_SIZE) #define UX500_PLATFORM_PERIODS_MIN 2 #define UX500_PLATFORM_PERIODS_MAX 48 #define UX500_PLATFORM_BUFFER_BYTES_MAX (2048 * PAGE_SIZE) static int ux500_pcm_prepare_slave_config(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct dma_slave_config *slave_config) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_dmaengine_dai_dma_data *snd_dma_params; dma_addr_t dma_addr; int ret; snd_dma_params = snd_soc_dai_get_dma_data(asoc_rtd_to_cpu(rtd, 0), substream); dma_addr = snd_dma_params->addr; ret = snd_hwparams_to_dma_slave_config(substream, params, slave_config); if (ret) return ret; slave_config->dst_maxburst = 4; slave_config->src_maxburst = 4; slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) slave_config->dst_addr = dma_addr; else slave_config->src_addr = dma_addr; return 0; } static const struct snd_dmaengine_pcm_config ux500_dmaengine_of_pcm_config = { .prepare_slave_config = ux500_pcm_prepare_slave_config, }; int ux500_pcm_register_platform(struct platform_device *pdev) { int ret; ret = snd_dmaengine_pcm_register(&pdev->dev, &ux500_dmaengine_of_pcm_config, 0); if (ret < 0) { dev_err(&pdev->dev, "%s: ERROR: Failed to register platform '%s' (%d)!\n", __func__, pdev->name, ret); return ret; } return 0; } EXPORT_SYMBOL_GPL(ux500_pcm_register_platform); int ux500_pcm_unregister_platform(struct platform_device *pdev) { snd_dmaengine_pcm_unregister(&pdev->dev); return 0; } EXPORT_SYMBOL_GPL(ux500_pcm_unregister_platform); MODULE_AUTHOR("Ola Lilja"); MODULE_AUTHOR("Roger Nilsson"); MODULE_DESCRIPTION("ASoC UX500 driver"); MODULE_LICENSE("GPL v2");
linux-master
sound/soc/ux500/ux500_pcm.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson SA 2012 * * Author: Ola Lilja <[email protected]>, * Kristoffer Karlsson <[email protected]> * for ST-Ericsson. */ #include <linux/module.h> #include <linux/device.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/mutex.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include "ux500_pcm.h" #include "ux500_msp_dai.h" #include "mop500_ab8500.h" #include "../codecs/ab8500-codec.h" #define TX_SLOT_MONO 0x0008 #define TX_SLOT_STEREO 0x000a #define RX_SLOT_MONO 0x0001 #define RX_SLOT_STEREO 0x0003 #define TX_SLOT_8CH 0x00FF #define RX_SLOT_8CH 0x00FF #define DEF_TX_SLOTS TX_SLOT_STEREO #define DEF_RX_SLOTS RX_SLOT_MONO #define DRIVERMODE_NORMAL 0 #define DRIVERMODE_CODEC_ONLY 1 /* Slot configuration */ static unsigned int tx_slots = DEF_TX_SLOTS; static unsigned int rx_slots = DEF_RX_SLOTS; /* Configuration consistency parameters */ static DEFINE_MUTEX(mop500_ab8500_params_lock); static unsigned long mop500_ab8500_usage; static int mop500_ab8500_rate; static int mop500_ab8500_channels; /* Clocks */ static const char * const enum_mclk[] = { "SYSCLK", "ULPCLK" }; enum mclk { MCLK_SYSCLK, MCLK_ULPCLK, }; static SOC_ENUM_SINGLE_EXT_DECL(soc_enum_mclk, enum_mclk); /* Private data for machine-part MOP500<->AB8500 */ struct mop500_ab8500_drvdata { /* Clocks */ enum mclk mclk_sel; struct clk *clk_ptr_intclk; struct clk *clk_ptr_sysclk; struct clk *clk_ptr_ulpclk; }; static inline const char *get_mclk_str(enum mclk mclk_sel) { switch (mclk_sel) { case MCLK_SYSCLK: return "SYSCLK"; case MCLK_ULPCLK: return "ULPCLK"; default: return "Unknown"; } } static int mop500_ab8500_set_mclk(struct device *dev, struct mop500_ab8500_drvdata *drvdata) { int status; struct clk *clk_ptr; if (IS_ERR(drvdata->clk_ptr_intclk)) { dev_err(dev, "%s: ERROR: intclk not initialized!\n", __func__); return -EIO; } switch (drvdata->mclk_sel) { case MCLK_SYSCLK: clk_ptr = drvdata->clk_ptr_sysclk; break; case MCLK_ULPCLK: clk_ptr = drvdata->clk_ptr_ulpclk; break; default: return -EINVAL; } if (IS_ERR(clk_ptr)) { dev_err(dev, "%s: ERROR: %s not initialized!\n", __func__, get_mclk_str(drvdata->mclk_sel)); return -EIO; } status = clk_set_parent(drvdata->clk_ptr_intclk, clk_ptr); if (status) dev_err(dev, "%s: ERROR: Setting intclk parent to %s failed (ret = %d)!", __func__, get_mclk_str(drvdata->mclk_sel), status); else dev_dbg(dev, "%s: intclk parent changed to %s.\n", __func__, get_mclk_str(drvdata->mclk_sel)); return status; } /* * Control-events */ static int mclk_input_control_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_card *card = snd_kcontrol_chip(kcontrol); struct mop500_ab8500_drvdata *drvdata = snd_soc_card_get_drvdata(card); ucontrol->value.enumerated.item[0] = drvdata->mclk_sel; return 0; } static int mclk_input_control_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_card *card = snd_kcontrol_chip(kcontrol); struct mop500_ab8500_drvdata *drvdata = snd_soc_card_get_drvdata(card); unsigned int val = ucontrol->value.enumerated.item[0]; if (val > (unsigned int)MCLK_ULPCLK) return -EINVAL; if (drvdata->mclk_sel == val) return 0; drvdata->mclk_sel = val; return 1; } /* * Controls */ static struct snd_kcontrol_new mop500_ab8500_ctrls[] = { SOC_ENUM_EXT("Master Clock Select", soc_enum_mclk, mclk_input_control_get, mclk_input_control_put), SOC_DAPM_PIN_SWITCH("Headset Left"), SOC_DAPM_PIN_SWITCH("Headset Right"), SOC_DAPM_PIN_SWITCH("Earpiece"), SOC_DAPM_PIN_SWITCH("Speaker Left"), SOC_DAPM_PIN_SWITCH("Speaker Right"), SOC_DAPM_PIN_SWITCH("LineOut Left"), SOC_DAPM_PIN_SWITCH("LineOut Right"), SOC_DAPM_PIN_SWITCH("Vibra 1"), SOC_DAPM_PIN_SWITCH("Vibra 2"), SOC_DAPM_PIN_SWITCH("Mic 1"), SOC_DAPM_PIN_SWITCH("Mic 2"), SOC_DAPM_PIN_SWITCH("LineIn Left"), SOC_DAPM_PIN_SWITCH("LineIn Right"), SOC_DAPM_PIN_SWITCH("DMic 1"), SOC_DAPM_PIN_SWITCH("DMic 2"), SOC_DAPM_PIN_SWITCH("DMic 3"), SOC_DAPM_PIN_SWITCH("DMic 4"), SOC_DAPM_PIN_SWITCH("DMic 5"), SOC_DAPM_PIN_SWITCH("DMic 6"), }; /* ASoC */ static int mop500_ab8500_startup(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); /* Set audio-clock source */ return mop500_ab8500_set_mclk(rtd->card->dev, snd_soc_card_get_drvdata(rtd->card)); } static void mop500_ab8500_shutdown(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct device *dev = rtd->card->dev; dev_dbg(dev, "%s: Enter\n", __func__); /* Reset slots configuration to default(s) */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) tx_slots = DEF_TX_SLOTS; else rx_slots = DEF_RX_SLOTS; } static int mop500_ab8500_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0); struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0); struct device *dev = rtd->card->dev; unsigned int fmt; int channels, ret = 0, driver_mode, slots; unsigned int sw_codec, sw_cpu; bool is_playback; dev_dbg(dev, "%s: Enter\n", __func__); dev_dbg(dev, "%s: substream->pcm->name = %s\n" "substream->pcm->id = %s.\n" "substream->name = %s.\n" "substream->number = %d.\n", __func__, substream->pcm->name, substream->pcm->id, substream->name, substream->number); /* Ensure configuration consistency between DAIs */ mutex_lock(&mop500_ab8500_params_lock); if (mop500_ab8500_usage) { if (mop500_ab8500_rate != params_rate(params) || mop500_ab8500_channels != params_channels(params)) { mutex_unlock(&mop500_ab8500_params_lock); return -EBUSY; } } else { mop500_ab8500_rate = params_rate(params); mop500_ab8500_channels = params_channels(params); } __set_bit(cpu_dai->id, &mop500_ab8500_usage); mutex_unlock(&mop500_ab8500_params_lock); channels = params_channels(params); switch (params_format(params)) { case SNDRV_PCM_FORMAT_S32_LE: sw_cpu = 32; break; case SNDRV_PCM_FORMAT_S16_LE: sw_cpu = 16; break; default: return -EINVAL; } /* Setup codec depending on driver-mode */ if (channels == 8) driver_mode = DRIVERMODE_CODEC_ONLY; else driver_mode = DRIVERMODE_NORMAL; dev_dbg(dev, "%s: Driver-mode: %s.\n", __func__, (driver_mode == DRIVERMODE_NORMAL) ? "NORMAL" : "CODEC_ONLY"); /* Setup format */ if (driver_mode == DRIVERMODE_NORMAL) { fmt = SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CONT; } else { fmt = SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM | SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_GATED; } ret = snd_soc_runtime_set_dai_fmt(rtd, fmt); if (ret) return ret; /* Setup TDM-slots */ is_playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); switch (channels) { case 1: slots = 16; tx_slots = (is_playback) ? TX_SLOT_MONO : 0; rx_slots = (is_playback) ? 0 : RX_SLOT_MONO; break; case 2: slots = 16; tx_slots = (is_playback) ? TX_SLOT_STEREO : 0; rx_slots = (is_playback) ? 0 : RX_SLOT_STEREO; break; case 8: slots = 16; tx_slots = (is_playback) ? TX_SLOT_8CH : 0; rx_slots = (is_playback) ? 0 : RX_SLOT_8CH; break; default: return -EINVAL; } if (driver_mode == DRIVERMODE_NORMAL) sw_codec = sw_cpu; else sw_codec = 20; dev_dbg(dev, "%s: CPU-DAI TDM: TX=0x%04X RX=0x%04x\n", __func__, tx_slots, rx_slots); ret = snd_soc_dai_set_tdm_slot(cpu_dai, tx_slots, rx_slots, slots, sw_cpu); if (ret) return ret; dev_dbg(dev, "%s: CODEC-DAI TDM: TX=0x%04X RX=0x%04x\n", __func__, tx_slots, rx_slots); ret = snd_soc_dai_set_tdm_slot(codec_dai, tx_slots, rx_slots, slots, sw_codec); if (ret) return ret; return 0; } static int mop500_ab8500_hw_free(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0); mutex_lock(&mop500_ab8500_params_lock); __clear_bit(cpu_dai->id, &mop500_ab8500_usage); mutex_unlock(&mop500_ab8500_params_lock); return 0; } const struct snd_soc_ops mop500_ab8500_ops[] = { { .hw_params = mop500_ab8500_hw_params, .hw_free = mop500_ab8500_hw_free, .startup = mop500_ab8500_startup, .shutdown = mop500_ab8500_shutdown, } }; int mop500_ab8500_machine_init(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dapm_context *dapm = &rtd->card->dapm; struct device *dev = rtd->card->dev; struct mop500_ab8500_drvdata *drvdata; int ret; dev_dbg(dev, "%s Enter.\n", __func__); /* Create driver private-data struct */ drvdata = devm_kzalloc(dev, sizeof(struct mop500_ab8500_drvdata), GFP_KERNEL); if (!drvdata) return -ENOMEM; snd_soc_card_set_drvdata(rtd->card, drvdata); /* Setup clocks */ drvdata->clk_ptr_sysclk = clk_get(dev, "sysclk"); if (IS_ERR(drvdata->clk_ptr_sysclk)) dev_warn(dev, "%s: WARNING: clk_get failed for 'sysclk'!\n", __func__); drvdata->clk_ptr_ulpclk = clk_get(dev, "ulpclk"); if (IS_ERR(drvdata->clk_ptr_ulpclk)) dev_warn(dev, "%s: WARNING: clk_get failed for 'ulpclk'!\n", __func__); drvdata->clk_ptr_intclk = clk_get(dev, "intclk"); if (IS_ERR(drvdata->clk_ptr_intclk)) dev_warn(dev, "%s: WARNING: clk_get failed for 'intclk'!\n", __func__); /* Set intclk default parent to ulpclk */ drvdata->mclk_sel = MCLK_ULPCLK; ret = mop500_ab8500_set_mclk(dev, drvdata); if (ret < 0) dev_warn(dev, "%s: WARNING: mop500_ab8500_set_mclk!\n", __func__); drvdata->mclk_sel = MCLK_ULPCLK; /* Add controls */ ret = snd_soc_add_card_controls(rtd->card, mop500_ab8500_ctrls, ARRAY_SIZE(mop500_ab8500_ctrls)); if (ret < 0) { pr_err("%s: Failed to add machine-controls (%d)!\n", __func__, ret); return ret; } ret = snd_soc_dapm_disable_pin(dapm, "Earpiece"); ret |= snd_soc_dapm_disable_pin(dapm, "Speaker Left"); ret |= snd_soc_dapm_disable_pin(dapm, "Speaker Right"); ret |= snd_soc_dapm_disable_pin(dapm, "LineOut Left"); ret |= snd_soc_dapm_disable_pin(dapm, "LineOut Right"); ret |= snd_soc_dapm_disable_pin(dapm, "Vibra 1"); ret |= snd_soc_dapm_disable_pin(dapm, "Vibra 2"); ret |= snd_soc_dapm_disable_pin(dapm, "Mic 1"); ret |= snd_soc_dapm_disable_pin(dapm, "Mic 2"); ret |= snd_soc_dapm_disable_pin(dapm, "LineIn Left"); ret |= snd_soc_dapm_disable_pin(dapm, "LineIn Right"); ret |= snd_soc_dapm_disable_pin(dapm, "DMic 1"); ret |= snd_soc_dapm_disable_pin(dapm, "DMic 2"); ret |= snd_soc_dapm_disable_pin(dapm, "DMic 3"); ret |= snd_soc_dapm_disable_pin(dapm, "DMic 4"); ret |= snd_soc_dapm_disable_pin(dapm, "DMic 5"); ret |= snd_soc_dapm_disable_pin(dapm, "DMic 6"); return ret; } void mop500_ab8500_remove(struct snd_soc_card *card) { struct mop500_ab8500_drvdata *drvdata = snd_soc_card_get_drvdata(card); clk_put(drvdata->clk_ptr_sysclk); clk_put(drvdata->clk_ptr_ulpclk); clk_put(drvdata->clk_ptr_intclk); snd_soc_card_set_drvdata(card, drvdata); }
linux-master
sound/soc/ux500/mop500_ab8500.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson SA 2012 * * Author: Ola Lilja ([email protected]) * for ST-Ericsson. */ #include <asm/mach-types.h> #include <linux/module.h> #include <linux/io.h> #include <linux/spi/spi.h> #include <linux/of.h> #include <sound/soc.h> #include <sound/initval.h> #include "ux500_pcm.h" #include "ux500_msp_dai.h" #include "mop500_ab8500.h" /* Define the whole MOP500 soundcard, linking platform to the codec-drivers */ SND_SOC_DAILINK_DEFS(link1, DAILINK_COMP_ARRAY(COMP_CPU("ux500-msp-i2s.1")), DAILINK_COMP_ARRAY(COMP_CODEC("ab8500-codec.0", "ab8500-codec-dai.0")), DAILINK_COMP_ARRAY(COMP_PLATFORM("ux500-msp-i2s.1"))); SND_SOC_DAILINK_DEFS(link2, DAILINK_COMP_ARRAY(COMP_CPU("ux500-msp-i2s.3")), DAILINK_COMP_ARRAY(COMP_CODEC("ab8500-codec.0", "ab8500-codec-dai.1")), DAILINK_COMP_ARRAY(COMP_PLATFORM("ux500-msp-i2s.3"))); static struct snd_soc_dai_link mop500_dai_links[] = { { .name = "ab8500_0", .stream_name = "ab8500_0", .init = mop500_ab8500_machine_init, .ops = mop500_ab8500_ops, SND_SOC_DAILINK_REG(link1), }, { .name = "ab8500_1", .stream_name = "ab8500_1", .init = NULL, .ops = mop500_ab8500_ops, SND_SOC_DAILINK_REG(link2), }, }; static struct snd_soc_card mop500_card = { .name = "MOP500-card", .owner = THIS_MODULE, .probe = NULL, .dai_link = mop500_dai_links, .num_links = ARRAY_SIZE(mop500_dai_links), }; static void mop500_of_node_put(void) { int i; for (i = 0; i < 2; i++) of_node_put(mop500_dai_links[i].cpus->of_node); /* Both links use the same codec, which is refcounted only once */ of_node_put(mop500_dai_links[0].codecs->of_node); } static int mop500_of_probe(struct platform_device *pdev, struct device_node *np) { struct device_node *codec_np, *msp_np[2]; int i; msp_np[0] = of_parse_phandle(np, "stericsson,cpu-dai", 0); msp_np[1] = of_parse_phandle(np, "stericsson,cpu-dai", 1); codec_np = of_parse_phandle(np, "stericsson,audio-codec", 0); if (!(msp_np[0] && msp_np[1] && codec_np)) { dev_err(&pdev->dev, "Phandle missing or invalid\n"); for (i = 0; i < 2; i++) of_node_put(msp_np[i]); of_node_put(codec_np); return -EINVAL; } for (i = 0; i < 2; i++) { mop500_dai_links[i].cpus->of_node = msp_np[i]; mop500_dai_links[i].cpus->dai_name = NULL; mop500_dai_links[i].platforms->of_node = msp_np[i]; mop500_dai_links[i].platforms->name = NULL; mop500_dai_links[i].codecs->of_node = codec_np; mop500_dai_links[i].codecs->name = NULL; } snd_soc_of_parse_card_name(&mop500_card, "stericsson,card-name"); return 0; } static int mop500_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; int ret; dev_dbg(&pdev->dev, "%s: Enter.\n", __func__); mop500_card.dev = &pdev->dev; ret = mop500_of_probe(pdev, np); if (ret) return ret; dev_dbg(&pdev->dev, "%s: Card %s: Set platform drvdata.\n", __func__, mop500_card.name); snd_soc_card_set_drvdata(&mop500_card, NULL); dev_dbg(&pdev->dev, "%s: Card %s: num_links = %d\n", __func__, mop500_card.name, mop500_card.num_links); dev_dbg(&pdev->dev, "%s: Card %s: DAI-link 0: name = %s\n", __func__, mop500_card.name, mop500_card.dai_link[0].name); dev_dbg(&pdev->dev, "%s: Card %s: DAI-link 0: stream_name = %s\n", __func__, mop500_card.name, mop500_card.dai_link[0].stream_name); ret = snd_soc_register_card(&mop500_card); if (ret) dev_err(&pdev->dev, "Error: snd_soc_register_card failed (%d)!\n", ret); return ret; } static void mop500_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); pr_debug("%s: Enter.\n", __func__); snd_soc_unregister_card(card); mop500_ab8500_remove(card); mop500_of_node_put(); } static const struct of_device_id snd_soc_mop500_match[] = { { .compatible = "stericsson,snd-soc-mop500", }, {}, }; MODULE_DEVICE_TABLE(of, snd_soc_mop500_match); static struct platform_driver snd_soc_mop500_driver = { .driver = { .name = "snd-soc-mop500", .of_match_table = snd_soc_mop500_match, }, .probe = mop500_probe, .remove_new = mop500_remove, }; module_platform_driver(snd_soc_mop500_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("ASoC MOP500 board driver"); MODULE_AUTHOR("Ola Lilja");
linux-master
sound/soc/ux500/mop500.c